1
|
Napoli JL. Cellular retinoid binding-proteins, CRBP, CRABP, FABP5: Effects on retinoid metabolism, function and related diseases. Pharmacol Ther 2017; 173:19-33. [PMID: 28132904 DOI: 10.1016/j.pharmthera.2017.01.004] [Citation(s) in RCA: 176] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cellular binding-proteins (BP), including CRBP1, CRBP2, CRABP1, CRABP2, and FABP5, shepherd the poorly aqueous soluble retinoids during uptake, metabolism and function. Holo-BP promote efficient use of retinol, a scarce but essential nutrient throughout evolution, by sheltering it and its major metabolite all-trans-retinoic acid from adventitious interactions with the cellular milieu, and by imposing specificity of delivery to enzymes, nuclear receptors and other partners. Apo-BP reflect cellular retinoid status and modify activities of retinoid metabolon enzymes, or exert non-canonical actions. High ligand binding affinities and the nature of ligand sequestration necessitate external factors to prompt retinoid release from holo-BP. One or more of cross-linking, kinetics, and colocalization have identified these factors as RDH, RALDH, CYP26, LRAT, RAR and PPARβ/δ. Michaelis-Menten and other kinetic approaches verify that BP channel retinoids to select enzymes and receptors by protein-protein interactions. Function of the BP and enzymes that constitute the retinoid metabolon depends in part on retinoid exchanges unique to specific pairings. The complexity of these exchanges configure retinol metabolism to meet the diverse functions of all-trans-retinoic acid and its ability to foster contrary outcomes in different cell types, such as inducing apoptosis, differentiation or proliferation. Altered BP expression affects retinoid function, for example, by impairing pancreas development resulting in abnormal glucose and energy metabolism, promoting predisposition to breast cancer, and fostering more severe outcomes in prostate cancer, ovarian adenocarcinoma, and glioblastoma. Yet, the extent of BP interactions with retinoid metabolon enzymes and their impact on retinoid physiology remains incompletely understood.
Collapse
Affiliation(s)
- Joseph L Napoli
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA 94720, United States.
| |
Collapse
|
2
|
Ciato D, Mumbach AG, Paez-Pereda M, Stalla GK. Currently used and investigational drugs for Cushing´s disease. Expert Opin Investig Drugs 2016; 26:75-84. [PMID: 27894193 DOI: 10.1080/13543784.2017.1266338] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Cushing's disease (CD) is caused by a corticotroph adenoma of the pituitary gland that secretes excess adrenocorticotropic hormone (ACTH) causing increased morbidity and mortality. Surgery is the treatment of choice, but is not always successful. Alternatives include radiotherapy, adrenal surgery, and pharmaceutical therapy. The latter is increasingly gaining momentum due to the recent development of compounds that reduce hypercortisolaemia or its symptoms, acting through different mechanisms. Areas covered: In this article, the authors provide a complete overview of the treatment options for Cushing´s disease, including adrenal-directed, tumor-targeted, and peripheral therapies that are currently used or in development, and discuss their potential advantages and limitations. Expert opinion: Considering the lack of long-term remission in up to half of the patients after surgery, and the delayed response to radiotherapy along with potential side effects, there is a strong need for an effective pharmaceutical treatment. Pasireotide, mifepristone, ketoconazole and metyrapone have been approved by regulatory authorities but their use remains limited due to considerable costs and side effects. Research in this field has focused recently on the improvement of pre-existing drugs and the development of safe new ones. However, few approaches aim at targeting the source of the disease, the ACTH-secreting adenoma.
Collapse
Affiliation(s)
- Denis Ciato
- a Clinical Neuroendocrinology , Max Planck Institute of Psychiatry , Munich , Germany.,b Endocrinology Division, Department of Medicine , University-Hospital of Padua , Padua , Italy
| | - Aizhar G Mumbach
- c Endocrinology Division , Carlos G. Durand Hospital , Buenos Aires , Argentina
| | - Marcelo Paez-Pereda
- a Clinical Neuroendocrinology , Max Planck Institute of Psychiatry , Munich , Germany
| | - Günter K Stalla
- a Clinical Neuroendocrinology , Max Planck Institute of Psychiatry , Munich , Germany
| |
Collapse
|
3
|
Snyder R, Thekkumkara T. Interplay between EGR1 and SP1 is critical for 13-cis retinoic acid-mediated transcriptional repression of angiotensin type 1A receptor. J Mol Endocrinol 2013; 50:361-74. [PMID: 23475749 PMCID: PMC3740742 DOI: 10.1530/jme-12-0154] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Recently, we have demonstrated that 13-cis retinoic acid (13cRA) downregulates rat angiotensin type 1A receptor (Agtr1a) gene transcription through a MAP kinase (ERK1/2)-dependent mechanism in rat liver epithelial and aortic smooth muscle cells. However, the exact mechanism remained unknown. In this study, we determined the signaling intermediates activated by ERK1/2 involved in 13cRA-mediated Agtr1a downregulation. Rat Agtr1a chloramphenicol acetyltransferase (CAT) promoter construct containing a sequence -2541 and -1836 bp upstream of the start site demonstrated reduced CAT activity; this region possesses a specificity protein 1 (SP1) consensus sequence (5'-TGGGGCGGGGCGGGG-3'). Mobility shift analysis using untreated nuclear extracts in the presence of mithramycin A suggests that the trans-acting factor binding to this cis-acting element is SP1. 13cRA significantly reduced specific binding without any change in SP1 protein expression. Studies showed that 13cRA treatment maximally phosphorylates ERK1/2 within 5-10 min, which translocates to the nucleus, activating early growth response protein 1 (Egr1) mRNA expression at 20 min followed by de novo protein synthesis, leading to an EGR1/SP1 interaction. siRNA silencing of Egr1 restored Agtr1a mRNA and protein expression in 13cRA-treated cells, and Sp1 silencing results in complete loss of Agtr1a expression. Our study suggests that 13cRA-mediated activation of ERK1/2, through EGR1, is capable of disrupting SP1, the requisite trans-activator for Agtr1a expression, providing a novel paradigm in Agtr1a gene transcription.
Collapse
Affiliation(s)
- Russell Snyder
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, 1300 South Coulter, Amarillo, Texas 79106
| | - Thomas Thekkumkara
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, 1300 South Coulter, Amarillo, Texas 79106
| |
Collapse
|
4
|
Muindi JR, Roth MD, Wise RA, Connett JE, O'Connor GT, Ramsdell JW, Schluger NW, Romkes M, Branch RA, Sciurba FC. Pharmacokinetics and Metabolism of All-trans-and 13-cis-Retinoic Acid in Pulmonary Emphysema Patients. J Clin Pharmacol 2013; 48:96-107. [DOI: 10.1177/0091270007309701] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
5
|
Hellmann-Regen J, Heuser I, Regen F. UV-A emission from fluorescent energy-saving light bulbs alters local retinoic acid homeostasis. Photochem Photobiol Sci 2013; 12:2177-85. [DOI: 10.1039/c3pp50206f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
6
|
Snyder R, Thekkumkara T. 13-cis-Retinoic acid specific down-regulation of angiotensin type 1 receptor in rat liver epithelial and aortic smooth muscle cells. J Mol Endocrinol 2012; 48:99-114. [PMID: 22180636 DOI: 10.1530/jme-11-0095] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Transcriptional repression through cis- and trans-acting factors enabling an alternate approach to control angiotensin type 1 receptor (AT1 or AGTR1 as listed in the MGI database) expression has not been studied. In previous investigations, treatment with retinoic acid was found to be associated with enhanced insulin sensitivity. In our previous study, expression of AT1 was found to be inversely correlated with intracellular glucose concentrations. Therefore, we hypothesized that 13-cis-retinoic acid (13cRA), an antioxidant, enhances insulin-sensitive glucose-mediated down-regulation of the AT1. In this study, we used continuously passaged rat liver epithelial cells. Our study shows that cells exposed to 13cRA specifically down-regulated the AT1 protein in a dose- and time-dependent manner, independently of any change in receptor affinity. Down-regulation of the AT1 expression leads to reduced AngII-mediated intracellular calcium release, a hallmark of receptor-mediated intracellular signaling. Similarly with receptor down-regulation, we observed a significant reduction in AT1 mRNA; however, the AT1 down-regulation was independent of insulin-sensitive glucose uptake and retinoic acid receptor activation (RAR/RXR). Treatment with 13cRA resulted in phosphorylation of p42/p44 MAP kinases in these cells. Subsequent studies using MEK inhibitor PD98059 prevented 13cRA-mediated AT1 down-regulation and restored AngII-mediated intracellular calcium response. Furthermore, 13cRA-mediated inhibitory effects on AT1 were validated in primary rat aortic smooth muscle cells. In summary, our results demonstrate for the first time that 13cRA has a glucose- and RAR/RXR-independent mechanism for transcriptional inhibition of AT1, suggesting its therapeutic potential in systems in which AT1 expression is deregulated in insulin-sensitive and -insensitive tissues.
Collapse
MESH Headings
- Angiotensin II/metabolism
- Animals
- Antioxidants/pharmacology
- Aorta/cytology
- Cells, Cultured
- Down-Regulation/drug effects
- Enzyme Inhibitors/pharmacology
- Epithelial Cells/cytology
- Epithelial Cells/drug effects
- Epithelial Cells/metabolism
- Flavonoids/pharmacology
- Gene Expression Regulation/drug effects
- Glucose/metabolism
- Insulin/metabolism
- Isotretinoin/pharmacology
- Liver/cytology
- Mitogen-Activated Protein Kinase 1/metabolism
- Mitogen-Activated Protein Kinase 3/metabolism
- Muscle, Smooth, Vascular/cytology
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- RNA, Messenger/metabolism
- Rats
- Receptor, Angiotensin, Type 1/genetics
- Receptor, Angiotensin, Type 1/metabolism
- Receptors, Retinoic Acid/genetics
- Receptors, Retinoic Acid/metabolism
- Retinoid X Receptors/genetics
- Retinoid X Receptors/metabolism
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- Russell Snyder
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, Amarillo, Texas 79106, USA
| | | |
Collapse
|
7
|
Siddikuzzaman, Guruvayoorappan C, Berlin Grace VM. All trans retinoic acid and cancer. Immunopharmacol Immunotoxicol 2010; 33:241-9. [PMID: 20929432 DOI: 10.3109/08923973.2010.521507] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
All-trans retinoic acid (ATRA) is an active metabolite of vitamin A under the family retinoid. Retinoids, through their cognate nuclear receptors, exert potent effects on cell growth, differentiation and apoptosis, and have significant promise for cancer therapy and chemoprevention. Differentiation therapy with ATRA has marked a major advance and become the first choice drug in the treatment of acute promyelocytic leukemia (APL). Conversions of 13-cis-retinoic acid and 9-cis-retinoic acid to all-trans-retinoic acid is very rapid. Currently, two distinct families of retinoid responsive nuclear receptors have been identified and characterized: retinoic acid receptors (RARs) and retinoid receptors (RXRs), each of which include three isoforms, α,β,and γ. ATRA is being increasingly included in anti-tumour therapeutical schemes for the treatment of various tumoral diseases such as Kaposi's sarcoma, head and neck squamous cell carcinoma, ovarian carcinoma, bladder cancer, neuroblastoma and has shown antiangiogenic effects in several systems, inhibiting proliferation in vascular smooth muscle cells (VSMCs) and anti-inflammatory in rheumatoid arthritis. This review helps to understand in details about the ATRA and its role on cancer and it is predicted that modulating the activity of ATRA will soon provide novel prevention and treatment approaches for the cancer patients.
Collapse
Affiliation(s)
- Siddikuzzaman
- Department of Biotechnology, School of Biotechnology & Health Sciences, Karunya University, Karunya Nagar, Coimbatore - 641 114, Tamil Nadu, India
| | | | | |
Collapse
|
8
|
Muench MO, Bárcena A, Ohkubo T, Harrison MR. Requirement of retinoids for the expression of CD38 on human hematopoietic progenitors in vitro. Cytotherapy 2010; 1:455-68. [PMID: 20426546 DOI: 10.1080/0032472031000141305] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
BACKGROUND Cells expressing high levels of CD34 and little or no CD38 comprise a primitive compartment of progenitors, thought to include hematopoietic stem cells. In this study we sought to determine the feasibility of using CD34 and CD38 as markers of hematopoietic differentiation in vitro, using retinoids to induce the expression of CD38. METHODS The effects over time of culture, sera and retinoids on the expression of CD34 and CD38 were determined using a base-medium lacking serum. Two early progenitor populations, isolated by FACS from human fetal liver, were studied: CD38(-)CD34(++) and CD38(+)CD34(++) cells. Additionally, HL-60 cells were adapted to grow in serum-deprived medium to study factors that control CD38 expression. Colony forming cell (CFC) assays and short-term expansion cultures were used to measure the effects of all-trans-retinoic acid (ATRA) oil the growth of fetal progenitors. RESULTS Fetal progenitors and HL-60 cells grown under serum-deprived conditions exhibited almost no CD38 expression. However, CD34 expression was observed on fetal progenitors and declined slowly over time. Addition of FBS or human serum restored CD38 expression to cultured cells, but at levels below those found on progenitors in vivo. Addition of ATRA or 9-cis-retinoic acid (9CRA) to cultures of fetal progenitors or HL-60 cells, resulted in a time- and dose-dependent increase in CD38 expression, ATRA being the more potent of the two retinoids. However, ATRA inhibited colony formation, reduced the expansion of CFC and accelerated the loss of CD34 expression at doses required for the induction of CD38 expression. DISCUSSION ATRA-induced CD38 expression on cells to levels comparable to those found on progenitors in vivo. ATRA also inhibited the growth of early progenitors, which was partly due to ATRA accelerating the differentiation of the progenitors. These findings indicate that CD34 and CD38 expression may be followed as markers of hematopoietic differentiation in vitro, but at the cost of culture conditions that are less than optimal for maintaining early progenitors.
Collapse
Affiliation(s)
- M O Muench
- Fetal Treatment Center Research Laboratory, University of California at San Francisco, 513 Parnassus Avenue Room HSW-1601, San Francisco, CA 94143-0570, USA
| | | | | | | |
Collapse
|
9
|
Labeur M, Paez-Pereda M, Arzt E, Stalla GK. Potential of retinoic acid derivatives for the treatment of corticotroph pituitary adenomas. Rev Endocr Metab Disord 2009; 10:103-9. [PMID: 18604646 DOI: 10.1007/s11154-008-9080-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Accepted: 06/12/2008] [Indexed: 11/30/2022]
Abstract
Cushing's disease is a severe clinical condition caused by hypersecretion of corticosteroids due to excessive ACTH secretion from a pituitary adenoma. This complex endocrine disorder still represents a major challenge for the physician in terms of efficient treatment. In the last years there was only little progress in elucidating the molecular mechanisms responsible for the constitutive and autonomous ACTH secretion of pituitary corticotrophinomas. As a consequence, no effective drug therapy is currently available, particularly if surgical excision is not successful. In the present article we examine recent studies that have investigated the therapeutic potential of retinoic acid receptors as nuclear receptor targets for the treatment of Cushing's disease. Retinoic acid is an efficient drug used for the treatment of different types of cancers and it proved to act in animal models of Cushing's disease. The efficiency of this treatment in patients with this disorder still needs to be tested in clinical trials.
Collapse
Affiliation(s)
- Marta Labeur
- Max Planck Institute of Psychiatry, Munich, Germany.
| | | | | | | |
Collapse
|
10
|
Bonnet E, Touyarot K, Alfos S, Pallet V, Higueret P, Abrous DN. Retinoic acid restores adult hippocampal neurogenesis and reverses spatial memory deficit in vitamin A deprived rats. PLoS One 2008; 3:e3487. [PMID: 18941534 PMCID: PMC2567033 DOI: 10.1371/journal.pone.0003487] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2008] [Accepted: 09/25/2008] [Indexed: 01/23/2023] Open
Abstract
A dysfunction of retinoid hippocampal signaling pathway has been involved in the appearance of affective and cognitive disorders. However, the underlying neurobiological mechanisms remain unknown. Hippocampal granule neurons are generated throughout life and are involved in emotion and memory. Here, we investigated the effects of vitamin A deficiency (VAD) on neurogenesis and memory and the ability of retinoic acid (RA) treatment to prevent VAD-induced impairments. Adult retinoid-deficient rats were generated by a vitamin A-free diet from weaning in order to allow a normal development. The effects of VAD and/or RA administration were examined on hippocampal neurogenesis, retinoid target genes such as neurotrophin receptors and spatial reference memory measured in the water maze. Long-term VAD decreased neurogenesis and led to memory deficits. More importantly, these effects were reversed by 4 weeks of RA treatment. These beneficial effects may be in part related to an up-regulation of retinoid-mediated molecular events, such as the expression of the neurotrophin receptor TrkA. We have demonstrated for the first time that the effect of vitamin A deficient diet on the level of hippoccampal neurogenesis is reversible and that RA treatment is important for the maintenance of the hippocampal plasticity and function.
Collapse
Affiliation(s)
- Emilie Bonnet
- Nutrition & Neurosciences laboratory, University of Bordeaux 1, Talence, France
- University of Bordeaux 2, Bordeaux, France
| | - Katia Touyarot
- Nutrition & Neurosciences laboratory, University of Bordeaux 1, Talence, France
- University of Bordeaux 2, Bordeaux, France
| | - Serge Alfos
- Nutrition & Neurosciences laboratory, University of Bordeaux 1, Talence, France
- University of Bordeaux 2, Bordeaux, France
| | - Véronique Pallet
- Nutrition & Neurosciences laboratory, University of Bordeaux 1, Talence, France
- University of Bordeaux 2, Bordeaux, France
| | - Paul Higueret
- Nutrition & Neurosciences laboratory, University of Bordeaux 1, Talence, France
- University of Bordeaux 2, Bordeaux, France
| | - Djoher Nora Abrous
- University of Bordeaux 2, Bordeaux, France
- Neurogenesis & Pathophysiology laboratory, Bordeaux Neuroscience Research Center, INSERM 862, Bordeaux, France
| |
Collapse
|
11
|
Dawson HD, Collins G, Pyle R, Key M, Taub DD. The Retinoic Acid Receptor-alpha mediates human T-cell activation and Th2 cytokine and chemokine production. BMC Immunol 2008; 9:16. [PMID: 18416830 PMCID: PMC2394516 DOI: 10.1186/1471-2172-9-16] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Accepted: 04/16/2008] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND We have recently demonstrated that all-trans-retinoic acid (ATRA) and 9-cis-retinoic acid (9-cis RA) promote IL-4, IL-5 and IL-13 synthesis, while decreasing IFN-gamma and TNF-alpha expression by activated human T cells and reduces the synthesis of IL-12p70 from accessory cells. Here, we have demonstrated that the observed effects using ATRA and 9-cis RA are shared with the clinically useful RAR ligand, 13-cis retinoic acid (13-cis RA), and the retinoic acid receptor-alpha (RAR-alpha)-selective agonist, AM580 but not with the RAR-beta/gamma ligand, 4-hydroxyphenylretinamide (4-HPR). RESULTS The increase in type 2 cytokine production by these retinoids correlated with the expression of the T cell activation markers, CD69 and CD38. The RAR-alpha-selective agonist, AM580 recapitulated all of the T cell activation and type 2 cytokine-inducing effects of ATRA and 9-cis-RA, while the RAR-alpha-selective antagonist, RO 41-5253, inhibited these effects. CONCLUSION These results strongly support a role for RAR-alpha engagement in the regulation of genes and proteins involved with human T cell activation and type 2 cytokine production.
Collapse
Affiliation(s)
- Harry D Dawson
- Laboratory of Immunology, Gerontology Research Center, National Institute on Aging, NIH, Baltimore, MD 21224, USA.
| | | | | | | | | |
Collapse
|
12
|
Jones G, Jones D, Teal P, Sapa A, Wozniak M. The retinoid-X receptor ortholog, ultraspiracle, binds with nanomolar affinity to an endogenous morphogenetic ligand. FEBS J 2007; 273:4983-96. [PMID: 17064257 DOI: 10.1111/j.1742-4658.2006.05498.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The in vivo ligand-binding function and ligand-binding activity of the Drosophila melanogaster retinoid-X receptor (RXR) ortholog, ultraspiracle, toward natural farnesoid products of the ring gland were assessed. Using an equilibrium fluorescence-binding assay, farnesoid products in the juvenile hormone (JH) biosynthesis pathway, and their epoxy derivatives, were measured for their affinity constant for ultraspiracle (USP). Farnesol, farnesal, farnesoic acid and juvenile hormone III exhibited high nanomolar to low micromolar affinity, which in each case decreased upon addition of an epoxide across a double bond of the basic farnesyl structure. Similar analysis of the substitution on C1 of methyl ether, alcohol, aldehyde, and carboxylic acid showed that each conferred weaker affinity than that provided by the methyl ester. Attention was thus focused for a ring-gland farnesoid product that possesses the features of methyl ester and lack of an epoxide. A secreted product of the ring gland, methyl farnesoate, was identified possessing these features and exhibited an affinity for ultraspiracle (K(d) = 40 nm) of similar strength to that of RXR for 9-cis retinoic acid. Mutational analysis of amino acid residues with side chains extending into the ligand-binding pocket cavity (and not interacting with secondary receptor structures or extending to the receptor surface to interact with coactivators, corepressors or receptor dimer partners) showed that the mutation C472A/H475L strongly reduced USP binding to this ring gland product and to JH III, with less effect on other ring-gland farnesoids and little effect on binding by (the unnatural to Drosophila) JH I. Along with the ecdysone receptor, USP is now the second arthropod nuclear hormone receptor for which a secreted product of an endocrine gland that binds the receptor with nanomolar affinity has been identified.
Collapse
Affiliation(s)
- Grace Jones
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA.
| | | | | | | | | |
Collapse
|
13
|
Ferguson SA, Cisneros FJ, Gough B, Hanig JP, Berry KJ. Chronic Oral Treatment with 13-cis-Retinoic Acid (Isotretinoin) or all-trans-Retinoic Acid Does Not Alter Depression-Like Behaviors in Rats. Toxicol Sci 2005; 87:451-9. [PMID: 16033993 DOI: 10.1093/toxsci/kfi262] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Oral treatment with the anti-acne drug Accutane (isotretinoin, 13-cis-retinoic acid) has been associated with suicide ideation and depression. Here, depression-like behaviors (i.e., behavioral despair and anhedonia) were quantified in adult Sprague-Dawley rats gavaged daily beginning at postnatal day (PND) 82 with 13-cis-RA (7.5 or 22.5 mg/kg) or all-trans-retinoic acid (10 or 15 mg/kg ). Tested at PND 130-131 in the Forced Swim Test, 7.5 mg/kg 13-cis-RA marginally decreased immobility and slightly increased climb/struggle durations whereas neither all-trans-retinoic acid group differed from controls. Voluntary saccharin solution (0.03%) intake at PND 102-104 and PND 151-153 was not different from controls in any treated group, although all RA-treated groups had lower intakes. Swim speed in a water maze at PND 180 was similar across groups, indicating no RA-induced differences in physical ability. Open field activity was mildly decreased at PND 91 in 7.5 mg/kg-treated males only, but it was within the control range at PND 119, 147, and 175. Thus, at serum levels similar to those in humans receiving the drug, chronic 13-cis-RA treatment did not severely affect depression-like behaviors in rats. These data do not substantiate the hypothesis of 13-cis-RA-induced depression.
Collapse
Affiliation(s)
- Sherry A Ferguson
- Division of Neurotoxicology, National Center for Toxicological Research/US Food and Drug Administration, Jefferson, Arkasas 72079, USA.
| | | | | | | | | |
Collapse
|
14
|
Grubbs CJ, Hill DL, Bland KI, Beenken SW, Lin TH, Eto I, Atigadda VR, Vines KK, Brouillette WJ, Muccio DD. 9cUAB30, an RXR specific retinoid, and/or tamoxifen in the prevention of methylnitrosourea-induced mammary cancers. Cancer Lett 2003; 201:17-24. [PMID: 14580682 DOI: 10.1016/s0304-3835(03)00461-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Studies were performed in female Sprague-Dawley rats to determine the efficacy of a new RXR specific retinoid (9cUAB30) when combined with tamoxifen in the prevention of mammary cancers and to determine various pharmacokinetic parameters of the retinoid. When administered by gavage, 9cUAB30 was rapidly absorbed and had a serum t(1/2) of 13.5 h. Since the retinoid was administered in the diet for the chemoprevention study, a 28-day study in which 9cUAB30 was given at dose levels of 200, 400, and 600 mg/kg diet revealed fairly constant serum levels regardless of dose or length of treatment; possibly accounting for the observed low toxicity of this compound. When suboptimal doses of 9cUAB30 were given in the methylnitrosourea (MNU)-induced mammary cancer model, the following average number of mammary cancers were observed: 9cUAB30 (150 mg/kg diet), 4.3; tamoxifen (0.4 mg/kg diet), 4.6; 9cUAB30 (150 mg/kg diet)+tamoxifen (0.4 mg/kg diet), 2.6; and controls, 6.0. Thus, the combination of the agents resulted in an increased effect in preventing mammary cancers; suggesting that cancer cell proliferation was inhibited by the compounds blocking different pathways.
Collapse
MESH Headings
- Administration, Oral
- Alkylating Agents/toxicity
- Animals
- Antineoplastic Agents, Hormonal/pharmacology
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Body Weight/drug effects
- Chromatography, High Pressure Liquid
- Diet
- Dose-Response Relationship, Drug
- Fatty Acids, Unsaturated/administration & dosage
- Fatty Acids, Unsaturated/blood
- Fatty Acids, Unsaturated/pharmacology
- Female
- Mammary Neoplasms, Experimental/chemically induced
- Mammary Neoplasms, Experimental/drug therapy
- Mammary Neoplasms, Experimental/prevention & control
- Methylnitrosourea/toxicity
- Naphthalenes/administration & dosage
- Naphthalenes/blood
- Naphthalenes/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptors, Retinoic Acid
- Retinoid X Receptors
- Retinoids/pharmacology
- Tamoxifen/pharmacology
- Transcription Factors
Collapse
Affiliation(s)
- Clinton J Grubbs
- Department of Surgery, The University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
|