1
|
Zhuang S, Chakraborty P, Zweckstetter M. Regulation of tau by peptidyl-prolyl isomerases. Curr Opin Struct Biol 2024; 84:102739. [PMID: 38061261 DOI: 10.1016/j.sbi.2023.102739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/06/2023] [Accepted: 11/13/2023] [Indexed: 02/09/2024]
Abstract
Tau is an intrinsically disordered protein found abundantly in axons, where it binds to microtubules. Since tau is a central player in the dynamic microtubule network, it is highly regulated by post-translational modifications. Abnormal hyperphosphorylation and aggregation of tau characterize a group of diseases called tauopathies. A specific protein family of cis/trans peptidyl-prolyl isomerases (PPIases) can interact with tau to regulate its aggregation and neuronal resilience. Structural interactions between tau and specific PPIases have been determined, establishing possible mechanisms for tau regulation and modification. While there have been numerous in vivo studies evaluating the impact of PPIase expression on tau biology/pathology, the direct roles of PPIases have yet to be fully characterized. Different PPIases correlate to either increased or decreased levels of tau-associated degeneration. Therefore, the ability of PPIases to structurally modify and regulate tau should be further investigated due to its potential therapeutic implications for Alzheimer's disease and other tauopathies.
Collapse
Affiliation(s)
- Shannon Zhuang
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, 37075 Göttingen, Germany
| | - Pijush Chakraborty
- Department for NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Am Faßberg 11, 37077 Göttingen, Germany
| | - Markus Zweckstetter
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, 37075 Göttingen, Germany; Department for NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Am Faßberg 11, 37077 Göttingen, Germany.
| |
Collapse
|
2
|
Zgajnar N, Lagadari M, Gallo LI, Piwien-Pilipuk G, Galigniana MD. Mitochondrial-nuclear communication by FKBP51 shuttling. J Cell Biochem 2023. [PMID: 36815347 DOI: 10.1002/jcb.30386] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/24/2023] [Accepted: 02/03/2023] [Indexed: 02/24/2023]
Abstract
The HSP90-binding immunophilin FKBP51 is a soluble protein that shows high homology and structural similarity with FKBP52. Both immunophilins are functionally divergent and often show antagonistic actions. They were first described in steroid receptor complexes, their exchange in the complex being the earliest known event in steroid receptor activation upon ligand binding. In addition to steroid-related events, several pleiotropic actions of FKBP51 have emerged during the last years, ranging from cell differentiation and apoptosis to metabolic and psychiatric disorders. On the other hand, mitochondria play vital cellular roles in maintaining energy homeostasis, responding to stress conditions, and affecting cell cycle regulation, calcium signaling, redox homeostasis, and so forth. This is achieved by proteins that are encoded in both the nuclear genome and mitochondrial genes. This implies active nuclear-mitochondrial communication to maintain cell homeostasis. Such communication involves factors that regulate nuclear and mitochondrial gene expression affecting the synthesis and recruitment of mitochondrial and nonmitochondrial proteins, and/or changes in the functional state of the mitochondria itself, which enable mitochondria to recover from stress. FKBP51 has emerged as a serious candidate to participate in these regulatory roles since it has been unexpectedly found in mitochondria showing antiapoptotic effects. Such localization involves the tetratricopeptide repeats domains of the immunophilin and not its intrinsic enzymatic activity of peptidylprolyl-isomerase. Importantly, FKBP51 abandons the mitochondria and accumulates in the nucleus upon cell differentiation or during the onset of stress. Nuclear FKBP51 enhances the enzymatic activity of telomerase. The mitochondrial-nuclear trafficking is reversible, and certain situations such as viral infections promote the opposite trafficking, that is, FKBP51 abandons the nucleus and accumulates in mitochondria. In this article, we review the latest findings related to the mitochondrial-nuclear communication mediated by FKBP51 and speculate about the possible implications of this phenomenon.
Collapse
Affiliation(s)
- Nadia Zgajnar
- Instituto de Biología y Medicina Experimental (IBYME)/CONICET, Buenos Aires, Argentina
| | - Mariana Lagadari
- Instituto de Ciencia y Tecnología de Alimentos de Entre Ríos, Concordia, Argentina
| | - Luciana I Gallo
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFYBYNE)/CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | - Mario D Galigniana
- Instituto de Biología y Medicina Experimental (IBYME)/CONICET, Buenos Aires, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
3
|
Luo X, Du G, Chen B, Yan G, Zhu L, Cui P, Dai H, Qi Z, Lan T. Novel immunosuppressive effect of FK506 by upregulation of PD-L1 via FKBP51 in heart transplantation. Scand J Immunol 2022; 96:e13203. [PMID: 35801698 DOI: 10.1111/sji.13203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 06/13/2022] [Accepted: 07/04/2022] [Indexed: 11/30/2022]
Abstract
The calcineurin inhibitor-FK506-is a first-line immunosuppressant that regulates T-cell secretion of IL-2 and other cytokines. However, the mechanism of its protective effect on target cells and its role on tumor recurrence and interaction with anti-tumor immune checkpoint inhibitors, such as PD-L1 blocking, are still unclear. Here, in a murine heart transplantation model, we observed the upregulation of programmed death-ligand 1 (PD-L1) expression by FK506 in both dendritic cells (DCs) and allografts. Blocking PD-L1 during FK506 treatment increased IFN-γ and TNF-α expression, enhanced CD4+ and CD8+ T-cell proliferation, and suppressed Treg differentiation. Moreover, PD-L1 decreased T-cell infiltration and induced T cell apoptosis in both the spleen and graft. PD-L1 was not only required in FK506-mediated immunosuppression but also upregulated by FK506. Treatment with SAFit2, a FKBP51 selective inhibitor, reduced the expression of PD-L1 on DCs and the grafts and interfered with the immunosuppressive effect of FK506, suggesting that the mechanism depends on FK506-binding protein (FKBP) 51 expression. Overall, our results add new insights into the role of FK506, not only on T-cell cytokine secretion but also on co-inhibitory molecular regulation and target cell immune privilege.
Collapse
Affiliation(s)
- Xuewei Luo
- Medical College of Guangxi University, Nanning, China.,Key Laboratory of Functional and Clinical Translational Medicine, Fujian Province University, Xiamen Medical College, Xiamen, China
| | - Guicheng Du
- Key Laboratory of Functional and Clinical Translational Medicine, Fujian Province University, Xiamen Medical College, Xiamen, China
| | - Bingye Chen
- Key Laboratory of Functional and Clinical Translational Medicine, Fujian Province University, Xiamen Medical College, Xiamen, China
| | - Guoliang Yan
- School of Medicine, Xiamen University, Xiamen, China
| | - Luyao Zhu
- Key Laboratory of Functional and Clinical Translational Medicine, Fujian Province University, Xiamen Medical College, Xiamen, China
| | - Pengcheng Cui
- Medical College of Guangxi University, Nanning, China.,Clinical Research Center for Organ Transplantation in Hunan Province, Changsha, China
| | - Helong Dai
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China.,Clinical Research Center for Organ Transplantation in Hunan Province, Changsha, China.,Clinical Immunology Center, Central South University, Changsha, China
| | - Zhongquan Qi
- Medical College of Guangxi University, Nanning, China.,Key Laboratory of Functional and Clinical Translational Medicine, Fujian Province University, Xiamen Medical College, Xiamen, China
| | - Tianshu Lan
- Key Laboratory of Functional and Clinical Translational Medicine, Fujian Province University, Xiamen Medical College, Xiamen, China.,Institute of Respiratory diseases,Xiamen medical college
| |
Collapse
|
4
|
Post-translational modifications and stress adaptation: the paradigm of FKBP51. Biochem Soc Trans 2020; 48:441-449. [PMID: 32318709 PMCID: PMC7200631 DOI: 10.1042/bst20190332] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/21/2020] [Accepted: 03/24/2020] [Indexed: 01/22/2023]
Abstract
Adaptation to stress is a fundamental requirement to cope with changing environmental conditions that pose a threat to the homeostasis of cells and organisms. Post-translational modifications (PTMs) of proteins represent a possibility to quickly produce proteins with new features demanding relatively little cellular resources. FK506 binding protein (FKBP) 51 is a pivotal stress protein that is involved in the regulation of several executers of PTMs. This mini-review discusses the role of FKBP51 in the function of proteins responsible for setting the phosphorylation, ubiquitination and lipidation of other proteins. Examples include the kinases Akt1, CDK5 and GSK3β, the phosphatases calcineurin, PP2A and PHLPP, and the ubiquitin E3-ligase SKP2. The impact of FKBP51 on PTMs of signal transduction proteins significantly extends the functional versatility of this protein. As a stress-induced protein, FKBP51 uses re-setting of PTMs to relay the effect of stress on various signaling pathways.
Collapse
|
5
|
Goh CKW, Silvester J, Wan Mahadi WNS, Chin LP, Ying LT, Leow TC, Kurahashi R, Takano K, Budiman C. Expression and characterization of functional domains of FK506-binding protein 35 from Plasmodium knowlesi. Protein Eng Des Sel 2018; 31:489-498. [PMID: 31120120 DOI: 10.1093/protein/gzz008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 12/24/2018] [Accepted: 04/06/2019] [Indexed: 11/13/2022] Open
Abstract
The FK506-binding protein of Plasmodium knowlesi (Pk-FKBP35) is considerably a viable antimalarial drug target, which belongs to the peptidyl-prolyl cis-trans isomerase (PPIase) protein family member. Structurally, this protein consists of an N-terminal FK506-binding domain (FKBD) and a C-terminal tetratricopeptide repeat domain (TPRD). This study aims to decipher functional properties of these domains as a platform for development of novel antimalarial drugs. Accordingly, full-length Pk-FKBP35 as well as its isolated domains, Pk-FKBD and Pk-TPRD were overexpressed, purified, and characterized. The results showed that catalytic PPIase activity was confined to the full-length Pk-FKBP35 and Pk-FKBD, suggesting that the catalytic activity is structurally regulated by the FKBD. Meanwhile, oligomerization analysis revealed that Pk-TPRD is essential for dimerization. Asp55, Arg60, Trp77 and Phe117 in the Pk-FKBD were considerably important for catalysis as underlined by significant reduction of PPIase activity upon mutations at these residues. Further, inhibition activity of Pk-FKBP35 towards calcineurin phosphatase activity revealed that the presence of FKBD is essential for the inhibitory property, while TPRD may be important for efficient binding to calcineurin. We then discussed possible roles of FKBP35 in Plasmodium cells and proposed mechanisms by which the immunosuppressive drug, FK506, interacts with the protein.
Collapse
Affiliation(s)
- Carlmond Kah Wun Goh
- Biotechnology Research Institute, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Jovi Silvester
- Biotechnology Research Institute, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | | | - Lee Ping Chin
- Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Lau Tiek Ying
- Biotechnology Research Institute, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Thean Chor Leow
- Enzyme and Microbial Technology Research Center, Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Malaysia
| | - Ryo Kurahashi
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Sakyo-ku, Kyoto, Japan
| | - Kazufumi Takano
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Sakyo-ku, Kyoto, Japan
| | - Cahyo Budiman
- Biotechnology Research Institute, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| |
Collapse
|
6
|
Webb MS, Miller AL, Howard TL, Johnson BH, Chumakov S, Fofanov Y, Nguyen-Vu T, Lin CY, Thompson EB. Sequential gene regulatory events leading to glucocorticoid-evoked apoptosis of CEM human leukemic cells:interactions of MAPK, MYC and glucocorticoid pathways. Mol Cell Endocrinol 2018; 471:118-130. [PMID: 29596968 PMCID: PMC6075652 DOI: 10.1016/j.mce.2018.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 02/13/2018] [Accepted: 03/07/2018] [Indexed: 12/22/2022]
Abstract
Gene expression responses to glucocorticoid (GC) in the hours preceding onset of apoptosis were compared in three clones of human acute lymphoblastic leukemia CEM cells. Between 2 and 20h, all three clones showed increasing numbers of responding genes. Each clone had many unique responses, but the two responsive clones showed a group of responding genes in common, different from the resistant clone. MYC levels and the balance of activities between the three major groups of MAPKs are known important regulators of glucocorticoid-driven apoptosis in several lymphoid cell systems. Common to the two sensitive clones were changed transcript levels from genes that decrease amounts or activity of anti-apoptotic ERK/MAPK1 and JNK2/MAPK9, or of genes that increase activity of pro-apoptotic p38/MAPK14. Down-regulation of MYC and several MYC-regulated genes relevant to MAPKs also occurred in both sensitive clones. Transcriptomine comparisons revealed probable NOTCH-GC crosstalk in these cells.
Collapse
Affiliation(s)
- M S Webb
- Dept. of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston TX 77555, USA
| | - A L Miller
- Dept. of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston TX 77555, USA
| | - T L Howard
- Dept. of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston TX 77555, USA
| | - B H Johnson
- Dept. of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston TX 77555, USA
| | - S Chumakov
- Dept. of Computer Science, Dept. of Physics, University of Guadalahara, Gaudalahara, Jalisco, Mexico
| | - Y Fofanov
- Dept. of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston TX 77555, USA
| | - T Nguyen-Vu
- Center for Nuclear Receptors & Cell Signaling, Dept. of Biology & Biochemistry, University of Houston, Houston TX 77204, USA
| | - C Y Lin
- Center for Nuclear Receptors & Cell Signaling, Dept. of Biology & Biochemistry, University of Houston, Houston TX 77204, USA
| | - E B Thompson
- Dept. of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston TX 77555, USA; Center for Nuclear Receptors & Cell Signaling, Dept. of Biology & Biochemistry, University of Houston, Houston TX 77204, USA.
| |
Collapse
|
7
|
Budiman C, Lindang HU, Cheong BE, Rodrigues KF. Inhibition and Substrate Specificity Properties of FKBP22 from a Psychrotrophic Bacterium, Shewanella sp. SIB1. Protein J 2018; 37:270-279. [PMID: 29761378 DOI: 10.1007/s10930-018-9772-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
SIB1 FKBP22 is a peptidyl prolyl cis-trans isomerase (PPIase) member from a psychrotrophic bacterium, Shewanella sp. SIB1, consisting of N- and C-domains responsible for dimerization and catalytic PPIase activity, respectively. This protein was assumed to be involved in cold adaptation of SIB1 cells through its dual activity of PPIase activity and chaperone like-function. Nevertheless, the catalytic inhibition by FK506 and its substrate specificity remain unknown. Besides, ability of SIB1 FKBP22 to inhibit phosphatase activity of calcinuerin is also interesting to be studied since it may reflect wider cellular functions of SIB1 FKBP22. In this study, we found that wild type (WT) SIB1 FKBP22 bound to FK506 with IC50 of 77.55 nM. This value is comparable to that of monomeric mutants (NNC-FKBP22, C-domain+ and V37R/L41R mutants), yet significantly higher than that of active site mutant (R142A). In addition, WT SIB1 FKBP22 and monomeric variants were found to prefer hydrophobic residues preceding proline. Meanwhile, R142A mutant has wider preferences on bulkier hydrophobic residues due to increasing hydrophobicity and binding pocket space. Surprisingly, in the absence of FK506, SIB1 FKBP22 and its variants inhibited, with the exception of N-domain, calcineurin phosphatase activity, albeit low. The inhibition of SIB1 FKBP22 by FK506 is dramatically increased in the presence of FK506. Altogether, we proposed that local structure at substrate binding pocket of C-domain plays crucial role for the binding of FK506 and peptide substrate preferences. In addition, C-domain is essential for inhibition, while dimerization state is important for optimum inhibition through efficient binding to calcineurin.
Collapse
Affiliation(s)
- Cahyo Budiman
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia. .,Faculty of Animal Science, Bogor Agricultural University, Bogor, 16680, Indonesia.
| | - Herman Umbau Lindang
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| | - Bo Eng Cheong
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| | - Kenneth F Rodrigues
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| |
Collapse
|
8
|
Fries GR, Gassen NC, Rein T. The FKBP51 Glucocorticoid Receptor Co-Chaperone: Regulation, Function, and Implications in Health and Disease. Int J Mol Sci 2017; 18:ijms18122614. [PMID: 29206196 PMCID: PMC5751217 DOI: 10.3390/ijms18122614] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 11/21/2017] [Accepted: 11/29/2017] [Indexed: 12/27/2022] Open
Abstract
Among the chaperones and co-chaperones regulating the glucocorticoid receptor (GR), FK506 binding protein (FKBP) 51 is the most intensely investigated across different disciplines. This review provides an update on the role of the different co-chaperones of Hsp70 and Hsp90 in the regulation of GR function. The development leading to the focus on FKBP51 is outlined. Further, a survey of the vast literature on the mechanism and function of FKBP51 is provided. This includes its structure and biochemical function, its regulation on different levels—transcription, post-transcription, and post-translation—and its function in signaling pathways. The evidence portraying FKBP51 as a scaffolding protein organizing protein complexes rather than a chaperone contributing to the folding of individual proteins is collated. Finally, FKBP51’s involvement in physiology and disease is outlined, and the promising efforts in developing drugs targeting FKBP51 are discussed.
Collapse
Affiliation(s)
- Gabriel R Fries
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA.
| | - Nils C Gassen
- Department of Translational Science in Psychiatry, Max Planck Institute of Psychiatry, 80804 Munich, Germany.
| | - Theo Rein
- Department of Translational Science in Psychiatry, Max Planck Institute of Psychiatry, 80804 Munich, Germany.
| |
Collapse
|
9
|
Lagadari M, Zgajnar NR, Gallo LI, Galigniana MD. Hsp90-binding immunophilin FKBP51 forms complexes with hTERT enhancing telomerase activity. Mol Oncol 2016; 10:1086-98. [PMID: 27233944 PMCID: PMC5423183 DOI: 10.1016/j.molonc.2016.05.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 04/25/2016] [Accepted: 05/09/2016] [Indexed: 11/25/2022] Open
Abstract
FK506-binding proteins are members of the immunophilin family of proteins. Those immunophilins associated to the 90-kDa-heat-shock protein, Hsp90, have been proposed as potential modulators of signalling cascade factors chaperoned by Hsp90. FKBP51 and FKBP52 are the best characterized Hsp90-bound immunophilins first described associated to steroid-receptors. The reverse transcriptase subunit of telomerase, hTERT, is also an Hsp90 client-protein and is highly expressed in cancer cells, where it is required to compensate the loss of telomeric DNA after each successive cell division. Because FKBP51 is also a highly expressed protein in cancer tissues, we analyzed its potential association with hTERT·Hsp90 complexes and its possible biological role. In this study it is demonstrated that both immunophilins, FKBP51 and FKBP52, co-immunoprecipitate with hTERT. The Hsp90 inhibitor radicicol disrupts the heterocomplex and favors the partial cytoplasmic relocalization of hTERT in similar manner as the overexpression of the TPR-domain peptide of the immunophilin. While confocal microscopy images show that FKBP51 is primarily localized in mitochondria and hTERT is totally nuclear, upon the onset of oxidative stress, FKBP51 (but not FKBP52) becomes mostly nuclear colocalizing with hTERT, and longer exposure times to peroxide favors hTERT export to mitochondria. Importantly, telomerase activity of hTERT is significantly enhanced by FKBP51. These observations support the emerging role assigned to FKBP51 as antiapoptotic factor in cancer development and progression, and describe for the first time the potential role of this immunophilin favoring the clonal expansion by enhancing telomerase activity.
Collapse
Affiliation(s)
- Mariana Lagadari
- Instituto de Biología y Medicina Experimental (IBYME)-CONICET, Buenos Aires, C1428ADN, Argentina
| | - Nadia R Zgajnar
- Instituto de Biología y Medicina Experimental (IBYME)-CONICET, Buenos Aires, C1428ADN, Argentina
| | - Luciana I Gallo
- Instituto de Fisiología, Biología Molecular y Neurociencias (CONICET) & Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, C1428EGA, Argentina
| | - Mario D Galigniana
- Instituto de Biología y Medicina Experimental (IBYME)-CONICET, Buenos Aires, C1428ADN, Argentina; Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, C1428EGA, Argentina.
| |
Collapse
|
10
|
Rein T. FK506 binding protein 51 integrates pathways of adaptation: FKBP51 shapes the reactivity to environmental change. Bioessays 2016; 38:894-902. [PMID: 27374865 DOI: 10.1002/bies.201600050] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
This review portraits FK506 binding protein (FKBP) 51 as "reactivity protein" and collates recent publications to develop the concept of FKBP51 as contributor to different levels of adaptation. Adaptation is a fundamental process that enables unicellular and multicellular organisms to adjust their molecular circuits and structural conditions in reaction to environmental changes threatening their homeostasis. FKBP51 is known as chaperone and co-chaperone of heat shock protein (HSP) 90, thus involved in processes ensuring correct protein folding in response to proteotoxic stress. In mammals, FKBP51 both shapes the stress response and is calibrated by the stress levels through an ultrashort molecular feedback loop. More recently, it has been linked to several intracellular pathways related to the reactivity to drug exposure and stress. Through its role in autophagy and DNA methylation in particular it influences adaptive pathways, possibly also in a transgenerational fashion. Also see the video abstract here.
Collapse
Affiliation(s)
- Theo Rein
- Department of Translational Science in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| |
Collapse
|
11
|
Gene-Stress-Epigenetic Regulation of FKBP5: Clinical and Translational Implications. Neuropsychopharmacology 2016; 41:261-74. [PMID: 26250598 PMCID: PMC4677131 DOI: 10.1038/npp.2015.235] [Citation(s) in RCA: 352] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 07/06/2015] [Accepted: 07/07/2015] [Indexed: 12/13/2022]
Abstract
Stress responses and related outcomes vary markedly across individuals. Elucidating the molecular underpinnings of this variability is of great relevance for developing individualized prevention strategies and treatments for stress-related disorders. An important modulator of stress responses is the FK506-binding protein 51 (FKBP5/FKBP51). FKBP5 acts as a co-chaperone that modulates not only glucocorticoid receptor activity in response to stressors but also a multitude of other cellular processes in both the brain and periphery. Notably, the FKBP5 gene is regulated via complex interactions among environmental stressors, FKBP5 genetic variants, and epigenetic modifications of glucocorticoid-responsive genomic sites. These interactions can result in FKBP5 disinhibition that has been shown to contribute to a number of aberrant phenotypes in both rodents and humans. Consequently, FKBP5 blockade may hold promise as treatment intervention for stress-related disorders, and recently developed selective FKBP5 blockers show encouraging results in vitro and in rodent models. Although risk for stress-related disorders is conferred by multiple environmental and genetic factors, the findings related to FKBP5 illustrate how a deeper understanding of the molecular and systemic mechanisms underlying specific gene-environment interactions may provide insights into the pathogenesis of stress-related disorders.
Collapse
|
12
|
Mokuda S, Oiwa H. Successful treatment of FKBP51-expressed multicentric reticulohistiocytosis using combination therapy with low-dose denosumab and tacrolimus. Scand J Rheumatol 2015; 45:247-9. [PMID: 26652057 DOI: 10.3109/03009742.2015.1110199] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- S Mokuda
- a Department of Rheumatology , Hiroshima City Hiroshima Citizens Hospital , Hiroshima , Japan
| | - H Oiwa
- a Department of Rheumatology , Hiroshima City Hiroshima Citizens Hospital , Hiroshima , Japan
| |
Collapse
|
13
|
Blair LJ, Baker JD, Sabbagh JJ, Dickey CA. The emerging role of peptidyl-prolyl isomerase chaperones in tau oligomerization, amyloid processing, and Alzheimer's disease. J Neurochem 2015; 133:1-13. [PMID: 25628064 DOI: 10.1111/jnc.13033] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 12/12/2014] [Accepted: 01/05/2015] [Indexed: 12/20/2022]
Abstract
Peptidyl-prolyl cis/trans isomerases (PPIases), a unique family of molecular chaperones, regulate protein folding at proline residues. These residues are abundant within intrinsically disordered proteins, like the microtubule-associated protein tau. Tau has been shown to become hyperphosphorylated and accumulate as one of the two main pathological hallmarks in Alzheimer's disease, the other being amyloid beta (Ab). PPIases, including Pin1, FK506-binding protein (FKBP) 52, FKBP51, and FKBP12, have been shown to interact with and regulate tau biology. This interaction is particularly important given the numerous proline-directed phosphorylation sites found on tau and the role phosphorylation has been found to play in pathogenesis. This regulation then affects downstream aggregation and oligomerization of tau. However, many PPIases have yet to be explored for their effects on tau biology, despite the high likelihood of interaction based on proline content. Moreover, Pin1, FKBP12, FKBP52, cyclophilin (Cyp) A, CypB, and CypD have been shown to also regulate Ab production or the toxicity associated with Ab pathology. Therefore, PPIases directly and indirectly regulate pathogenic protein multimerization in Alzheimer's disease and represent a family rich in targets for modulating the accumulation and toxicity.
Collapse
Affiliation(s)
- Laura J Blair
- Department of Molecular Medicine, Byrd Alzheimer's Institute, University of South Florida, Tampa, Florida, USA
| | | | | | | |
Collapse
|
14
|
Zannas AS, Binder EB. Gene-environment interactions at theFKBP5locus: sensitive periods, mechanisms and pleiotropism. GENES BRAIN AND BEHAVIOR 2013; 13:25-37. [DOI: 10.1111/gbb.12104] [Citation(s) in RCA: 209] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 11/06/2013] [Accepted: 11/10/2013] [Indexed: 12/13/2022]
Affiliation(s)
- A. S. Zannas
- Max Planck Institute of Psychiatry; Munich Germany
- Department of Psychiatry; Duke University Medical Center; Durham NC USA
| | - E. B. Binder
- Max Planck Institute of Psychiatry; Munich Germany
- Department of Psychiatry and Behavioral Sciences; Emory University Medical School; Atlanta GA USA
| |
Collapse
|
15
|
Galigniana NM, Ballmer LT, Toneatto J, Erlejman AG, Lagadari M, Galigniana MD. Regulation of the glucocorticoid response to stress-related disorders by the Hsp90-binding immunophilin FKBP51. J Neurochem 2012; 122:4-18. [DOI: 10.1111/j.1471-4159.2012.07775.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
16
|
Abstract
BACKGROUND INFORMATION The FKBPs (FK506-binding proteins) belong to a ubiquitous family of proteins that are found in a wide range of taxonomic groups. These proteins participate in a variety of pathways, including protein folding, down-regulation of T-cell activation and inhibition of cell-cycle progression. RESULTS A cDNA encoding the 12 kDa FKBP gene orthologue (FKBP12) in Bombyx mori was been isolated from both Bm-5 cultured cells and silk-gland tissue. Using the FKBP12 cDNA in combination with the B. mori 6x whole-genome shotgun database, we were able to identify the FKBP12 gene, as well as the positions of its intron-exon junctions. CONCLUSIONS FKBP12 exon sizes and intronic positions are highly conserved among FKBP12 orthologues in 24 diverse genomes. Comparison of 41 FKBP12 genes revealed several intronic insertion and deletion events throughout evolution. In addition, paralogous FKBP12 isoforms were identified in all 12 vertebrate genomes. Both structural and phylogenetics analyses suggest that the isoforms may be evolving independently, possibly due to the distinct functional roles played by each paralogue.
Collapse
Affiliation(s)
- Jason A Somarelli
- Department of Biological Sciences, Florida International University, University Park, Miami, FL 33199, USA
| | | |
Collapse
|
17
|
Storer CL, Dickey CA, Galigniana MD, Rein T, Cox MB. FKBP51 and FKBP52 in signaling and disease. Trends Endocrinol Metab 2011; 22:481-90. [PMID: 21889356 PMCID: PMC3229651 DOI: 10.1016/j.tem.2011.08.001] [Citation(s) in RCA: 196] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2011] [Revised: 07/28/2011] [Accepted: 08/01/2011] [Indexed: 11/21/2022]
Abstract
FKBP51 and FKBP52 are diverse regulators of steroid hormone receptor signaling, including receptor maturation, hormone binding and nuclear translocation. Although structurally similar, they are functionally divergent, which is largely attributed to differences in the FK1 domain and the proline-rich loop. FKBP51 and FKBP52 have emerged as likely contributors to a variety of hormone-dependent diseases, including stress-related diseases, immune function, reproductive functions and a variety of cancers. In addition, recent studies have implicated FKBP51 and FKBP52 in Alzheimer's disease and other protein aggregation disorders. This review summarizes our current understanding of FKBP51 and FKBP52 interactions within the receptor-chaperone complex, their contributions to health and disease, and their potential as therapeutic targets for the treatment of these diseases.
Collapse
Affiliation(s)
- Cheryl L Storer
- The Border Biomedical Research Center and Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968, USA
| | | | | | | | | |
Collapse
|
18
|
Stechschulte LA, Sanchez ER. FKBP51-a selective modulator of glucocorticoid and androgen sensitivity. Curr Opin Pharmacol 2011; 11:332-7. [PMID: 21565552 DOI: 10.1016/j.coph.2011.04.012] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 04/19/2011] [Accepted: 04/20/2011] [Indexed: 11/28/2022]
Abstract
FK506-binding protein 51 (FKBP51) is gaining increased recognition for its essential roles in cell biology. Originally discovered as a component of steroid receptor complexes, it is now known to regulate a diverse set of transcription factors, enzymes and structural proteins. Its cellular properties suggest numerous possible functions for FKBP51 in physiology, and the best clue to its potential importance may be the following: FKBP51 is a glucocorticoid-induced negative regulator of the glucocorticoid receptor. Thus, FKBP51 is intricately involved in regulation of the most pleiotropic hormone known to biology. In contrast to glucocorticoid receptor, FKBP51 is a positive regulator of the androgen receptor, suggesting that it functions as a reciprocal modulator of glucocorticoid-mediated and androgen-mediated physiology. In this work, we evaluate this hypothesis by examining recent cellular and physiological evidence.
Collapse
Affiliation(s)
- Lance A Stechschulte
- Center for Diabetes and Endocrine Research, Department of Physiology & Pharmacology, University of Toledo College of Medicine, Toledo, OH 43614, USA
| | | |
Collapse
|
19
|
Reyes RC, Perry G, Lesort M, Parpura V. Immunophilin deficiency augments Ca2+-dependent glutamate release from mouse cortical astrocytes. Cell Calcium 2011; 49:23-34. [PMID: 21163525 PMCID: PMC3073643 DOI: 10.1016/j.ceca.2010.11.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Accepted: 11/08/2010] [Indexed: 11/23/2022]
Abstract
Immunophilins are receptors for immunosuppressive drugs such as the macrolides cyclosporin A (CsA) and FK506; correspondingly these immunophilins are referred to as cyclophilins and FK506-binding proteins (FKBPs). In particular, CsA targets cyclophilin D (CypD), which can modulate mitochondrial Ca(2+) dynamics. Since mitochondria have been implicated in the regulation of astrocytic cytosolic Ca(2+) (Ca(cyt)(2+)) dynamics and consequential Ca(2+)-dependent exocytotic release of glutamate, we investigated the role of CypD in this process. Cortical astrocytes isolated from CypD deficient mice Ppif(-/-) displayed reduced mechanically induced Ca(cyt)(2+) increases, even though these cells showed augmented exocytotic release of glutamate, when compared to responses obtained from astrocytes isolated from wild-type mice. Furthermore, acute treatment with CsA to inhibit CypD modulation of mitochondrial Ca(2+) buffering, or with FK506 to inhibit FKBP12 interaction with inositol-trisphosphate receptor of the endoplasmic reticulum, led to similar reductive effects on astrocytic Ca(cyt)(2+) dynamics, but also to an enhanced Ca(2+)-dependent exocytotic release of glutamate in wild-type astrocytes. These findings point to a possible role of immunophilin signal transduction pathways in astrocytic modulation of neuronal activity at the tripartite synapse.
Collapse
Affiliation(s)
- Reno C. Reyes
- Department of Neurobiology, Center for Glial Biology in Medicine, Atomic Force Microscopy & Nanotechnology Laboratories, Civitan International Research Center, Evelyn F. McKnight Brain Institute, University of Alabama, Birmingham, AL 35294
- Department of Neurology, University of California, San Francisco and Veterans Affairs Medical Center, San Francisco, CA 94121
| | - Giselle Perry
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama, Birmingham, Birmingham, AL 35294
| | - Mathieu Lesort
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama, Birmingham, Birmingham, AL 35294
| | - Vladimir Parpura
- Department of Neurobiology, Center for Glial Biology in Medicine, Atomic Force Microscopy & Nanotechnology Laboratories, Civitan International Research Center, Evelyn F. McKnight Brain Institute, University of Alabama, Birmingham, AL 35294
| |
Collapse
|
20
|
Mistafa O, Ghalali A, Kadekar S, Högberg J, Stenius U. Purinergic receptor-mediated rapid depletion of nuclear phosphorylated Akt depends on pleckstrin homology domain leucine-rich repeat phosphatase, calcineurin, protein phosphatase 2A, and PTEN phosphatases. J Biol Chem 2010; 285:27900-10. [PMID: 20605778 DOI: 10.1074/jbc.m110.117093] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Akt is an important oncoprotein, and data suggest a critical role for nuclear Akt in cancer development. We have previously described a rapid (3-5 min) and P2X7-dependent depletion of nuclear phosphorylated Akt (pAkt) and effects on downstream targets, and here we studied mechanisms behind the pAkt depletion. We show that cholesterol-lowering drugs, statins, or extracellular ATP, induced a complex and coordinated response in insulin-stimulated A549 cells leading to depletion of nuclear pAkt. It involved protein/lipid phosphatases PTEN, pleckstrin homology domain leucine-rich repeat phosphatase (PHLPP1 and -2), protein phosphatase 2A (PP2A), and calcineurin. We employed immunocytology, immunoprecipitation, and proximity ligation assay techniques and show that PHLPP and calcineurin translocated to the nucleus and formed complexes with Akt within 3 min. Also PTEN translocated to the nucleus and then co-localized with pAkt close to the nuclear membrane. An inhibitor of the scaffolding immunophilin FK506-binding protein 51 (FKBP51) and calcineurin, FK506, prevented depletion of nuclear pAkt. Furthermore, okadaic acid, an inhibitor of PP2A, prevented the nuclear pAkt depletion. Chemical inhibition and siRNA indicated that PHLPP, PP2A, and PTEN were required for a robust depletion of nuclear pAkt, and in prostate cancer cells lacking PTEN, transfection of PTEN restored the statin-induced pAkt depletion. The activation of protein and lipid phosphatases was paralleled by a rapid proliferating cell nuclear antigen (PCNA) translocation to the nucleus, a PCNA-p21(cip1) complex formation, and cyclin D1 degradation. We conclude that these effects reflect a signaling pathway for rapid depletion of pAkt that may stop the cell cycle.
Collapse
Affiliation(s)
- Oras Mistafa
- Institute of Environmental Medicine, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
21
|
Somarelli JA, Lee SY, Skolnick J, Herrera RJ. Structure-based classification of 45 FK506-binding proteins. Proteins 2008; 72:197-208. [PMID: 18214965 DOI: 10.1002/prot.21908] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The FK506-binding proteins (FKBPs) are a unique group of chaperones found in a wide variety of organisms. They perform a number of cellular functions including protein folding, regulation of cytokines, transport of steroid receptor complexes, nucleic acid binding, histone assembly, and modulation of apoptosis. These functions are mediated by specific domains that adopt distinct tertiary conformations. Using the Threading/ASSEmbly/Refinement (TASSER) approach, tertiary structures were predicted for a total of 45 FKBPs in 23 species. These models were compared with previously characterized FKBP solution structures and the predicted structures were employed to identify groups of homologous proteins. The resulting classification may be utilized to infer functional roles of newly discovered FKBPs. The three-dimensional conformations revealed that this family may have undergone several modifications throughout evolution, including loss of N- and C-terminal regions, duplication of FKBP domains as well as insertions of entire functional motifs. Docking simulations suggest that additional sequence segments outside FKBP domains may modulate the binding affinity of FKBPs to immunosuppressive drugs. The docking models also indicate the presence of a helix-loop-helix (HLH) region within a subset of FKBPs, which may be responsible for the interaction between this group of proteins and nucleic acids.
Collapse
Affiliation(s)
- J A Somarelli
- Department of Biological Sciences, OE304, Florida International University, Miami, Florida 33199, USA
| | | | | | | |
Collapse
|
22
|
FK506 binding protein mediates glioma cell growth and sensitivity to rapamycin treatment by regulating NF-kappaB signaling pathway. Neoplasia 2008; 10:235-43. [PMID: 18320068 DOI: 10.1593/neo.07929] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Revised: 12/20/2007] [Accepted: 12/20/2007] [Indexed: 12/20/2022] Open
Abstract
FK506 binding protein 5 (FKBP5) belongs to a family of immunophilins named for their ability to bind immunosuppressive drugs, also known as peptidyl-prolyl cis-trans isomerases, and also with chaperones to help protein folding. Using glioma cDNA microarray analysis, we found that FKBP5 was overexpressed in glioma tumors. This finding was further validated by real-time reverse transcription-polymerase chain reaction and Western blot analysis. The roles of FKBP5 in glioma cells were then examined. We found that cell growth was suppressed after FKBP5 expression was inhibited by short interfering RNA transfection and enhanced by FKBP5 overexpression. Electrophoretic mobility shift assay showed that nuclear factor-kappa B (NF-kappaB) and DNA binding was enhanced by FKBP5 overexpression. The expression level of I-kappa B alpha and phosphorylated NF-kappaB was regulated by the expression of FKBP5. These data suggest that FKBP5 is involved in NF-kappaB pathway activation in glioma cells. In addition, FKBP5 overexpression in rapamycin-sensitive U87 cells blocked the cells' response to rapamycin treatment, whereas rapamycin-resistant glioma cells, both PTEN-positive and -negative, were synergistically sensitive to rapamycin after FKBP5 was knocked down, suggesting that the FKBP5 regulates glioma cell response to rapamycin treatment. In conclusion, our study demonstrates that FKBP5 plays an important role in glioma growth and chemoresistance through regulating signal transduction of the NF-kappaB pathway.
Collapse
|
23
|
Joshi PB, Hirst M, Malcolm T, Parent J, Mitchell D, Lund K, Sadowski I. Identification of protein interaction antagonists using the repressed transactivator two-hybrid system. Biotechniques 2007; 42:635-44. [PMID: 17515203 DOI: 10.2144/000112434] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The repressed transactivator (RTA) yeast two-hybrid system was developed to enable genetic identification of interactions with transcriptional activator proteins. We have devised modifications of this system that enable its use in screening for inhibitors of protein interactions from small molecule compound libraries. We show that inhibition of protein interactions can be measured by monitoring growth in selective medium containing 3-aminotriazole (3-AT) and using this assay have identified inhibitors of four independent protein interactions in screens with a 23,000 small molecule compound library. Compounds found to inhibit one of the tested interactions between FKBP12 and the transforming growth factor β receptor (TGFβ-R) were validated in vivo and found to inhibit calcineurin-dependent signaling in T cells. One of these compounds was also found to cause elevated basal expression of a TGFβ-R/SMAD-dependent reporter gene. These results demonstrate the capability of the RTA small molecule screening assay for discovery of potentially novel therapeutic compounds.
Collapse
|
24
|
Kumar R, Adams B, Musiyenko A, Shulyayeva O, Barik S. The FK506-binding protein of the malaria parasite, Plasmodium falciparum, is a FK506-sensitive chaperone with FK506-independent calcineurin-inhibitory activity. Mol Biochem Parasitol 2005; 141:163-73. [PMID: 15850699 DOI: 10.1016/j.molbiopara.2005.02.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2004] [Revised: 12/17/2004] [Accepted: 02/17/2005] [Indexed: 12/29/2022]
Abstract
We have identified an immunophilin of the FKBP family in Plasmodium falciparum that contains a conserved peptidyl prolyl isomerase (PPIase) and tetratricopeptide repeat (TPR) domains. The 35 kDa protein was named FKBP35 and expressed in bacteria. Recombinant FKBP35 exhibited potent PPIase and protein folding activities against defined substrates in vitro, suggesting that it is a parasitic chaperone. Both activities were inhibited by macrolide immunosuppressant drugs, ascomycin (a FK506 derivative) and rapamycin, but not by cyclosporin A, providing biochemical evidence of its inclusion in the FKBP family. Interestingly, FKBP35 inhibited purified plasmodial calcineurin (protein phosphatase 2B) in the absence of any drug. In the parasite's cell, FKBP35 exhibited a stage-specific nucleocytoplasmic shuttling and did not co-localize with calcineurin. FKBP35 associated with plasmodial heat shock protein 90 (Hsp90), another member of the chaperone superfamily, via the TPR domain. Geldanamycin, a Hsp90 inhibitor, and ascomycin inhibited P. falciparum growth in a synergistic fashion. Extensive search of the P. falciparum genome revealed no other FKBP sequence, implicating PfFKBP35 as a highly significant antimalarial drug target. Thus, the single FKBP of Plasmodium is an essential parasitic chaperone with a novel drug-independent calcineurin-inhibitory activity.
Collapse
Affiliation(s)
- Rajinder Kumar
- Department of Biochemistry and Molecular Biology, University of South Alabama, College of Medicine, 307 University Blvd., Mobile, AL 36688-0002, USA
| | | | | | | | | |
Collapse
|
25
|
Fisher I, Abraham D, Bouri K, Hoffmann EP, Hoffman EP, Muntoni F, Morgan J. Prednisolone‐induced changes in dystrophic skeletal muscle. FASEB J 2005; 19:834-6. [PMID: 15734791 DOI: 10.1096/fj.04-2511fje] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Although glucocorticoids delay the progression of Duchenne muscular dystrophy (DMD) their mechanism of action is unknown. Skeletal muscle gene expression profiles of mdx mice, an animal model of DMD, treated with prednisolone were compared with control mice at 1 and 6 wk. Of the 89 early differentially regulated genes and ESTs, delta-sarcoglycan, myosin Va, FK506-binding protein 51 (FKBP51), the potassium channel regulator potassium inwardly-rectifying channel Isk-like (IRK2) and ADAM 10 were overexpressed, whereas growth hormone-releasing hormone receptor (GHRHR) and Homer-2 were underexpressed. The 58 late differentially overexpressed genes included kallikreins (13, 16, and 26), FKBP51, PI3K alpha regulatory subunit, and IGFBP6, while underexpressed genes included NeuroD and nicotinic cholinergic receptor gamma. At both time points, overexpression of a cohort of genes relating to metabolism and proteolysis was apparent, alongside the differential expression of genes relating to calcium metabolism. Treatment did not increase muscle regeneration, reduce the number of infiltrating macrophages, or alter utrophin expression or localization. However, in the treated mdx soleus muscle, the percentage of slow fibers was significantly lower compared with untreated controls after 6 wk of treatment. These results show that glucocorticoids confer their benefit to dystrophic muscle in a complex fashion, culminating in a switch to a more normal muscle fiber type.
Collapse
MESH Headings
- Amyloid Precursor Protein Secretases
- Animals
- Aspartic Acid Endopeptidases
- Blotting, Western
- Calcineurin/analysis
- Carrier Proteins/genetics
- Endopeptidases/genetics
- Gene Expression/drug effects
- Gene Expression Profiling
- Gene Expression Regulation/drug effects
- Homer Scaffolding Proteins
- Male
- Mice
- Mice, Inbred mdx
- Muscle Fibers, Slow-Twitch/drug effects
- Muscle Fibers, Slow-Twitch/pathology
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscular Dystrophy, Animal/metabolism
- Muscular Dystrophy, Animal/pathology
- NFATC Transcription Factors/analysis
- Necrosis
- Oligonucleotide Array Sequence Analysis
- Potassium Channels, Inwardly Rectifying/genetics
- Prednisolone/pharmacology
- Receptors, Neuropeptide/genetics
- Receptors, Pituitary Hormone-Regulating Hormone/genetics
- Tacrolimus Binding Proteins/genetics
- Utrophin/genetics
Collapse
Affiliation(s)
- Ivan Fisher
- Muscle Cell Biology Group, MRC Clinical Sciences Centre, Imperial College, London, UK
| | | | | | | | | | | | | |
Collapse
|
26
|
Monaghan P, Bell A. A Plasmodium falciparum FK506-binding protein (FKBP) with peptidyl–prolyl cis–trans isomerase and chaperone activities. Mol Biochem Parasitol 2005; 139:185-95. [PMID: 15664653 DOI: 10.1016/j.molbiopara.2004.10.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 10/27/2004] [Accepted: 10/30/2004] [Indexed: 11/22/2022]
Abstract
The immunosuppressive drugs FK506 and rapamycin have anti-malarial properties but their mechanisms of action against malaria parasites remain unknown. The pathway by which these drugs cause immunosuppression in humans is known to involve an FK506-binding protein (FKBP). Homologues of FKBPs have been identified in almost every organism in which they have been sought. Here, we describe the characterisation of the first member of the FKBP family identified in the human malarial parasite, Plasmodium falciparum. This 35-kDa protein, PfFKBP35, comprises a single, N-terminal, FKBP domain and a C-terminal tripartite tetratricopeptide repeat domain. A recombinant form of PfFKBP35, like most other FKBPs, displayed peptidyl-prolyl cis-trans isomerase activity that was inhibitable by FK506 and rapamycin. Unusually the phosphatase activity of calcineurin, the target of the FK506-FKBP complex in T-lymphocytes, was inhibited by PfFKBP35 independently of FK506 binding. PfFKBP35 also inhibited the thermal aggregation in vitro of two model substrates, suggesting that it has general chaperone properties. Analysis of the P. falciparum genome database suggested this to be the only FKBP present in the parasite. The function of this protein remains unknown but the presence of tetratricopeptide repeat motifs suggests a role in intracellular protein transport or modulation of protein function.
Collapse
Affiliation(s)
- Paul Monaghan
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College, Dublin 2, Ireland
| | | |
Collapse
|
27
|
Bonnefoy-Berard N, Aouacheria A, Verschelde C, Quemeneur L, Marçais A, Marvel J. Control of proliferation by Bcl-2 family members. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2004; 1644:159-68. [PMID: 14996500 DOI: 10.1016/j.bbamcr.2003.10.014] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2003] [Accepted: 10/10/2003] [Indexed: 01/05/2023]
Abstract
The anti-proliferative effect of Bcl-2 acts mainly at the level of the G0/G1 phase of the cell cycle. Deletions and point mutations in the bcl-2 gene show that the anti-proliferative activity of Bcl-2, can in some cases, be dissociated from its anti-apoptotic function. This indicates that the effect of Bcl-2 on cell cycle progression can be a direct effect and not only a consequence of its anti-apoptotic activity. Bcl-2 appears to mediate its anti-proliferative effect by acting on both signal transduction pathways (NFAT, ERK) and on specific cell cycle regulators (p27, p130).
Collapse
Affiliation(s)
- Nathalie Bonnefoy-Berard
- INSERM U503, Centre d'étude et de Recherche en Virologie et Immunologie, 21 Avenue Tony Garnier 69365 Lyon Cedex 07, France
| | | | | | | | | | | |
Collapse
|
28
|
Fischer G, Aumüller T. Regulation of peptide bond cis/trans isomerization by enzyme catalysis and its implication in physiological processes. Rev Physiol Biochem Pharmacol 2004; 148:105-50. [PMID: 12698322 DOI: 10.1007/s10254-003-0011-3] [Citation(s) in RCA: 189] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In some cases, the slow rotational movement underlying peptide bond cis/trans isomerizations is found to control the biological activity of proteins. Peptide bond cis/trans isomerases as cyclophilins, Fk506-binding proteins, parvulins, and bacterial hsp70 generally assist in the interconversion of the polypeptide substrate cis/trans isomers, and rate acceleration is the dominating mechanism of action in cells. We present evidence disputing the hypothesis that some of the molecular properties of these proteins play an auxiliary role in enzyme function.
Collapse
Affiliation(s)
- G Fischer
- Max Planck Research Unit for Enzymology of Protein Folding, Weinbergweg 22, 06120 Halle, Germany.
| | | |
Collapse
|
29
|
Lin HY, Michtalik HJ, Zhang S, Andersen TT, Van Riper DA, Davies KKJA, Ermak G, Petti LM, Nachod S, Narayan AV, Bhatt N, Crawford DR. Oxidative and calcium stress regulate DSCR1 (Adapt78/MCIP1) protein. Free Radic Biol Med 2003; 35:528-39. [PMID: 12927602 DOI: 10.1016/s0891-5849(03)00358-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
DSCR1 (adapt78) is a stress-inducible gene and cytoprotectant. Its protein product, DSCR1 (Adapt78), also referred to as MCIP1, inhibits intracellular calcineurin, a phosphatase that mediates many cellular responses to calcium. Exposure of human U251 and HeLa cells to hydrogen peroxide led to a rapid hyperphosphorylation of DSCR1 (Adapt78). Inhibitor and agonist studies revealed that a broad range of kinases were not responsible for DSCR1 (Adapt78) hyperphosphorylation, including ERK1/2, although parallel activation of the latter was observed. Phosphorylation of both DSCR1 (Adapt78) and ERK1/2 was attenuated by inhibitors of tyrosine phosphatase, suggesting the common upstream involvement of tyrosine dephosphorylation. The hyperphosphorylation electrophoretic shift in DSCR1 (Adapt78) mobility was also observed with other oxidizing agents (peroxynitrite and menadione) but not nonoxidants. Calcium ionophores strongly induced the levels of both hypo- and hyper-phosphorylated DSCR1 (Adapt78) but did not alter phosphorylation status. Calcium-dependent growth factor- and angiotensin II-stimulation also induced both DSCR1 (Adapt78) species. Phosphorylation of either or both serines in a 13-amino acid peptide made to a calcineurin-interacting conserved region of DSCR1 (Adapt78) attenuated inhibition of calcineurin. These data indicate that DSCR1 (Adapt78) protein is a novel, early stage oxidative stress-activated phosphorylation target and newly identified calcium-inducible protein, and suggest that these response mechanisms may contribute to the known cytoprotective and calcineurin-inhibitory activities of DSCR1 (Adapt78).
Collapse
Affiliation(s)
- H Y Lin
- The Research Service, Stratton Veterans Affairs Medical Center, the Ordway Research Institute and the Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Wildhaber BE, Yang H, Tazuke Y, Teitelbaum DH. Gene alteration of intestinal intraepithelial lymphocytes with administration of total parenteral nutrition. J Pediatr Surg 2003; 38:840-3. [PMID: 12778377 DOI: 10.1016/s0022-3468(03)00107-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND Total parenteral nutrition (TPN) is associated with sepsis and loss of immune reactivity. The authors previously have shown that changes in the intestinal mucosal immune system--ie, intraepithelial lymphocytes (IEL)--lead to a loss of epithelial barrier function. This may be a mechanism by which bacteria and toxins endanger individuals receiving TPN. To identify altered IEL gene expression during TPN administration, microarray assays were used. METHODS Mice received oral feeding (control) or TPN for 7 days. Small bowel IEL were separated and retained, RNA purified, and microarray assays performed (Affymetrix system, 12,491 genes). Results were expressed as quantile-normalized trimmed-means. Significance equals a greater than 2-fold change (TPN v control), P <.01 (t test) or greater than 3-fold, P <.05. RESULTS In the TPN group 88, IEL genes were significantly up regulated and 114 downregulated (v control). Of these genes, 4 were identified to have highest degree of upregulation (FK506-binding protein 5; mannose-binding lectin, metallothionein 1 and 2), 2 were highly downregulated (microsomal epoxide hydrolase 1 and cytochrome P450 1a1). These genes were found to have high potential for immune-modulatory effects. CONCLUSIONS The observed alterations in IEL gene expression may have an important role in the altered immune response with TPN and may relate to the increase in sepsis with TPN administration.
Collapse
Affiliation(s)
- Barbara E Wildhaber
- Section of Pediatric Surgery, Department of Surgery, C.S. Mott Children's Hospital, University of Michigan, Ann Arbor, MI, USA
| | | | | | | |
Collapse
|