1
|
Bekyarova GY, Vankova DG, Madjova VH, Bekyarov NA, Salim AS, Ivanova DG, Stoeva SM, Gerova DI, Kiselova-Kaneva YD. Association between Nfr2, HO-1, NF-kB Expression, Plasma ADMA, and Oxidative Stress in Metabolic Syndrome. Int J Mol Sci 2023; 24:17067. [PMID: 38069389 PMCID: PMC10707226 DOI: 10.3390/ijms242317067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Endothelial dysfunction is one of the major factors in the pathogenesis of metabolic syndrome (MetS), and its molecular mechanisms are not completely understood. The present study aimed to examine the connection between nuclear factor2-related factor2 (Nrf2), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), heme oxygenase 1 (HO-1), and plasma asymmetric dimethylarginine (ADMA) and malondialdehyde (MDA) in people with MetS. Participants in the study were as follows: with MetS (n = 30) and without MetS (Control) (n = 14). Expression of Nrf2, NF-kB, and HO-1 was measured in peripheral blood mononuclear cells (PBMCs). Plasma ADMA was determined using the ELISA technique and MDA via the thiobarbituric acid method. Our study showed that mRNA of NF-kB, Nrf2, and HO-1 levels in PBMCs in the MetS group were significantly higher than in the controls by 53%, 130%, and 185% (p < 0.05), respectively. Similarly, elevated levels of MDA (by 78%, p < 0.001) and ADMA (by 18.7%, p < 0.001) were established in the MetS group. Our findings show the importance of transcription factor Nrf2, playing an integral role in the protection of the endothelium, and of NF-κB, a transcription factor mediating the inflammatory response in MetS. Knowledge of complex cellular-molecular mechanisms would allow the use of biomarkers such as Nrf2, NF-kB, HO-1, and ADMA for the assessment of endothelial dysfunction in clinical practice.
Collapse
Affiliation(s)
- Ganka Y. Bekyarova
- Department of Physiology and Pathophysiology, Medical University of Varna, 9002 Varna, Bulgaria
| | - Deyana G. Vankova
- Department of Biochemistry, Molecular Medicine and Nutrigenomics, Medical University of Varna, 9002 Varna, Bulgaria (A.S.S.); (D.G.I.); (S.M.S.)
| | - Valentina H. Madjova
- Department of General Medicine, Medical University of Varna, 9002 Varna, Bulgaria; (V.H.M.)
| | - Nicolai A. Bekyarov
- Department of General Medicine, Medical University of Varna, 9002 Varna, Bulgaria; (V.H.M.)
| | - Ayshe S. Salim
- Department of Biochemistry, Molecular Medicine and Nutrigenomics, Medical University of Varna, 9002 Varna, Bulgaria (A.S.S.); (D.G.I.); (S.M.S.)
| | - Diana G. Ivanova
- Department of Biochemistry, Molecular Medicine and Nutrigenomics, Medical University of Varna, 9002 Varna, Bulgaria (A.S.S.); (D.G.I.); (S.M.S.)
| | - Stefka M. Stoeva
- Department of Biochemistry, Molecular Medicine and Nutrigenomics, Medical University of Varna, 9002 Varna, Bulgaria (A.S.S.); (D.G.I.); (S.M.S.)
| | - Daniela I. Gerova
- Department of Clinical Laboratory, Medical University Varna, 9002 Varna, Bulgaria
| | - Yoana D. Kiselova-Kaneva
- Department of Biochemistry, Molecular Medicine and Nutrigenomics, Medical University of Varna, 9002 Varna, Bulgaria (A.S.S.); (D.G.I.); (S.M.S.)
| |
Collapse
|
2
|
Li Y, Ma K, Han Z, Chi M, Sai X, Zhu P, Ding Z, Song L, Liu C. Immunomodulatory Effects of Heme Oxygenase-1 in Kidney Disease. Front Med (Lausanne) 2021; 8:708453. [PMID: 34504854 PMCID: PMC8421649 DOI: 10.3389/fmed.2021.708453] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/31/2021] [Indexed: 01/23/2023] Open
Abstract
Kidney disease is a general term for heterogeneous damage that affects the function and the structure of the kidneys. The rising incidence of kidney diseases represents a considerable burden on the healthcare system, so the development of new drugs and the identification of novel therapeutic targets are urgently needed. The pathophysiology of kidney diseases is complex and involves multiple processes, including inflammation, autophagy, cell-cycle progression, and oxidative stress. Heme oxygenase-1 (HO-1), an enzyme involved in the process of heme degradation, has attracted widespread attention in recent years due to its cytoprotective properties. As an enzyme with known anti-oxidative functions, HO-1 plays an indispensable role in the regulation of oxidative stress and is involved in the pathogenesis of several kidney diseases. Moreover, current studies have revealed that HO-1 can affect cell proliferation, cell maturation, and other metabolic processes, thereby altering the function of immune cells. Many strategies, such as the administration of HO-1-overexpressing macrophages, use of phytochemicals, and carbon monoxide-based therapies, have been developed to target HO-1 in a variety of nephropathological animal models, indicating that HO-1 is a promising protein for the treatment of kidney diseases. Here, we briefly review the effects of HO-1 induction on specific immune cell populations with the aim of exploring the potential therapeutic roles of HO-1 and designing HO-1-based therapeutic strategies for the treatment of kidney diseases.
Collapse
Affiliation(s)
- Yunlong Li
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,School of Medical and Life Sciences, Reproductive and Women-Children Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Kuai Ma
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Zhongyu Han
- School of Medical and Life Sciences, Reproductive and Women-Children Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mingxuan Chi
- School of Medical and Life Sciences, Reproductive and Women-Children Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiyalatu Sai
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zhaolun Ding
- Department of Emergency Surgery, Shannxi Provincial People's Hospital, Xi'an, China
| | - Linjiang Song
- School of Medical and Life Sciences, Reproductive and Women-Children Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chi Liu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Department of Nephrology, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
3
|
Cannabidiol Promotes Endothelial Cell Survival by Heme Oxygenase-1-Mediated Autophagy. Cells 2020; 9:cells9071703. [PMID: 32708634 PMCID: PMC7407143 DOI: 10.3390/cells9071703] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/06/2020] [Accepted: 07/10/2020] [Indexed: 12/17/2022] Open
Abstract
Cannabidiol (CBD), a non-psychoactive cannabinoid, has been reported to mediate antioxidant, anti-inflammatory, and anti-angiogenic effects in endothelial cells. This study investigated the influence of CBD on the expression of heme oxygenase-1 (HO-1) and its functional role in regulating metabolic, autophagic, and apoptotic processes of human umbilical vein endothelial cells (HUVEC). Concentrations up to 10 µM CBD showed a concentration-dependent increase of HO-1 mRNA and protein and an increase of the HO-1-regulating transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2). CBD-induced HO-1 expression was not decreased by antagonists of cannabinoid-activated receptors (CB1, CB2, transient receptor potential vanilloid 1), but by the reactive oxygen species (ROS) scavenger N-acetyl-L-cysteine (NAC). The incubation of HUVEC with 6 µM CBD resulted in increased metabolic activity, while 10 µM CBD caused decreased metabolic activity and an induction of apoptosis, as demonstrated by enhanced caspase-3 cleavage. In addition, CBD triggered a concentration-dependent increase of the autophagy marker LC3A/B-II. Both CBD-induced LC3A/B-II levels and caspase-3 cleavage were reduced by NAC. The inhibition of autophagy by bafilomycin A1 led to apoptosis induction by 6 µM CBD and a further increase of the proapoptotic effect of 10 µM CBD. On the other hand, the inhibition of HO-1 activity with tin protoporphyrin IX (SnPPIX) or knockdown of HO-1 expression by Nrf2 siRNA was associated with a decrease in CBD-mediated autophagy and apoptosis. In summary, our data show for the first time ROS-mediated HO-1 expression in endothelial cells as a mechanism by which CBD mediates protective autophagy, which at higher CBD concentrations, however, can no longer prevent cell death inducing apoptosis.
Collapse
|
4
|
Kupke T, Klare JP, Brügger B. Heme binding of transmembrane signaling proteins undergoing regulated intramembrane proteolysis. Commun Biol 2020; 3:73. [PMID: 32060393 PMCID: PMC7021776 DOI: 10.1038/s42003-020-0800-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 01/29/2020] [Indexed: 12/18/2022] Open
Abstract
Transmembrane signaling proteins play a crucial role in the transduction of information across cell membranes. One function of regulated intramembrane proteolysis (RIP) is the release of signaling factors from transmembrane proteins. To study the role of transmembrane domains (TMDs) in modulating structure and activity of released signaling factors, we purified heterologously expressed human transmembrane proteins and their proteolytic processing products from Escherichia coli. Here we show that CD74 and TNFα are heme binding proteins. Heme coordination depends on both a cysteine residue proximal to the membrane and on the oligomerization of the TMD. Furthermore, we show that the various processing products have different modes of heme coordination. We suggest that RIP changes the mode of heme binding of these proteins and generates heme binding peptides with yet unexplored functions. The identification of a RIP modulated cofactor binding of transmembrane signaling proteins sheds new light on the regulation of cell signaling pathways. Kupke et al. study regulated intramembrane proteolysis (RIP) using recombinant transmembrane proteins CD74 and TNFα and find they are heme binding proteins that change their mode of heme binding after proteolytic processing. These data suggest that RIP of type II transmembrane proteins can generate intracellular heme sensor peptides.
Collapse
Affiliation(s)
- Thomas Kupke
- Heidelberg University Biochemistry Center, Heidelberg, Germany.
| | - Johann P Klare
- Department of Physics, University of Osnabrück, Osnabrück, Germany
| | - Britta Brügger
- Heidelberg University Biochemistry Center, Heidelberg, Germany.
| |
Collapse
|
5
|
Pibiri M, Leoni VP, Atzori L. Heme oxygenase-1 inhibitor tin-protoporphyrin improves liver regeneration after partial hepatectomy. Life Sci 2018; 204:9-14. [PMID: 29738777 DOI: 10.1016/j.lfs.2018.05.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/24/2018] [Accepted: 05/04/2018] [Indexed: 12/22/2022]
Abstract
AIMS This study investigates the effects of the heme oxygenase-1 (HO-1) inhibitor tin protoporphyrin IX (SnPP), on rat liver regeneration following 2/3 partial hepatectomy (PH) in order to clarify the controversial role of HO-1 in the regulation of cellular growth. MAIN METHODS Male Wistar rats received a subcutaneous injection of either SnPP (10 μmoles/kg body weight) or saline 12 h before PH and 0, 12 and 24 h after surgery. Rats were killed from 0.5 to 36 h after PH. Bromodeoxyuridine (BrdU) incorporation was used to analyze cell proliferation. Immunohistochemistry, Western blot analysis and quantitative Real Time-PCR were used to assess molecular and cellular changes after PH. KEY FINDINGS Data obtained have shown that administration of SnPP caused an increased entry of hepatocytes into S phase after PH, as demonstrated by labeling (L.I.) and mitotic (M.I.) indexes. Furthermore, enhanced cell cycle entry in PH-animals pre-treated with SnPP was associated with an earlier activation of IL-6 and transcription factors involved in liver regeneration, such as phospho-JNK and phospho-STAT3. SIGNIFICANCE Summarizing, data here reported demonstrate that inhibition of HO-1 enhances rat liver regeneration after PH which is associated to a very rapid increase in the levels of inflammatory mediators such as IL-6, phopsho-JNK and phospho-STAT3, suggesting that HO-1 could act as a negative modulator of liver regeneration. Knowledge about the mechanisms of liver regeneration can be applied to clinical problems caused by delayed liver growth, and HO-1 repression may be a mechanism by which cells can faster proliferate in response to tissue damage.
Collapse
Affiliation(s)
- Monica Pibiri
- Department of Biomedical Sciences, Oncology and Molecular Pathology Unit, University of Cagliari, Via Porcell 4, 09124 Cagliari, Italy
| | - Vera Piera Leoni
- Department of Biomedical Sciences, Oncology and Molecular Pathology Unit, University of Cagliari, Via Porcell 4, 09124 Cagliari, Italy
| | - Luigi Atzori
- Department of Biomedical Sciences, Oncology and Molecular Pathology Unit, University of Cagliari, Via Porcell 4, 09124 Cagliari, Italy.
| |
Collapse
|
6
|
Yuen JW, Tsang WW, Tse SH, Loo WT, Chan ST, Wong DL, Chung HH, Tam JK, Choi TK, Chiang VC. The effects of Gua sha on symptoms and inflammatory biomarkers associated with chronic low back pain: A randomized active-controlled crossover pilot study in elderly. Complement Ther Med 2017; 32:25-32. [DOI: 10.1016/j.ctim.2017.03.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 12/04/2016] [Accepted: 03/19/2017] [Indexed: 10/19/2022] Open
|
7
|
Hosick PA, Weeks MF, Hankins MW, Moore KH, Stec DE. Sex-Dependent Effects of HO-1 Deletion from Adipocytes in Mice. Int J Mol Sci 2017; 18:ijms18030611. [PMID: 28287466 PMCID: PMC5372627 DOI: 10.3390/ijms18030611] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 03/08/2017] [Accepted: 03/09/2017] [Indexed: 01/01/2023] Open
Abstract
Induction of heme oxygenase-1 (HO-1) has been demonstrated to decrease body weight and improve insulin sensitivity in several models of obesity in rodents. To further study the role of HO-1 in adipose tissue, we created an adipose-specific HO-1 knockout mouse model. Male and female mice were fed either a control or a high-fat diet for 30 weeks. Body weights were measured weekly and body composition, fasting blood glucose and insulin levels were determined every six weeks. Adipocyte-specific knockout of HO-1 had no significant effect on body weight in mice fed a high-fat diet but increased body weight in female mice fed a normal-fat diet. Although body weights were not different in females fed a high fat diet, loss of HO-1 in adipocytes resulted in significant alterations in body composition. Adipose-specific HO-1 knockout resulted in increased fasting hyperglycemia and insulinemia in female but not male mice on both diets. Adipose-specific knockout of HO-1 resulted in a significant loss of HO activity and a decrease in the protein levels of adiponectin in adipose tissue. These results demonstrate that loss of HO-1 in adipocytes has greater effects on body fat and fasting hyperglycemia in a sex-dependent fashion and that expression of HO-1 in adipose tissue may have a greater protective role in females as compared to males.
Collapse
Affiliation(s)
- Peter A Hosick
- Department of Physiology & Biophysics, Center for Excellence in Cardiovascular-Renal Research, University of Mississippi Medical Center, 2500 North State St, Jackson, MS 39216, USA.
- Department of Exercise Science and Physical Education, Montclair State University, Montclair, NJ 07043, USA.
| | - Mary Frances Weeks
- Department of Physiology & Biophysics, Center for Excellence in Cardiovascular-Renal Research, University of Mississippi Medical Center, 2500 North State St, Jackson, MS 39216, USA.
| | - Michael W Hankins
- Department of Physiology & Biophysics, Center for Excellence in Cardiovascular-Renal Research, University of Mississippi Medical Center, 2500 North State St, Jackson, MS 39216, USA.
| | - Kyle H Moore
- Department of Physiology & Biophysics, Center for Excellence in Cardiovascular-Renal Research, University of Mississippi Medical Center, 2500 North State St, Jackson, MS 39216, USA.
| | - David E Stec
- Department of Physiology & Biophysics, Center for Excellence in Cardiovascular-Renal Research, University of Mississippi Medical Center, 2500 North State St, Jackson, MS 39216, USA.
| |
Collapse
|
8
|
Hussain MS, Qureshi AI, Kirmani JF, Divani AA, Hopkins LN. Development of Vascular Biology over the past 10 Years: Heme Oxygenase-1 in Cardiovascular Homeostasis. J Endovasc Ther 2016; 11 Suppl 2:II32-42. [PMID: 15760262 DOI: 10.1177/15266028040110s616] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The study of vascular biology has provided strong evidence for the role that free radical attack plays in the pathogenesis of cardiovascular diseases. The endothelial cell (EC) dysfunction that results from exposure to oxidative stresses, such as oxidized LDL, influences vascular cell gene expression, promoting smooth muscle cell (SMC) mitogenesis and apoptosis. These factors also play an important role in atherogenesis, which is attenuated by antioxidants. Thus, antioxidants are important to understanding the pathophysiology of cardiovascular diseases and to constructing an effective treatment strategy for these patients. Over the last decade, there has been a tremendous interest in the biology of heme oxygenase-1 (HO-1), which exhibits antioxidant effects in various forms of tissue injury. Moreover, the reaction is also the major source of carbon dioxide (CO) in the body, which is a physiologically important gaseous vasodilator that inhibits SMC proliferation. Thus, HO-1–derived products provide various mechanisms to maintain cardiovascular homeostasis. We review recent work on the cellular and molecular biological aspects of the HO/CO system in vascular pathophysiology.
Collapse
Affiliation(s)
- M Shazam Hussain
- Zeenat Qureshi Stroke Research Center, Department of Neurology and Neurosciences, University of Medicine and Dentistry of New Jersey, Newark, New Jersey 07101, USA
| | | | | | | | | |
Collapse
|
9
|
Andrews M, Leiva E, Arredondo-Olguín M. Short repeats in the heme oxygenase 1 gene promoter is associated with increased levels of inflammation, ferritin and higher risk of type-2 diabetes mellitus. J Trace Elem Med Biol 2016; 37:25-30. [PMID: 27473828 DOI: 10.1016/j.jtemb.2016.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 05/18/2016] [Accepted: 06/01/2016] [Indexed: 10/21/2022]
Abstract
OBJECTIVE We evaluated the relationship between the HO1 genotype, ferritin levels and the risk of type-2 diabetes and inflammation. RESEARCH METHODS Eight hundred thirty-five individuals were evaluated and classified according to their nutritional status and the presence of type-2 diabetes: 153 overweight (OW); 62 obese (OB); 55 type-2 diabetes mellitus (DM); 202 OWDM; 239 OBDM and 124 controls (C). We studied biochemical (glycemia, insulin, lipid profile, liver enzyme, creatinine, hsCRP), hematological (hemoglobin, free erythrocyte protoporphyrin, transferrin receptor and serum Fe and ferritin) and oxidative stress (SOD, GHS and TBARS) parameters. We determined heme oxygenase activity and the (GT)n polymorphism in its gene promoter. RESULTS Individuals with diabetes, independent of nutritional status, showed high levels of ferritin and HO activity compared to control subjects. Allelic frequency was not different between the groups (Chi(2), NS) however, genotypes were different (Chi(2), P<0.001). The SS (short-short) genotype was higher in all DM individuals compared to controls and MM was higher in controls. SM (short-medium) genotype was an independent risk factor for DM in logistic regression analysis. We observed high risk for type-2 diabetes mellitus in the presence of SM genotype and high levels of ferritin (OR adjusted: 2.7; 1.9-3.6; p<0.001; compared to control group). It was also significantly related to inflammation. CONCLUSION The SM genotype in HO1 gene promoter and ferritin levels were associated with higher risk for type-2 diabetes and for having a higher marker of inflammation, which is the main risk factor for the development of chronic diseases.
Collapse
Affiliation(s)
- Mónica Andrews
- Micronutrient Laboratory, Institute of Nutrition and Food Technology (INTA), University of Chile, El Líbano 5524, Macul, Santiago, Chile
| | - Elba Leiva
- Interdisciplinary Excellence Research Program on Healthy Aging (PIEI-ES), Faculty of Health Science, University of Talca, Talca, Chile
| | - Miguel Arredondo-Olguín
- Micronutrient Laboratory, Institute of Nutrition and Food Technology (INTA), University of Chile, El Líbano 5524, Macul, Santiago, Chile.
| |
Collapse
|
10
|
Zhao S, Zhang Y, Gu Y, Lewis DF, Wang Y. Heme Oxygenase-1 Mediates Up-Regulation of Adhesion Molecule Expression Induced by Peroxynitrite in Endothelial Cells. ACTA ACUST UNITED AC 2016; 11:465-71. [PMID: 15458743 DOI: 10.1016/j.jsgi.2004.05.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Endothelial cell (EC) activation with up-regulation of cellular adhesion molecule (CAM) expression is a pathophysiologic feature in preeclampsia (PE). Enhanced peroxynitrite formation in the vasculature of women with PE was also reported. This study was to test whether EC oxidative stress induced by peroxynitrite could up-regulate EC CAM expression, and whether heme oxygenase-1 (HO-1) has protective effects on this peroxynitrite-induced cellular response. METHODS Confluent ECs were stimulated with 3-morpholinosydnonimine-HCl (SIN-1, a peroxynitrite generator) alone or combined with Mn(III) tetrakis (1-methyl-4-pyridyl) porphyrin pentachloride (MnTMPyP, a peroxynitrite scavenger) up to 4 hours. EC surface protein expressions for ICAM, VCAM, P-selectin, and E-selectin were measured by colorimetric assay. ECs were also treated with Sn(IV) mesophorphyrin IX dichloride (SnMP, a HO-1 inhibitor) to determine if HO-1 was involved in the increased CAM expression in stressed cells. Protein and mRNA expressions for HO-1 were determined by Western blot analysis and reverse-transcriptase polymerase chain reaction (RT-PCR). Data are presented as the mean +/- SE and analyzed by analysis of variance (ANOVA). RESULTS Endothelial CAM expressions for VCAM, P-selectin, and E-selectin, but not ICAM, were significantly increased in SIN-1-treated ECs. Protein and mRNA expressions for HO-1 were also up-regulated in cells treated with SIN-1. MnTMPyP blocked both mRNA and protein expressions for HO-1, whereas SnMP only blocked HO-1 protein expression. Both MnTMPyP and SnMP abolished SIN-1-induced up-regulation of VCAM, P-selectin, and E-selectin expression in ECs. CONCLUSIONS Peroxynitrite-induced EC oxidative stress produces differential effects on CAM expression, which may be mediated by HO-1 regulation. Our results suggest that increased peroxynitrite formation in the maternal vasculature may contribute to the increased CAM expression and enhanced neutrophil-endothelial interaction associated with PE.
Collapse
Affiliation(s)
- Shuang Zhao
- Departments of Obstetrics and Gynecology, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130, USA
| | | | | | | | | |
Collapse
|
11
|
Gartanin Protects Neurons against Glutamate-Induced Cell Death in HT22 Cells: Independence of Nrf-2 but Involvement of HO-1 and AMPK. Neurochem Res 2016; 41:2267-77. [DOI: 10.1007/s11064-016-1941-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 04/27/2016] [Accepted: 04/29/2016] [Indexed: 01/18/2023]
|
12
|
Franceschelli S, Pesce M, Ferrone A, Patruno A, Pasqualone L, Carlucci G, Ferrone V, Carlucci M, de Lutiis MA, Grilli A, Felaco M, Speranza L. A Novel Biological Role of α-Mangostin in Modulating Inflammatory Response Through the Activation of SIRT-1 Signaling Pathway. J Cell Physiol 2016; 231:2439-51. [DOI: 10.1002/jcp.25348] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 02/17/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Sara Franceschelli
- Department of Medicine and Science of Aging; University G. D'Annunzio; Chieti Italy
| | - Mirko Pesce
- Medicine and Health Science School University G. D'Annunzio; Chieti Italy
| | - Alessio Ferrone
- Department of Medicine and Science of Aging; University G. D'Annunzio; Chieti Italy
| | - Antonia Patruno
- Department of Medicine and Science of Aging; University G. D'Annunzio; Chieti Italy
| | - Livia Pasqualone
- Department of Medicine and Science of Aging; University G. D'Annunzio; Chieti Italy
| | | | | | - Maura Carlucci
- Department of Pharmacy; University G. D'Annunzio; Chieti Italy
| | - Maria Anna de Lutiis
- Department of Medicine and Science of Aging; University G. D'Annunzio; Chieti Italy
| | - Alfredo Grilli
- Medicine and Health Science School University G. D'Annunzio; Chieti Italy
| | - Mario Felaco
- Department of Medicine and Science of Aging; University G. D'Annunzio; Chieti Italy
| | - Lorenza Speranza
- Department of Medicine and Science of Aging; University G. D'Annunzio; Chieti Italy
| |
Collapse
|
13
|
Effect of growth factors and steroid hormones on heme oxygenase and cyclin D1 expression in primary astroglial cell cultures. J Neurosci Res 2014; 93:521-9. [DOI: 10.1002/jnr.23506] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 09/23/2014] [Accepted: 09/29/2014] [Indexed: 11/07/2022]
|
14
|
Wegiel B, Nemeth Z, Correa-Costa M, Bulmer AC, Otterbein LE. Heme oxygenase-1: a metabolic nike. Antioxid Redox Signal 2014; 20:1709-22. [PMID: 24180257 PMCID: PMC3961788 DOI: 10.1089/ars.2013.5667] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2013] [Accepted: 11/01/2013] [Indexed: 10/26/2022]
Abstract
SIGNIFICANCE Heme degradation, which was described more than 30 years ago, is still very actively explored with many novel discoveries on its role in various disease models every year. RECENT ADVANCES The heme oxygenases (HO) are metabolic enzymes that utilize NADPH and oxygen to break apart the heme moiety liberating biliverdin (BV), carbon monoxide (CO), and iron. Heme that is derived from hemoproteins can be toxic to the cells and if not removed immediately, it causes cell apoptosis and local inflammation. Elimination of heme from the milieu enables generation of three products that influences numerous metabolic changes in the cell. CRITICAL ISSUES CO has profound effects on mitochondria and cellular respiration and other hemoproteins to which it can bind and affect their function, while BV and bilirubin (BR), the substrate and product of BV, reductase, respectively, are potent antioxidants. Sequestration of iron into ferritin and its recycling in the tissues is a part of the homeodynamic processes that control oxidation-reduction in cellular metabolism. Further, heme is an important component of a number of metabolic enzymes, and, therefore, HO-1 plays an important role in the modulation of cellular bioenergetics. FUTURE DIRECTIONS In this review, we describe the cross-talk between heme oxygenase-1 (HO-1) and its products with other metabolic pathways. HO-1, which we have labeled Nike, the goddess who personified victory, dictates triumph over pathophysiologic conditions, including diabetes, ischemia, and cancer.
Collapse
Affiliation(s)
- Barbara Wegiel
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Zsuzsanna Nemeth
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
- Department of Tumor Biology, National Koranyi Institute of Pulmonology, Budapest, Hungary
| | - Matheus Correa-Costa
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Andrew C. Bulmer
- Heart Foundation Research Centre, Griffith Health Institute, Griffith University, Queensland, Australia
| | - Leo E. Otterbein
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
15
|
Ben-Ari Z, Issan Y, Katz Y, Sultan M, Safran M, Michal LS, Nader GA, Kornowski R, Grief F, Pappo O, Hochhauser E. Induction of heme oxygenase-1 protects mouse liver from apoptotic ischemia/reperfusion injury. Apoptosis 2013; 18:547-55. [PMID: 23435964 DOI: 10.1007/s10495-013-0814-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Ischemia/reperfusion (I/R) injury is the main cause of primary graft dysfunction of liver allografts. Cobalt-protoporphyrin (CoPP)-dependent induction of heme oxygenase (HO)-1 has been shown to protect the liver from I/R injury. This study analyzes the apoptotic mechanisms of HO-1-mediated cytoprotection in mouse liver exposed to I/R injury. HO-1 induction was achieved by the administration of CoPP (1.5 mg/kg body weight i.p.). Mice were studied in in vivo model of hepatic segmental (70 %) ischemia for 60 min and reperfusion injury. Mice were randomly allocated to four main experimental groups (n = 10 each): (1) A control group undergoing sham operation. (2) Similar to group 1 but with the administration of CoPP 72 h before the operation. (3) Mice undergoing in vivo hepatic I/R. (4) Similar to group 3 but with the administration of CoPP 72 h before ischemia induction. When compared with the I/R mice group, in the I/R+CoPP mice group, the increased hepatic expression of HO-1 was associated with a significant reduction in liver enzyme levels, fewer apoptotic hepatocytes cells were identified by morphological criteria and by immunohistochemistry for caspase-3, there was a decreased mean number of proliferating cells (positively stained for Ki67), and a reduced hepatic expression of: C/EBP homologous protein (an index of endoplasmic reticulum stress), the NF-κB's regulated genes (CIAP2, MCP-1 and IL-6), and increased hepatic expression of IκBa (the inhibitory protein of NF-κB). HO-1 over-expression plays a pivotal role in reducing the hepatic apoptotic IR injury. HO-1 may serve as a potential target for therapeutic intervention in hepatic I/R injury during liver transplantation.
Collapse
Affiliation(s)
- Z Ben-Ari
- Liver Disease Center, Sheba Medical Center, Tel Hashomer, 52620, Ramat Gan, Israel.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Shahabi P, Siest G, Visvikis-siest S. Influence of inflammation on cardiovascular protective effects of cytochrome P450 epoxygenase-derived epoxyeicosatrienoic acids. Drug Metab Rev 2013; 46:33-56. [DOI: 10.3109/03602532.2013.837916] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
17
|
Barbagallo I, Galvano F, Frigiola A, Cappello F, Riccioni G, Murabito P, D'Orazio N, Torella M, Gazzolo D, Li Volti G. Potential therapeutic effects of natural heme oxygenase-1 inducers in cardiovascular diseases. Antioxid Redox Signal 2013; 18:507-21. [PMID: 23025298 DOI: 10.1089/ars.2011.4360] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
SIGNIFICANCE Many physiological effects of natural antioxidants, their extracts or their major active components, have been reported in recent decades. Most of these compounds are characterized by a phenolic structure, similar to that of α-tocopherol, and present antioxidant properties that have been demonstrated both in vitro and in vivo. Polyphenols may increase the capacity of endogenous antioxidant defenses and modulate the cellular redox state. Such effects may have wide-ranging consequences for cellular growth and differentiation. CRITICAL ISSUES The majority of in vitro and in vivo studies conducted so far have attributed the protective effect of bioactive polyphenols to their chemical reactivity toward free radicals and their capacity to prevent the oxidation of important intracellular components. One possible protective molecular mechanism of polyphenols is nuclear factor erythroid 2-related factor (Nrf2) activation, which in turn regulates a number of detoxification enzymes. RECENT ADVANCES Among the latter, the heme oxygenase-1 (HO-1) pathway is likely to contribute to the established and powerful antioxidant/anti-inflammatory properties of polyphenols. In this context, it is interesting to note that induction of HO-1 expression by means of natural compounds contributes to prevention of cardiovascular diseases in various experimental models. FUTURE DIRECTIONS The focus of this review is on the role of natural HO-1 inducers as a potential therapeutic strategy to protect the cardiovascular system against various stressors in several pathological conditions.
Collapse
|
18
|
Bramanti V, Tomassoni D, Grasso S, Bronzi D, Napoli M, Campisi A, Li Volti G, Ientile R, Amenta F, Avola R. Cholinergic precursors modulate the expression of heme oxigenase-1, p21 during astroglial cell proliferation and differentiation in culture. Neurochem Res 2012; 37:2795-804. [PMID: 22956150 DOI: 10.1007/s11064-012-0873-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 08/08/2012] [Accepted: 08/14/2012] [Indexed: 01/21/2023]
Abstract
Heme oxygenase-1 (HO-1) plays a crucial role in oxidative stress processes, apoptosis and cell differentiation. Further, some proteins related to cell cycle including cyclins and p21 are important markers of astrocyte cultures. Aim of investigation was to study the effects of cholinergic precursors (choline, CDP-choline, Acetylcholine and α-Glyceril-Phosphorylcholine) on HO-1 and p21 expression during astroglial cell proliferation and differentiation in primary cultures at 14 and 35 days in vitro (DIV) treated for 24 h with choline metabolites. Our results showed a slight reduction of HO-1 expression (data not statistical significant) in astroglial cell cultures treated with CDP-choline at 14 DIV and 35 DIV. On the contrary, ACh and choline induced a significant increase of HO-1 expression in 14 DIV astrocyte cultures. Surprisingly, choline and ACh dramatically reduced HO-1 expression at 35 DIV. A slight decrease not statistical significant was detectable for α-GPC at 14 DIV and particularly significant at 35 DIV. Data concerning p21 expression, a well known protein inhibiting cell cycle, evidenced a significant increase at 14 and 35 DIV after α-GPC treatment. CDP-choline treatment caused a high increase of p21 expression in 14 DIV astrocyte cultures, but no modification at 35 DIV. Instead, ACh treatment induced a marked increment of p21 expression at 35 DIV. Our data suggest that cholinergic precursors modulate HO-1 and p21 expression during astroglial cell proliferation and differentiation in culture and could be considered a tool to study the induced effects of ischemia and hypoxia diseases in some in vitro models to prevent and reduce its effects after treatment with cholinergic drugs.
Collapse
Affiliation(s)
- V Bramanti
- Department of Chemical Sciences, Section Biochemistry and Molecular Biology, University of Catania, Viale A. Doria 6, 95125 Catania, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Kim YS, Pi SH, Lee YM, Lee SI, Kim EC. The anti-inflammatory role of heme oxygenase-1 in lipopolysaccharide and cytokine-stimulated inducible nitric oxide synthase and nitric oxide production in human periodontal ligament cells. J Periodontol 2010; 80:2045-55. [PMID: 19961388 DOI: 10.1902/jop.2009.090145] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Although heme oxygenase-1 (HO-1) is involved in anti-inflammation, the mechanisms of its activity in regulating periodontal inflammation are largely unclear. Therefore, the aim of this study is to investigate the anti-inflammatory properties of HO-1 in lipopolysaccharide (LPS)- and proinflammatory cytokine-stimulated inducible nitric oxide synthase (iNOS) expression and nitric oxide (NO) production in human periodontal ligament (PDL) cells. METHODS PDL cells were treated with LPS plus a combination of tumor necrosis factor (TNF)-alpha and interleukin (IL)-1beta in serum-free media for 1 day. The production of NO was evaluated using a Griess reagent kit. The expression of iNOS and HO-1 proteins and mRNAs was evaluated using Western blotting and reverse transcriptase-polymerase chain reaction, respectively. RESULTS Proinflammatory cytokines and LPS triggered iNOS and HO-1 expression and NO production in PDL cells. HO-1 inhibitor and HO-1 small interfering RNA (siRNA) attenuated the LPS- and cytokine-stimulated NO release and iNOS and HO-1 expression. Specific inhibitors of p38, extracellular signal-regulated kinase (ERK), and c-Jun N-terminal kinase (JNK) mitogen-activated protein kinases phosphatidylinositol 3-kinase (PI3K), nuclear factor-kappa B (NF-kappaB), and protein kinase C delta (PKC-delta) greatly reduced the levels of iNOS and HO-1 expression induced by LPS plus cytokines. CONCLUSIONS Collectively, these data suggested that HO-1 inhibition blocked LPS- and proinflammatory cytokine-stimulated iNOS expression and NO production in PDL cells via a mechanism that involves p38, ERK, PI3K, NF-kappaB, and PKC-delta. Thus, the regulation of HO-1 activity may be a therapeutic strategy for periodontal disease.
Collapse
Affiliation(s)
- Young-Suk Kim
- Department of Oral and Maxillofacial Pathology, College of Dentistry, Wonkwang University, Iksan, South Korea
| | | | | | | | | |
Collapse
|
20
|
Abraham NG, Cao J, Sacerdoti D, Li X, Drummond G. Heme oxygenase: the key to renal function regulation. Am J Physiol Renal Physiol 2009; 297:F1137-52. [PMID: 19570878 PMCID: PMC2781329 DOI: 10.1152/ajprenal.90449.2008] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Accepted: 06/09/2009] [Indexed: 02/07/2023] Open
Abstract
Heme oxygenase (HO) plays a critical role in attenuating the production of reactive oxygen species through its ability to degrade heme in an enzymatic process that leads to the production of equimolar amounts of carbon monoxide and biliverdin/bilirubin and the release of free iron. The present review examines the beneficial role of HO-1 (inducible form of HO) that is achieved by increased expression of this enzyme in renal tissue. The influence of the HO system on renal physiology, obesity, vascular dysfunction, and blood pressure regulation is reviewed, and the clinical potential of increased levels of HO-1 protein, HO activity, and HO-derived end products of heme degradation is discussed relative to renal disease. The use of pharmacological and genetic approaches to investigate the role of the HO system in the kidney is key to the development of therapeutic approaches to prevent the adverse effects that accrue due to an impairment in renal function.
Collapse
Affiliation(s)
- Nader G Abraham
- New York Medical College, Department of Pharmacology, Valhalla, NY 10595, USA.
| | | | | | | | | |
Collapse
|
21
|
Ewing P, Wilke A, Eissner G, Holler E, Andreesen R, Gerbitz A. Expression of Heme Oxygenase-1 Protects Endothelial Cells from Irradiation-Induced Apoptosis. ACTA ACUST UNITED AC 2009; 12:113-9. [PMID: 16291514 DOI: 10.1080/10623320500189814] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
A common side effect of therapeutic use of ionizing irradiation is endothelial cell damage resulting in a variety of clinical complications. Thus, preservation of endothelial function after irradiation could potentially limit toxicity. Using the murine endothelioma cell line bEnd2 we show here that induction of heme oxygenase-1 (HO-1) by cobalt protoporphyrine IX (CoPP) inhibits irradiation-induced apoptosis. In contrast, HO-1 induction by tin protoporphyrine IX (SnPP), a HO-1 inhibitor, does not affect survival after irradiation. The protective effects of CoPP could be partially reversed by blockade of HO-1 function with SnPP after induction by CoPP. Vice versa, blockade of HO-1 function by SnPP was reversible using CoPP. Treatment with CoPP inhibited cytochrome c release induced by irradiation. These results demonstrate that HO-1 induction and activation prior to irradiation inhibits endothelial apoptosis and might be used for possible cell protection in vivo.
Collapse
Affiliation(s)
- P Ewing
- Department of Hematology/Oncology, University of Regensburg, Regensburg, Germany
| | | | | | | | | | | |
Collapse
|
22
|
Abstract
Heme oxygenase (HO) is important in attenuating the overall production of reactive oxygen species through its ability to degrade heme and to produce carbon monoxide, biliverdin/bilirubin, and release of free iron. Excess free heme catalyzes the formation of reactive oxygen species, which leads to endothelial cell (EC) dysfunction as seen in numerous pathologic vascular conditions including systemic hypertension and diabetes, as well as in ischemia/reperfusion injury.The up-regulation of HO-1 can be achieved through the use of pharmaceutical agents such as metalloporphyrins and statins. In addition, atrial natriuretic peptide and nitric oxide donors are important modulators of the heme-HO system, either through induction of HO-1 or the increased biologic activity of its products. Gene therapy and gene transfer, including site- and organ-specific targeted gene transfer have become powerful tools for studying the potential role of the 2 isoforms of HO, HO-1/HO-2, in the treatment of cardiovascular disease, as well as diabetes. HO-1 induction by pharmacological agents or the in vitro gene transfer of human HO-1 into ECs increases cell cycle progression and attenuates angiotensin II, tumor necrosis factor-alpha, and heme-mediated DNA damage; administration in vivo corrects blood pressure elevation after angiotensin II exposure. Delivery of human HO-1 to hyperglycemic rats significantly lowers superoxide levels and prevents EC damage and sloughing of vascular EC into the circulation. In addition, administration of human HO-1 to rats in advance of ischemia/reperfusion injury considerably reduces tissue damage.The ability to up-regulate HO-1 either through pharmacological means or through the use of gene therapy may offer therapeutic strategies for the prevention of cardiovascular disease in the future. This review discusses the implications of HO-1 delivery during the early stages of cardiovascular system injury or in early vascular pathology, and suggests that pharmacological agents that regulate HO activity or HO-1 gene delivery itself may become powerful tools for preventing the onset or progression of various cardiovascular diseases.
Collapse
|
23
|
NS398 protects cells from sodium nitroprusside-mediated cytotoxicity through enhancing HO-1 induction independent of COX-2 inhibition. Arch Pharm Res 2009; 32:99-107. [DOI: 10.1007/s12272-009-1123-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Revised: 11/26/2008] [Accepted: 12/02/2008] [Indexed: 01/16/2023]
|
24
|
Jeong GS, An RB, Pae HO, Oh GS, Chung HT, Kim YC. Heme oxygenase-1 inducing constituent of Prunella vulgaris in HepG2 cells. Biol Pharm Bull 2008; 31:531-3. [PMID: 18310925 DOI: 10.1248/bpb.31.531] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Inducible heme oxygenase (HO)-1 is known to play a major role in the pathogenesis of several diseases, and it protects cells against oxidant-mediated injury. The bioassay-guided fractionation of the EtOH extract of the flowered fruit-spike of Prunella vulgaris L. (Labiatae) yielded two ursane-type triterpenes, 3beta,23-dihydroxyurs-12-en-28-oic acid (23-hydroxyursolic acid) (1) and 3beta-hydroxyurs-12-en-28-oic acid (ursolic acid) (2). Western blotting demonstrated that treatment with compound 1 increased the expression of HO-1 in a dose-dependent manner in human liver-derived HepG2 cells. Investigation of structure-related HO-1 inducing activity suggested that the hydroxyl group at the C-23 position in the ursane skeleton is important for this activity.
Collapse
Affiliation(s)
- Gil-Saeng Jeong
- X-Ray Microscopy Research Center, Wonkwang University, Iksan 570-749, Korea
| | | | | | | | | | | |
Collapse
|
25
|
Zhen-Wei X, Jian-Le S, Qi Q, Wen-Wei Z, Xue-Hong Z, Zi-Li Z. Heme oxygenase-1 improves the survival of discordant cardiac xenograft through its anti-inflammatory and anti-apoptotic effects. Pediatr Transplant 2007; 11:850-9. [PMID: 17976119 DOI: 10.1111/j.1399-3046.2007.00701.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
HO-1 is a rate-limiting enzyme in hemoglobin metabolism, and exerts anti-inflammatory as well as anti-apoptotic effects. Previous studies have shown that expression of HO-1 can prolong the survival of concordant transplanted organs. However, little is known about the precise effect and mechanism of HO-1 in discordant xenotransplantation. In this study, we investigated the role of HO-1 in discordant cardiac xenotransplantation. First, HUVECs were used to assess the effect of HO-1 on TNF-alpha-induced apoptosis. Results showed that TNF-alpha induced apoptosis of HUVECs in a dose-dependent manner. Moreover, induction of HO-1 by hemin suppressed TNF-alpha-induced apoptosis. However, the anti-apoptotic action of HO-1 was reversed by SnPP. The up-regulation of HO-1 by hemin treatment significantly prolonged the survival time of discordant cardiac xenograft, greatly reduced the swelling and apoptosis of myocardial cells, interstitial edema, lymphocyte infiltration, and thrombus formation in small vessels. Furthermore, HO-1 overexpression significantly attenuated the serum level of xenoantibody IgM, tissue deposition of IgM and complement 3 (C(3)) in endangium. Finally, HO-1 mitigated CD40L transcription in the xenograft and recipient spleen. These results indicate that the up-regulation of HO-1 can improve the survival of discordant cardiac xenograft by inhibiting apoptosis and alleviating inflammation and thrombosis.
Collapse
Affiliation(s)
- Xia Zhen-Wei
- Department of Pediatrics, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.
| | | | | | | | | | | |
Collapse
|
26
|
Clark IA, Alleva LM, Budd AC, Cowden WB. Understanding the role of inflammatory cytokines in malaria and related diseases. Travel Med Infect Dis 2007; 6:67-81. [PMID: 18342278 DOI: 10.1016/j.tmaid.2007.07.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2007] [Accepted: 07/04/2007] [Indexed: 01/10/2023]
Abstract
It is now broadly accepted for infectious disease in general that it is not the invading organism, but the body's unbridled response to it--the "cytokine storm"--that causes illness and pathology. Nevertheless, many researchers still regard the harmful effects of falciparum malaria as being governed by oligaemic hypoxia arising from parasitised erythrocytes obstructing blood flow through vulnerable organs, particularly the brain, and we summarise why these notions are no longer tenable. In our view, this harmful sequestration is readily accommodated within the cytokine storm perspective as one of its secondary effects. We approach these issues by examining aspects of malaria, sepsis and influenza in parallel, and discuss the insights that comparisons of the literature can provide on the validity of possible anti-disease therapies.
Collapse
Affiliation(s)
- Ian A Clark
- School of Biochemistry and Molecular Biology, Australian National University, Canberra, ACT 0200, Australia.
| | | | | | | |
Collapse
|
27
|
Heo JM, Kim HJ, Ha YM, Park MK, Kang YJ, Lee YS, Seo HG, Lee JH, Yun-Choi HS, Chang KC. YS 51, 1-(beta-naphtylmethyl)-6,7-dihydroxy-1,2,3,4,-tetrahydroisoquinoline, protects endothelial cells against hydrogen peroxide-induced injury via carbon monoxide derived from heme oxygenase-1. Biochem Pharmacol 2007; 74:1361-70. [PMID: 17719563 DOI: 10.1016/j.bcp.2007.07.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2007] [Revised: 06/28/2007] [Accepted: 07/11/2007] [Indexed: 01/21/2023]
Abstract
Oxidative stress plays an important role in the pathophysiology of several vascular diseases such as atherosclerosis, and great attention has been placed on the protective role of heme oxygenase-1 (HO-1) for vasculature against oxidant-induced injury. We tested whether the protective effects of YS 51, 1-(beta-naphtyl-methyl)-6,7-dihydroxy-1,2,3,4,-tetrahydroisoquinoline, against hydrogen peroxide (H2O2)-induced cell injury is associated with HO-1 activity in bovine aortic endothelial cells (BAEC). YS 51 increased HO-1 expression and activity in concentration-dependent manners (10-100 microM) and time-dependent manners (1, 3, 6, 18 h), which were correlated well with its protective effect against H2O2-induced injury. Zinc protoporphyrin IX (ZnPP IX), a HO inhibitor, significantly inhibited the effect of YS 51 (50 microM). In contrast, [Ru(CO)3(Cl)2]2 (CORM-2, a CO releasing molecule) but not bilirubin protected against H2O2-induced injury. Oxyhemoglobin (HbO2) used as a CO scavenger significantly inhibited the protective effect of both YS 51 and CORM-2. Furthermore, both YS 51 and CORM-2 significantly reduced H2O2-induced intracellular reactive oxygen species (ROS) production; however, this was counteracted by ZnPP IX, HbO2 and deferoxamine. We found evidence for the involvement of PI3/Akt kinase and ERK1/2 pathways in HO-1 induction by YS-51. Taken together, we conclude that CO is, at least, responsible for the YS 51-mediated protective action of endothelial cells against oxidant stress via HO-1 gene induction, involving the activation of the PI3/Akt and ERK1/2 kinase pathways. Thus, YS 51 may be useful in oxidative stress-induced vascular disorders.
Collapse
Affiliation(s)
- Ja Myung Heo
- Department of Pharmacology, School of Medicine and Institute of Health Sciences, Gyeongsang National University, 92 Chilam-dong, Jinju 660-751, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Marcinkiewicz J, Kurnyta M, Biedroń R, Bobek M, Kontny E, Maśliński W. Anti-inflammatory effects of taurine derivatives (taurine chloramine, taurine bromamine, and taurolidine) are mediated by different mechanisms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 583:481-92. [PMID: 17153635 DOI: 10.1007/978-0-387-33504-9_54] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In this study, in an animal model of zymosan-induced peritonitis we have tested anti-inflammatory properties of Taurolidine (TRD), a synthetic derivative of taurine. In vitro, the effect of TRD and HOCl treated TRD on peritoneal macrophages was compared with that of TauCl. We report that locally administered TRD (Taurolin) shows strong anti-inflammatory properties. TRD inhibits vascular permeability increased by inflammatory stimuli; it also significantly attenuates the influx of neutrophils into the peritoneal cavity, as well as the production of pro-inflammatory cytokines (TNF-alpha, IL-6) by peritoneal exudate cells. Chlorination of TRD resulted in the formation of chloramine (TRD-Cl), as confirmed by characteristic UV spectra. Both TRD and TRD-Cl, more effectively than TauCl, inhibited the production of IL-6 by stimulated macrophages. The effect was not dependent on its well-known anti-endotoxin activity since TRD inhibited cytokine production by macrophages stimulated with either LPS or IFN-gamma. Finally, we report that anti-inflammatory activities of TRD and taurine haloamines are mediated by different mechanisms. TRD, in contrast to TauCl and TauBr, does not induce expression of HO-1, a stress inducible enzyme with strong anti-inflammatory properties.
Collapse
Affiliation(s)
- Janusz Marcinkiewicz
- Department of Immunology, Jagiellonian University Medical College, Krakow, Poland.
| | | | | | | | | | | |
Collapse
|
29
|
Heme oxygenase expression in diabetes and in renal diseases: Mechanisms of cytoprotection. ACTA ACUST UNITED AC 2007. [DOI: 10.1016/j.ddmec.2007.06.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
Rydkina E, Sahni A, Baggs RB, Silverman DJ, Sahni SK. Infection of human endothelial cells with spotted Fever group rickettsiae stimulates cyclooxygenase 2 expression and release of vasoactive prostaglandins. Infect Immun 2006; 74:5067-74. [PMID: 16926398 PMCID: PMC1594856 DOI: 10.1128/iai.00182-06] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rickettsiae, a diverse group of obligately intracellular gram-negative bacteria, include etiologic agents of the spotted fever and typhus groups of diseases. Rocky Mountain spotted fever and boutonneuse fever, due to Rickettsia rickettsii and R. conorii, respectively, are characterized by widespread infection of the vascular endothelium, microvascular injury, and vasculitis. Cultured human endothelial cells (EC) are highly susceptible to infection and respond by altering the expression of adhesion molecules, regulatory cytokines, and the antioxidant enzyme heme oxygenase (HO). In the vasculature, HO regulates the cyclooxygenase (COX) enzymes, among which the inducible isozyme COX-2 facilitates the synthesis of prostaglandins (PGs). Using in vitro and ex vivo models of infection, we demonstrate here that R. rickettsii infection of human EC causes robust induction of COX-2 mRNA and protein expression but has no apparent effect on the constitutive COX-1 isoform. Cells infected with viable rickettsiae consistently displayed significantly increased secretion of 6-keto-PGF(1alpha) and PGE(2). R. rickettsii-induced COX-2 was sensitive to inhibitors of de novo transcription and the pyridinylimidazole-based compound SB 203580, suggesting that this transcriptional host cell response involves signaling through p38 mitogen-activated protein kinase. PG production by infected cells was abrogated by NS 398 (a selective COX-2 inhibitor) and indomethacin (a pan-COX inhibitor). Immunohistochemical staining of sections of infected umbilical cords and corresponding uninfected controls revealed comparatively more intense and abundant staining for COX-2 in infected endothelia. Induction of the endothelial COX-2 system and the resultant enhanced release of vasoactive PGs may contribute to the regulation of inflammatory responses and vascular permeability changes during spotted fever rickettsioses.
Collapse
Affiliation(s)
- Elena Rydkina
- Department of Medicine, Hematology-Oncology Unit, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | | | | | | | | |
Collapse
|
31
|
Sacerdoti D, Colombrita C, Di Pascoli M, Schwartzman ML, Bolognesi M, Falck JR, Gatta A, Abraham NG. 11,12-epoxyeicosatrienoic acid stimulates heme-oxygenase-1 in endothelial cells. Prostaglandins Other Lipid Mediat 2006; 82:155-61. [PMID: 17164143 DOI: 10.1016/j.prostaglandins.2006.07.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2006] [Revised: 07/06/2006] [Accepted: 07/07/2006] [Indexed: 11/16/2022]
Abstract
As epoxyeicosatrienoic acids (EETs), particularly 11,12-EET, and the heme oxygenase/carbon monoxide (HO/CO) system share overlapping biological activities, we examined a possible link between 11,12-EET and HO activity in endothelial cells. Confocal microscopy analysis of immunostaining of HO-1 and HO-2 in cultured endothelial cells treated with 11,12-EET (1 microM) showed an increase in florescence of HO-1 protein in the various cellular compartments, but not of HO-2. Incubation of endothelial cells with 11,12-EET (1 microM) for 24 h increased the level of HO-1 protein by about three-fold. Similarly, incubation of endothelial cells with 8,9-EET and sodium nitroprussiate, a known inducer of HO-1, increased HO-1 protein without any effect on HO-2. Upregulation of HO-1 by 11,12-EET, as well as 8,9-EET, was associated with an increase in HO activity, which was inhibited by stannous mesoporphirin (10 microM). Incubation of rat aortas with 11,12-EET (1 microM for 60 min) increased HO activity. These findings identify a novel effect of EETs on endothelial HO-1 and indicate that the signaling pathway of EETs in endothelial cells is possibly via an increase in HO-1 expression and activity.
Collapse
Affiliation(s)
- David Sacerdoti
- Department of Clinical and Experimental Medicine, Clinica Medica 5, University of Padova, Via Giustiniani 2, 35100 Padova, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Yasuda H, Okinaga S, Yamaya M, Ohrui T, Higuchi M, Shinkawa M, Itabashi S, Nakayama K, Asada M, Kikuchi A, Shibahara S, Sasaki H. Association of susceptibility to the development of pneumonia in the older Japanese population with haem oxygenase-1 gene promoter polymorphism. J Med Genet 2006; 43:e17. [PMID: 16582079 PMCID: PMC2563217 DOI: 10.1136/jmg.2005.035824] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Oxidative stresses including cigarette smoking are implicated in the pathogenesis of cerebrovascular diseases, which are associated with pneumonia because of frequent aspiration. Haem oxygenase-1 (HO-1) acts in cytoprotection against oxidants, provides anti-inflammatory effects, and inhibits atherogenesis. A (GT)(n) dinucleotide repeat in the human HO-1 promoter modulates HO-1 gene expression and shows length polymorphism, which is grouped into three classes: class S (<27 repeats), class M (> or = 27, <33 repeats), and class L (> or = 33 repeats) alleles. OBJECTIVE To investigate the correlation between the HO-1 gene polymorphism and development of pneumonia in elderly Japanese. METHODS The length of the (GT)n repeats was analysed in 200 elderly patients with pneumonia and 200 control subjects. The association of the HO-1 gene polymorphism with risk of pneumonia was estimated by logistic regression. RESULTS The proportion of allele frequencies in class L, and the proportion of genotypic frequencies in the L-allele carriers (L/L, L/M, and L/S), was significantly higher in patients with pneumonia than in controls (20% v 10% in class L, and 34% v 18% in L-allele carriers). After adjustment for potentially confounding factors, both cerebrovascular disorders and HO-1 gene L-allele carriers were significant and independent risk factors for pneumonia. The adjusted odds ratio for L-allele carriers v non-L-allele carrier was 2.1 (95% confidence interval, 1.2 to 3.6). CONCLUSIONS The large size of a (GT)n repeat in the HO-1 gene promoter may be associated with susceptibility to pneumonia in the older Japanese population.
Collapse
|
33
|
Rodella L, Lamon BD, Rezzani R, Sangras B, Goodman AI, Falck JR, Abraham NG. Carbon monoxide and biliverdin prevent endothelial cell sloughing in rats with type I diabetes. Free Radic Biol Med 2006; 40:2198-205. [PMID: 16785033 DOI: 10.1016/j.freeradbiomed.2006.02.018] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2005] [Revised: 02/21/2006] [Accepted: 02/27/2006] [Indexed: 10/24/2022]
Abstract
Hyperglycemia has been linked to increased oxidative stress, a resultant endothelial cell dysfunction, and, ultimately, apoptosis. Heme oxygenases (HO-1/HO-2) and the products of their activity, biliverdin/bilirubin and carbon monoxide (CO), play a physiological role in the vascular system. The effects of heme-mediated HO-1 induction, CO, and biliverdin on urinary 8-epi-isoprostane PGF(2alpha) and endothelial cell sloughing were examined in an animal model of streptozotocin (STZ)-induced diabetes. Hyperglycemia itself did not affect HO-1 and HO-2 protein levels, but caused a net decrease in HO activity. Weekly heme administration induced HO-1 protein, as demonstrated by immunohistochemistry and Western blot analyses. Administration of biliverdin or the CO donor, CORM-3, decreased urinary 8-epi-isoprostane PGF(2alpha), P < 0.5 compared to diabetes. Hyperglycemia increased endothelial cell sloughing; 8.2 +/- 0.8 cells/ml blood in control rats vs. 48 +/- 4.8 cells/ml blood in diabetic rats (P < 0.05). Heme administration significantly increased endothelial cell sloughing in diabetic rats (98 +/- 8.1 cells/ml blood, P < 0.0007) whereas biliverdin modestly decreased endothelial cell sloughing (26 +/- 3.5 cells/ml blood, P < 0.003). Administration of CORM-3 to diabetic rats resulted in a significant decrease in endothelial cell sloughing to 21.3 +/- 2.3 (P < 0.001). Administration of SnMP to CORM-3 diabetic rats only partially reversed the protective effects of CORM-3 on endothelial cell sloughing from 21.3 +/- 2.3 to 29 +/- 2.1 cells/ml, thus confirming a direct protective of CO, in addition to the ability of CORM-3 to induce HO-1 protein. These results demonstrate that exogenously administered CO or bilirubin can prevent endothelial cell sloughing in diabetic rats, likely via a decrease in oxidative stress, and thus represents a novel approach to prophylactic vascular protection in diabetes.
Collapse
Affiliation(s)
- Luigi Rodella
- University of Texas Southwestern Medical Center, Dallas, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Zager RA, Johnson ACM, Lund S, Hanson S. Acute renal failure: determinants and characteristics of the injury-induced hyperinflammatory response. Am J Physiol Renal Physiol 2006; 291:F546-56. [PMID: 16638912 DOI: 10.1152/ajprenal.00072.2006] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Acute renal failure (ARF) markedly sensitizes mice to endotoxin (LPS), as evidenced by exaggerated renal cytokine/chemokine production. This study sought to further characterize this state by testing the following: 1) does anti-inflammatory heme oxygenase-1 (HO-1) upregulation in selected ARF models prevent this response? 2) Is the ARF hyperresponsive state specifically triggered by LPS? 3) Does excess iNOS activity/protein nitrosylation participate in this phenomenon? and 4) are upregulated Toll receptors involved? Mice with either 1) rhabdomyolysis-induced ARF (massive HO-1 overexpression), 2) cisplatin nephrotoxicity, 3) or HO-1 inhibition (Sn protoporphyrin) were challenged with either LPS (a TLR4 ligand), lipoteichoic acid (LTA; a TLR2 ligand), or vehicle. Two hours later, renal and plasma TNF-alpha/mRNA, MCP-1/mRNA, renal nitrotyrosine/iNOS mRNA, and plasma cytokines were assessed. Renal TLR4 was gauged by mRNA and Western blot analysis. Both ARF models markedly hyperresponded to both LPS and LTA, culminating in exaggerated TNF-alpha, MCP-1, and iNOS/nitrotryosine increments. This was despite the fact that HO-1 exerted anti-inflammatory effects. TLR4 levels were either normal (cisplatin), or markedly depressed ( approximately 50%; rhabdomyolysis) in the ARF kidneys, despite the LPS hyperresponsive state. 1) The ARF kidney can hyperrespond to chemically dissimilar Toll ligands; 2) HO-1 does not prevent this response; 3) excess NO/protein nitrosylation can result; and 4) this hyperresponsiveness can be expressed with either normal or reduced renal TLR4 expression. This suggests that diverse signaling pathways may be involved.
Collapse
Affiliation(s)
- Richard A Zager
- Department of Medicine, University of Washington, Seattle, WA, USA.
| | | | | | | |
Collapse
|
35
|
Oh HM, Kang YJ, Lee YS, Park MK, Kim SH, Kim HJ, Seo HG, Lee JH, Chang KC. Protein kinase G-dependent heme oxygenase-1 induction by Agastache rugosa leaf extract protects RAW264.7 cells from hydrogen peroxide-induced injury. JOURNAL OF ETHNOPHARMACOLOGY 2006; 103:229-35. [PMID: 16185832 DOI: 10.1016/j.jep.2005.08.030] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2005] [Revised: 06/08/2005] [Accepted: 08/06/2005] [Indexed: 05/04/2023]
Abstract
It has been proposed that the inducible isoform of heme oxygenase (HO) protects cells against oxidant-mediated injury. Although components of Agastache rugosa showed antioxidant effect, it is unclear this effect is related with HO-1 activity. Thus, we investigated the effects of Agastache rugosa leaf extract (ALE) on HO-1 protein expression and enzyme activity, and its protective effect against H(2)O(2)-induced oxidative damage was also investigated using RAW264.7 macrophage cells. Results showed that ALE concentration dependently increased HO-1 protein and enzyme activity, and protected cells from H(2)O(2)-induced cytotoxicity, with an IC(50) of 0.526 mg/ml. Hemin, a HO-1 inducer, also showed similar effect to ALE. Furthermore, the protective effect of both ALE and hemin was inhibited by a HO inhibitor, zinc protoporphyrin IX. The expression of HO-1 protein by ALE was reduced by pretreatment with LY83583 and ODQ, specific inhibitors of guanylate cyclase, but not by PKA inhibitors, H89 and KT5720, indicating that PKG signaling pathway regulates HO-1 induction by ALE. Taken together, it is concluded that PKG-dependent HO-1 induction is one of the important antioxidant mechanisms by which ALE protects RAW264.7 cells from H(2)O(2). Thus, ALE along with other actions may be beneficial for the treatment of oxidant-induced cellular injuries.
Collapse
Affiliation(s)
- Hwa Min Oh
- Department of Pharmacology, School of Medicine, Institute of Health Sciences, Gyeongsang National University, 92 Chilam-dong, Jinju 660-751, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Endothelial cells are key regulators of the inflammatory response. Lining blood vessels, they provide in the steady state an antiinflammatory, anticoagulatory surface. However, in the case of injury or infection, endothelial cells control the adhesion and migration of inflammatory cells, as well as the exchange of fluid from the bloodstream into the damaged tissue. Thus, expression of endothelial adhesion molecules, cytokines, and changes in permeability need to be tightly regulated to allow for a controlled inflammatory response. Acute inflammation is characterized by tissue infiltration of neutrophils, followed by monocytes/macrophages. For successful tissue regeneration and healing, the acute inflammatory response needs to be actively shut down, a process called resolution of inflammation. Unsuccessful resolution may lead to excessive tissue damage and ultimately results in chronic, self-promoting inflammation. This review will summarize recent advances in the field of endothelial biology, which point to an active participation of the endothelial barrier in the resolving process.
Collapse
Affiliation(s)
- Alexandra Kadl
- Cardiovascular Research Center and Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | | |
Collapse
|
37
|
Ohta K, Yachie A. Development of vascular biology over the past 10 years: heme oxygenase-1 in cardiovascular homeostasis. J Endovasc Ther 2005. [PMID: 15760253 DOI: 10.1583/04-1330.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The study of vascular biology has provided strong evidence for the role that free radical attack plays in the pathogenesis of cardiovascular diseases. The endothelial cell (EC) dysfunction that results from exposure to oxidative stresses, such as oxidized LDL, influences vascular cell gene expression, promoting smooth muscle cell (SMC) mitogenesis and apoptosis. These factors also play an important role in atherogenesis, which is attenuated by antioxidants. Thus, antioxidants are important to understanding the pathophysiology of cardiovascular diseases and to constructing an effective treatment strategy for these patients. Over the last decade, there has been a tremendous interest in the biology of heme oxygenase-1 (HO-1), which exhibits antioxidant effects in various forms of tissue injury. Moreover, the reaction is also the major source of carbon dioxide (CO) in the body, which is a physiologically important gaseous vasodilator that inhibits SMC proliferation. Thus, HO-1-derived products provide various mechanisms to maintain cardiovascular homeostasis. We review recent work on the cellular and molecular biological aspects of the HO/CO system in vascular pathophysiology.
Collapse
Affiliation(s)
- Kunio Ohta
- Department of Pediatrics, Angiogenesis, and Vascular Development, Graduate School of Medical Science, Kanazawa, Japan.
| | | |
Collapse
|
38
|
Zhou P, Kalakonda N, Comenzo RL. Changes in gene expression profiles of multiple myeloma cells induced by arsenic trioxide (ATO): possible mechanisms to explain ATO resistance in vivo. Br J Haematol 2005; 128:636-44. [PMID: 15725085 DOI: 10.1111/j.1365-2141.2005.05369.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Multiple myeloma (MM) is an incurable plasma cell malignancy marked by eventual resistance to therapy. Although arsenic trioxide (ATO) can induce apoptosis in MM cell lines, the in vivo activity of ATO in MM has been disappointing. The existence of ATO resistance mechanisms in MM can be inferred. We sought to generate hypotheses for ATO resistance by studying the gene expression profiles of MM cells that survived in culture with 0.5 micromol/l ATO. Among the 31 genes whose quantitative levels of expression (QLE) significantly increased in ATO were haem oxygenase 1 (HO-1) and metallothionein-2A (MT-2A). Among the 56 genes whose QLE were significantly decreased were genes that modulate cell cycling [BTBD2 and IGFBP7 (mac25)] and sensitivity to reactive oxygen species (ROS) (BACH2). HO-1 exerts an anti-apoptotic effect in ischaemic cells, and MT-2A chelates ATO intracellularly. Inhibition of HO-1 with tin protoporphyrin enhances ROS in MM cells in ATO, and addition of N-acetylcysteine increases MT-2A. Protective antioxidant responses occur in MM cells exposed to ATO, and may occur in stromal cells as well, and act to quench ROS and provide diffusible anti-apoptotic factors. They may also involve cysteine-rich proteins that chelate ATO and modulate redox-sensitive residues on proteins, such as nuclear factor kappa B and p53. A better understanding of ATO resistance will enable ATO to be combined with other agents for MM.
Collapse
Affiliation(s)
- Ping Zhou
- Sloan-Kettering Institute, New York, NY, USA
| | | | | |
Collapse
|
39
|
Lin HY, Shen SC, Chen YC. Anti-inflammatory effect of heme oxygenase 1: glycosylation and nitric oxide inhibition in macrophages. J Cell Physiol 2005; 202:579-90. [PMID: 15316927 DOI: 10.1002/jcp.20160] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Flavonoids including the aglycones, hesperetin (HT; 5,7,3'-trihydroxy-4'-methoxy-flavanone), and naringenin (NE; 5,7,4'-trihydroxy flavanone) and glycones, hesperidin (HD; 5,7,3'-trihydroxy-4'-methoxy-flavanone 7-rhamnoglucoside) and naringin (NI; 5,7,4'-trihydroxy flavanone 7-rhamno glucoside), were used to examine the importance of rutinose at C7 on the inhibitory effects of flavonoids on lipopolysaccharide (LPS)-induced nitric oxide production in macrophages. Both HT and NE, but not their respective glycosides HD and NI, induced heme oxygenase 1 (HO-1) protein expression in the presence or absence of LPS and showed time and dose-dependent inhibition of LPS-induced nitric oxide (NO) production and inducible nitric oxide synthase (iNOS) expression in RAW264.7, J774A.1, and thioglycolate-elicited peritoneal macrophages. Additive inhibitory effect of an HO-1 inducer hemin and NE or NI on LPS-induced NO production and iNOS expression was identified, and HO enzyme inhibitor tin protoporphyrin (SnPP) attenuated the inhibitory effects of HT, NE, and hemin on LPS-induced NO production. Both NE and HT showed no effect on iNOS mRNA and protein stability in RAW264.7 cells. Removal of rutinose at C7 of HD and NI by enzymatic digestion using hesperidinase (HDase) and naringinase (NIase) produce inhibitory activity on LPS-induced NO production, according to the production of the aglycones, HT and NE, by high-performance liquid chromatography (HPLC) analysis. Furthermore, the amount of NO produced by LPS or lipoteichoic acid (LTA) was significantly reduced in HO-1-overexpressing cells (HO-1/RAW264.7) compared to that in parental cells (RAW264.7). Results of the present study provide scientific evidence to suggest that rutinose at C7 is a negative moiety in flavonoid inhibition of LPS-induced NO production, and that HO-1 is involved in the inhibitory mechanism of flavonoids on LPS-induced iNOS and NO production.
Collapse
Affiliation(s)
- Hui-Yi Lin
- Graduate Institute of Pharmaceutical Sciences, School of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | | | | |
Collapse
|
40
|
Quan S, Yang L, Shnouda S, Schwartzman ML, Nasjletti A, Goodman AI, Abraham NG. Expression of human heme oxygenase-1 in the thick ascending limb attenuates angiotensin II-mediated increase in oxidative injury. Kidney Int 2004; 65:1628-39. [PMID: 15086901 DOI: 10.1111/j.1523-1755.2004.00562.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Heme oxygenase-1 (HO-1) catalyzes the conversion of heme to bilirubin, carbon monoxide (CO), and free iron, thus controlling the level of cellular heme. The medullary thick ascending limb of the loop of Henle (TALH) is situated in a site of markedly diminished oxygen tension and, as such, is highly vulnerable to ischemic insult. We hypothesize that selective upregulation of HO-1 in TALH by gene transfer attenuates oxidative stress caused by angiotensin II (Ang II). METHODS An adenoviral vector expressing the human HO-1 under the control of the TALH-specific promoter [Na(+)-K(+)-Cl(-) cotransporter (NKCC2 promoter)] was constructed and the cell specific expression of the recombinant adenovirus was examined using several types of cells, including endothelial, vascular smooth muscle, and TALH cells. The effects of HO-1 transduction on HO-1 expression, HO activity and the response to Ang II with respect to cyclooxygenase-2 (COX-2) up-regulation and oxidative injury [growth-stimulating hormone (GSH) levels and cell death] were determined. RESULTS Western blot and reverse transcription-polymerase chain reaction (RT-PCR) revealed that human HO-1 was selectively expressed in primary cultured TALH cells following infection with Ad-NKCC2-HO-1. In TALH cells infected with Ad-NKCC2-HO-1, Ang II-stimulated prostaglandin E(2) (PGE(2)) levels were reduced by 40%. Ang II caused a marked decrease in GSH levels and this decrease was greatly attenuated in TALH cells transduced with Ad-NKCC2-HO-1. Moreover, Ang II-mediated DNA degradation was completely blocked by the site-specific expression of human HO-1 gene. CONCLUSION These results indicate that TALH cell survival after exposure to oxidative stress injury may be facilitated by selective upregulation of HO-1, thusly blocking inflammation and apoptosis.
Collapse
Affiliation(s)
- Shuo Quan
- Department of Pharmacology, Division of Nephrology, New York Medical College, Valhalla, New York 10595, USA.
| | | | | | | | | | | | | |
Collapse
|
41
|
Yang L, Quan S, Nasjletti A, Laniado-Schwartzman M, Abraham NG. Heme oxygenase-1 gene expression modulates angiotensin II-induced increase in blood pressure. Hypertension 2004; 43:1221-6. [PMID: 15166181 DOI: 10.1161/01.hyp.0000126287.62060.e6] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The heme-heme oxygenase (HO) system has been implicated in the regulation of vascular reactivity and blood pressure. This study examines the notion that overexpression of HO decreases pressor responsiveness to angiotensin II (Ang II). Five-day-old Sprague-Dawley rats received an intraleft ventricular injection of approximately 5x10(9) cfu/mL of retroviruses containing human HO-1 sense (LSN-HHO-1), rat HO-1 antisense (LSN-RHO-1-AS), or control retrovirus (LXSN). Three months later, rats were instrumented with femoral arterial and venous catheters for mean arterial pressure (MAP) determination and Ang II administration, respectively. Rats injected with LSN-HHO-1, but not with LXSN, expressed human HO-1 mRNA and protein in several tissues. BP increased with administration of Ang II in rats expressing and not expressing human HO-1. However, the Ang II-induced pressor response (mm Hg) in LSN-HHO-1 rats (16+/-3, 27+/-3, and 38+/-3 at 0.5, 2, and 10 ng) was surpassed (P<0.05) in LXSN rats (23+/-1, 37+/-2, and 52+/-2 at 0.5, 2, and 10 ng). Importantly, treating LSN-HHO-1 rats with the HO inhibitor tin mesoporphyrin (SnMP) enhanced (P<0.05) the Ang II-induced pressor response to a level not different from that observed in LXSN rats. Rats injected with LSN-RHO-1-AS showed a decrease in renal HO-1 protein expression and HO activity relative to control LXSN rats. Administration of Ang II (0.1 to 2 ng) caused small (4 to 5 mm Hg) but significant increases in MAP in rats injected with LSN-RHO-1-AS (P<0.05) compared with rats injected with LXSN. These data demonstrate that overexpression of HO-1 brings about a reduction in pressor responsiveness to Ang II, which is most likely due to increased generation of an HO-1 product, presumably CO, with the ability to inhibit vascular reactivity to constrictor stimuli.
Collapse
Affiliation(s)
- Liming Yang
- Department of Pharmacology, New York Medical College, Valhalla 10595, USA
| | | | | | | | | |
Collapse
|
42
|
Xia ZW, Zhou WP, Cui WJ, Zhang XH, Shen QX, Li YZ, Yu SC. Structure prediction and activity analysis of human heme oxygenase-1 and its mutant. World J Gastroenterol 2004; 10:2352-6. [PMID: 15285018 PMCID: PMC4576287 DOI: 10.3748/wjg.v10.i16.2352] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
AIM: To predict wild human heme oxygenase-1 (whHO-1) and hHO-1 His25Ala mutant (△hHO-1) structures, to clone and express them and analyze their activities.
METHODS: Swiss-PdbViewer and Antheprot 5.0 were used for the prediction of structure diversity and physical-chemical changes between wild and mutant hHO-1. hHO-1 His25Ala mutant cDNA was constructed by site-directed mutagenesis in two plasmids of E. coli DH5α . Expression products were purified by ammonium sulphate precipitation and Q-Sepharose Fast Flow column chromatography, and their activities were measured.
RESULTS: rHO-1 had the structure of a helical fold with the heme sandwiched between heme-heme oxygenase-1 helices. Bond angle, dihedral angle and chemical bond in the active pocket changed after Ala25 was replaced by His25, but Ala25 was still contacting the surface and the electrostatic potential of the active pocket was negative. The mutated enzyme kept binding activity to heme. Two vectors pBHO-1 and pBHO-1(M) were constructed and expressed. Ammonium sulphate precipitation and column chromatography yielded 3.6-fold and 30-fold higher purities of whHO-1, respectively. The activity of △hHO-1 was reduced 91.21% after mutation compared with whHO-1.
CONCLUSION: Proximal His25 ligand is crucial for normal hHO-1 catalytic activity. △hHO-1 is deactivated by mutation but keeps the same binding site as whHO-1. △hHO-1 might be a potential inhibitor of whHO-1 for preventing neonatal hyperbilirubinemia.
Collapse
Affiliation(s)
- Zhen-Wei Xia
- Department of Pediatrics, Rui Jin Hospital, Shanghai Second Medical University, 197 Rui Jin Er Road, Shanghai 200025, China.
| | | | | | | | | | | | | |
Collapse
|
43
|
Li Volti G, Ientile R, Abraham NG, Vanella A, Cannavò G, Mazza F, Currò M, Raciti G, Avola R, Campisi A. Immunocytochemical localization and expression of heme oxygenase-1 in primary astroglial cell cultures during differentiation: effect of glutamate. Biochem Biophys Res Commun 2004; 315:517-24. [PMID: 14766239 DOI: 10.1016/j.bbrc.2004.01.090] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2004] [Indexed: 11/29/2022]
Abstract
Heme oxygenase-1 (HO-1) catalyzes the rate-limiting step in heme degradation releasing iron, carbon monoxide (CO), and biliverdin. We investigated subcellular localization of HO-1 using confocal laser scanning microscopy (CLSM) and the expression by Western blot in primary astroglial cells during differentiation and after exposure to glutamate (100microM). CLSM analysis of immunostained HO-1 in cultured astroglial cells during differentiation showed an increase of fluorescence between 7 and 14 days and a decrease between 14 and 21, although HO-1 peaked at 14 days it remained at high levels. The distribution of HO-1 protein undergoes modification in the various cellular compartments. Furthermore, localization of the protein in untreated astrocytes at 7 days appeared prevalently localized in the cytosol and in the perinuclear region. In contrast, at 14 and 21 days, fluorescence detection suggests that HO-1 was present also in the nucleus, and in the nucleoli. Fluorescence intensity significantly increased in glutamate-treated astrocytes during all development stages and the protein appeared in the cytosol, in the nucleus and in the nucleoli. The involvement of AMPA/Ka receptors was studied in glutamate-treated astroglial cells at 14 days by the preincubation of the cells with GYKI 52466, a specific receptor inhibitor, of AMPA/Ka receptor demonstrating the involvement of these receptors. Western blot analysis of HO-1 confirmed the CLSM results. Our results demonstrate that changes in HO-1 protein expression and localization in primary cultured astroglial cells may be part of the underlying mechanisms involved in brain development as well as in neurodegenerative diseases.
Collapse
Affiliation(s)
- Giovanni Li Volti
- Department of Biochemical, Physiological and Nutritional Sciences, University of Messina, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Colombrita C, Lombardo G, Scapagnini G, Abraham NG. Heme oxygenase-1 expression levels are cell cycle dependent. Biochem Biophys Res Commun 2003; 308:1001-8. [PMID: 12927819 DOI: 10.1016/s0006-291x(03)01509-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Heme oxygenase-1 (HO-1) is a stress protein, which has been suggested to participate in defense mechanisms against agents that may induce oxidative injury, such as angiotensin II (Ang II). The purpose of the present study was to examine the role of human HO-1 in cell-cycle progression. We investigated the effect of Ang II on HO-1 gene expression in serum-deprived media to drive human endothelial cells into G(0)/G(1) (1% FBS) compared to exponentially grown cells (10% FBS). The addition of Ang II (100 ng/ml) to endothelial cells increased HO-1 protein and activity in G(0)/G(1) in a time-dependent manner, reaching a maximum HO-1 level at 16 h. Real-time RT-PCR demonstrated that Ang II increased the levels of HO-1 mRNA in G(0)/G(1) as early as 1 h. The rate of HO-1 induction in response to Ang II was several-fold higher in serum-starved cells compared to cells cultured in continuous 10% FBS. The addition of Ang II increased the generation of 8-epi-isoprostane PGF(2 alpha). Inhibition of HO-1, by Stannis mesoporphyrin (SnMP), potentiated Ang II-mediated DNA damage and generation of 8-epi-isoprostane PGF(2 alpha). These results imply that expression of HO-1 in G(0)/G(1), in the presence of Ang II, may be a key player in attenuating DNA damage during cell-cycle progression. Thus, exposure of endothelial cells to Ang II causes a complex response involving generation of superoxide anion, which may be involved in DNA damage. Upregulation of HO-1 ensures the generation of bilirubin and carbon monoxide (CO) in G(0)/G(1) phase to counteract Ang II-mediated oxidative DNA damage. Inducibility of HO-1 in G(0)/G(1) phase is essential and probably regulated by a complex system involving oxygen species to assure controlled cell growth.
Collapse
Affiliation(s)
- C Colombrita
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA
| | | | | | | |
Collapse
|
45
|
Barrera D, Maldonado PD, Medina-Campos ON, Hernández-Pando R, Ibarra-Rubio ME, Pedraza-Chaverrí J, Pedraza-Chaverrrí J. HO-1 induction attenuates renal damage and oxidative stress induced by K2Cr2O7. Free Radic Biol Med 2003; 34:1390-8. [PMID: 12757849 DOI: 10.1016/s0891-5849(03)00068-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Heme oxygenase (HO) is the rate-limiting enzyme in the degradation of heme; its inducible isozyme HO-1 protects against some types of acute tissue injury. The expression and functional role of HO-1 in rats with renal injury induced by potassium dichromate (K(2)Cr(2)O(7)) was investigated in this work. Rats were studied 24 h after a single injection of K(2)Cr(2)O(7). To address the possible protective effect of HO-1 in this experimental model, this enzyme was induced by an injection of stannous chloride (SnCl(2)) 12 h before K(2)Cr(2)O(7) administration. The functional role of HO-1 in K(2)Cr(2)O(7) + SnCl(2)-treated animals was tested by inhibiting HO activity with an injection of zinc (II) protoporphyrin IX (ZnPP) 18 h before K(2)Cr(2)O(7). In K(2)Cr(2)O(7)-treated rats: (i) renal HO-1 content, measured by Western blot, increased 2.6-fold; and, (ii) renal nitrotyrosine and protein carbonyl content, markers of oxidative stress, increased 3.5- and 1.36-fold, respectively. Renal damage and oxidative stress were ameliorated and HO-1 content was increased in the K(2)Cr(2)O(7) + SnCl(2) group. The attenuation of renal injury and oxidative stress was lost by the inhibition of HO activity in K(2)Cr(2)O(7) + SnCl(2) + ZnPP-treated animals. Our data suggest that HO-1 overexpression induced by SnCl(2) is responsible for the attenuation of renal damage and oxidative stress induced by K(2)Cr(2)O(7).
Collapse
Affiliation(s)
- Diana Barrera
- Department of Biology, School of Chemistry, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 Mexico City, Mexico
| | | | | | | | | | | | | |
Collapse
|
46
|
Mazza F, Goodman A, Lombardo G, Vanella A, Abraham NG. Heme oxygenase-1 gene expression attenuates angiotensin II-mediated DNA damage in endothelial cells. Exp Biol Med (Maywood) 2003; 228:576-83. [PMID: 12709590 DOI: 10.1177/15353702-0322805-31] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Heme oxygenase (HO) catalyzes the conversion of heme to biliverdin with the release of iron and carbon monoxide. HO-1 is inducible by inflammatory conditions, which cause oxidative stress in endothelial cells. Overexpression of human HO-1 in endothelial cells may have the potential to provide protection against a variety of agents that cause oxidative stress. We investigated the physiological significance of human HO-1 overexpression using a retroviral vector on attenuation of angiotensin II (Ang II)-mediated oxidative stress. Comet and glutathione (GSH) levels were used as indicators of the levels of oxidative stress. Comet assay was performed to evaluate damage on DNA, whereas GSH levels were measured to determine the unbalance of redox potential. Pretreatments with inducers, such as heme 10 microM, SnCl(2) 10 microM, and inhibitors, such as tin-mesoporphyrin 10 microM was followed by treatment with Ang II 200 ng/ml. Pretreatment with heme or SnCl(2) provoked significant reductions (P < 0.01) of tail moment in the comet assay. Opposite effects were evident by pretreatment for 16 hr with tin-mesoporphyrin. A decrease in tail moment levels was found in human endothelial cells transduced with the human HO-1 gene. The addition of Ang II (200 ng/ml) to human dermal microvessel endothelial cell-1 for 16 hr resulted in a significant (P < 0.05) reduction of GSH contents control endothelial cells but not in endothelial cells transduced with HO-1 gene. The results presented indicated that stimulation or overexpression of HO-1 attenuated DNA damages caused by exposures of Ang II.
Collapse
Affiliation(s)
- Francesco Mazza
- Department of Medicine and Pharmacology, New York Medical College, Valhalla, New York 10595, USA
| | | | | | | | | |
Collapse
|