1
|
Wang P, Chen R, Huang Q. Does supply chain finance business model innovation improve capital allocation efficiency? Evidence from the cost of capital. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:16421-16446. [PMID: 37920019 DOI: 10.3934/mbe.2023733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Based on the sample of China's A-share listed companies from 2008 to 2021 and the text analysis data of supply chain finance, this study examines whether the supply chain finance business model innovation can improve the efficiency of capital allocation. Results showed that: 1) Firms with a supply chain finance business model have a low cost of capital, particularly the cost of equity capital; 2) The supply chain finance business model reduces the cost of capital in firms with low strategic commitment and a high degree of information asymmetry; 3) The supply chain finance business model innovation can reduce the cost of capital when the degree of competition in the external product market is low and the internal enterprise scale is large. The above findings can greatly inform the optimization of equity finance market supply, the promotion of innovation, and the provision of investment and financing and business decisions that are consistent with sustainable development goals.
Collapse
Affiliation(s)
- Ping Wang
- Department of Accounting, Capital University of Economics and Business, Beijing 100071, China
| | - Rui Chen
- Department of Accounting, Capital University of Economics and Business, Beijing 100071, China
| | - Qiqing Huang
- Department of Accounting, Capital University of Economics and Business, Beijing 100071, China
| |
Collapse
|
2
|
Schreuder WH, van der Wal JE, de Lange J, van den Berg H. Multiple versus solitary giant cell lesions of the jaw: Similar or distinct entities? Bone 2021; 149:115935. [PMID: 33771761 DOI: 10.1016/j.bone.2021.115935] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 02/27/2021] [Accepted: 03/17/2021] [Indexed: 02/06/2023]
Abstract
The majority of giant cell lesions of the jaw present as a solitary focus of disease in bones of the maxillofacial skeleton. Less frequently they occur as multifocal lesions. This raises the clinical dilemma if these should be considered distinct entities and therefore each need a specific therapeutic approach. Solitary giant cell lesions of the jaw present with a great diversity of symptoms. Recent molecular analysis revealed that these are associated with somatic gain-of-function mutations in KRAS, FGFR1 or TRPV4 in a large component of the mononuclear stromal cells which all act on the RAS/MAPK pathway. For multifocal lesions, a small group of neoplastic multifocal giant cell lesions of the jaw remain after ruling out hyperparathyroidism. Strikingly, most of these patients are diagnosed with jaw lesions before the age of 20 years, thus before the completion of dental and jaw development. These multifocal lesions are often accompanied by a diagnosis or strong clinical suspicion of a syndrome. Many of the frequently reported syndromes belong to the so-called RASopathies, with germline or mosaic mutations leading to downstream upregulation of the RAS/MAPK pathway. The other frequently reported syndrome is cherubism, with gain-of-function mutations in the SH3BP2 gene leading through assumed and unknown signaling to an autoinflammatory bone disorder with hyperactive osteoclasts and defective osteoblastogenesis. Based on this extensive literature review, a RAS/MAPK pathway activation is hypothesized in all giant cell lesions of the jaw. The different interaction between and contribution of deregulated signaling in individual cell lineages and crosstalk with other pathways among the different germline- and non-germline-based alterations causing giant cell lesions of the jaw can be explanatory for the characteristic clinical features. As such, this might also aid in the understanding of the age-dependent symptomatology of syndrome associated giant cell lesions of the jaw; hopefully guiding ideal timing when installing treatment strategies in the future.
Collapse
Affiliation(s)
- Willem H Schreuder
- Department of Oral and Maxillofacial Surgery, Amsterdam UMC and Academic Center for Dentistry Amsterdam, University of Amsterdam, Amsterdam, the Netherlands; Department of Head and Neck Surgery and Oncology, Antoni van Leeuwenhoek / Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - Jacqueline E van der Wal
- Department of Pathology, Antoni van Leeuwenhoek / Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Jan de Lange
- Department of Oral and Maxillofacial Surgery, Amsterdam UMC and Academic Center for Dentistry Amsterdam, University of Amsterdam, Amsterdam, the Netherlands
| | - Henk van den Berg
- Department of Pediatrics / Oncology, Amsterdam UMC, University of Amsterdam, Emma Children's Hospital, Amsterdam, the Netherlands
| |
Collapse
|
3
|
Lee HR, Lee J, Kim HJ. Differential effects of MEK inhibitors on rat neural stem cell differentiation: Repressive roles of MEK2 in neurogenesis and induction of astrocytogenesis by PD98059. Pharmacol Res 2019; 149:104466. [PMID: 31562895 DOI: 10.1016/j.phrs.2019.104466] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/19/2019] [Accepted: 09/24/2019] [Indexed: 01/14/2023]
Abstract
Neural stem cells (NSCs) proliferate and differentiate into neurons and glia depending on the culture environment. However, the underlying mechanisms determining the fate of NSCs are not fully understood. Growth factors facilitate NSC proliferation through mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) kinase (MEK) and MAPK activation, and NSCs differentiate into neurons, astrocytes, or oligodendrocytes when mitogens are withdrawn from the culture media. Here, we aimed to identify the effects and roles of MEK signaling on the determination of NSC fate. MEK inhibitors, U0126, SL327, and PD98059, had differential effects on NSC differentiation. U0126 and SL327, which are known to inhibit MEK1 and MEK2, induced neuronal differentiation, whereas PD98059, which is reported to preferentially inhibit MEK1 at higher concentrations, increased astrocytogenesis. Knockdown of MEK2 using small interfering RNA increased neurogenesis and over-expression of wild type (WT) MEK2 inhibited neurogenesis, suggesting a repressive role of MEK2 in neuronal differentiation. The chemical structure of PD98059 appears to be important for induction of astrocytogenesis because not only PD98059 (2'-amino-3'-methoxyflavone) but also its chemical structural mimetic, 3'-methoxyflavone, enhanced astrocytogenesis. Therefore, in our study, we suggest that MEK inhibitors have distinct functions in determining NSC fate. Inhibition of MEK2 is important for induction of neurogenesis in NSCs. U0126 and SL327 increase neurogenesis through MEK2 inhibition, whereas PD98059 induced astrocytogenesis in NSCs, which is mediated by the chemical structure, particularly the 3'-methoxy group rather than its renowned MEK1 inhibition.
Collapse
Affiliation(s)
- Ha-Rim Lee
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Jeewoo Lee
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Hyun-Jung Kim
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Powers JF, Cochran B, Baleja JD, Sikes HD, Zhang X, Lomakin I, Langford T, Stein KT, Tischler AS. A unique model for SDH-deficient GIST: an endocrine-related cancer. Endocr Relat Cancer 2018; 25:943-954. [PMID: 29967109 PMCID: PMC6097913 DOI: 10.1530/erc-18-0115] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 07/02/2018] [Indexed: 12/13/2022]
Abstract
We describe a unique patient-derived xenograft (PDX) and cell culture model of succinate dehydrogenase-deficient gastrointestinal stromal tumor (SDH-deficient GIST), a rare mesenchymal tumor that can occur in association with paragangliomas in hereditary and non-hereditary syndromes. This model is potentially important for what it might reveal specifically pertinent to this rare tumor type and, more broadly, to other types of SDH-deficient tumors. The primary tumor and xenografts show a very high proliferative fraction, and distinctive morphology characterized by tiny cells with marked autophagic activity. It is likely that these characteristics resulted from the combination of the germline SDHB mutation and a somatic KRAS G12D mutation. The most broadly relevant findings to date concern oxygen and oxidative stress. In paragangliomas harboring SDHx mutations, both hypoxic signaling and oxidative stress are putative drivers of tumor growth. However, there are no models for SDH-deficient paragangliomas. This related model is the first from a SDHB-mutated human tumor that can be experimentally manipulated to study mechanisms of oxygen effects and novel treatment strategies. Our data suggest that tumor growth and survival require a balance between protective effects of hypoxic signaling vs deleterious effects of oxidative stress. While reduced oxygen concentration promotes tumor cell survival, a further survival benefit is achieved with antioxidants. This suggests potential use of drugs that increase oxidative stress as novel therapies. In addition, autophagy, which has not been reported as a major finding in any type of SDH-deficient tumor, is a potential target of agents that might trigger autophagic cell death.
Collapse
Affiliation(s)
- James F Powers
- Department of Pathology and Laboratory Medicine, Tufts Medical Center, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Brent Cochran
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - James D Baleja
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Hadley D Sikes
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Xue Zhang
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Inna Lomakin
- Department of Pathology and Laboratory Medicine, Tufts Medical Center, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Troy Langford
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Kassi Taylor Stein
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Arthur S Tischler
- Department of Pathology and Laboratory Medicine, Tufts Medical Center, Tufts University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Diep CH, Ahrendt H, Lange CA. Progesterone induces progesterone receptor gene (PGR) expression via rapid activation of protein kinase pathways required for cooperative estrogen receptor alpha (ER) and progesterone receptor (PR) genomic action at ER/PR target genes. Steroids 2016; 114:48-58. [PMID: 27641443 PMCID: PMC5068826 DOI: 10.1016/j.steroids.2016.09.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 08/30/2016] [Accepted: 09/02/2016] [Indexed: 12/12/2022]
Abstract
Progesterone Receptors (PRs) are critical effectors of estrogen receptor (ER) signaling required for mammary gland development and reproductive proficiency. In breast and reproductive tract malignancies, PR expression is a clinical prognostic marker of ER action. While estrogens primarily regulate PR expression, other factors likely contribute to a dynamic range of receptor expression across diverse tissues. In this study, we identified estrogen-independent but progestin (R5020)-dependent regulation of ER target genes including PGR in ER+/PR+ cancer cell lines. R5020 (10nM-10μM range) induced dose-dependent PR mRNA and protein expression in the absence of estrogen but required both PR and ERα. Antagonists of either PR (RU486, onapristone) or ERα (ICI 182,780) attenuated R5020 induction of TFF1, CTSD, and PGR. Chromatin immunoprecipitation (ChIP) assays performed on ER+/PR+ cells demonstrated that both ERα and PR were recruited to the same ERE/Sp1 site-containing region of the PGR proximal promoter in response to high dose progestin (10μM). Recruitment of ERα and PR to chromatin and subsequent PR mRNA induction were dependent upon rapid activation of MAPK/ERK and AKT; inhibition of these kinase pathways via U0126 or LY294002 blocked these events. Overall, we have identified a novel mechanism of ERα activation initiated by rapid PR-dependent kinase pathway activation and associated with phosphorylation of ERα Ser118 for estrogen-independent but progestin-dependent ER/PR cross talk. These studies may provide insight into mechanisms of persistent ER-target gene expression during periods of hormone (i.e. estrogen) ablation and suggest caution following prolonged treatment with aromatase or CYP17 inhibitors (i.e. contexts when progesterone levels may be abnormally elevated).
Collapse
Affiliation(s)
- Caroline H Diep
- Department of Medicine (Division of Hematology, Oncology, and Transplantation), University of Minnesota, Minneapolis, MN 55455, United States.
| | - Hannah Ahrendt
- Department of Medicine (Division of Hematology, Oncology, and Transplantation), University of Minnesota, Minneapolis, MN 55455, United States.
| | - Carol A Lange
- Department of Medicine (Division of Hematology, Oncology, and Transplantation), University of Minnesota, Minneapolis, MN 55455, United States; Department of Pharmacology, and Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, United States.
| |
Collapse
|
6
|
Xu L, Liu Y, Hou Y, Wang K, Wong Y, Lin S, Li G. U0126 promotes osteogenesis of rat bone-marrow-derived mesenchymal stem cells by activating BMP/Smad signaling pathway. Cell Tissue Res 2015; 359:537-545. [PMID: 25363751 DOI: 10.1007/s00441-014-2025-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 10/08/2014] [Indexed: 12/26/2022]
Abstract
U0126 has been reported as a specific inhibitor of the ERK1/2 signaling pathway, which plays a vital role during the osteogenic differentiation of mesenchymal stem cells (MSCs). We report the positive effect of U0126 on the osteogenesis of rat MSCs. We find that U0126 promotes the osteogenic differentiation of rat MSCs as demonstrated by the quantitative real-time polymerase chain reaction for osteogenic markers, alkaline phosphatase activity and calcium nodule formation. Our data indicate that U0126 enhances the BMP/Smad signaling pathway in rat MSCs, while inhibiting the ERK1/2 signaling pathway. Furthermore, Western blot results demonstrate that U0126 increases Smad1/5/8 phosphorylation synergistically with β-glycerophosphate. In addition, U0126 significantly increases the expression of BMP2 during the process of osteogenesis in rat MSCs and the level of phosphorylated Smad1/5/8 is significantly reduced by BMP2 antibody, suggesting that U0126 also promotes the expression of BMP2 to enhance Smad proteins phosphorylation. Thus, we demonstrate a novel function for U0126 in promoting osteogenic differentiation of rat MSCs by the activation of the BMP/Smad signaling pathway.
Collapse
Affiliation(s)
- Liangliang Xu
- Department of Orthopaedics & Traumatology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Yang Liu
- Department of Orthopaedics & Traumatology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Yonghui Hou
- School of Biomedical Sciences, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Kuixing Wang
- Department of Orthopaedics & Traumatology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Yinmei Wong
- Department of Orthopaedics & Traumatology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Sien Lin
- Department of Orthopaedics & Traumatology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Gang Li
- Department of Orthopaedics & Traumatology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, People's Republic of China.
- MOE Key Laboratory of Regenerative Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, People's Republic of China.
- The CUHK-ACC Space Medicine Centre on Health Maintenance of Musculoskeletal System, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, People's Republic of China.
- Li Ka Shing Institute of Health Institute, Prince of Wales Hospital, The Chinese University of Hong Kong, Room 904, 9/F, Shatin, Hong Kong, SAR, People's Republic of China.
| |
Collapse
|
7
|
Su YF, Yang SH, Lee YH, Wu BC, Huang SC, Liu CM, Chen SL, Pan YF, Chou S, Chou MY, Yang HW. Aspirin-induced inhibition of adipogenesis was p53-dependent and associated with inactivation of pentose phosphate pathway. Eur J Pharmacol 2014; 738:101-10. [DOI: 10.1016/j.ejphar.2014.03.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 03/04/2014] [Accepted: 03/10/2014] [Indexed: 12/22/2022]
|
8
|
Huang CT, Huang DY, Hu CJ, Wu D, Lin WW. Energy adaptive response during parthanatos is enhanced by PD98059 and involves mitochondrial function but not autophagy induction. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:531-43. [PMID: 24321770 DOI: 10.1016/j.bbamcr.2013.12.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 11/27/2013] [Accepted: 12/02/2013] [Indexed: 02/08/2023]
Abstract
Parthanatos is a programmed necrotic demise characteristic of ATP (adenosine triphosphate) consumption due to NAD+ (nicotinamide adenine dinucleotide) depletion by poly(ADP-ribose) polymerase 1 (PARP1)-dependent poly(ADP-ribosyl)ation on target proteins. However, how the bioenergetics is adaptively regulated during parthanatos, especially under the condition of macroautophagy deficiency, remains poorly characterized. Here, we demonstrated that the parthanatic inducer N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) triggered ATP depletion followed by recovery in mouse embryonic fibroblasts (MEFs). Notably, Atg5-/- MEFs showed great susceptibility to MNNG with disabled ATP-producing capacity. Moreover, the differential energy-adaptive responses in wild-type (WT) and Atg5-/- MEFs were unequivocally worsened by inhibition ofAMP-activated protein kinase (AMPK), sirtuin 1 (SIRT1), and mitochondrial activity. Importantly, Atg5-/- MEFs disclosed diminished SIRT1 and mitochondrial activity essential to the energy restoration during parthanatos. Strikingly, however, parthanatos cannot be exasperated by bafilomycin A1 and MNNG neither provokes microtubule-associated protein 1A/1B-light chain 3 (LC3) lipidation and p62 elimination, suggesting that parthanatos does not induce autophagic flux. Intriguingly, we reported unexpectedly that PD98059, even at low concentration insufficient to inhibit MEK, can promote mitochondrial activity and facilitate energy-restoring process during parthanatos, without modulating DNA damage responses as evidenced by PARP1 activity, p53 expression, and gammaH2AX (H2A histone family, member X (H2AX), phosphorylated on Serine 139) induction. Therefore, we propose that Atg5 deficiency confers an infirmity to overcome the energy crisis during parthanatos and further underscore the deficits in mitochondrial quality control, but not incapability of autophagy induction, that explain the vulnerability in Atg5-deficient cells. Collectively, our results provide a comprehensive energy perspective for an improved treatment to alleviate parthanatos-related tissue necrosis and disease progression and also provide a future direction for drug development on the basis of PD98059 as an efficacious compound against parthanatos.
Collapse
|
9
|
Huang J, Ye X, You Y, Liu W, Gao Y, Yang S, Peng J, Hong Z, Tao J, Chen L. Electroacupuncture promotes neural cell proliferation in vivo through activation of the ERK1/2 signaling pathway. Int J Mol Med 2014; 33:1547-53. [PMID: 24638971 DOI: 10.3892/ijmm.2014.1702] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 03/10/2014] [Indexed: 11/05/2022] Open
Abstract
The aim of this study was to investigate the effect of electroacupuncture (EA) on cell proliferation and its molecular mechanisms. Sixty rats were randomly divided into 5 groups: sham operation control (SC), ischemia control (IC), EA, EA and DMSO injection (ED), EA and U0126 injection (EU). All the groups, with the exception of SC, underwent middle cerebral artery occlusion (MCAO), and DMSO or U0126 was injected into the rat in the ED or EU group 30 min prior to MCAO. Cell proliferation was evaluated by proliferating cell nuclear antigen (PCNA) immunostaining. The changes of cell cycle proteins (cyclin D1, CDK4, cyclin E, CDK2, p21 and p27) and the ERK1/2 pathway activation were examined by RT-PCR and western blot analysis. The results showed that the positive cell numbers of PCNA immunostaining in the EA and ED groups were more than those in the IC group (P<0.05). The mRNA and protein levels of p21 or p27 were obviously increased, however, the mRNA and protein levels of cyclin D1, CDK4, cyclin E and CDK2 were reduced in the IC and EU groups. The findings suggested that EA activates the ERK1/2 signaling pathway to protect brain injury during cerebral ischemia. However, this positive effect of EA can be blocked by U0126.
Collapse
Affiliation(s)
- Jia Huang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Xiaoqian Ye
- MOE Key Laboratory of Traditional Chinese Medicine on Osteology and Traumatology and Exercise Rehabilitation, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Yongmei You
- Fujian Key Laboratory of Exercise Rehabilitation, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Weilin Liu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Yanling Gao
- MOE Key Laboratory of Traditional Chinese Medicine on Osteology and Traumatology and Exercise Rehabilitation, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Shanli Yang
- Fujian Key Laboratory of Exercise Rehabilitation, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Jun Peng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Zhenfeng Hong
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Jing Tao
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Lidian Chen
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| |
Collapse
|
10
|
Harrison SMW, Knifley T, Chen M, O'Connor KL. LPA, HGF, and EGF utilize distinct combinations of signaling pathways to promote migration and invasion of MDA-MB-231 breast carcinoma cells. BMC Cancer 2013; 13:501. [PMID: 24160245 PMCID: PMC3819718 DOI: 10.1186/1471-2407-13-501] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 10/19/2013] [Indexed: 11/23/2022] Open
Abstract
Background Various pathways impinge on the actin-myosin pathway to facilitate cell migration and invasion including members of the Rho family of small GTPases and MAPK. However, the signaling components that are considered important for these processes vary substantially within the literature with certain pathways being favored. These distinctions in signaling pathways utilized are often attributed to differences in cell type or physiological conditions; however, these attributes have not been systematically assessed. Methods To address this question, we analyzed the migration and invasion of MDA-MB-231 breast carcinoma cell line in response to various stimuli including lysophosphatidic acid (LPA), hepatocyte growth factor (HGF) and epidermal growth factor (EGF) and determined the involvement of select signaling pathways that impact myosin light chain phosphorylation. Results LPA, a potent stimulator of the Rho-ROCK pathway, surprisingly did not require the Rho-ROCK pathway to stimulate migration but instead utilized Rac and MAPK. In contrast, LPA-stimulated invasion required Rho, Rac, and MAPK. Of these three major pathways, EGF-stimulated MDA-MB-231 migration and invasion required Rho; however, Rac was essential only for invasion and MAPK was dispensable for migration. HGF signaling, interestingly, utilized the same pathways for migration and invasion, requiring Rho but not Rac signaling. Notably, the dependency of HGF-stimulated migration and invasion as well as EGF-stimulated invasion on MAPK was subject to the inhibitors used. As expected, myosin light chain kinase (MLCK), a convergence point for MAPK and Rho family GTPase signaling, was required for all six conditions. Conclusions These observations suggest that, while multiple signaling pathways contribute to cancer cell motility, not all pathways operate under all conditions. Thus, our study highlights the plasticity of cancer cells to adapt to multiple migratory cues.
Collapse
Affiliation(s)
| | | | | | - Kathleen L O'Connor
- Markey Cancer Center, University of Kentucky, 741 S, Limestone Street, Lexington 40506-0509, USA.
| |
Collapse
|
11
|
Lee HA, Park S, Kim Y. Effect of β-carotene on cancer cell stemness and differentiation in SK-N-BE(2)C neuroblastoma cells. Oncol Rep 2013; 30:1869-77. [PMID: 23900747 DOI: 10.3892/or.2013.2643] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 07/01/2013] [Indexed: 11/06/2022] Open
Abstract
Neuroblastoma is a solid tumor often diagnosed in childhood. While there have been intense efforts to develop a treatment for neuroblastoma, current therapies remain unsuccessful due to high rate of resistance and metastasis. Most cancers originate from a subset of self-renewing cells, primarily cancer stem cells (CSCs), which establish a tumor through continuous self-renewal and differentiation. The successful elimination of CSCs is an important goal in the development of effective strategies to achieve complete remission for cancers. Although β-carotene has been associated with several anticancer mechanisms, the efficacy of β-carotene against CSCs remains unclear. In the present study, β-carotene was shown to reduce cell growth and induce neuronal cell differentiation, concomitant with a marked increase in the phosphorylation of extracellular signal-regulated kinases (ERK) (p42/p44). More importantly, β-carotene inhibited self-renewal characteristics of CSCs and decreased expression of several stem cell markers. Levels of mRNA and protein of Drosophila delta-like 1 homolog (Drosophila) (DLK1) were downregulated following treatment with β-carotene. In addition, knockdown of DLK1 by siRNA enhanced the inhibitory effect of β-carotene on colony formation of neuroblastoma cells. β-carotene also potentiated the effect of cisplatin on the self-renewal characteristics of CSCs in neuroblastoma, revealing that β-carotene has the capacity to resensitize cells to cisplatin cytotoxicity by directly targeting CSCs. In conclusion, β-carotene was shown to strongly increase the anticancer efficacy against neuroblastoma cancer stem-like cells. Moreover, these results suggest that the targeting of CSCs is a novel mechanism of β-carotene. Thus, β-carotene is a potential chemotherapeutic reagent for this cancer.
Collapse
Affiliation(s)
- Hyun Ah Lee
- Department of Nutritional Science and Food Management, Ewha Womans University, Seodaemun-gu, Seoul 120-750, Republic of Korea
| | | | | |
Collapse
|
12
|
Than A, Leow MKS, Chen P. Control of adipogenesis by the autocrine interplays between angiotensin 1-7/Mas receptor and angiotensin II/AT1 receptor signaling pathways. J Biol Chem 2013; 288:15520-31. [PMID: 23592774 DOI: 10.1074/jbc.m113.459792] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Angiotensin II (AngII), a peptide hormone released by adipocytes, can be catabolized by adipose angiotensin-converting enzyme 2 (ACE2) to form Ang(1-7). Co-expression of AngII receptors (AT1 and AT2) and Ang(1-7) receptors (Mas) in adipocytes implies the autocrine regulation of the local angiotensin system upon adipocyte functions, through yet unknown interactive mechanisms. In the present study, we reveal the adipogenic effects of Ang(1-7) through activation of Mas receptor and its subtle interplays with the antiadipogenic AngII-AT1 signaling pathways. Specifically, in human and 3T3-L1 preadipocytes, Ang(1-7)-Mas signaling promotes adipogenesis via activation of PI3K/Akt and inhibition of MAPK kinase/ERK pathways, and Ang(1-7)-Mas antagonizes the antiadipogenic effect of AngII-AT1 by inhibiting the AngII-AT1-triggered MAPK kinase/ERK pathway. The autocrine regulation of the AngII/AT1-ACE2-Ang(1-7)/Mas axis upon adipogenesis has also been revealed. This study suggests the importance of the local regulation of the delicately balanced angiotensin system upon adipogenesis and its potential as a novel therapeutic target for obesity and related metabolic disorders.
Collapse
Affiliation(s)
- Aung Than
- Division of Bioengineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457
| | | | | |
Collapse
|
13
|
Choi YJ, Lee JY, Lee SJ, Chung CP, Park YJ. Determination of osteogenic or adipogenic lineages in muscle-derived stem cells (MDSCs) by a collagen-binding peptide (CBP) derived from bone sialoprotein (BSP). Biochem Biophys Res Commun 2012; 419:326-32. [PMID: 22342728 DOI: 10.1016/j.bbrc.2012.02.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 02/03/2012] [Indexed: 11/15/2022]
Abstract
Bone sialoprotein (BSP) is a mineralized, tissue-specific, non-collagenous protein that is normally expressed only in mineralized tissues such as bone, dentin, cementum, and calcified cartilage, and at sites of new mineral formation. The binding of BSP to collagen is thought to be important for initiating bone mineralization and bone cell adhesion to the mineralized matrix. Several recent studies have isolated stem cells from muscle tissue, but their functional properties are still unclear. In this study, we examined the effects of a synthetic collagen-binding peptide (CBP) on the differentiation efficiency of muscle-derived stem cells (MDSCs). The CBP sequence (NGVFKYRPRYYLYKHAYFYPHLKRFPVQ) corresponds to residues 35-62 of bone sialoprotein (BSP), which are located within the collagen-binding domain in BSP. Interestingly, this synthetic CBP inhibited adipogenic differentiation but increased osteogenic differentiation in MDSCs. The CBP also induced expression of osteoblastic marker proteins, including alkaline phosphatase (ALP), type I collagen, Runt-related transcription factor 2 (Runx2), and osteocalcin; prevented adipogenic differentiation in MDSCs; and down-regulated adipose-specific mRNAs, such as adipocyte protein 2 (aP2) and peroxisome proliferator-activated receptor γ. The CBP increased Extracellular signal-regulated kinases (ERK) 1/2 protein phosphorylation, which is important in lineage determination. These observations suggest that this CBP determines the osteogenic or adipogenic lineage in MDSCs by activating ERK1/2. Taken together, a novel CBP could be a useful candidate for regenerating bone and treating osteoporosis, which result from an imbalance in osteogenesis and adipogenesis differentiation.
Collapse
Affiliation(s)
- Yoon Jung Choi
- Dental Regenerative Biotechnology Major, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 110-749, Republic of Korea
| | | | | | | | | |
Collapse
|
14
|
Alpha-adrenergic blocker mediated osteoblastic stem cell differentiation. Biochem Biophys Res Commun 2011; 416:232-8. [DOI: 10.1016/j.bbrc.2011.09.095] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Accepted: 09/20/2011] [Indexed: 11/30/2022]
|
15
|
Regucalcin and cell regulation: role as a suppressor protein in signal transduction. Mol Cell Biochem 2011; 353:101-37. [DOI: 10.1007/s11010-011-0779-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Accepted: 03/07/2011] [Indexed: 12/23/2022]
|
16
|
Comparison of chemical-induced transcriptional activation of fish and human estrogen receptors: Regulatory implications. Toxicol Lett 2011; 201:152-75. [DOI: 10.1016/j.toxlet.2010.12.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 12/18/2010] [Accepted: 12/20/2010] [Indexed: 11/22/2022]
|
17
|
Cotrim CZ, Amado FL, Helguero LA. Estrogenic effect of the MEK1 inhibitor PD98059 on endogenous estrogen receptor alpha and beta. J Steroid Biochem Mol Biol 2011; 124:25-30. [PMID: 21236341 DOI: 10.1016/j.jsbmb.2010.12.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 12/29/2010] [Accepted: 12/31/2010] [Indexed: 02/07/2023]
Abstract
Estrogens are key regulators in mammary development and breast cancer and their effects are mediated by estrogen receptors alpha (ERα) and beta (ERβ). These two receptors are ligand activated transcription factors that bind to regulatory regions in the DNA known as estrogen responsive elements (EREs). ERα and ERβ activation is subject to modulation by phosphorylation and p42/p44 MAP kinases are the best characterized ER modifying kinases. Using a reporter gene (3X-ERE-TATA-luciferase) to measure activation of endogenous ERs, we found that MEK1 inhibitor PD98059, used in concentrations insufficient to inhibit MEK1 activation of p42/p44 MAP kinases, exerted estrogenic effects on the reporter gene and on the ERE-regulated RIP 140 protein. Such estrogenic effects were observed in mammary epithelial HC11 cells and occur on unliganded ERα and ligand activated ERβ. Additionally, concentrations of PD98059 able to inhibit p42/p44 phosphorylation were not estrogenic. Further, inhibition of p42 MAP kinase expression with siRNAs also resulted in loss of PD98059 estrogenic effect. In summary, PD98059 in concentrations below the inhibitory for MEK1, exerts estrogenic effects in HC11 mammary epithelial cells.
Collapse
Affiliation(s)
- Cândida Z Cotrim
- Department of Organic Chemistry and Natural Products-QOPNA, Universidade de Aveiro, Aveiro, Portugal
| | | | | |
Collapse
|
18
|
Lin FH, Chang JB, Brigman BE. Role of mitogen-activated protein kinase in osteoblast differentiation. J Orthop Res 2011; 29:204-10. [PMID: 20806320 DOI: 10.1002/jor.21222] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2010] [Accepted: 06/18/2010] [Indexed: 02/04/2023]
Abstract
Local control of osteoblast differentiation and bone formation is not well understood. We have previously seen biphasic effects on cell differentiation in response to the short- and long-term exposure to IL-1β in rat calvarial osteoblasts. To characterize the signaling pathway mechanisms regulating IL-1β biphasic effects, we examined the contribution of mitogen-activated protein kinase (MAPK) family. Cells were pretreated with specific inhibitors to extracellular signal-regulated kinase (ERK, PD98059), p38 (SB203580), and c-JUN N-terminal kinase (JNK, SP600125), then co-cultured with IL-1β for 2, 4, and 6 days. Cell differentiation was determined by measuring bone nodules after 10 days of culture. These inhibitors did not alter biphasic effects of IL-1β on cell differentiation. However, PD98059 and U2016, another inhibitor of ERK activation robustly increased osteoblast differentiation compared to vehicle-treated control in a time- and dose-dependent manner. PD98059 appears to stimulate alkaline phosphatase (ALP) activity to promote cell differentiation, where IL-1β appears to suppress it. Interestingly, continuous ERK inhibition with PD98059, after 2 and 4 days of IL-1β treatment, enhanced the IL-1β anabolic effect by increasing bone nodules formed. These observations provide a potential mechanism involving ERK pathway in osteoblasts differentiation and suggest that MAPK family may not directly regulate IL-1β biphasic effects.
Collapse
Affiliation(s)
- Fu-Hsiung Lin
- Division of Orthopaedic Surgery, Department of Surgery, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
19
|
Somjen D, Katzburg S, Kohen F, Gayer B, Posner GH, Yoles I, Livne E. The effects of native and synthetic estrogenic compounds as well as vitamin D less-calcemic analogs on adipocytes content in rat bone marrow. J Endocrinol Invest 2011; 34:106-10. [PMID: 20543554 DOI: 10.1007/bf03347039] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND We demonstrated previously that phytoestrogens and vitamin D analogs like estradiol-17β (E2) modulate bone morphology in rat female model. AIM We now analyze the effects of phytoestrogens, E2, selective E2 re ceptor modulators, and the less-calcemic analogs of vitamin D: JKF1624F2-2 (JKF) or QW1624F2-2 (QW) on fat content in bone marrow (BM) from long bones in ovariectomized female rats (OVX). MATERIALS AND METHODS OVX rats were injected with treatments known to affect bone formation, 5 days per week for 2.5 month for analysis of fat content in BM. RESULTS In OVX young adults there is a decreased bone formation and a 10-fold increase in fat cells content in BM. Treatment with E2, raloxifene (Ral) or DT56a resulted in almost completely abolishment of fat cells content. Daidzein (D) decreased fat cells content by 80%, genistein (G) or biochainin A (BA) did not change fat cells content and carboxy BA (cBA) had a small but significant effect. JKF or QW did not affect fat cells content, whereas combined treatment of JKF or QW with E2 resulted in complete abolishment of fat cells content. These changes in fat cells content are inversely correlated with changes in bone formation. CONCLUSIONS Our results demonstrate that adipogenesis induced by OVX is a reversible process which can be corrected by hormonal treatments. The awareness of a relationship between fat and bone at the marrow level might provide a better understanding of the pathophysiology of bone loss as well as a novel approach to diagnosis and treatment of postmenopausal osteoporosis.
Collapse
Affiliation(s)
- D Somjen
- Institute of Endocrinology, Metabolism and Hypertension, Tel-Aviv Sourasky Medical Centre, 6 Weizmann street, Tel-Aviv 64239, Israel.
| | | | | | | | | | | | | |
Collapse
|
20
|
Jung HS, Kim YH, Lee JW. Duration and magnitude of extracellular signal-regulated protein kinase phosphorylation determine adipogenesis or osteogenesis in human bone marrow-derived stem cells. Yonsei Med J 2011; 52:165-72. [PMID: 21155050 PMCID: PMC3017693 DOI: 10.3349/ymj.2011.52.1.165] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
PURPOSE Imbalances between osteogenic and adipogenic differentiation leads to diseases such as osteoporosis. The aim of our study was to demonstrate the differences in extracellular signal-regulated kinase (ERK) phosphorylation during both adipogenesis and osteogenesis of human bone marrow-derived stem cells (BMSCs). MATERIALS AND METHODS Using troglitazone, GW9662 and U0126, we investigated their role in hBMSC differentiation to adipogenic and osteogenic fates. RESULTS ERK1/2 inhibition by U0126 suppressed proliferator-activated receptor (PPAR)γ expression and lipid accumulation, while it decreased the mRNA expression of adipogenic genes (lipoprotein lipase, PPARγ, and adipocyte protein) and osteogenic genes (type I collagen and osteopontin). ERK phosphorylation was transient and decreased during adipogenesis, whereas it occurred steadily during osteogenesis. Troglitazone, a PPARγ agonist, induced adipogenesis by inhibiting ERK phosphorylation even in an osteogenic medium, suggesting that ERK signaling needs to be shut off in order to proceed with adipose cell commitment. Cell proliferation was greatly increased in osteogenesis but was not changed during adipogenesis, indicating that ERK might play different roles in cellular proliferation and differentiation between the two committed cell types. CONCLUSION The duration and magnitude of ERK activation might be a crucial factor for the balance between adipogenesis and osteogenesis in human bone marrow-derived stem cells.
Collapse
Affiliation(s)
- Ho Sun Jung
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul, Korea
| | - Yun Hee Kim
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul, Korea
| | - Jin Woo Lee
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
21
|
Kim Y. Effect of retinoic acid and delta-like 1 homologue (DLK1) on differentiation in neuroblastoma. Nutr Res Pract 2010; 4:276-82. [PMID: 20827342 PMCID: PMC2933444 DOI: 10.4162/nrp.2010.4.4.276] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Revised: 06/30/2010] [Accepted: 07/05/2010] [Indexed: 01/06/2023] Open
Abstract
The principal objective of this study was to evaluate the chemopreventive and therapeutic effects of a combination of all-trans-retinoic acid (RA) and knockdown of delta-like 1 homologue (Drosophila) (DLK1) on neuroblastoma, the most common malignant disease in children. As unfavorable neuroblastoma is poorly differentiated, neuroblastoma cell was induced differentiation by RA or DLK1 knockdown. Neuroblastoma cells showed elongated neurite growth, a hallmark of neuronal differentiation at various doses of RA, as well as by DLK1 knockdown. In order to determine whether or not a combination of RA and DLK1 knockdown exerts a greater chemotherapeutic effect on neuroblastoma, cells were incubated at 10 nM RA after being transfected with SiRNA-DLK1. Neuronal differentiation was increased more by a combination of RA and DLK1 knockdown than by single treatment. Additionally, in order to assess the signal pathway of neuroblastoma differentiation induced by RA and DLK1 knockdown, treatment with the specific MEK/ERK inhibitors, U0126 and PD 98059, was applied to differentiated neuroblastoma cells. Differentiation induced by RA and DLK1 knockdown increased ERK phosphorylation. The MEK/ERK inhibitor U0126 completely inhibited neuronal differentiation induced by both RA and DLK1 knockdown, whereas PD98059 partially blocked neuronal differentiation. After the withdrawal of inhibitors, cellular differentiation was fully recovered. This study is, to the best of our knowledge, the first to demonstrate that the specific inhibitors of the MEK/ERK pathway, U0126 and PD98059, exert differential effects on the ERK phosphorylation induced by RA or DLK1 knockdown. Based on the observations of this study, it can be concluded that a combination of RA and DLK1 knockdown increases neuronal differentiation for the control of the malignant growth of human neuroblastomas, and also that both MEK1 and MEK2 are required for the differentiation induced by RA and DLK1 knockdown.
Collapse
Affiliation(s)
- Yuri Kim
- Department of Nutritional Science and Food Management, Ewha Womans University, 11-1 Daehyun-dong, Seodaemun-gu, Seoul 120-750, Korea
| |
Collapse
|
22
|
Payne KA, Meszaros LB, Phillippi JA, Huard J. Effect of phosphatidyl inositol 3-kinase, extracellular signal-regulated kinases 1/2, and p38 mitogen-activated protein kinase inhibition on osteogenic differentiation of muscle-derived stem cells. Tissue Eng Part A 2010; 16:3647-55. [PMID: 20617875 DOI: 10.1089/ten.tea.2009.0738] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Skeletal muscle-derived stem cells (MDSCs) can undergo osteogenesis when treated with bone morphogenetic proteins (BMPs), making them a potential cell source for bone tissue engineering. The signaling pathways that regulate BMP4-induced osteogenesis in MDSCs are not well understood, although they may provide a means to better regulate differentiation during bone regeneration. The objective of this study was to characterize the signaling pathways involved in the BMP4-induced osteogenesis of MDSCs. Cells were treated with BMP4 and specific inhibitors to the extracellular signal-regulated kinases 1/2 (ERK1/2), p38 mitogen-activated protein kinase (MAPK), and phosphatidyl inositol 3-kinase (PI3K) pathways (PD98059, SB203580, and Ly294002, respectively). Cellular proliferation, expression of osteoblast-related genes, alkaline phosphatase (ALP) activity, and tissue mineralization were measured to determine the role of each pathway in the osteogenic differentiation of MDSCs. Inhibition of the ERK1/2 pathway increased ALP activity and mineralization, whereas inhibition of the p38 MAPK pathway decreased osteogenesis, suggesting opposing roles of these pathways in the BMP4-induced osteogenesis of MDSCs. Inhibition of the PI3K pathway significantly increased mineralization by MDSCs. These findings highlight the involvement of the ERK1/2, p38 MAPK, and PI3K pathways in opposing capacities in MDSC differentiation and warrant further investigation, as it may identify novel therapeutic targets for the development of stem cell-based therapies for bone tissue engineering.
Collapse
Affiliation(s)
- Karin A Payne
- Stem Cell Research Center, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania 15219, USA
| | | | | | | |
Collapse
|
23
|
Dang Z. Comparison of relative binding affinities to fish and mammalian estrogen receptors: the regulatory implications. Toxicol Lett 2009; 192:298-315. [PMID: 19913605 DOI: 10.1016/j.toxlet.2009.11.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Revised: 10/30/2009] [Accepted: 11/02/2009] [Indexed: 11/20/2022]
Abstract
Screening and testing of chemicals binding to estrogen receptors (ERs) emerge as an important issue in several regulatory programs or frameworks. Discrepancies exist, however, whether fish ERs should be included in the regulatory programs. In view of the differences in binding affinities to ERalpha and ERbeta and the significant contribution of ERbeta to biological effects of chemicals, it remains unknown whether both types of ERs are needed for the regulatory purposes. This study collected publications on binding affinities to both mammalian and fish ERs for 65 chemicals, covering a wide range of strong, moderate, weak and non-ER binders. Systematic evaluation of the data was performed in order to compare the difference in binding affinity of chemicals to fish and mammalian ERs and to subtypes of ERs. Except the reference estrogen 17beta-estradiol, all 64 chemicals have differential values of relative binding affinity (RBA), which result mostly from the inter-laboratory tests other than interspecies differences. It is concluded that ER binding in one vertebrate species or one subtype of ERs could be extrapolated to other species or subtypes of ERs for most of chemicals for the regulatory purpose. Fish ERs are likely more sensitive to some chemicals of weak binders than mammalian ERs, suggesting the importance of including fish ERs in the regulatory programs. Issues on data interpretation and testing strategy for the regulatory purpose have been discussed.
Collapse
Affiliation(s)
- ZhiChao Dang
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands.
| |
Collapse
|
24
|
Abstract
The potential role of genistein in the prevention and treatment of obesity has attracted much attention among public and medical communities. Conversely, increasing evidence indicates that genistein as an endocrine-disrupting substance is likely to play a role in the aetiology of obesity. This review focuses on the role of soy phyto-oestrogen genistein in adipocytes and the underlying mechanisms of action. Genistein dose-dependently inhibits and stimulates adipogenesis in vitro. Increasing evidence shows that genistein dose-dependently influences obesity in both male and female animals. Dose-dependent effects of genistein on adipocytes vary with factors such as age and gender of animals. In addition, the role of developmental exposure of genistein in adult obesity has been discussed. Genistein, different from oestrogen, concurrently activates nuclear receptors, oestrogen receptors and peroxisome proliferator-activated receptors, and it inhibits various enzyme activities. The balance among these pleiotrophic effects of genistein determines its dose-dependent effects on adipocyte differentiation and function. Current data suggest that genistein could regulate adiposity. However, it remains uncertain whether genistein plays a beneficial role in the prevention and treatment of obesity. Additional evidence is required before firm conclusions showing that genistein decreases adiposity.
Collapse
Affiliation(s)
- Z C Dang
- National Institute for Public Health and the Environment, Bilthoven, The Netherlands.
| |
Collapse
|
25
|
Roberts LE, Fini MA, Derkash N, Wright RM. PD98059 enhanced insulin, cytokine, and growth factor activation of xanthine oxidoreductase in epithelial cells involves STAT3 and the glucocorticoid receptor. J Cell Biochem 2008; 101:1567-87. [PMID: 17370312 DOI: 10.1002/jcb.21272] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
PD98059 and U0126 are organic compound inhibitors frequently used to block the activity of the MEK-1/2 protein kinase. In the present work, promoter activation analyses of xanthine oxidoreductase (XOR) in epithelial cells uncovered the unexpected opposite effect of these inhibitors on activation of XOR. Activation of an XOR-luciferase fusion gene was studied in stably transfected epithelial cells. The XOR reporter gene was activated by the epidermal growth factors (EGF), prolactin, and dexamethasone and by the acute phase cytokines (APC) IL-1, IL-6, and TNFalpha as previously reported for its native gene, and insulin further stimulated activation induced with acute phase cytokines or growth factors. Activation of the proximal promoter was blocked by inhibitors of the glucocorticoid receptor (GR), p38 MAP kinase, and U0126. Unexpectedly, PD98059 activated the promoter and significantly enhanced expression induced by insulin, APC, or growth factors. Analysis of the XOR upstream DNA and proximal promoter revealed primary roles for the GR and STAT3 in mediating the effects of PD98059 on XOR activation and protein complex formation with the promoter. STAT3 phosphotyrosine-705 was rapidly induced by PD98059, dexamethasone, and insulin. XOR activation by PD98059, dexamethasone, or insulin was superinduced by a constitutively active derivative of STAT3, while a dominant negative derivative of STAT3 blocked the enhancing effect of PD98059 on XOR activation. These data demonstrate a previously unrecognized effect of PD98059 on STAT3 and the GR that could have unanticipated consequences when used to infer the involvement of the MEK-1/2 protein kinase.
Collapse
|
26
|
Dai Z, Li Y, Quarles LD, Song T, Pan W, Zhou H, Xiao Z. Resveratrol enhances proliferation and osteoblastic differentiation in human mesenchymal stem cells via ER-dependent ERK1/2 activation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2007; 14:806-14. [PMID: 17689939 DOI: 10.1016/j.phymed.2007.04.003] [Citation(s) in RCA: 178] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
In the present study, we investigated the in vitro effect of resveratrol (RSVL), a polyphenolic phytoestrogen, on cell proliferation and osteoblastic maturation in human bone marrow-derived mesenchymal stem cell (HBMSC) cultures. RSVL (10(-8)-10(-5) M) increased cell growth dose-dependently, as measured by [(3)H]-thymidine incorporation, and stimulated osteoblastic maturation as assessed by alkaline phosphatase (ALP) activity, calcium deposition into the extracellular matrix, and the expression of osteoblastic markers such as RUNX2/CBFA1, Osterix and Osteocalcin in HBMSCs cell cultures. Further studies found that RSVL (10(-6)M) resulted in a rapid activation of both extracellular signal-regulated kinase 1/2 (ERK1/2) and p38 mitogen-activated protein kinase (MAPK) signaling in HBMSCs cultures. The effects of RSVL were mimicked by 17beta-estrodial (10(-8) M) and were abolished by estrogen receptor (ER) antagonist ICI182780. An ERK1/2 pathway inhibitor, PD98059, significantly attenuated RSVL-induced ERK1/2 phosphorylation, consistent with the reduction of cell proliferation and osteoblastic differentiation as well as expression of osteoblastic markers. In contrast, SB203580, a p38 MAPK pathway blocker, blocked RSVL-induced p38 phosphorylation, but resulted in an increase of cell proliferation and a more osteoblastic maturation. These data suggest that RSVL stimulates HBMSCs proliferation and osteoblastic differentiation through an ER-dependent mechanism and coupling to ERK1/2 activation.
Collapse
Affiliation(s)
- Z Dai
- Institute of Clinical Pharmacology, Central South University, Changsha 410078, China
| | | | | | | | | | | | | |
Collapse
|
27
|
Nueda ML, Baladrón V, Sánchez-Solana B, Ballesteros MA, Laborda J. The EGF-like Protein dlk1 Inhibits Notch Signaling and Potentiates Adipogenesis of Mesenchymal Cells. J Mol Biol 2007; 367:1281-93. [PMID: 17320900 DOI: 10.1016/j.jmb.2006.10.043] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2006] [Accepted: 10/10/2006] [Indexed: 10/24/2022]
Abstract
The EGF-like homeotic gene Dlk1 appears to function as an inhibitor of adipogenesis. Overexpression of Dlk1 prevents adipogenesis of 3T3-L1 cells. Dlk1-deficient mice are obese; however, adipose tissue still develops in Fc-dlk1 transgenic mice, suggesting that Dlk1 is not a strict inhibitor of adipogenesis. To clarify the role of Dlk1 in adipogenesis, we studied whether Dlk1 could act differently on this process depending upon the differentiation state of the precursor cells. We found that Dlk1 is a potentiator of adipogenesis for mesenchymal C3H10T1/2 cells. This potentiating effect can be triggered by overexpressing the entire protein or the extracellular EGF-like-containing region, but not by overexpressing the intracellular dlk1 sequence. In addition, coculture of C3H10T1/2 cells with other cells expressing Dlk1, but not with cells lacking Dlk1 expression, enhances their adipogenic response. Potentiation of adipogenesis by Dlk1 was associated with changes in the activation of ERK1/2 after IGFI/insulin induction. Finally, as reported with other cells, dlk1 functioned as a Notch signaling inhibitor in C3H10T1/2 cells, but inhibition of Notch1 expression prevented the potentiating effects of Dlk1 in adipogenesis. These data suggest that Dlk1 may potentiate or inhibit adipogenesis depending upon the cellular context, and that Notch1 expression and activation are important factors in this context.
Collapse
Affiliation(s)
- María-Luisa Nueda
- Department of Inorganic and Organic Chemistry and Biochemistry, Medical School, Regional Center for Biomedical Research, University of Castilla-La Mancha, Albacete, Spain
| | | | | | | | | |
Collapse
|
28
|
Affiliation(s)
- Aaron Schindeler
- Department of Orthopaedic Research and Biotechnology, The Children's Hospital at Westmeade, Sydney, Australia.
| | | |
Collapse
|
29
|
Yu YQ, Chen J. Activation of spinal extracellular signaling-regulated kinases by intraplantar melittin injection. Neurosci Lett 2005; 381:194-8. [PMID: 15882816 DOI: 10.1016/j.neulet.2005.02.033] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2004] [Revised: 12/31/2004] [Accepted: 02/12/2005] [Indexed: 11/16/2022]
Abstract
Intraplantar injection of melittin, a major toxic peptide of whole bee venom, has been proved to cause alteration in both behavioral and spinal neuronal responses in rats. To see whether extracellular signaling-regulated kinases (ERK) in the spinal cord dorsal horn are activated and involved in induction and maintenance of persistent ongoing nociception, pain hypersensitivity and inflammation, three doses of U0126 (1,4-diamino-2,3-dicyano-1, 4-bis-[o-aminophenylmercapto]butadiene), a widely used specific MAP kinase kinase (MEK) inhibitor, were administered through chronic intrathecal catheterization prior to or after intraplantar injection of melittin. We found that: (1) the induction of melittin-induced persistent spontaneous nociception (PSN), mechanical and heat hypersensitivity could be suppressed by U0126 in a dose-related manner; (2) specific inhibition of ERK pathway suppressed the maintenance of melittin-induced PSN and heat hypersensitivity, while established mechanical hypersensitivity could not be reversed; and (3) intrathecal administration of U0126 had no effects on peripheral inflammation induced by melittin. This result suggests that spinal ERK pathway might be a common factor involved in inducing and maintaining pathophysiological processes of ongoing pain and heat hyperalgesia, while the role of ERK pathway in generation of the mechanical hypersensitivity is not consistent and remains to be further clarified.
Collapse
Affiliation(s)
- Yao-Qing Yu
- Pain Research Center, Institute of Neuroscience, Fourth Military Medical University, 17 West Chang-le Road, Xi'an 710032, PR China
| | | |
Collapse
|