1
|
Liu X, Cai YD, Chiu JC. Regulation of protein O-GlcNAcylation by circadian, metabolic, and cellular signals. J Biol Chem 2024; 300:105616. [PMID: 38159854 PMCID: PMC10810748 DOI: 10.1016/j.jbc.2023.105616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 01/03/2024] Open
Abstract
O-linked β-N-acetylglucosamine (O-GlcNAcylation) is a dynamic post-translational modification that regulates thousands of proteins and almost all cellular processes. Aberrant O-GlcNAcylation has been associated with numerous diseases, including cancer, neurodegenerative diseases, cardiovascular diseases, and type 2 diabetes. O-GlcNAcylation is highly nutrient-sensitive since it is dependent on UDP-GlcNAc, the end product of the hexosamine biosynthetic pathway (HBP). We previously observed daily rhythmicity of protein O-GlcNAcylation in a Drosophila model that is sensitive to the timing of food consumption. We showed that the circadian clock is pivotal in regulating daily O-GlcNAcylation rhythms given its control of the feeding-fasting cycle and hence nutrient availability. Interestingly, we reported that the circadian clock also modulates daily O-GlcNAcylation rhythm by regulating molecular mechanisms beyond the regulation of food consumption time. A large body of work now indicates that O-GlcNAcylation is likely a generalized cellular status effector as it responds to various cellular signals and conditions, such as ER stress, apoptosis, and infection. In this review, we summarize the metabolic regulation of protein O-GlcNAcylation through nutrient availability, HBP enzymes, and O-GlcNAc processing enzymes. We discuss the emerging roles of circadian clocks in regulating daily O-GlcNAcylation rhythm. Finally, we provide an overview of other cellular signals or conditions that impact O-GlcNAcylation. Many of these cellular pathways are themselves regulated by the clock and/or metabolism. Our review highlights the importance of maintaining optimal O-GlcNAc rhythm by restricting eating activity to the active period under physiological conditions and provides insights into potential therapeutic targets of O-GlcNAc homeostasis under pathological conditions.
Collapse
Affiliation(s)
- Xianhui Liu
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, California, USA
| | - Yao D Cai
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, California, USA
| | - Joanna C Chiu
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, California, USA.
| |
Collapse
|
2
|
Saunders H, Dias WB, Slawson C. Growing and dividing: how O-GlcNAcylation leads the way. J Biol Chem 2023; 299:105330. [PMID: 37820866 PMCID: PMC10641531 DOI: 10.1016/j.jbc.2023.105330] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/27/2023] [Accepted: 10/02/2023] [Indexed: 10/13/2023] Open
Abstract
Cell cycle errors can lead to mutations, chromosomal instability, or death; thus, the precise control of cell cycle progression is essential for viability. The nutrient-sensing posttranslational modification, O-GlcNAc, regulates the cell cycle allowing one central control point directing progression of the cell cycle. O-GlcNAc is a single N-acetylglucosamine sugar modification to intracellular proteins that is dynamically added and removed by O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), respectively. These enzymes act as a rheostat to fine-tune protein function in response to a plethora of stimuli from nutrients to hormones. O-GlcNAc modulates mitogenic growth signaling, senses nutrient flux through the hexosamine biosynthetic pathway, and coordinates with other nutrient-sensing enzymes to progress cells through Gap phase 1 (G1). At the G1/S transition, O-GlcNAc modulates checkpoint control, while in S Phase, O-GlcNAcylation coordinates the replication fork. DNA replication errors activate O-GlcNAcylation to control the function of the tumor-suppressor p53 at Gap Phase 2 (G2). Finally, in mitosis (M phase), O-GlcNAc controls M phase progression and the organization of the mitotic spindle and midbody. Critical for M phase control is the interplay between OGT and OGA with mitotic kinases. Importantly, disruptions in OGT and OGA activity induce M phase defects and aneuploidy. These data point to an essential role for the O-GlcNAc rheostat in regulating cell division. In this review, we highlight O-GlcNAc nutrient sensing regulating G1, O-GlcNAc control of DNA replication and repair, and finally, O-GlcNAc organization of mitotic progression and spindle dynamics.
Collapse
Affiliation(s)
- Harmony Saunders
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Wagner B Dias
- Federal University of Rio De Janeiro, Rio De Janeiro, Brazil; Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Chad Slawson
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, USA.
| |
Collapse
|
3
|
Omelková M, Fenger CD, Murray M, Hammer TB, Pravata VM, Bartual SG, Czajewski I, Bayat A, Ferenbach AT, Stavridis MP, van Aalten DMF. An O-GlcNAc transferase pathogenic variant linked to intellectual disability affects pluripotent stem cell self-renewal. Dis Model Mech 2023; 16:dmm049132. [PMID: 37334838 DOI: 10.1242/dmm.049132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 04/19/2023] [Indexed: 06/21/2023] Open
Abstract
O-linked β-N-acetylglucosamine (O-GlcNAc) transferase (OGT) is an essential enzyme that modifies proteins with O-GlcNAc. Inborn OGT genetic variants were recently shown to mediate a novel type of congenital disorder of glycosylation (OGT-CDG), which is characterised by X-linked intellectual disability (XLID) and developmental delay. Here, we report an OGTC921Y variant that co-segregates with XLID and epileptic seizures, and results in loss of catalytic activity. Colonies formed by mouse embryonic stem cells carrying OGTC921Y showed decreased levels of protein O-GlcNAcylation accompanied by decreased levels of Oct4 (encoded by Pou5f1), Sox2 and extracellular alkaline phosphatase (ALP), implying reduced self-renewal capacity. These data establish a link between OGT-CDG and embryonic stem cell self-renewal, providing a foundation for examining the developmental aetiology of this syndrome.
Collapse
Affiliation(s)
- Michaela Omelková
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Christina Dühring Fenger
- Department of Epilepsy Genetics, Filadelfia Danish Epilepsy Centre, Dianalund 4293, Denmark
- Amplexa Genetics A/S, Odense 5000, Denmark
| | - Marta Murray
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Trine Bjørg Hammer
- Department of Epilepsy Genetics, Filadelfia Danish Epilepsy Centre, Dianalund 4293, Denmark
| | - Veronica M Pravata
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Sergio Galan Bartual
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus 8000, Denmark
| | - Ignacy Czajewski
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Allan Bayat
- Department of Epilepsy Genetics, Filadelfia Danish Epilepsy Centre, Dianalund 4293, Denmark
| | - Andrew T Ferenbach
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus 8000, Denmark
| | - Marios P Stavridis
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Daan M F van Aalten
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
- Institute of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus 8000, Denmark
| |
Collapse
|
4
|
Lin J, Xiang Y, Huang J, Zeng H, Zeng Y, Liu J, Wu T, Liang Q, Liang X, Li J, Zhou C. NAT10 Maintains OGA mRNA Stability Through ac4C Modification in Regulating Oocyte Maturation. Front Endocrinol (Lausanne) 2022; 13:907286. [PMID: 35937804 PMCID: PMC9352860 DOI: 10.3389/fendo.2022.907286] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/16/2022] [Indexed: 11/17/2022] Open
Abstract
In vitro maturation (IVM) refers to the process of developing immature oocytes into the mature in vitro under the microenvironment analogous to follicle fluid. It is an important technique for patients with polycystic ovary syndrome and, especially, those young patients with the need of fertility preservation. However, as the mechanisms of oocyte maturation have not been fully understood yet, the cultivation efficiency of IVM is not satisfactory. It was confirmed in our previous study that oocyte maturation was impaired after N-acetyltransferase 10 (NAT10) knockdown (KD). In the present study, we further explored the transcriptome alteration of NAT10-depleted oocytes and found that O-GlcNAcase(OGA) was an important target gene for NAT10-mediated ac4C modification in oocyte maturation. NAT10 might regulate OGA stability and expression by suppressing its degradation. To find out whether the influence of NAT10-mediated ac4C on oocyte maturation was mediated by OGA, we further explored the role of OGA in IVM. After knocking down OGA of oocytes, oocyte maturation was inhibited. In addition, as oocytes matured, OGA expression increased and, conversely, O-linked N-acetylglucosamine (O-GlcNAc) level decreased. On the basis of NAT10 KD transcriptome and OGA KD transcriptome data, NAT10-mediated ac4C modification of OGA might play a role through G protein-coupled receptors, molecular transduction, nucleosome DNA binding, and other mechanisms in oocyte maturation. Rsph6a, Gm7788, Gm41780, Trpc7, Gm29036, and Gm47144 were potential downstream genes. In conclusion, NAT10 maintained the stability of OGA transcript by ac4C modification on it, thus positively regulating IVM. Moreover, our study revealed the regulation mechanisms of oocytes maturation and provided reference for improving IVM outcomes. At the same time, the interaction between mRNA ac4C modification and protein O-GlcNAc modification was found for the first time, which enriched the regulation network of oocyte maturation.
Collapse
Affiliation(s)
- Jiayu Lin
- Reproductive Medicine Center, Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yuting Xiang
- Reproductive Medicine Center, Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Department of Obstetrics and Gynecology, Affiliated Dongguan People’s Hospital, Southern Medical University, Dongguan, China
| | - Jiana Huang
- Reproductive Medicine Center, Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Haitao Zeng
- Reproductive Medicine Center, Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yanyan Zeng
- Reproductive Medicine Center, Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jiawen Liu
- Reproductive Medicine Center, Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Taibao Wu
- Reproductive Medicine Center, Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qiqi Liang
- Reproductive Medicine Center, Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaoyan Liang
- Reproductive Medicine Center, Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- *Correspondence: Chuanchuan Zhou, ; Jingjie Li, ; Xiaoyan Liang,
| | - Jingjie Li
- Reproductive Medicine Center, Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- *Correspondence: Chuanchuan Zhou, ; Jingjie Li, ; Xiaoyan Liang,
| | - Chuanchuan Zhou
- Reproductive Medicine Center, Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- *Correspondence: Chuanchuan Zhou, ; Jingjie Li, ; Xiaoyan Liang,
| |
Collapse
|
5
|
Raab S, Gadault A, Very N, Decourcelle A, Baldini S, Schulz C, Mortuaire M, Lemaire Q, Hardivillé S, Dehennaut V, El Yazidi-Belkoura I, Vercoutter-Edouart AS, Panasyuk G, Lefebvre T. Dual regulation of fatty acid synthase (FASN) expression by O-GlcNAc transferase (OGT) and mTOR pathway in proliferating liver cancer cells. Cell Mol Life Sci 2021; 78:5397-5413. [PMID: 34046694 PMCID: PMC11072354 DOI: 10.1007/s00018-021-03857-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/30/2021] [Accepted: 05/15/2021] [Indexed: 12/14/2022]
Abstract
Fatty acid synthase (FASN) participates in many fundamental biological processes, including energy storage and signal transduction, and is overexpressed in many cancer cells. We previously showed in a context of lipogenesis that FASN is protected from degradation by its interaction with O-GlcNAc transferase (OGT) in a nutrient-dependent manner. We and others also reported that OGT and O-GlcNAcylation up-regulate the PI3K/AKT/mTOR pathway that senses mitogenic signals and nutrient availability to drive cell cycle. Using biochemical and microscopy approaches, we show here that FASN co-localizes with OGT in the cytoplasm and, to a lesser extent, in the membrane fraction. This interaction occurs in a cell cycle-dependent manner, following the pattern of FASN expression. Moreover, we show that FASN expression depends on OGT upon serum stimulation. The level of FASN also correlates with the activation of the PI3K/AKT/mTOR pathway in hepatic cell lines, and in livers of obese mice and in a chronically activated insulin and mTOR signaling mouse model (PTEN-null mice). These results indicate that FASN is under a dual control of O-GlcNAcylation and mTOR pathways. In turn, blocking FASN with the small-molecule inhibitor C75 reduces both OGT and O-GlcNAcylation levels, and mTOR activation, highlighting a novel reciprocal regulation between these actors. In addition to the role of O-GlcNAcylation in tumorigenesis, our findings shed new light on how aberrant activity of FASN and mTOR signaling may promote the emergence of hepatic tumors.
Collapse
MESH Headings
- Animals
- Apoptosis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Cell Proliferation
- Fatty Acid Synthase, Type I/genetics
- Fatty Acid Synthase, Type I/metabolism
- Gene Expression Regulation, Neoplastic
- Humans
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Obese
- N-Acetylglucosaminyltransferases/genetics
- N-Acetylglucosaminyltransferases/metabolism
- TOR Serine-Threonine Kinases/genetics
- TOR Serine-Threonine Kinases/metabolism
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Sadia Raab
- Université de Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, 59000, Lille, France
| | - Alexis Gadault
- Institut Necker-Enfants Malades (INEM), INSERM U1151/CNRS UMR 8253, Université de Paris , 75014, Paris, France
| | - Ninon Very
- Université de Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, 59000, Lille, France
| | - Amélie Decourcelle
- Université de Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity, Plasticity and Resistance to Therapies, 59000, Lille, France
| | - Steffi Baldini
- Université de Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, 59000, Lille, France
| | - Céline Schulz
- Université de Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, 59000, Lille, France
| | - Marlène Mortuaire
- Université de Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, 59000, Lille, France
| | - Quentin Lemaire
- Université de Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, 59000, Lille, France
| | - Stéphan Hardivillé
- Université de Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, 59000, Lille, France
| | - Vanessa Dehennaut
- Université de Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity, Plasticity and Resistance to Therapies, 59000, Lille, France
| | - Ikram El Yazidi-Belkoura
- Université de Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, 59000, Lille, France
| | | | - Ganna Panasyuk
- Institut Necker-Enfants Malades (INEM), INSERM U1151/CNRS UMR 8253, Université de Paris , 75014, Paris, France
| | - Tony Lefebvre
- Université de Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, 59000, Lille, France.
| |
Collapse
|
6
|
Zhu Q, Yi W. Chemistry-Assisted Proteomic Profiling of O-GlcNAcylation. Front Chem 2021; 9:702260. [PMID: 34249870 PMCID: PMC8267408 DOI: 10.3389/fchem.2021.702260] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/14/2021] [Indexed: 12/19/2022] Open
Abstract
The modification on proteins with O-linked N-acetyl-β-D-glucosamine (O-GlcNAcylation) is essential for normal cell physiology. Dysregulation of O-GlcNAcylation leads to many human diseases, such as cancer, diabetes and neurodegenerative diseases. Recently, the functional role of O-GlcNAcylation in different physiological states has been elucidated due to the booming detection technologies. Chemical approaches for the enrichment of O-GlcNAcylated proteins combined with mass spectrometry-based proteomics enable the profiling of protein O-GlcNAcylation in a system-wide level. In this review, we summarize recent progresses on the enrichment and proteomic profiling of protein O-GlcNAcylation.
Collapse
Affiliation(s)
| | - Wen Yi
- Department of Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
7
|
Motta CM, Simoniello P, Di Lorenzo M, Migliaccio V, Panzuto R, Califano E, Santovito G. Endocrine disrupting effects of copper and cadmium in the oocytes of the Antarctic Emerald rockcod Trematomus bernacchii. CHEMOSPHERE 2021; 268:129282. [PMID: 33360142 DOI: 10.1016/j.chemosphere.2020.129282] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/28/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023]
Abstract
Antarctica has long been considered a continent free from anthropic interference. Unfortunately, recent evidence indicate that metal contamination has gone so far and that its effects are still unknown. For this reason, in the present work, the potential endocrine disrupting effect of two highly polluting metals, copper and cadmium, were examined in the Antarctic teleost Trematomus bernacchii. After a 10 days waterborne exposure, ovarian metal uptake was determined by atomic absorption; in parallel, classical histological approaches were adopted to determine the effects on oocyte morphology, carbohydrate composition and presence and localization of progesterone and estrogen receptors. Results show that both metals induce oocyte degeneration in about one third of the previtellogenic oocytes, no matter the stage of development. In apparently healthy oocytes, changes in cytoplasm, cortical alveoli and/or chorion carbohydrates composition are observed. Cadmium but not copper also induces significant changes in the localization of progesterone and beta-estrogen receptors, a result that well correlates with the observed increase in ovarian metals concentrations. In conclusion, the acute modifications detected are suggestive of a significantly impaired fecundity and of a marked endocrine disrupting effects of copper and cadmium in this teleost species.
Collapse
Affiliation(s)
| | - Palma Simoniello
- Department of Science and Technology, University of Naples Parthenope, Naples, Italy.
| | | | - Vincenzo Migliaccio
- Department of Chemistry and Biology "Adolfo Zambelli", University of Salerno, Fisciano, Italy
| | - Raffaele Panzuto
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Emanuela Califano
- Department of Biology, University of Naples Federico II, Naples, Italy
| | | |
Collapse
|
8
|
Nagy T, Fisi V, Frank D, Kátai E, Nagy Z, Miseta A. Hyperglycemia-Induced Aberrant Cell Proliferation; A Metabolic Challenge Mediated by Protein O-GlcNAc Modification. Cells 2019; 8:E999. [PMID: 31466420 PMCID: PMC6769692 DOI: 10.3390/cells8090999] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 08/26/2019] [Accepted: 08/26/2019] [Indexed: 12/13/2022] Open
Abstract
Chronic hyperglycemia has been associated with an increased prevalence of pathological conditions including cardiovascular disease, cancer, or various disorders of the immune system. In some cases, these associations may be traced back to a common underlying cause, but more often, hyperglycemia and the disturbance in metabolic balance directly facilitate pathological changes in the regular cellular functions. One such cellular function crucial for every living organism is cell cycle regulation/mitotic activity. Although metabolic challenges have long been recognized to influence cell proliferation, the direct impact of diabetes on cell cycle regulatory elements is a relatively uncharted territory. Among other "nutrient sensing" mechanisms, protein O-linked β-N-acetylglucosamine (O-GlcNAc) modification emerged in recent years as a major contributor to the deleterious effects of hyperglycemia. An increasing amount of evidence suggest that O-GlcNAc may significantly influence the cell cycle and cellular proliferation. In our present review, we summarize the current data available on the direct impact of metabolic changes caused by hyperglycemia in pathological conditions associated with cell cycle disorders. We also review published experimental evidence supporting the hypothesis that O-GlcNAc modification may be one of the missing links between metabolic regulation and cellular proliferation.
Collapse
Affiliation(s)
- Tamás Nagy
- Department of Laboratory Medicine, Medical School, University of Pécs, H-7624 Pécs, Hungary.
| | - Viktória Fisi
- Department of Laboratory Medicine, Medical School, University of Pécs, H-7624 Pécs, Hungary
| | - Dorottya Frank
- Department of Dentistry, Oral and Maxillofacial Surgery, Medical School, University of Pécs, H-7621 Pécs, Hungary
| | - Emese Kátai
- Department of Laboratory Medicine, Medical School, University of Pécs, H-7624 Pécs, Hungary
| | - Zsófia Nagy
- Department of Laboratory Medicine, Medical School, University of Pécs, H-7624 Pécs, Hungary
| | - Attila Miseta
- Department of Laboratory Medicine, Medical School, University of Pécs, H-7624 Pécs, Hungary
| |
Collapse
|
9
|
Zhou LT, Romar R, Pavone ME, Soriano-Úbeda C, Zhang J, Slawson C, Duncan FE. Disruption of O-GlcNAc homeostasis during mammalian oocyte meiotic maturation impacts fertilization. Mol Reprod Dev 2019; 86:543-557. [PMID: 30793403 DOI: 10.1002/mrd.23131] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 01/04/2019] [Accepted: 01/28/2019] [Indexed: 12/22/2022]
Abstract
Meiotic maturation and fertilization are metabolically demanding processes, and thus the mammalian oocyte is highly susceptible to changes in nutrient availability. O-GlcNAcylation-the addition of a single sugar residue (O-linked β-N-acetylglucosamine) on proteins-is a posttranslational modification that acts as a cellular nutrient sensor and likely modulates the function of oocyte proteins. O-GlcNAcylation is mediated by O-GlcNAc transferase (OGT), which adds O-GlcNAc onto proteins, and O-GlcNAcase (OGA), which removes it. Here we investigated O-GlcNAcylation dynamics in bovine and human oocytes during meiosis and determined the developmental sequelae of its perturbation. OGA, OGT, and multiple O-GlcNAcylated proteins were expressed in bovine cumulus oocyte complexes (COCs), and they were localized throughout the gamete but were also enriched at specific subcellular sites. O-GlcNAcylated proteins were concentrated at the nuclear envelope at prophase I, OGA at the cortex throughout meiosis, and OGT at the meiotic spindles. These expression patterns were evolutionarily conserved in human oocytes. To examine O-GlcNAc function, we disrupted O-GlcNAc cycling during meiotic maturation in bovine COCs using Thiamet-G (TMG), a highly selective OGA inhibitor. Although TMG resulted in a dramatic increase in O-GlcNAcylated substrates in both cumulus cells and the oocyte, there was no effect on cumulus expansion or meiotic progression. However, zygote development was significantly compromised following in vitro fertilization of COCs matured in TMG due to the effects on sperm penetration, sperm head decondensation, and pronuclear formation. Thus, proper O-GlcNAc homeostasis during meiotic maturation is important for fertilization and pronuclear stage development.
Collapse
Affiliation(s)
- Luhan T Zhou
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Raquel Romar
- Department of Physiology, Faculty of Veterinary Science, University of Murcia, Murcia, Spain
| | - Mary Ellen Pavone
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Cristina Soriano-Úbeda
- Department of Physiology, Faculty of Veterinary Science, University of Murcia, Murcia, Spain
| | - John Zhang
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Chad Slawson
- Department of Biochemistry and Molecular Biology, University of Kansas Medical School, Kansas City, Kansas
| | - Francesca E Duncan
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
10
|
Fisi V, Kátai E, Orbán J, Dossena S, Miseta A, Nagy T. O-Linked N-Acetylglucosamine Transiently Elevates in HeLa Cells during Mitosis. Molecules 2018; 23:molecules23061275. [PMID: 29861440 PMCID: PMC6100377 DOI: 10.3390/molecules23061275] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 05/19/2018] [Accepted: 05/24/2018] [Indexed: 12/15/2022] Open
Abstract
O-linked N-acetylglucosamine (O-GlcNAc) is a dynamic post-translational modification of serine and threonine residues on nuclear and cytoplasmic proteins. O-GlcNAc modification influences many cellular mechanisms, including carbohydrate metabolism, signal transduction and protein degradation. Multiple studies also showed that cell cycle might be modulated by O-GlcNAc. Although the role of O-GlcNAc in the regulation of some cell cycle processes such as mitotic spindle organization or histone phosphorylation is well established, the general behaviour of O-GlcNAc regulation during cell cycle is still controversial. In this study, we analysed the dynamic changes of overall O-GlcNAc levels in HeLa cells using double thymidine block. O-GlcNAc levels in G1, S, G2 and M phase were measured. We observed that O-GlcNAc levels are significantly increased during mitosis in comparison to the other cell cycle phases. However, this change could only be detected when mitotic cells were enriched by harvesting round shaped cells from the G2/M fraction of the synchronized cells. Our data verify that O-GlcNAc is elevated during mitosis, but also emphasize that O-GlcNAc levels can significantly change in a short period of time. Thus, selection and collection of cells at specific cell-cycle checkpoints is a challenging, but necessary requirement for O-GlcNAc studies.
Collapse
Affiliation(s)
- Viktória Fisi
- Department of Laboratory Medicine, Medical School, University of Pécs, Pécs H7624, Hungary.
| | - Emese Kátai
- Department of Laboratory Medicine, Medical School, University of Pécs, Pécs H7624, Hungary.
| | - József Orbán
- Department of Biophysics, Medical School, University of Pécs, Pécs H7624, Hungary.
| | - Silvia Dossena
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, Salzburg 5020, Austria.
| | - Attila Miseta
- Department of Laboratory Medicine, Medical School, University of Pécs, Pécs H7624, Hungary.
| | - Tamás Nagy
- Department of Laboratory Medicine, Medical School, University of Pécs, Pécs H7624, Hungary.
- János Szentágothai Research Centre, University of Pécs, Pécs H7624, Hungary.
| |
Collapse
|
11
|
Liu C, Li J. O-GlcNAc: A Sweetheart of the Cell Cycle and DNA Damage Response. Front Endocrinol (Lausanne) 2018; 9:415. [PMID: 30105004 PMCID: PMC6077185 DOI: 10.3389/fendo.2018.00415] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/02/2018] [Indexed: 01/22/2023] Open
Abstract
The addition and removal of O-linked N-acetylglucosamine (O-GlcNAc) to and from the Ser and Thr residues of proteins is an emerging post-translational modification. Unlike phosphorylation, which requires a legion of kinases and phosphatases, O-GlcNAc is catalyzed by the sole enzyme in mammals, O-GlcNAc transferase (OGT), and reversed by the sole enzyme, O-GlcNAcase (OGA). With the advent of new technologies, identification of O-GlcNAcylated proteins, followed by pinpointing the modified residues and understanding the underlying molecular function of the modification has become the very heart of the O-GlcNAc biology. O-GlcNAc plays a multifaceted role during the unperturbed cell cycle, including regulating DNA replication, mitosis, and cytokinesis. When the cell cycle is challenged by DNA damage stresses, O-GlcNAc also protects genome integrity via modifying an array of histones, kinases as well as scaffold proteins. Here we will focus on both cell cycle progression and the DNA damage response, summarize what we have learned about the role of O-GlcNAc in these processes and envision a sweeter research future.
Collapse
|
12
|
Kupferschmid M, Aquino-Gil MO, Shams-Eldin H, Schmidt J, Yamakawa N, Krzewinski F, Schwarz RT, Lefebvre T. Identification of O-GlcNAcylated proteins in Plasmodium falciparum. Malar J 2017; 16:485. [PMID: 29187233 PMCID: PMC5707832 DOI: 10.1186/s12936-017-2131-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 11/23/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Post-translational modifications (PTMs) constitute a huge group of chemical modifications increasing the complexity of the proteomes of living beings. PTMs have been discussed as potential anti-malarial drug targets due to their involvement in many cell processes. O-GlcNAcylation is a widespread PTM found in different organisms including Plasmodium falciparum. The aim of this study was to identify O-GlcNAcylated proteins of P. falciparum, to learn more about the modification process and to understand its eventual functions in the Apicomplexans. METHODS The P. falciparum strain 3D7 was amplified in erythrocytes and purified. The proteome was checked for O-GlcNAcylation using different methods. The level of UDP-GlcNAc, the donor of the sugar moiety for O-GlcNAcylation processes, was measured using high-pH anion exchange chromatography. O-GlcNAcylated proteins were enriched and purified utilizing either click chemistry labelling or adsorption on succinyl-wheat germ agglutinin beads. Proteins were then identified by mass-spectrometry (nano-LC MS/MS). RESULTS While low when compared to MRC5 control cells, P. falciparum disposes of its own pool of UDP-GlcNAc. By using proteomics methods, 13 O-GlcNAcylated proteins were unambiguously identified (11 by click-chemistry and 6 by sWGA-beads enrichment; 4 being identified by the 2 approaches) in late trophozoites. These proteins are all part of pathways, functions and structures important for the parasite survival. By probing clicked-proteins with specific antibodies, Hsp70 and α-tubulin were identified as P. falciparum O-GlcNAc-bearing proteins. CONCLUSIONS This study is the first report on the identity of P. falciparum O-GlcNAcylated proteins. While the parasite O-GlcNAcome seems close to those of other species, the structural differences exhibited by the proteomes provides a glimpse of innovative therapeutic paths to fight malaria. Blocking biosynthesis of UDP-GlcNAc in the parasites is another promising option to reduce Plasmodium life cycle.
Collapse
Affiliation(s)
- Mattis Kupferschmid
- Institute for Virology, Laboratory of Parasitology, Philipps-University, Marburg, Germany
| | - Moyira Osny Aquino-Gil
- Univ. Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, 59000, Lille, France.,Instituto Tecnológico de Oaxaca, Tecnológico Nacional de México, Oaxaca, Mexico.,Centro de Investigación UNAM-UABJO, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Mexico
| | - Hosam Shams-Eldin
- Institute for Virology, Laboratory of Parasitology, Philipps-University, Marburg, Germany
| | - Jörg Schmidt
- Institute for Virology, Laboratory of Parasitology, Philipps-University, Marburg, Germany
| | - Nao Yamakawa
- Univ. Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, 59000, Lille, France
| | - Frédéric Krzewinski
- Univ. Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, 59000, Lille, France
| | - Ralph T Schwarz
- Institute for Virology, Laboratory of Parasitology, Philipps-University, Marburg, Germany.,Univ. Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, 59000, Lille, France
| | - Tony Lefebvre
- Univ. Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, 59000, Lille, France.
| |
Collapse
|
13
|
The sweet side of the cell cycle. Biochem Soc Trans 2017; 45:313-322. [PMID: 28408472 DOI: 10.1042/bst20160145] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 12/19/2016] [Accepted: 01/05/2017] [Indexed: 02/07/2023]
Abstract
Cell division (mitosis) and gamete production (meiosis) are fundamental requirements for normal organismal development. The mammalian cell cycle is tightly regulated by different checkpoints ensuring complete and precise chromosomal segregation and duplication. In recent years, researchers have become increasingly interested in understanding how O-GlcNAc regulates the cell cycle. The O-GlcNAc post-translation modification is an O-glycosidic bond of a single β-N-acetylglucosamine sugar to serine/threonine residues of intracellular proteins. This modification is sensitive toward changes in nutrient levels in the cellular environment making O-GlcNAc a nutrient sensor capable of influencing cell growth and proliferation. Numerous studies have established that O-GlcNAcylation is essential in regulating mitosis and meiosis, while loss of O-GlcNAcylation is lethal in growing cells. Moreover, aberrant O-GlcNAcylation is linked with cancer and chromosomal segregation errors. In this review, we will discuss how O-GlcNAc controls different aspects of the cell cycle with a particular emphasis on mitosis and meiosis.
Collapse
|
14
|
Lanza C, Tan EP, Zhang Z, Machacek M, Brinker AE, Azuma M, Slawson C. Reduced O-GlcNAcase expression promotes mitotic errors and spindle defects. Cell Cycle 2017; 15:1363-75. [PMID: 27070276 DOI: 10.1080/15384101.2016.1167297] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Alterations in O-GlcNAc cycling, the addition and removal of O-GlcNAc, lead to mitotic defects and increased aneuploidy. Herein, we generated stable O-GlcNAcase (OGA, the enzyme that removes O-GlcNAc) knockdown HeLa cell lines and characterized the effect of the reduction in OGA activity on cell cycle progression. After release from G1/S, the OGA knockdown cells progressed normally through S phase but demonstrated mitotic exit defects. Cyclin A was increased in the knockdown cells while Cyclin B and D expression was reduced. Retinoblastoma protein (RB) phosphorylation was also increased in the knockdown compared to control. At M phase, the knockdown cells showed more compact spindle chromatids than control cells and had a greater percentage of cells with multipolar spindles. Furthermore, the timing of the inhibitory tyrosine phosphorylation of Cyclin Dependent Kinase 1 (CDK1) was altered in the OGA knockdown cells. Although expression and localization of the chromosomal passenger protein complex (CPC) was unchanged, histone H3 threonine 3 phosphorylation was decreased in one of the OGA knockdown cell lines. The Ewing Sarcoma Breakpoint Region 1 Protein (EWS) participates in organizing the CPC at the spindle and is a known substrate for O-GlcNAc transferase (OGT, the enzyme that adds O-GlcNAc). EWS O-GlcNAcylation was significantly increased in the OGA knockdown cells promoting uneven localization of the mitotic midzone. Our data suggests that O-GlcNAc cycling is an essential mechanism for proper mitotic signaling and spindle formation, and alterations in the rate of O-GlcNAc cycling produces aberrant spindles and promotes aneuploidy.
Collapse
Affiliation(s)
- Chris Lanza
- a Department of Biochemistry and Molecular Biology , University of Kansas Medical Center , Kansas City , KS , USA
| | - Ee Phie Tan
- a Department of Biochemistry and Molecular Biology , University of Kansas Medical Center , Kansas City , KS , USA
| | - Zhen Zhang
- a Department of Biochemistry and Molecular Biology , University of Kansas Medical Center , Kansas City , KS , USA
| | - Miranda Machacek
- a Department of Biochemistry and Molecular Biology , University of Kansas Medical Center , Kansas City , KS , USA
| | - Amanda E Brinker
- b Department of Cancer Biology , University of Kansas Medical Center , Kansas City , KS , USA
| | - Mizuki Azuma
- c KU Cancer Center, University of Kansas Medical Center , Kansas City , KS , USA.,d Department of Molecular Biosciences , University of Kansas , Lawrence , KS , USA
| | - Chad Slawson
- a Department of Biochemistry and Molecular Biology , University of Kansas Medical Center , Kansas City , KS , USA.,c KU Cancer Center, University of Kansas Medical Center , Kansas City , KS , USA.,e Institute for Reproductive Health and Regenerative Medicine, University of Kansas Medical Center , Kansas City , KS , USA.,f KU Alzheimer Disease Center, University of Kansas Medical Center , Kansas City , KS , USA
| |
Collapse
|
15
|
Vercoutter-Edouart AS, El Yazidi-Belkoura I, Guinez C, Baldini S, Leturcq M, Mortuaire M, Mir AM, Steenackers A, Dehennaut V, Pierce A, Lefebvre T. Detection and identification ofO-GlcNAcylated proteins by proteomic approaches. Proteomics 2015; 15:1039-50. [DOI: 10.1002/pmic.201400326] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 10/03/2014] [Accepted: 11/24/2014] [Indexed: 02/06/2023]
Affiliation(s)
| | | | - Céline Guinez
- Unit of Structural and Functional Glycobiology; University of Lille 1; Villeneuve d'Ascq France
| | - Steffi Baldini
- Unit of Structural and Functional Glycobiology; University of Lille 1; Villeneuve d'Ascq France
| | - Maïté Leturcq
- Unit of Structural and Functional Glycobiology; University of Lille 1; Villeneuve d'Ascq France
| | - Marlène Mortuaire
- Unit of Structural and Functional Glycobiology; University of Lille 1; Villeneuve d'Ascq France
| | - Anne-Marie Mir
- Unit of Structural and Functional Glycobiology; University of Lille 1; Villeneuve d'Ascq France
| | - Agata Steenackers
- Unit of Structural and Functional Glycobiology; University of Lille 1; Villeneuve d'Ascq France
| | - Vanessa Dehennaut
- Unit of Structural and Functional Glycobiology; University of Lille 1; Villeneuve d'Ascq France
| | - Annick Pierce
- Unit of Structural and Functional Glycobiology; University of Lille 1; Villeneuve d'Ascq France
| | - Tony Lefebvre
- Unit of Structural and Functional Glycobiology; University of Lille 1; Villeneuve d'Ascq France
| |
Collapse
|
16
|
O-GlcNAc transferase and O-GlcNAcase: achieving target substrate specificity. Amino Acids 2014; 46:2305-16. [PMID: 25173736 DOI: 10.1007/s00726-014-1827-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 08/13/2014] [Indexed: 12/19/2022]
Abstract
O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA) catalyze the dynamic cycling of intracellular, post-translational O-GlcNAc modification on thousands of Ser/Thr residues of cytosolic, nuclear, and mitochondrial signaling proteins. The identification of O-GlcNAc modified substrates has revealed a functionally diverse set of proteins, and the extent of O-GlcNAcylation fluctuates in response to nutrients and cellular stress. As a result, OGT and OGA are implicated in widespread, nutrient-responsive regulation of numerous signaling pathways and transcriptional programs. These enzymes are required for normal embryonic development and are dysregulated in metabolic and age-related disease states. While a recent surge of interest in the field has contributed to understanding the functional impacts of protein O-GlcNAcylation, little is known about the upstream mechanisms which modulate OGT and OGA substrate targeting. This review focuses on elements of enzyme structure among splice variants, post-translational modification, localization, and regulatory protein interactions which drive the specificity of OGT and OGA toward different subsets of the cellular proteome. Ongoing efforts in this rapidly advancing field are aimed at revealing mechanisms of OGT and OGA regulation to harness the potential therapeutic benefit of manipulating these enzymes' activities.
Collapse
|
17
|
Vanholme B, Vanholme R, Turumtay H, Goeminne G, Cesarino I, Goubet F, Morreel K, Rencoret J, Bulone V, Hooijmaijers C, De Rycke R, Gheysen G, Ralph J, De Block M, Meulewaeter F, Boerjan W. Accumulation of N-acetylglucosamine oligomers in the plant cell wall affects plant architecture in a dose-dependent and conditional manner. PLANT PHYSIOLOGY 2014; 165:290-308. [PMID: 24664205 PMCID: PMC4012587 DOI: 10.1104/pp.113.233742] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 03/21/2014] [Indexed: 05/18/2023]
Abstract
To study the effect of short N-acetylglucosamine (GlcNAc) oligosaccharides on the physiology of plants, N-ACETYLGLUCOSAMINYLTRANSFERASE (NodC) of Azorhizobium caulinodans was expressed in Arabidopsis (Arabidopsis thaliana). The corresponding enzyme catalyzes the polymerization of GlcNAc and, accordingly, β-1,4-GlcNAc oligomers accumulated in the plant. A phenotype characterized by difficulties in developing an inflorescence stem was visible when plants were grown for several weeks under short-day conditions before transfer to long-day conditions. In addition, a positive correlation between the oligomer concentration and the penetrance of the phenotype was demonstrated. Although NodC overexpression lines produced less cell wall compared with wild-type plants under nonpermissive conditions, no indications were found for changes in the amount of the major cell wall polymers. The effect on the cell wall was reflected at the transcriptome level. In addition to genes encoding cell wall-modifying enzymes, a whole set of genes encoding membrane-coupled receptor-like kinases were differentially expressed upon GlcNAc accumulation, many of which encoded proteins with an extracellular Domain of Unknown Function26. Although stress-related genes were also differentially expressed, the observed response differed from that of a classical chitin response. This is in line with the fact that the produced chitin oligomers were too small to activate the chitin receptor-mediated signal cascade. Based on our observations, we propose a model in which the oligosaccharides modify the architecture of the cell wall by acting as competitors in carbohydrate-carbohydrate or carbohydrate-protein interactions, thereby affecting noncovalent interactions in the cell wall or at the interface between the cell wall and the plasma membrane.
Collapse
|
18
|
Olivier-Van Stichelen S, Dehennaut V, Buzy A, Zachayus JL, Guinez C, Mir AM, El Yazidi-Belkoura I, Copin MC, Boureme D, Loyaux D, Ferrara P, Lefebvre T. O-GlcNAcylation stabilizes β-catenin through direct competition with phosphorylation at threonine 41. FASEB J 2014; 28:3325-38. [PMID: 24744147 DOI: 10.1096/fj.13-243535] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Dysfunctions in Wnt signaling increase β-catenin stability and are associated with cancers, including colorectal cancer. In addition, β-catenin degradation is decreased by nutrient-dependent O-GlcNAcylation. Human colon tumors and colons from mice fed high-carbohydrate diets exhibited higher amounts of β-catenin and O-GlcNAc relative to healthy tissues and mice fed a standard diet, respectively. Administration of the O-GlcNAcase inhibitor thiamet G to mice also increased colonic expression of β-catenin. By ETD-MS/MS, we identified 4 O-GlcNAcylation sites at the N terminus of β-catenin (S23/T40/T41/T112). Furthermore, mutation of serine and threonine residues within the D box of β-catenin reduced O-GlcNAcylation by 75%. Interestingly, elevating O-GlcNAcylation in human colon cell lines drastically reduced phosphorylation at T41, a key residue of the D box responsible for β-catenin stability. Analyses of β-catenin O-GlcNAcylation mutants reinforced T41 as the most crucial residue that controls the β-catenin degradation rate. Finally, inhibiting O-GlcNAcylation decreased the β-catenin/α-catenin interaction necessary for mucosa integrity, whereas O-GlcNAcase silencing improved this interaction. These results suggest that O-GlcNAcylation regulates not only the stability of β-catenin, but also affects its localization at the level of adherens junctions. Accordingly, we propose that O-GlcNAcylation of β-catenin is a missing link between the glucose metabolism deregulation observed in metabolic disorders and the development of cancer.
Collapse
Affiliation(s)
- Stéphanie Olivier-Van Stichelen
- Unit of Structural and Functional Glycobiology, Institut Fédératif de Recherche (IFR) 147, Centre National de la Recherche Scientifique-Unité Mixte de Recherche (CNRS-UMR) 8576, University of Lille 1, Villeneuve d'Ascq, France
| | - Vanessa Dehennaut
- Unit of Structural and Functional Glycobiology, Institut Fédératif de Recherche (IFR) 147, Centre National de la Recherche Scientifique-Unité Mixte de Recherche (CNRS-UMR) 8576, University of Lille 1, Villeneuve d'Ascq, France
| | - Armelle Buzy
- Exploratory Unit/Systems Biology, Sanofi-Aventis Research and Development, Toulouse, France; and
| | - Jean-Luc Zachayus
- Exploratory Unit/Systems Biology, Sanofi-Aventis Research and Development, Toulouse, France; and
| | - Céline Guinez
- Unit of Structural and Functional Glycobiology, Institut Fédératif de Recherche (IFR) 147, Centre National de la Recherche Scientifique-Unité Mixte de Recherche (CNRS-UMR) 8576, University of Lille 1, Villeneuve d'Ascq, France
| | - Anne-Marie Mir
- Unit of Structural and Functional Glycobiology, Institut Fédératif de Recherche (IFR) 147, Centre National de la Recherche Scientifique-Unité Mixte de Recherche (CNRS-UMR) 8576, University of Lille 1, Villeneuve d'Ascq, France
| | - Ikram El Yazidi-Belkoura
- Unit of Structural and Functional Glycobiology, Institut Fédératif de Recherche (IFR) 147, Centre National de la Recherche Scientifique-Unité Mixte de Recherche (CNRS-UMR) 8576, University of Lille 1, Villeneuve d'Ascq, France
| | - Marie-Christine Copin
- Tumor Bank, Regional Reference Center in Cancer, Centre Hospitalier Régional Universitaire de Lille (CHRU), University of Lille 2, Lille, France
| | - Didier Boureme
- Exploratory Unit/Systems Biology, Sanofi-Aventis Research and Development, Toulouse, France; and
| | - Denis Loyaux
- Exploratory Unit/Systems Biology, Sanofi-Aventis Research and Development, Toulouse, France; and
| | - Pascual Ferrara
- Exploratory Unit/Systems Biology, Sanofi-Aventis Research and Development, Toulouse, France; and
| | - Tony Lefebvre
- Unit of Structural and Functional Glycobiology, Institut Fédératif de Recherche (IFR) 147, Centre National de la Recherche Scientifique-Unité Mixte de Recherche (CNRS-UMR) 8576, University of Lille 1, Villeneuve d'Ascq, France;
| |
Collapse
|
19
|
Ding F, Yu L, Wang M, Xu S, Xia Q, Fu G. O-GlcNAcylation involvement in high glucose-induced cardiac hypertrophy via ERK1/2 and cyclin D2. Amino Acids 2013; 45:339-49. [PMID: 23665912 DOI: 10.1007/s00726-013-1504-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Accepted: 04/19/2013] [Indexed: 01/26/2023]
Abstract
Continuous hyperglycemia is considered to be the most significant pathogenesis of diabetic cardiomyopathy, which manifests as cardiac hypertrophy and subsequent heart failure. O-GlcNAcylation has attracted attention as a post-translational protein modification in the past decade. The role of O-GlcNAcylation in high glucose-induced cardiomyocyte hypertrophy remains unclear. We studied the effect of O-GlcNAcylation on neonatal rat cardiomyocytes that were exposed to high glucose and myocardium in diabetic rats induced by streptozocin. High glucose (30 mM) incubation induced a greater than twofold increase in cell size and increased hypertrophy marker gene expression accompanied by elevated O-GlcNAcylation protein levels. High glucose increased ERK1/2 but not p38 MAPK or JNK activity, and cyclin D2 expression was also increased. PUGNAc, an inhibitor of β-N-acetylglucosaminidase, enhanced O-GlcNAcylation and imitated the effects of high glucose. OGT siRNA and ERK1/2 inhibition with PD98059 treatment blunted the hypertrophic response and cyclin D2 upregulation. OGT inhibition also prevented ERK1/2 activation. We also observed concentric hypertrophy and similar changes of O-GlcNAcylation level, ERK1/2 activation and cyclin D2 expression in myocardium of diabetic rats induced by streptozocin. In conclusion, O-GlcNAcylation plays a role in high glucose-induced cardiac hypertrophy via ERK1/2 and cyclin D2.
Collapse
Affiliation(s)
- Fang Ding
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, China
| | | | | | | | | | | |
Collapse
|
20
|
Olivier-Van Stichelen S, Drougat L, Dehennaut V, El Yazidi-Belkoura I, Guinez C, Mir AM, Michalski JC, Vercoutter-Edouart AS, Lefebvre T. Serum-stimulated cell cycle entry promotes ncOGT synthesis required for cyclin D expression. Oncogenesis 2012; 1:e36. [PMID: 23552487 PMCID: PMC3545199 DOI: 10.1038/oncsis.2012.36] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Nuclear and cytoplasmic O-GlcNAc transferase (OGT) is a unique and universally expressed enzyme catalyzing O-GlcNAcylation of thousands of proteins. Although OGT interferes with many crucial intracellular processes, including cell cycle, only few studies have focused on elucidating the precise role of the glycosyltransferase during cell cycle entry. We first demonstrated that starved MCF7 cells reincubated with serum quickly induced a significant OGT increase concomitantly to activation of PI3K and MAPK pathways. Co-immunoprecipitation experiments performed upon serum stimulation showed a progressive interaction between OGT and β-catenin, a major factor in the regulation of cell cycle. OGT expression was also observed in starved HeLa cells reincubated with serum. In these cells, the O-GlcNAcylation status of the β-catenin-2XFLAG was increased following stimulation. Moreover, β-catenin-2XFLAG was heavily O-GlcNAcylated in exponentially proliferating HeLa cells when compared to confluent cells. Furthermore, blocking OGT activity using the potent inhibitor Ac-5SGlcNAc prevented serum-stimulated cyclin D1 synthesis and slightly delayed cell proliferation. At last, interfering with OGT expression (siOGT) blocked cyclin D1 expression and decreased PI3K and MAPK activation. Together, our data indicate that expression and catalytic activity of OGT are necessary and essential for G0/G1 transition.
Collapse
Affiliation(s)
- S Olivier-Van Stichelen
- CNRS-UMR 8576, Unit of Structural and Functional Glycobiology (UGSF), IFR 147, University of Lille 1, Cité Scientifique, Villeneuve d'Ascq, France
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Yang YR, Song M, Lee H, Jeon Y, Choi EJ, Jang HJ, Moon HY, Byun HY, Kim EK, Kim DH, Lee MN, Koh A, Ghim J, Choi JH, Lee-Kwon W, Kim KT, Ryu SH, Suh PG. O-GlcNAcase is essential for embryonic development and maintenance of genomic stability. Aging Cell 2012; 11:439-48. [PMID: 22314054 DOI: 10.1111/j.1474-9726.2012.00801.x] [Citation(s) in RCA: 181] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Dysregulation of O-GlcNAc modification catalyzed by O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA) contributes to the etiology of chronic diseases of aging, including cancer, cardiovascular disease, type 2 diabetes, and Alzheimer's disease. Here we found that natural aging in wild-type mice was marked by a decrease in OGA and OGT protein levels and an increase in O-GlcNAcylation in various tissues. Genetic disruption of OGA resulted in constitutively elevated O-GlcNAcylation in embryos and led to neonatal lethality with developmental delay. Importantly, we observed that serum-stimulated cell cycle entry induced increased O-GlcNAcylation and decreased its level after release from G2/M arrest, indicating that O-GlcNAc cycling by OGT and OGA is required for precise cell cycle control. Constitutively, elevated O-GlcNAcylation by OGA disruption impaired cell proliferation and resulted in mitotic defects with downregulation of mitotic regulators. OGA loss led to mitotic defects including cytokinesis failure and binucleation, increased lagging chromosomes, and micronuclei formation. These findings suggest an important role for O-GlcNAc cycling by OGA in embryonic development and the regulation of the maintenance of genomic stability linked to the aging process.
Collapse
Affiliation(s)
- Yong Ryoul Yang
- Division of Molecular and Life Science, Pohang University of Science and Technology, Pohang, Kyungbuk 790-784, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Olivier-Van Stichelen S, Guinez C, Mir AM, Perez-Cervera Y, Liu C, Michalski JC, Lefebvre T. The hexosamine biosynthetic pathway and O-GlcNAcylation drive the expression of β-catenin and cell proliferation. Am J Physiol Endocrinol Metab 2012; 302:E417-24. [PMID: 22114026 DOI: 10.1152/ajpendo.00390.2011] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The short half-life protooncogene β-catenin acquires a remarkable stability in a large subset of cancers, mainly from mutations affecting its proteasomal degradation. In this sense, colorectal cancers (CRC) form a group of pathologies in which early steps of development are characterized by an aberrant expression of β-catenin and an uncontrolled proliferation of epithelial cells. Diet has long been described as an influence in the emergence of CRC, but the molecular events that link metabolic disorders and CRC remain elusive. Part of the explanation may reside in hexosamine biosynthetic pathway (HBP) flux. We found that fasted mice being force-fed with glucose or glucosamine leads to an increase of β-catenin and O-GlcNAcylation levels in the colon. MCF7 cells possessing intact Wnt/β-catenin signaling heavily expressed β-catenin when cultured in high glucose; this was reversed by the HBP inhibitor azaserine. HBP inhibition also decreased the expression of β-catenin in HT29 and, to a lesser extent, HCT116 cells. The same observation was made with regard to the transcriptional activity of β-catenin in HEK293 cells. Inhibition of HBP also blocked the glucose-mediated proliferation capacity of MCF7 cells, demonstrating that glucose affects both β-catenin expression and cell proliferation through the HBP. The ultimate element conducting these events is the dynamic posttranslational modification O-GlcNAcylation, which is intimately linked to HBP; the modulation of its level affected the expression of β-catenin and cell proliferation. In accordance with our findings, we propose that metabolic disorders correlate to CRC via an upregulation of HBP that reverberates on high O-GlcNAcylation levels including modification of β-catenin.
Collapse
|
23
|
Zachara NE. The roles of O-linked β-N-acetylglucosamine in cardiovascular physiology and disease. Am J Physiol Heart Circ Physiol 2012; 302:H1905-18. [PMID: 22287582 DOI: 10.1152/ajpheart.00445.2011] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
More than 1,000 proteins of the nucleus, cytoplasm, and mitochondria are dynamically modified by O-linked β-N-acetylglucosamine (O-GlcNAc), an essential post-translational modification of metazoans. O-GlcNAc, which modifies Ser/Thr residues, is thought to regulate protein function in a manner analogous to protein phosphorylation and, on a subset of proteins, appears to have a reciprocal relationship with phosphorylation. Like phosphorylation, O-GlcNAc levels change dynamically in response to numerous signals including hyperglycemia and cellular injury. Recent data suggests that O-GlcNAc appears to be a key regulator of the cellular stress response, the augmentation of which is protective in models of acute vascular injury, trauma hemorrhage, and ischemia-reperfusion injury. In contrast to these studies, O-GlcNAc has also been implicated in the development of hypertension and type II diabetes, leading to vascular and cardiac dysfunction. Here we summarize the current understanding of the roles of O-GlcNAc in the heart and vasculature.
Collapse
Affiliation(s)
- Natasha E Zachara
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
24
|
Olivier S, Mir AM, Michalski JC, Lefebvre T. Signalisation et prédispositions métaboliques liées au cancer colorectal. Med Sci (Paris) 2011; 27:514-20. [DOI: 10.1051/medsci/2011275017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
25
|
Kazemi Z, Chang H, Haserodt S, McKen C, Zachara NE. O-linked beta-N-acetylglucosamine (O-GlcNAc) regulates stress-induced heat shock protein expression in a GSK-3beta-dependent manner. J Biol Chem 2010; 285:39096-107. [PMID: 20926391 DOI: 10.1074/jbc.m110.131102] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
To investigate the mechanisms by which O-linked β-N-acetylglucosamine modification of nucleocytoplasmic proteins (O-GlcNAc) confers stress tolerance to multiple forms of cellular injury, we explored the role(s) of O-GlcNAc in the regulation of heat shock protein (HSP) expression. Using a cell line in which deletion of the O-GlcNAc transferase (OGT; the enzyme that adds O-GlcNAc) can be induced by 4-hydroxytamoxifen, we screened the expression of 84 HSPs using quantitative reverse transcriptase PCR. In OGT null cells the stress-induced expression of 18 molecular chaperones, including HSP72, were reduced. GSK-3β promotes apoptosis through numerous pathways, including phosphorylation of heat shock factor 1 (HSF1) at Ser(303) (Ser(P)(303) HSF1), which inactivates HSF1 and inhibits HSP expression. In OGT null cells we observed increased Ser(P)(303) HSF1; conversely, in cells in which O-GlcNAc levels had been elevated, reduced Ser(P)(303) HSF1 was detected. These data, combined with those showing that inhibition of GSK-3β in OGT null cells recovers HSP72 expression, suggests that O-GlcNAc regulates the activity of GSK-3β. In OGT null cells, stress-induced inactivation of GSK-3β by phosphorylation at Ser(9) was ablated providing a molecular basis for these findings. Together, these data suggest that stress-induced GlcNAcylation increases HSP expression through inhibition of GSK-3β.
Collapse
Affiliation(s)
- Zahra Kazemi
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | |
Collapse
|
26
|
Detecting the "O-GlcNAc-ome"; detection, purification, and analysis of O-GlcNAc modified proteins. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2009. [PMID: 19277546 DOI: 10.1007/978-1-59745-022-5_19] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
The modification of Ser and Thr residues of cytoplasmic and nuclear proteins with a monosaccharide of O-linked beta-N-acetylglucosamine is an essential and dynamic post-translational modification of metazoans. Deletion of the O-GlcNAc transferase (OGT), the enzyme that adds O-GlcNAc, is lethal in mammalian cells highlighting the importance of this post-translational modification in regulating cellular function. O-GlcNAc is believed to modulate protein function in a manner analogous to protein phosphorylation. Notably, on some proteins O-GlcNAc and O-phosphate modify the same Ser/Thr residue, suggesting that a reciprocal relationship exists between these two post-translational modifications. In this chapter we describe the most robust techniques for the detection and purification of O-GlcNAc modified proteins, and discuss some more specialized techniques for site-mapping and detection of O-GlcNAc during mass spectrometry.
Collapse
|
27
|
O-GlcNAc modifications regulate cell survival and epiboly during zebrafish development. BMC DEVELOPMENTAL BIOLOGY 2009; 9:28. [PMID: 19383152 PMCID: PMC2680843 DOI: 10.1186/1471-213x-9-28] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2008] [Accepted: 04/21/2009] [Indexed: 12/27/2022]
Abstract
Background The post-translational addition of the monosaccharide O-linked β-N-acetylglucosamine (O-GlcNAc) regulates the activity of a wide variety of nuclear and cytoplasmic proteins. The enzymes O-GlcNAc Transferase (Ogt) and O-GlcNAcase (Oga) catalyze, respectively, the attachment and removal of O-GlcNAc to target proteins. In adult mice, Ogt and Oga attenuate the response to insulin by modifying several components of the signal transduction pathway. Complete loss of ogt function, however, is lethal to mouse embryonic stem cells, suggesting that the enzyme has additional, unstudied roles in development. We have utilized zebrafish as a model to determine role of O-GlcNAc modifications in development. Zebrafish has two ogt genes, encoding six different enzymatic isoforms that are expressed maternally and zygotically. Results We manipulated O-GlcNAc levels in zebrafish embryos by overexpressing zebrafish ogt, human oga or by injecting morpholinos against ogt transcripts. Each of these treatments results in embryos with shortened body axes and reduced brains at 24 hpf. The embryos had 23% fewer cells than controls, and displayed increased rates of cell death as early as the mid-gastrula stages. An extensive marker analysis indicates that derivatives of three germ layers are reduced to variable extents, and the embryos are severely disorganized after gastrulation. Overexpression of Ogt and Oga delayed epiboly and caused a severe disorganization of the microtubule and actin based cytoskeleton in the extra-embryonic yolk syncytial layer (YSL). The cytoskeletal defects resemble those previously reported for embryos lacking function of the Pou5f1/Oct4 transcription factor spiel ohne grenzen. Consistent with this, Pou5f1/Oct4 is modified by O-GlcNAc in human embryonic stem cells. Conclusion We conclude that O-GlcNAc modifications control the activity of proteins that regulate apoptosis and epiboly movements, but do not seem to regulate germ layer specification. O-GlcNAc modifies the transcription factor Spiel ohne grenzen/Pou5f1 and may regulate its activity.
Collapse
|
28
|
Dehennaut V, Lefebvre T, Leroy Y, Vilain JP, Michalski JC, Bodart JF. Survey of O-GlcNAc level variations in Xenopus laevis from oogenesis to early development. Glycoconj J 2008; 26:301-11. [PMID: 18633701 DOI: 10.1007/s10719-008-9166-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2008] [Revised: 06/13/2008] [Accepted: 06/20/2008] [Indexed: 02/03/2023]
Abstract
Little is known about the impact of O-linked-N-acetylglucosaminylation (O-GlcNAc) in gametes production and developmental processes. Here we investigated changes in O-GlcNAc, UDP-GlcNAc and O-GlcNAc transferase (OGT) levels in Xenopus laevis from oogenesis to embryo hatching. We showed that in comparison to stage VI, stages I-V oocytes expressed higher levels of O-GlcNAc correlating changes in OGT expression, but not in UDP-GlcNAc pools. Upon progesterone stimulation, an O-GlcNAc level burst occurred during meiotic resumption long before MPF and Mos-Erk2 pathways activations. Finally, we observed high levels of O-GlcNAc, UDP-GlcNAc and OGT during segmentation that decreased concomitantly at the onset of gastrulation. Nevertheless, no correlation between the glycosylation, the nucleotide-sugar and the glycosyltransferase was observed after neurulation. Our results show that O-GlcNAc is regulated throughout oogenesis and development within a complex pattern and suggest that dysfunctions in the dynamics of this glycosylation could lead to developmental abnormalities.
Collapse
Affiliation(s)
- Vanessa Dehennaut
- UMR-CNRS 8576, Unité de Glycobiologie Structurale et Fonctionnelle, IFR 147, USTL, 59655, Villeneuve d'Ascq, France
| | | | | | | | | | | |
Collapse
|
29
|
Dehennaut V, Slomianny MC, Page A, Vercoutter-Edouart AS, Jessus C, Michalski JC, Vilain JP, Bodart JF, Lefebvre T. Identification of structural and functional O-linked N-acetylglucosamine-bearing proteins in Xenopus laevis oocyte. Mol Cell Proteomics 2008; 7:2229-45. [PMID: 18617508 DOI: 10.1074/mcp.m700494-mcp200] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
O-Linked N-acetylglucosaminylation (O-GlcNAcylation) (or O-linked N-acetylglucosamine (O-GlcNAc)) is an abundant and reversible glycosylation type found within the cytosolic and the nuclear compartments. We have described previously the sudden O-GlcNAcylation increase occurring during the Xenopus laevis oocyte G(2)/M transition, and we have demonstrated that the inhibition of O-GlcNAc-transferase (OGT) blocked this process, showing that the O-GlcNAcylation dynamism interferes with the cell cycle progression. In this work, we identified proteins that are O-GlcNAc-modified during the G(2)/M transition. Because of a low expression of O-GlcNAcylation in Xenopus oocyte, classical enrichment of O-GlcNAc-bearing proteins using O-GlcNAc-directed antibodies or wheat germ agglutinin lectin affinity were hard to apply, albeit these techniques allowed the identification of actin and erk2. Therefore, another strategy based on an in vitro enzymatic labeling of O-GlcNAc residues with azido-GalNAc followed by a chemical addition of a biotin alkyne probe and by enrichment of the tagged proteins on avidin beads was used. Bound proteins were analyzed by nano-LC-nano-ESI-MS/MS allowing for the identification of an average of 20 X. laevis oocyte O-GlcNAcylated proteins. In addition to actin and beta-tubulin, we identified metabolic/functional proteins such as PP2A, proliferating cell nuclear antigen, transitional endoplasmic reticulum ATPase, aldolase, lactate dehydrogenase, and ribosomal proteins. This labeling allowed for the mapping of a major O-GlcNAcylation site within the 318-324 region of beta-actin. Furthermore immunofluorescence microscopy enabled the direct visualization of O-GlcNAcylation and OGT on the meiotic spindle as well as the observation that chromosomally bound proteins were enriched in O-GlcNAc and OGT. The biological relevance of this post-translational modification both on microtubules and on chromosomes remains to be determined. However, the mapping of the O-GlcNAcylation sites will help to underline the function of this post-translational modification on each identified protein and will provide a better understanding of O-GlcNAcylation in the control of the cell cycle.
Collapse
Affiliation(s)
- Vanessa Dehennaut
- UMR-CNRS 8576, Unité de Glycobiologie Structurale et Fonctionnelle, Université des Sciences et Technologies de Lille, IFR 147, 59655 Villeneuve d'Ascq, France
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Dehennaut V, Hanoulle X, Bodart JF, Vilain JP, Michalski JC, Landrieu I, Lippens G, Lefebvre T. Microinjection of recombinant O-GlcNAc transferase potentiates Xenopus oocytes M-phase entry. Biochem Biophys Res Commun 2008; 369:539-46. [PMID: 18298951 DOI: 10.1016/j.bbrc.2008.02.063] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2008] [Accepted: 02/13/2008] [Indexed: 10/22/2022]
Abstract
In order to understand the importance of the cytosolic and nuclear-specific O-linked N-acetylglucosaminylation (O-GlcNAc) on cell cycle regulation, we recently reported that inhibition of O-GlcNAc transferase (OGT) delayed or blocked Xenopus laevis oocyte germinal vesicle breakdown (GVBD). Here, we show that increased levels of the long OGT isoform (ncOGT) accelerate X. laevis oocyte GVBD. A N-terminally truncated isoform (sOGT) with a similar in vitro catalytic activity towards a synthetic CKII-derived peptide had no effect, illustrating the important role played by the N-terminal tetratrico-peptide repeats. ncOGT microinjection in the oocytes increases both the speed and extent of O-GlcNAc addition, leads to a quicker activation of the MPF and MAPK pathways and finally results in a faster GVBD. Microinjection of anti-OGT antibodies leads to a delay of the GVBD kinetics. Our results hence demonstrate that OGT is a key molecule for the timely progression of the cell cycle.
Collapse
|
31
|
Dehennaut V, Lefebvre T, Sellier C, Leroy Y, Gross B, Walker S, Cacan R, Michalski JC, Vilain JP, Bodart JF. O-Linked N-Acetylglucosaminyltransferase Inhibition Prevents G2/M Transition in Xenopus laevis Oocytes. J Biol Chem 2007; 282:12527-36. [PMID: 17329255 DOI: 10.1074/jbc.m700444200] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Full-grown Xenopus oocytes are arrested at the prophase of the first meiotic division in a G(2)-like state. Progesterone triggers meiotic resumption also called the G(2)/M transition. This event is characterized by germinal vesicle breakdown (GVBD) and by a burst in phosphorylation level that reflects activation of M-phase-promoting factor (MPF) and MAPK pathways. Besides phosphorylation and ubiquitin pathways, increasing evidence has suggested that the cytosolic and nucleus-specific O-GlcNAc glycosylation also contributes to cell cycle regulation. To investigate the relationship between O-GlcNAc and cell cycle, Xenopus oocyte, in which most of the M-phase regulators have been discovered, was used. Alloxan, an O-GlcNAc transferase inhibitor, blocked G(2)/M transition in a concentration-dependent manner. Alloxan prevented GVBD and both MPF and MAPK activations, either triggered by progesterone or by egg cytoplasm injection. The addition of detoxifying enzymes (SOD and catalase) did not rescue GVBD, indicating that the alloxan effect did not occur through reactive oxygen species production. These results were strengthened by the use of a benzoxazolinone derivative (XI), a new O-GlcNAc transferase inhibitor. Conversely, injection of O-(2-acetamido-2-deoxy-D-glucopyranosylidene)amino-N-phenylcarbamate, an O-GlcNAcase inhibitor, accelerated the maturation process. Glutamine:fructose-6-phosphate amidotransferase inhibitors, azaserine and 6-diazo-5-oxonorleucine, failed to prevent GVBD. Such a strategy appeared to be inefficient; indeed, UDP-GlcNAc assays in mature and immature oocytes revealed a constant pool of the nucleotide sugar. Finally, we observed that cyclin B2, the MPF regulatory subunit, was associated with an unknown O-GlcNAc partner. The present work underlines a crucial role for O-GlcNAc in G(2)/M transition and strongly suggests that its function is required for cell cycle regulation.
Collapse
Affiliation(s)
- Vanessa Dehennaut
- Laboratoire de Régulation des Signaux de Division, EA 4020, Université des Sciences et Technologies de Lille, SN3, IFR147, 59655 Villeneuve d'Ascq, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Expression of the O-linked N-acetylglucosamine containing epitope H in normal myometrium and uterine smooth muscle cell tumors. Pathol Res Pract 2006; 203:31-7. [PMID: 17129677 DOI: 10.1016/j.prp.2006.08.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2005] [Accepted: 08/08/2006] [Indexed: 10/23/2022]
Abstract
Epitope H contains an O-linked N-acetylglucosamine (O-GlcNAc) residue in a specific conformation and/or environment recognized by monoclonal antibody H (mAbH). We have previously shown that epitope H is present in more than one polypeptide and in various types of normal and pathological cells. In the present study, we focused on uterine smooth muscle cell tumors and their adjacent normal myometrium to gain further insight into the expression patterns of epitope H in human tissues. The indirect immunoperoxidase method was applied using the mAbH and the monoclonal anti-cytokeratin 8 antibody (AbCK8) in 50 cases of typical uterine leiomyomas and in five cases of uterine leiomyosarcomas, with four cases belonging to Group II A and one to Group III according to Bell et al. [6]. Western immunoblotting was applied using mAbH and AbCK8 in five cases of uterine leiomyomas and their adjacent myometrium. The main results were as follows: (1) epitope H showed intense immunohistochemical expression in 46% (23/50) and moderate expression in 54% (27/50) of uterine leiomyomas, (2) epitope H showed intense immunohistochemical expression in 40% (2/5) and moderate expression in 60% (3/5) of uterine leiomyosarcomas, (3) epitope H showed no difference in the immunohistochemical expression between leiomyomas and their adjacent myometrium and between leiomyosarcomas and their adjacent myometrium, (4) immunohistochemical expression of cytokeratin 8 was not detected in the normal and neoplastic smooth muscle cells, (5) Western immunoblotting showed that in the smooth muscle cells of the myometrium and leiomyomas, epitope H is localized in four polypeptides with molecular weights of 100, 61, 59, and 54 kDa, and (6) Western immunoblotting did not detect cytokeratin 8 in the normal and neoplastic smooth muscle cells. The present results indicate fluctuations of the epitope expression levels in uterine smooth muscle cell tumors and their adjacent myometrium. These fluctuations may be of interest for gaining insight into the pathogenesis of uterine smooth muscle cell tumors, since O-GlcNAc glycosylation is involved in cell cycle and apoptosis pathways and may modify proteins involved in oncogenesis (tumor suppressor proteins and oncoproteins) and proteins with important biological functions such as cytoskeletal proteins, transcription factors, and heat-shock proteins. Furthermore, the present results indicate that cytokeratin 8, without being present in the cells of the myometrium, leiomyomas and leiomyosarcomas, shares its epitope H, which contains its unique sugar O-N-acetylglucosamine residue, with four other unrelated polypeptides produced by the normal and neoplastic smooth muscle cells. This should be considered when using anti-cytokeratin 8 antibodies in immunohistochemistry against smooth muscle cell tumors to avoid false positive immunohistochemical results.
Collapse
|
33
|
Zachara NE, Hart GW. Cell signaling, the essential role of O-GlcNAc! Biochim Biophys Acta Mol Cell Biol Lipids 2006; 1761:599-617. [PMID: 16781888 DOI: 10.1016/j.bbalip.2006.04.007] [Citation(s) in RCA: 291] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2005] [Revised: 04/20/2006] [Accepted: 04/24/2006] [Indexed: 11/28/2022]
Abstract
An increasing body of evidence points to a central regulatory role for glucose in mediating cellular processes and expands the role of glucose well beyond its traditional role(s) in energy metabolism. Recently, it has been recognized that one downstream effector produced from glucose is UDP-GlcNAc. Levels of UDP-GlcNAc, and the subsequent addition of O-linked beta-N-acetylglucosamine (O-GlcNAc) to Ser/Thr residues, is involved in regulating nuclear and cytoplasmic proteins in a manner analogous to protein phosphorylation. O-GlcNAc protein modification is essential for life in mammalian cells, highlighting the importance of this simple post-translational modification in basic cellular regulation. Recent research has highlighted key roles for O-GlcNAc serving as a nutrient sensor in regulating insulin signaling, the cell cycle, and calcium handling, as well as the cellular stress response.
Collapse
Affiliation(s)
- Natasha E Zachara
- Department of Biological Chemistry, Johns Hopkins Singapore, 31 Biopolis Way, #02-01 The Nanos, 138669 Singapore
| | | |
Collapse
|
34
|
Sohn KC, Do SI. Transcriptional regulation and O-GlcNAcylation activity of zebrafish OGT during embryogenesis. Biochem Biophys Res Commun 2005; 337:256-63. [PMID: 16188232 DOI: 10.1016/j.bbrc.2005.09.049] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2005] [Accepted: 09/09/2005] [Indexed: 10/25/2022]
Abstract
Zebrafish OGT (zOGT) sequence was identified in zebrafish (Danio rerio) genome and six different transcriptional variants of zOGT, designated var1 to var6, were isolated. Here we describe the developmental regulation of zOGT variants at transcriptional level and characterization of their OGT activities of protein O-GlcNAcylation. OGT transcriptional variants in zebrafish were differentially generated by alternative splicing and in particular, var1 and var2 were contained by 48 bp intron as a novel exon sequence, demonstrating that this form of OGT was not found in mammals. Transcript analysis revealed that var1 and var2 were highly expressed at early phase of development including unfertilized egg until dome stage whereas var3 and var4 were begins to be expressed at sphere stage until late phase of development. Our data indicate that var1 and var2 are likely to be maternal transcripts. The protein expression assay in Escherichia coli-p62 system showed that OGT activities of var3 and var4 were found to be only active whereas those of other variants were inactive.
Collapse
Affiliation(s)
- Kyung-Cheol Sohn
- Ajou University, Department of Life Science, Laboratory of Functional Glycomics, Republic of Korea
| | | |
Collapse
|
35
|
Slawson C, Housley MP, Hart GW. O-GlcNAc cycling: How a single sugar post-translational modification is changing the Way We think about signaling networks. J Cell Biochem 2005; 97:71-83. [PMID: 16237703 DOI: 10.1002/jcb.20676] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
O-GlcNAc is an ubiquitous post-translational protein modification consisting of a single N-acetlyglucosamine moiety linked to serine or threonine residues on nuclear and cytoplasmic proteins. Recent work has begun to uncover the functional roles of O-GlcNAc in cellular processes. O-GlcNAc modified proteins are involved in sensing the nutrient status of the surrounding cellular environment and adjusting the activity of cellular proteins accordingly. O-GlcNAc regulates cellular responses to hormones such as insulin, initiates a protective response to stress, modulates a cell's capacity to grow and divide, and regulates gene transcription. This review will focus on recent work involving O-GlcNAc in sensing the environment and regulating signaling cascades.
Collapse
Affiliation(s)
- Chad Slawson
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | |
Collapse
|