1
|
Tong J, Wang Z, Zhang J, Gao R, Liu X, Liao Y, Guo X, Wei Y. Advanced Applications of Nanomaterials in Atherosclerosis Diagnosis and Treatment: Challenges and Future Prospects. ACS APPLIED MATERIALS & INTERFACES 2024; 16:58072-58099. [PMID: 39432384 DOI: 10.1021/acsami.4c13607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Atherosclerosis-induced coronary artery disease is a major cause of cardiovascular mortality. Clinically, conservative treatment strategies for atherosclerosis still focus on lifestyle interventions and the use of lipid-lowering and anticoagulant medications. Despite achieving some therapeutic effects, these approaches are limited by low bioavailability, long intervention periods, and significant side effects. With the advancement of nanotechnology, nanomaterials have demonstrated extraordinary potential in the biomedical field. Their excellent biocompatibility, surface modifiability, and high targeting capability not only enable efficient diagnosis of plaque progression but also allow precise drug delivery within atherosclerotic plaques, significantly enhancing drug bioavailability and reducing systemic side effects. Here, we systematically review the current research progress of nanomaterials in the field of atherosclerosis to summarize not only the types of nanomaterials but also their applications in both the diagnosis and treatment of atherosclerosis. Notably, in the context of plaque therapy, we provide a comprehensive overview of current nanomaterial applications based on their targeted therapeutic systems for different cell types within plaques. Additionally, we address the persistent challenge of clinical translation of nanomaterials by summarizing current issues and providing directions for innovation and improvement in nanomaterial design. Overall, we believe that this review systematically summarizes the applications and challenges of biomedical nanomaterials in atherosclerosis diagnosis and therapy, thereby offering insights and references for the development of therapeutic materials for atherosclerosis.
Collapse
Affiliation(s)
- Junran Tong
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhiwen Wang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jiahui Zhang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ran Gao
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiangfei Liu
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Yuhan Liao
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaopeng Guo
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yumiao Wei
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
2
|
Tunkaew K, Liewhiran C, Vaddhanaphuti CS. Functionalized metal oxide nanoparticles: A promising intervention against major health burden of diseases. Life Sci 2024; 358:123154. [PMID: 39433083 DOI: 10.1016/j.lfs.2024.123154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/04/2024] [Accepted: 10/15/2024] [Indexed: 10/23/2024]
Abstract
Metal oxide nanoparticles (MONPs) is one of the most effective materials for medical applications with their substantial surface metallic ions and high surface area-volume ratio. Over decades, MONPs have been considered potential treatments due to their demonstrated ability and reactivity to target diverse cellular signaling pathways implicated in antimicrobial effects, as well as in the amelioration of oxidative stress, inflammation, cancer progression, and glucose together with lipid dysregulation. Based on their unique characteristics, MONPs have shown to be biodegradable and biocompatible vehicles for drugs, which have recently been applied in drug delivery as nanocarriers to enhance their delivery capacity for mechanistic membrane transport. However, little is known about the precise cellular responses, molecular mechanisms, and potential use of MONPs in the medical field. This review emphasizes on elaborating the biochemical reactivities of MONPs on molecular and cellular reactions, highlighting the physiological responses, mechanisms of action, certain drawbacks, and remediation of these functionalized materials. The significant goal of this literature is to shed light on the new perspectives of MONPs in pre-clinical application to pursue for clinical research as alternative-personalized medicines to prevent individuals from drastic diseases.
Collapse
Affiliation(s)
- Kornwalai Tunkaew
- Innovative Research Unit of Epithelial Transport and Regulation (iETR), Department of Physiology, Faculty of Medicine, Chiang Mai University, 50200, Thailand
| | - Chaikarn Liewhiran
- Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chutima S Vaddhanaphuti
- Innovative Research Unit of Epithelial Transport and Regulation (iETR), Department of Physiology, Faculty of Medicine, Chiang Mai University, 50200, Thailand.
| |
Collapse
|
3
|
Winnicka A, Brzeszczyńska J, Saluk J, Wigner-Jeziorska P. Nanomedicine in Bladder Cancer Therapy. Int J Mol Sci 2024; 25:10388. [PMID: 39408718 PMCID: PMC11476791 DOI: 10.3390/ijms251910388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/12/2024] [Accepted: 09/20/2024] [Indexed: 10/20/2024] Open
Abstract
Bladder cancer (BC) is one of the most common malignant neoplasms of the genitourinary system. Traditional BC therapies include chemotherapy, targeted therapy, and immunotherapy. However, limitations such as lack of specificity, cytotoxicity, and multidrug resistance pose serious challenges to the benefits of BC therapies. Consequently, current studies focus on the search for new therapeutic solutions. In recent years, there has been a growing interest in using nanotechnology in the treatment of both non-invasive (NMIBC) and invasive bladder cancer (MIBC). Nanotechnology is based on the use of both organic molecules (chitosan, liposomes) and inorganic molecules (superparamagnetic iron oxide nanoparticles) as carriers of active substances. The main aim of such molecules is the targeted transport and prolonged retention of the drug in the target tissue, which increases the therapeutic efficacy of the active substance. This review discusses the numerous types of nanoparticles (including chitosan, polymeric nanoparticles, liposomes, and protein nanoparticles), targeting mechanisms, and approved nanotherapeutics with oncological implications in cancer treatment. We also present nanoformulation applications in phototherapy, gene therapy, and immunotherapy. Moreover, we summarise the current perspectives, advantages, and challenges in clinical translation.
Collapse
Affiliation(s)
- Adrianna Winnicka
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 90-136 Lodz, Poland; (A.W.); (J.B.); (J.S.)
| | - Joanna Brzeszczyńska
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 90-136 Lodz, Poland; (A.W.); (J.B.); (J.S.)
| | - Joanna Saluk
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 90-136 Lodz, Poland; (A.W.); (J.B.); (J.S.)
| | - Paulina Wigner-Jeziorska
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-136 Lodz, Poland
| |
Collapse
|
4
|
Bennani I, Cherif Chefchaouni A, Hafidi Y, Moukafih B, El Marrakchi S, Bandadi FZ, Rahali Y, El Kartouti A. Advancements in the use of nanopharmaceuticals for cancer treatment. J Oncol Pharm Pract 2024; 30:1078-1083. [PMID: 38706188 DOI: 10.1177/10781552241251757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
OBJECTIVE Advances in nanotechnology make it possible to specifically target therapies to cancer cells and neoplasms, guide the surgical resection of tumors, and optimize the effectiveness of radiological treatments. This research article provides a concise synthesis of current knowledge in the field of galenic pharmacy focused on targeted drug delivery in oncology. This research article synthesizes current knowledge in galenic pharmacy, focusing on targeted drug delivery in oncology and reviewing recent advancements in nanopharmaceuticals for cancer treatment. DATA SOURCE The data for this review are derived from a comprehensive analysis of the most cited scientific literature (Pubmed). Recent studies, clinical trials, and technological breakthroughs related to nanopharmaceuticals have been rigorously examined. This diverse source ensures a comprehensive representation of the latest developments in the field. SUMMARY OF DATA The results highlight the emergence of nanopharmaceuticals as a promising approach to cancer treatment. The most common in oncology remain liposomes, nanopolymers, and nanocrystals. From a galenic point of view, these three forms offer a wide range of improvements compared to conventional forms such as improvement in solubility as well as stability. The same observation is in the clinic where treatment response rates are significantly improved. The most advantageous form will depend on the specific characteristics of each patient and each type of cancer. The precise design of nanocarriers allows for targeted drug delivery, enhancing therapeutic efficacy while reducing side effects. Concrete examples of clinical applications are presented, illustrating the practical potential of these advancements. CONCLUSION In conclusion, this review provides a holistic overview of recent developments in galenic pharmacy for targeted drug delivery in oncology. The stability of nanocarriers is a crucial challenge because it conditions the effectiveness and safety of the drugs transported. Environmental and biological variations encountered in the body can compromise this stability, jeopardizing the therapeutic effectiveness and safety of treatments. Likewise, personalized approaches are essential to address interindividual variations in treatment response, as well as patients' pharmacogenomic profiles, in order to optimize therapeutic effectiveness and minimize adverse effects.
Collapse
Affiliation(s)
- Ismail Bennani
- Department of Pharmacy, Faculty of Medicine, Pharmacy, and Dental Medicine of Fez, Sidi Mohamed Ben Abdellah University, Fez, Morocco
- Department of Pharmacy, Hassan II University Hospital of Fez, Fez, Morocco
| | - Ali Cherif Chefchaouni
- Team of Formulation and Quality Control of Health Products, Faculty of Medicine and Pharmacy, Mohammed V University of Rabat, Rabat, Morocco
| | - Youssef Hafidi
- Department of Pharmacy, Hassan II University Hospital of Fez, Fez, Morocco
| | - Badreddine Moukafih
- Department of Pharmacy, Faculty of Medicine, Pharmacy, and Dental Medicine of Fez, Sidi Mohamed Ben Abdellah University, Fez, Morocco
- Department of Pharmacy, Hassan II University Hospital of Fez, Fez, Morocco
| | - Soufiane El Marrakchi
- Department of Pharmacy, Faculty of Medicine, Pharmacy, and Dental Medicine of Fez, Sidi Mohamed Ben Abdellah University, Fez, Morocco
- Department of Pharmacy, Hassan II University Hospital of Fez, Fez, Morocco
| | - Fatima-Zahra Bandadi
- Department of Pharmacy, Faculty of Medicine, Pharmacy, and Dental Medicine of Fez, Sidi Mohamed Ben Abdellah University, Fez, Morocco
- Department of Pharmacy, Hassan II University Hospital of Fez, Fez, Morocco
| | - Younes Rahali
- Team of Formulation and Quality Control of Health Products, Faculty of Medicine and Pharmacy, Mohammed V University of Rabat, Rabat, Morocco
| | - Abdeslam El Kartouti
- Department of Pharmacy, Faculty of Medicine, Pharmacy, and Dental Medicine of Fez, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| |
Collapse
|
5
|
Adwani G, Bharti S, Kumar A. Engineered nanoparticles in non-invasive insulin delivery for precision therapeutics of diabetes. Int J Biol Macromol 2024; 275:133437. [PMID: 38944087 DOI: 10.1016/j.ijbiomac.2024.133437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/10/2024] [Accepted: 06/24/2024] [Indexed: 07/01/2024]
Abstract
Diabetes mellitus is a chronic disease leading to the death of millions a year across the world. Insulin is required for Type 1, Type 2, and gestational diabetic patients, however, there are various modes of insulin delivery out of which oral delivery is noninvasive and convenient. Moreover, factors like insulin degradation and poor intestinal absorption play a crucial role in its bioavailability and effectiveness. This review discusses various types of engineered nanoparticles used in-vitro, in-vivo, and ex-vivo insulin delivery along with their administration routes and physicochemical properties. Injectable insulin formulations, currently in use have certain limitations, leading to invasiveness, low patient compliance, causing inflammation, and side effects. Based on these drawbacks, this review emphasizes more on the non-invasive route, particularly oral delivery. The article is important because it focuses on how engineered nanoparticles can overcome the limitations of free therapeutics (drugs alone), navigate the barriers, and accomplish precision therapeutics in diabetes. In future, more drugs could be delivered with a similar strategy to cure various diseases and resolve challenges in drug delivery. This review significantly describes the role of various engineered nanoparticles in improving the bioavailability of insulin by protecting it from various barriers during non-invasive routes of delivery.
Collapse
Affiliation(s)
- Gunjan Adwani
- Department of Biotechnology, National Institute of Technology, Raipur 492010, CG, India
| | - Sharda Bharti
- Department of Biotechnology, National Institute of Technology, Raipur 492010, CG, India.
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology, Raipur 492010, CG, India.
| |
Collapse
|
6
|
Satapathy T, Singh G, Pandey RK, Shukla SS, Bhardwaj SK, Gidwani B. Novel Targets and Drug Delivery System in the Treatment of Postoperative Pain: Recent Studies and Clinical Advancement. Curr Drug Targets 2024; 25:25-45. [PMID: 38037995 DOI: 10.2174/0113894501271207231127063431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 10/18/2023] [Accepted: 11/07/2023] [Indexed: 12/02/2023]
Abstract
Pain is generated by a small number of peripheral targets. These can be made more sensitive by inflammatory mediators. The number of opioids prescribed to the patients can be reduced dramatically with better pain management. Any therapy that safely and reliably provides extended analgesia and is flexible enough to facilitate a diverse array of release profiles would be useful for improving patient comfort, quality of care, and compliance after surgical procedures. Comparisons are made between new and traditional methods, and the current state of development has been discussed; taking into account the availability of molecular and cellular level data, preclinical and clinical data, and early post-market data. There are a number of benefits associated with the use of nanotechnology in the delivery of analgesics to specific areas of the body. Nanoparticles are able to transport drugs to inaccessible bodily areas because of their small molecular size. This review focuses on targets that act specifically or primarily on sensory neurons, as well as inflammatory mediators that have been shown to have an analgesic effect as a side effect of their anti- inflammatory properties. New, regulated post-operative pain management devices that use existing polymeric systems were presented in this article, along with the areas for potential development. Analgesic treatments, both pharmacological and non-pharmacological, have also been discussed.
Collapse
Affiliation(s)
- Trilochan Satapathy
- Department of Pharmacology, Columbia Institute of Pharmacy, Raipur, Chhattisgarh-493111, India
| | - Gulab Singh
- Department of Pharmacology, Columbia Institute of Pharmacy, Raipur, Chhattisgarh-493111, India
| | - Ravindra Kumar Pandey
- Department of Pharmacology, Columbia Institute of Pharmacy, Raipur, Chhattisgarh-493111, India
| | - Shiv Shankar Shukla
- Department of Pharmacology, Columbia Institute of Pharmacy, Raipur, Chhattisgarh-493111, India
| | - Shiv Kumar Bhardwaj
- Department of Pharmacology, Columbia Institute of Pharmacy, Raipur, Chhattisgarh-493111, India
| | - Beena Gidwani
- Department of Pharmacology, Columbia Institute of Pharmacy, Raipur, Chhattisgarh-493111, India
| |
Collapse
|
7
|
Park JR, Kim G, Won J, Kim CW, Park D. Evaluation of Doxorubicin-loaded Echogenic Macroemulsion for Targeted Drug Delivery. Curr Drug Deliv 2024; 21:785-793. [PMID: 37016528 DOI: 10.2174/1567201820666230403111118] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/26/2023] [Accepted: 02/06/2023] [Indexed: 04/06/2023]
Abstract
BACKGROUND The latest technology trend in targeted drug delivery highlights stimuliresponsive particles that can release an anticancer drug in a solid tumor by responding to external stimuli. OBJECTIVE This study aims to design, fabricate, and evaluate an ultrasound-responsive drug delivery vehicle for an ultrasound-mediated drug delivery system. METHODS The drug-containing echogenic macroemulsion (eME) was fabricated by an emulsification method using the three phases (aqueous lipid solution as a shell, doxorubicin (DOX) contained oil, and perfluorohexane (PFH) as an ultrasound-responsive agent). The morphological structure of eMEs was investigated using fluorescence microscopy, and the size distribution was analyzed by using DLS. The echogenicity of eME was measured using a contrast-enhanced ultrasound device. The cytotoxicity was evaluated using a breast cancer cell (MDA-MB-231) via an in vitro cell experiment. RESULTS The obtained eME showed an ideal morphological structure that contained both DOX and PFH in a single particle and indicated a suitable size for enhancing ultrasound response and avoiding complications in the blood vessel. The echogenicity of eME was demonstrated via an in vitro experiment, with results showcasing the potential for targeted drug delivery. Compared to free DOX, enhanced cytotoxicity and improved drug delivery efficiency in a cancer cell were proven by using DOX-loaded eMEs and ultrasound. CONCLUSION This study established a platform technology to fabricate the ultrasound-responsive vehicle. The designed drug-loaded eME could be a promising platform with ultrasound technology for targeted drug delivery.
Collapse
Affiliation(s)
- Jong-Ryul Park
- BioInfra Life Science Inc., 524, Cancer Research Institute, Seoul National University College of Medicine, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, South Korea
| | - Gayoung Kim
- BioInfra Life Science Inc., 524, Cancer Research Institute, Seoul National University College of Medicine, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, South Korea
| | - Jongho Won
- BioInfra Life Science Inc., 524, Cancer Research Institute, Seoul National University College of Medicine, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, South Korea
| | - Chul-Woo Kim
- BioInfra Life Science Inc., 524, Cancer Research Institute, Seoul National University College of Medicine, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, South Korea
| | - Donghee Park
- BioInfra Life Science Inc., 524, Cancer Research Institute, Seoul National University College of Medicine, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, South Korea
| |
Collapse
|
8
|
Pavelić K, Pavelić SK, Bulog A, Agaj A, Rojnić B, Čolić M, Trivanović D. Nanoparticles in Medicine: Current Status in Cancer Treatment. Int J Mol Sci 2023; 24:12827. [PMID: 37629007 PMCID: PMC10454499 DOI: 10.3390/ijms241612827] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/13/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Cancer is still a leading cause of deaths worldwide, especially due to those cases diagnosed at late stages with metastases that are still considered untreatable and are managed in such a way that a lengthy chronic state is achieved. Nanotechnology has been acknowledged as one possible solution to improve existing cancer treatments, but also as an innovative approach to developing new therapeutic solutions that will lower systemic toxicity and increase targeted action on tumors and metastatic tumor cells. In particular, the nanoparticles studied in the context of cancer treatment include organic and inorganic particles whose role may often be expanded into diagnostic applications. Some of the best studied nanoparticles include metallic gold and silver nanoparticles, quantum dots, polymeric nanoparticles, carbon nanotubes and graphene, with diverse mechanisms of action such as, for example, the increased induction of reactive oxygen species, increased cellular uptake and functionalization properties for improved targeted delivery. Recently, novel nanoparticles for improved cancer cell targeting also include nanobubbles, which have already demonstrated increased localization of anticancer molecules in tumor tissues. In this review, we will accordingly present and discuss state-of-the-art nanoparticles and nano-formulations for cancer treatment and limitations for their application in a clinical setting.
Collapse
Affiliation(s)
- Krešimir Pavelić
- Faculty of Medicine, Juraj Dobrila University of Pula, Zagrebačka 30, 52100 Pula, Croatia
| | - Sandra Kraljević Pavelić
- Faculty of Health Studies, University of Rijeka, Ulica Viktora Cara Emina 5, 51000 Rijeka, Croatia
| | - Aleksandar Bulog
- Teaching Institute for Public Health of Primorsko-Goranska County, Krešimirova Ulica 52, 51000 Rijeka, Croatia
- Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
| | - Andrea Agaj
- Faculty of Medicine, Juraj Dobrila University of Pula, Zagrebačka 30, 52100 Pula, Croatia
| | - Barbara Rojnić
- Faculty of Medicine, Juraj Dobrila University of Pula, Zagrebačka 30, 52100 Pula, Croatia
| | - Miroslav Čolić
- Clear Water Technology Inc., 13008 S Western Avenue, Gardena, CA 90429, USA;
| | - Dragan Trivanović
- Faculty of Medicine, Juraj Dobrila University of Pula, Zagrebačka 30, 52100 Pula, Croatia
- Department of Oncology and Hematology, General Hospital Pula, Santorijeva 24a, 52200 Pula, Croatia
| |
Collapse
|
9
|
Law SSY, Miyamoto T, Numata K. Organelle-targeted gene delivery in plants by nanomaterials. Chem Commun (Camb) 2023. [PMID: 37183975 DOI: 10.1039/d3cc00962a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Genetic engineering of plants has revolutionized agriculture and has had a significant impact on our everyday life. It has allowed for the production of crops with longer shelf lives, enhanced yields and resistance to pests and disease. The application of nanomaterials in plant genetic engineering has further augmented these programs with higher delivery efficiencies, biocompatibility and the potential for plant regeneration. In particular, subcellular targeting using nanomaterials has recently become possible with the cutting-edge developments within nanomaterials, but remains challenging despite the promise in organellar engineering for the introduction of useful traits and the elucidation of subcellular interactions. This feature article provides an overview of nanomaterial delivery within plants and highlights the application of recent progress in nanomaterials for subcellular organelle-targeted delivery.
Collapse
Affiliation(s)
- Simon Sau Yin Law
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan.
| | - Takaaki Miyamoto
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan.
| | - Keiji Numata
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan.
- Department of Material Chemistry, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
10
|
Amirinasab M, Dehestani M. Theoretical aspects of interaction of the anticancer drug cytarabine with human serum albumin. Struct Chem 2023:1-9. [PMID: 37363044 PMCID: PMC10052281 DOI: 10.1007/s11224-023-02164-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 03/10/2023] [Indexed: 03/31/2023]
Abstract
Despite diagnostic and therapeutic methods, cancer is a major cause of death worldwide. Since anticancer drugs affect both normal and cancer cells, targeted drug delivery systems can play a key role in reducing the destructive effects of anticancer drugs on normal cells. In this regard, the use of stimulus-sensitive polymers has increased in recent years. This study has attempted to investigate interaction of the anticancer drug cytarabine with a stimuli-sensitive polymer, human serum albumin (HSA), one of the most abundant protein in blood plasma, via computational methods at both body temperature and tumor temperature. For this purpose, molecular docking was performed using Molegro virtual Docker software to select the best ligand in terms of binding energy to simulate molecular dynamics. Then, molecular dynamics simulation was performed on human serum albumin with code (1Ao6) and cytarabine with code (AR3), using Gromacs software and the results were presented in the graphs. The simulations were performed at 310 K (normal cell temperature) and 313 K (cancer cell temperature) in 100 ns. Results showed drug release occurred at a temperature of 313 K. These findings demonstrated the sensitivity of human serum albumin to temperature.
Collapse
Affiliation(s)
- Maryam Amirinasab
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Maryam Dehestani
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman, Iran
| |
Collapse
|
11
|
Guedes MDV, Marques MS, Berlitz SJ, Facure MHM, Correa DS, Steffens C, Contri RV, Külkamp-Guerreiro IC. Lamivudine and Zidovudine-Loaded Nanostructures: Green Chemistry Preparation for Pediatric Oral Administration. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:770. [PMID: 36839138 PMCID: PMC9965208 DOI: 10.3390/nano13040770] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Here, we report on the development of lipid-based nanostructures containing zidovudine (1 mg/mL) and lamivudine (0.5 mg/mL) for oral administration in the pediatric population, eliminating the use of organic solvents, which is in accordance with green chemistry principles. The formulations were obtained by ultrasonication using monoolein (MN) or phytantriol (PN), which presented narrow size distributions with similar mean particle sizes (~150 nm) determined by laser diffraction. The zeta potential and the pH values of the formulations were around -4.0 mV and 6.0, respectively. MN presented a slightly higher incorporation rate compared to PN. Nanoemulsions were obtained when using monoolein, while cubosomes were obtained when using phytantriol, as confirmed by Small-Angle X-ray Scattering. The formulations enabled drug release control and protection against acid degradation. The drug incorporation was effective and the analyses using an electronic tongue indicated a difference in palatability between the nanotechnological samples in comparison with the drug solutions. In conclusion, PN was considered to have the strongest potential as a novel oral formulation for pediatric HIV treatment.
Collapse
Affiliation(s)
- Marina D. V. Guedes
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre 90610-000, RS, Brazil
| | - Morgana S. Marques
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre 90610-000, RS, Brazil
| | - Simone J. Berlitz
- Programa de Pós-Graduação em Nanotecnologia Farmacêutica, Universidade Federal do Rio Grande do Sul, Porto Alegre 35400-000, RS, Brazil
| | - Murilo H. M. Facure
- Laboratório Nacional de Nanotecnologia para o Agronegócio (LNNA), Embrapa Instrumentação, São Carlos 70770-901, SP, Brazil
- Programa de Pós-Graduação em Química (PPGQ), Universidade Federal de São Carlos, São Carlos 66075-110, SP, Brazil
| | - Daniel S. Correa
- Laboratório Nacional de Nanotecnologia para o Agronegócio (LNNA), Embrapa Instrumentação, São Carlos 70770-901, SP, Brazil
- Programa de Pós-Graduação em Química (PPGQ), Universidade Federal de São Carlos, São Carlos 66075-110, SP, Brazil
| | - Clarice Steffens
- Programa de Pós-Graduação em Engenharia de Alimentos, Universidade Regional Integrada do Alto Uruguai e Missões, Erechim 99709-910, RS, Brazil
| | - Renata V. Contri
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre 90610-000, RS, Brazil
| | - Irene C. Külkamp-Guerreiro
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre 90610-000, RS, Brazil
- Programa de Pós-Graduação em Nanotecnologia Farmacêutica, Universidade Federal do Rio Grande do Sul, Porto Alegre 35400-000, RS, Brazil
- Programa de Pós-Graduação em Farmacologia e Terapêutica, Universidade Federal do Rio Grande do Sul, Porto Alegre 90050-170, RS, Brazil
| |
Collapse
|
12
|
Al-Hetty HRAK, Kadhim MS, Al-Tamimi JHZ, Ahmed NM, Jalil AT, Saleh MM, Kandeel M, Abbas RH. Implications of biomimetic nanocarriers in targeted drug delivery. EMERGENT MATERIALS 2023; 6:1-13. [PMID: 36686331 PMCID: PMC9846706 DOI: 10.1007/s42247-023-00453-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Nanomaterials and nanostructures have shown fascinating performances in various biomedicine fields, from cosmetic to cancer diagnosis and therapy. Engineered nanomaterials can encapsulate both lipophilic and hydrophilic substances/drugs to eliminate their limitations in the free forms, such as low bioavailability, multiple drug administration, off-target effects, and various side effects. Moreover, it is possible to deliver the loaded cargo to the desired site of action using engineered nanomaterials. One approach that has made nanocarriers more sophisticated is the "biomimetic" concept. In this scenario, biomolecules (e.g., natural proteins, peptides, phospholipids, cell membranes) are used as building blocks to construct nanocarriers and/or modify agents. For instance, it has been reported that specific cells tend to migrate to a particular site during specific circumstances (e.g., inflammation, tumor formation). Employing the cell membrane of these cells as a coating for nanocarriers confers practical targeting approaches. Accordingly, we introduce the biomimetic concept in the current study, review the recent studies, challenge the issues, and provide practical solutions.
Collapse
Affiliation(s)
| | - Maitha Sameer Kadhim
- Department of Prevention Dentistry, Al-Rafidain University College, Baghdad, Iraq
| | | | - Nahid Mahmood Ahmed
- College of Dentistry, National University of Science and Technology, Dhi Qar, Iraq
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla 51001 Iraq
| | - Marwan Mahmood Saleh
- Department of Biophysics, College of Applied Sciences, University of Anbar, Ramadi, Iraq
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Mahmoud Kandeel
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Hofuf, Al-Ahsa, 31982 Saudi Arabia
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelshikh University, Kafrelshikh, 33516 Egypt
| | - Ruaa H. Abbas
- Communication Technical Engineering, Collage of Technical Engineering, Al-Farahidi University, Baghdad, Iraq
| |
Collapse
|
13
|
Fuster MG, Moulefera I, Muñoz MN, Montalbán MG, Víllora G. Synthesis of Cellulose Nanoparticles from Ionic Liquid Solutions for Biomedical Applications. Polymers (Basel) 2023; 15:polym15020382. [PMID: 36679262 PMCID: PMC9867531 DOI: 10.3390/polym15020382] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/12/2023] Open
Abstract
A method for the synthesis of cellulose nanoparticles using the ionic liquid 1-ethyl-3-methylimidazolium acetate has been optimised. The use of a highly biocompatible biopolymer such as cellulose, together with the use of an ionic liquid, makes this method a promising way to obtain nanoparticles with good capability for drug carrying. The operating conditions of the synthesis have been optimised based on the average hydrodynamic diameter, the polydispersity index, determined by Dynamic Light Scattering (DLS) and the Z-potential, obtained by phase analysis light scattering (PALS), to obtain cellulose nanoparticles suitable for use in biomedicine. The obtained cellulose nanoparticles have been characterised by Fourier transform infrared spectroscopy (FTIR) with attenuated total reflectance (ATR), field emission scanning electron microscopy (FESEM) and thermogravimetric analysis (TGA/DTA). Finally, cell viability studies have been performed with a cancer cell line (HeLa) and with a healthy cell line (EA.hy926). These have shown that the cellulose nanoparticles obtained are not cytotoxic in the concentration range of the studied nanoparticles. The results obtained in this work constitute a starting point for future studies on the use of cellulose nanoparticles, synthesised from ionic liquids, for biomedical applications such as targeted drug release or controlled drug release.
Collapse
|
14
|
Identification of Nanoparticle Properties for Optimal Drug Delivery across a Physiological Cell Barrier. Pharmaceutics 2023; 15:pharmaceutics15010200. [PMID: 36678829 PMCID: PMC9865979 DOI: 10.3390/pharmaceutics15010200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/27/2022] [Accepted: 12/30/2022] [Indexed: 01/09/2023] Open
Abstract
Nanoparticles (NPs) represent an attractive strategy to overcome difficulties associated with the delivery of therapeutics. Knowing the optimal properties of NPs to address these issues could allow for improved in vivo responses. This work investigated NPs prepared from 5 materials of 3 sizes and 3 concentrations applied to a cell barrier model. The NPs permeability across a cell barrier and their effects on cell barrier integrity and cell viability were evaluated. The properties of these NPs, as determined in water (traditional) vs. media (realistic), were compared to cell responses. It was found that for all cellular activities, NP properties determined in media was the best predictor of the cell response. Notably, ZnO NPs caused significant alterations to cell viability across all 3 cell lines tested. Importantly, we report that the zeta potential of NPs correlates significantly with NP permeability and NP-induced changes in cell viability. NPs with physiological-based zeta potential of -12 mV result in good cell barrier penetration without considerable changes in cell viability.
Collapse
|
15
|
Tailored Functionalized Protein Nanocarriers for Cancer Therapy: Recent Developments and Prospects. Pharmaceutics 2023; 15:pharmaceutics15010168. [PMID: 36678796 PMCID: PMC9861211 DOI: 10.3390/pharmaceutics15010168] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023] Open
Abstract
Recently, the potential use of nanoparticles for the targeted delivery of therapeutic and diagnostic agents has garnered increased interest. Several nanoparticle drug delivery systems have been developed for cancer treatment. Typically, protein-based nanocarriers offer several advantages, including biodegradability and biocompatibility. Using genetic engineering or chemical conjugation approaches, well-known naturally occurring protein nanoparticles can be further prepared, engineered, and functionalized in their self-assembly to meet the demands of clinical production efficiency. Accordingly, promising protein nanoparticles have been developed with outstanding tumor-targeting capabilities, ultimately overcoming multidrug resistance issues, in vivo delivery barriers, and mimicking the tumor microenvironment. Bioinspired by natural nanoparticles, advanced computational techniques have been harnessed for the programmable design of highly homogenous protein nanoparticles, which could open new routes for the rational design of vaccines and drug formulations. The current review aims to present several significant advancements made in protein nanoparticle technology, and their use in cancer therapy. Additionally, tailored construction methods and therapeutic applications of engineered protein-based nanoparticles are discussed.
Collapse
|
16
|
Development and Evaluation of a Novel Polymer Drug Delivery System Using Cromolyn-Polyamides-Disulfide using Response Surface Design. J CHEM-NY 2022. [DOI: 10.1155/2022/7903310] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The aim of this study was to employ nanoparticles as drug carriers. The research involved the design of cromolyn polyamide-disulfide nanocomposites to overcome the problem of frequent cromolyn doses and improve their properties. The cromolyn polyamide-disulfide samples were prepared using several amounts of cromolyn and sodium polyamide-disulfide polymer at different pH values. Analysis of variance (ANOVA) was performed to obtain the significant independent variables affecting the dependent response by using a
value lower than 0.05. The nanocomposites produced were characterized using Fourier transform infrared (FTIR) spectroscopy and in vitro release. An FTIR test was used to evaluate the functional groups of cromolyn in nanocomposites, which indicated that the drug was encapsulated inside the polymer. All data indicated the presence of cromolyn in the nanocomposites. The release profile of nanocomposites was found to be sustained. Therefore, the outcome of this research project could be a starting point for further work to optimize and assess polyamide-disulfide polymers for delivering another drug.
Collapse
|
17
|
Dhoble S, Patravale V, Weaver E, Lamprou DA, Patravale T. Comprehensive Review on Novel Targets and Emerging Therapeutic Modalities for Pulmonary Arterial Hypertension. Int J Pharm 2022; 621:121792. [PMID: 35513217 DOI: 10.1016/j.ijpharm.2022.121792] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/17/2022] [Accepted: 04/28/2022] [Indexed: 01/17/2023]
Abstract
Pulmonary Arterial Hypertension (PAH) is the progressive increase in mean pulmonary arterial pressure (mPAP) (≥ 20 mmHg at rest). Current treatment strategies include the drugs targeting at nitric oxide pathway, endothelin receptors, prostaglandin receptors, thromboxane receptors and phosphodiesterase inhibitors, which provides the symptomatic relief. Despite of these treatments, the mortality amongst the PAH patients remains high due to non-reversal of the condition. This review primarily covers the introduction of PAH and the current treatments of the disease. This is followed by the newer disease targets expressed in the pathobiology of the disease like Rho Kinase Pathway, Vasoactive Intestinal Peptide Pathway, Receptor Tyrosine Kinases, Serotonin signalling pathway, Voltage-gated potassium (Kv) channel pathway. Newer formulation strategies for targeting at these specific receptors were covered and includes nano formulations like liposomes, Micelles, Polymeric Nanoparticles, Solid Lipid Nanoparticles (SLN), Bioresorbable stents, NONOates, Cell-Based Therapies, miRNA therapy for PAH. Novel targets were identified for their role in the pathogenesis of the PAH and needs to be targeted with new molecules or existing molecules effectively. Nanosystems have shown their potential as alternative carriers on the virtue of their better performance than traditional drug delivery systems.
Collapse
Affiliation(s)
- Sagar Dhoble
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga (East), Mumbai 400 019, India
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga (East), Mumbai 400 019, India.
| | - Edward Weaver
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, United Kingdom
| | - Dimitrios A Lamprou
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, United Kingdom.
| | - Tanmay Patravale
- Department of General Surgery, Jawaharlal Nehru Medical College, KLE Academy of Higher Education and Research, Belagavi 590 010, India
| |
Collapse
|
18
|
Yin T, Diao Z, Blum NT, Qiu L, Ma A, Huang P. Engineering Bacteria and Bionic Bacterial Derivatives with Nanoparticles for Cancer Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104643. [PMID: 34908239 DOI: 10.1002/smll.202104643] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/25/2021] [Indexed: 06/14/2023]
Abstract
Natural bacteria are interesting subjects for cancer treatments owing to their unique autonomy-driven and hypoxic target properties. Genetically modified bacteria (such as bacteria with msbB gene and aroA gene modifications) can effectively cross sophisticated physiological barriers and transport antitumor agents into deep tumor tissues, and they have good biosafety. Additionally, bacteria can secrete cytokines (such as interleukin-224, interferon-gamma [IFN-γ], and interleukin-1β) and activate antitumor immune responses in the tumor microenvironment, resulting in tumor inhibition. All of these characteristics can be easily utilized to develop synergistic antitumor strategies by combining bacteria-based agents with other therapeutic approaches. Herein, representative studies of bacteria-instructed multimodal synergistic cancer therapy are introduced (e.g., photothermal therapy, chemoimmunotherapy, photodynamic therapy, and photocontrolled bacterial metabolite therapy), and their key advantages are systematically expounded. The current challenges and future prospects in advancing the development of bacteria-based micro/nanomedicines in the field of synthetic biology research are also emphasized, which will hopefully promote the development of related bacteria-based cancer therapies.
Collapse
Affiliation(s)
- Ting Yin
- Guangdong Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Dongguan, 523808, P. R. China
| | - Zhenying Diao
- Guangdong Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Dongguan, 523808, P. R. China
| | - Nicholas Thomas Blum
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, P. R. China
| | - Long Qiu
- Guangdong Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Dongguan, 523808, P. R. China
| | - Aiqing Ma
- Guangdong Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Dongguan, 523808, P. R. China
| | - Peng Huang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, P. R. China
| |
Collapse
|
19
|
Ren X, Wang Y, Jia L, Guo X, He X, Zhao Z, Gao D, Yang Z. Intelligent Nanomedicine Approaches Using Medical Gas-Mediated Multi-Therapeutic Modalities Against Cancer. J Biomed Nanotechnol 2022; 18:24-49. [PMID: 35180898 DOI: 10.1166/jbn.2022.3224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The emerging area of gas-mediated cancer treatment has received widespread attention in the medical community. Featuring unique physical, chemical, and biological properties, nanomaterials can facilitate the delivery and controllable release of medicinal gases at tumor sites, and also serve as ideal platforms for the integration of other therapeutic modalities with gas therapy to augment cancer therapeutic efficacy. This review presents an overview of anti-cancer mechanisms of several therapeutic gases: nitric oxide (NO), hydrogen sulfide (H₂S), carbon monoxide (CO), oxygen (O₂), and hydrogen (H₂). Controlled release behaviors of gases under different endogenous and exogenous stimuli are also briefly discussed, followed by their synergistic effects with different therapeutic modes. Moreover, the potential challenges and future prospects regarding gas therapy based on nanomaterials are also described, aiming to facilitate the advancement of gas therapeutic nanomedicine in new frontiers for highly efficient cancer treatment.
Collapse
Affiliation(s)
- Xuechun Ren
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Ying Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Liangliang Jia
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xiaoqing Guo
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xinyu He
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhipeng Zhao
- School of Physical Education, Xizang Minzu University, Xianyang, 712000, Shaanxi, China
| | - Di Gao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhe Yang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
20
|
Chandrakala V, Aruna V, Angajala G. Review on metal nanoparticles as nanocarriers: current challenges and perspectives in drug delivery systems. EMERGENT MATERIALS 2022; 5:1593-1615. [PMID: 35005431 PMCID: PMC8724657 DOI: 10.1007/s42247-021-00335-x] [Citation(s) in RCA: 170] [Impact Index Per Article: 85.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 12/09/2021] [Indexed: 05/02/2023]
Abstract
Over the past few years, nanotechnology has been attracting considerable research attention because of their outstanding mechanical, electromagnetic and optical properties. Nanotechnology is an interdisciplinary field comprising nanomaterials, nanoelectronics, and nanobiotechnology, as three areas which extensively overlap. The application of metal nanoparticles (MNPs) has drawn much attention offering significant advances, especially in the field of medicine by increasing the therapeutic index of drugs through site specificity preventing multidrug resistance and delivering therapeutic agents efficiently. Apart from drug delivery, some other applications of MNPs in medicine are also well known such as in vivo and in vitro diagnostics and production of enhanced biocompatible materials and nutraceuticals. The use of metallic nanoparticles for drug delivery systems has significant advantages, such as increased stability and half-life of drug carrier in circulation, required biodistribution, and passive or active targeting into the required target site. Green synthesis of MNPs is an emerging area in the field of bionanotechnology and provides economic and environmental benefits as an alternative to chemical and physical methods. Therefore, this review aims to provide up-to-date insights on the current challenges and perspectives of MNPs in drug delivery systems. The present review was mainly focused on the greener methods of metallic nanocarrier preparations and its surface modifications, applications of different MNPs like silver, gold, platinum, palladium, copper, zinc oxide, metal sulfide and nanometal organic frameworks in drug delivery systems.
Collapse
Affiliation(s)
- V. Chandrakala
- Department of Chemistry, Kalasalingam Academy of Research and Education, Anand Nagar, Krishnan Koil, 626126 Tamil Nadu India
| | - Valmiki Aruna
- Department of Chemistry, Kalasalingam Academy of Research and Education, Anand Nagar, Krishnan Koil, 626126 Tamil Nadu India
| | - Gangadhara Angajala
- Department of Chemistry, Kalasalingam Academy of Research and Education, Anand Nagar, Krishnan Koil, 626126 Tamil Nadu India
| |
Collapse
|
21
|
Qi W, Li T, Zhang C, Liu F, Wang J, Chen D, Fang X, Wu C, Li K, Xi L. Light-Controlled Precise Delivery of NIR-Responsive Semiconducting Polymer Nanoparticles with Promoted Vascular Permeability. Adv Healthc Mater 2021; 10:e2100569. [PMID: 34313004 DOI: 10.1002/adhm.202100569] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/25/2021] [Indexed: 12/30/2022]
Abstract
The endothelial barrier plays an essential role in health and disease by protecting organs from toxins while allowing nutrients to access the circulation. However, it is the major obstacle that limits the delivery of therapeutic drugs to the diseased tissue. Here, it is reported for the first time that near-infrared (NIR) laser pulses can transiently promote the delivery of semiconducting polymer nanoparticles passing the vascular barrier via photoacoustic-effect-induced accumulation, only by the aid of pulse laser irradiation. This strategy enables selective and substantial accumulation of the NIR-absorbing nanoparticles inside specific tissues, implying the discovery of an unprecedented approach for light-controlled nanoparticle delivery. Especially, the nanoparticle delivery in solid tumors by 10-min laser scanning is approximately six times higher than that of the enhanced permeability and retention (EPR) effect in 24 h under current experimental conditions. Further results confirm that this strategy facilitates substantial accumulation of nanoparticles in the mouse brain with intact skull. This approach thus opens a new door for tissue-specific delivery of nanomaterials with an unprecedented level of efficiency and precision.
Collapse
Affiliation(s)
- Weizhi Qi
- Department of Biomedical Engineering Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Tingting Li
- Department of Biomedical Engineering Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Chen Zhang
- Department of Biomedical Engineering Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Fei Liu
- Department of Biomedical Engineering Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Jun Wang
- Department of Biomedical Engineering Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Dandan Chen
- Department of Biomedical Engineering Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Xiaofeng Fang
- Department of Biomedical Engineering Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Changfeng Wu
- Department of Biomedical Engineering Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Kai Li
- Department of Biomedical Engineering Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Lei Xi
- Department of Biomedical Engineering Southern University of Science and Technology Shenzhen Guangdong 518055 China
| |
Collapse
|
22
|
Hussain MS, Sharma P, Dhanjal DS, Khurana N, Vyas M, Sharma N, Mehta M, Tambuwala MM, Satija S, Sohal SS, Oliver BGG, Sharma HS. Nanotechnology based advanced therapeutic strategies for targeting interleukins in chronic respiratory diseases. Chem Biol Interact 2021; 348:109637. [PMID: 34506765 DOI: 10.1016/j.cbi.2021.109637] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/22/2021] [Accepted: 09/06/2021] [Indexed: 02/07/2023]
Abstract
Both communicable and non-communicable chronic respiratory conditions have accorded for suffering of millions of people of all ages and stated to be leading cause of death, morbidity, economic and social pressures, and disability-adjusted life-years (DALYs) worldwide. These illnesses impair patient's health and negatively impacts families and society, particularly in low and middle-income countries. Chronic respiratory diseases (CRDs) affect different organs of respiratory system, involving airways, parenchyma, and pulmonary vasculature. As the number of respiratory diseases are exponentially escalating but still the stakeholders are not paying attention towards its serious complications. Currently, the treatment being used primarily focusses only on alleviating symptoms of these illness rather delivering the therapeutic agent at target site for optimal care and/or prevention. Lately, extensive research is being conducted on airways and systemic inflammation, oxidative stress, airway, or parenchymal rehabilitation. From which macrophages, neutrophils, and T cells, as well as structural cells as fibroblasts, epithelial, endothelial, and smooth muscle cells have been found to be active participants that are involved in these chronic respiratory diseases. The pathogenesis of all these chronic respiratory diseases gets caused differently via mediators and proteins, including cytokines, chemokines, growth factors and oxidants. Presently, the target of prescription therapies is to reduce the inflammation of airways and relieve the airway contraction. In all studies, cytokines have been found to play an imperative role in fostering chronic airway inflammation and remodelling. Owing to the limitations of conventional treatments, the current review aims to summarize the current knowledge about the chronic respiratory disease and discuss further about the various conventional methods that can be used for treating this ailment. Additionally, it also highlights and discusses about the advanced drug delivery system that are being used for targeting the interleukins for the treatment of CRDs.
Collapse
Affiliation(s)
- Md Sadique Hussain
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Parvarish Sharma
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Daljeet Singh Dhanjal
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Navneet Khurana
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Manish Vyas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Neha Sharma
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Meenu Mehta
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Murtaza M Tambuwala
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, Londonderry, BT52 1SA, United Kingdom
| | - Saurabh Satija
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| | - Sukhwinder Singh Sohal
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, 7248, Australia
| | - Brian G G Oliver
- School of Life Sciences, University of Technology Sydney, Sydney, NSW, 2007, Australia; Woolcock Institute of Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - Hari S Sharma
- Department of Pathology and Clinical Bioinformatics, Erasmus MC, University Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, the Netherlands.
| |
Collapse
|
23
|
Sikora KN, Castellanos-García LJ, Hardie JM, Liu Y, Farkas ME, Rotello VM, Vachet RW. Nanodelivery vehicles induce remote biochemical changes in vivo. NANOSCALE 2021; 13:12623-12633. [PMID: 34264256 PMCID: PMC8380036 DOI: 10.1039/d1nr02563e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nanomaterial-based platforms are promising vehicles for the controlled delivery of therapeutics. For these systems to be both efficacious and safe, it is essential to understand where the carriers accumulate and to reveal the site-specific biochemical effects they produce in vivo. Here, a dual-mode mass spectrometry imaging (MSI) method is used to evaluate the distributions and biochemical effects of anti-TNF-α nanoparticle stabilized capsules (NPSCs) in mice. It is found that most of the anticipated biochemical changes occur in sub-organ regions that are separate from where the nanomaterials accumulate. In particular, TNF-α-specific lipid biomarker levels change in immune cell-rich regions of organs, while the NPSCs accumulate in spatially isolated filtration regions. Biochemical changes that are associated with the nanomaterials themselves are also observed, demonstrating the power of matrix-assisted laser desorption/ionization (MALDI) MSI to reveal markers indicating possible off-target effects of the delivery agent. This comprehensive assessment using MSI provides spatial context of nanomaterial distributions and efficacy that cannot be easily achieved with other imaging methods, demonstrating the power of MSI to evaluate both expected and unexpected outcomes associated with complex therapeutic delivery systems.
Collapse
Affiliation(s)
- Kristen N Sikora
- Department of Chemistry, University of Massachusetts Amherst, 240 Thatcher Way, Life Sciences Laboratory, Amherst, MA 01003, USA.
| | | | | | | | | | | | | |
Collapse
|
24
|
Elassy N, El-Dafrawy S, Abd El-Azim AO, El-Khawaga OAY, Negm A. Zinc oxide nanoparticles augment CD4, CD8, and GLUT-4 expression and restrict inflammation response in streptozotocin-induced diabetic rats. IET Nanobiotechnol 2021; 14:680-687. [PMID: 33108324 DOI: 10.1049/iet-nbt.2020.0079] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
This study evaluated the biochemical, molecular, and histopathological mechanisms involved in the hypoglycaemic effect of zinc oxide nanoparticles (ZnONPs) in experimental diabetic rats. ZnONPs were prepared by the sol-gel method and characterised by scanning and transmission electron microscopy (SEM and TEM). To explore the possible hypoglycaemic and antioxidant effect of ZnONPs, rats were grouped as follows: control group, ZnONPs treated group, diabetic group, and diabetic + ZnONPs group. Upon treatment with ZnONPs, a significant alteration in the activities of superoxide dismutase, glutathione peroxidase, and the levels of insulin, haemoglobin A1c, and the expression of cluster of differentiation 4+ (CD4+), CD8+ T cells, glucose transporter type-4 (GLUT-4), tumour necrosis factor, and interleukin-6 when compared to diabetic and their control rats. ZnONPs administration to the diabetic group showed eminent blood glucose control and restoration of the biochemical profile. This raises their active role in controlling pancreas functions to improve glycaemic status as well as the inflammatory responses. Histopathological investigations showed the non-toxic and therapeutic effect of ZnONPs on the pancreas. TEM of pancreatic tissues displayed restoration of islets of Langerhans and increased insulin-secreting granules. This shows the therapeutic application of ZnONPs as a safe anti-diabetic agent and to have a potential for the control of diabetes.
Collapse
Affiliation(s)
- Norhan Elassy
- Chemistry Department, Faculty of Science, Mansoura University, 35516 Mansoura, Egypt
| | - Shady El-Dafrawy
- Chemistry Department, Faculty of Science, Mansoura University, 35516 Mansoura, Egypt
| | - Amira O Abd El-Azim
- Zoology Department, Faculty of Science, Mansoura University, 35516 Mansoura, Egypt
| | - Om Ali Y El-Khawaga
- Chemistry Department, Faculty of Science, Mansoura University, 35516 Mansoura, Egypt
| | - Amr Negm
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa, 31982 Saudi Arabia.
| |
Collapse
|
25
|
Abdolmaleki A, Asadi A, Gurushankar K, Karimi Shayan T, Abedi Sarvestani F. Importance of Nano Medicine and New Drug Therapies for Cancer. Adv Pharm Bull 2021; 11:450-457. [PMID: 34513619 PMCID: PMC8421622 DOI: 10.34172/apb.2021.052] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 09/26/2020] [Accepted: 10/17/2020] [Indexed: 12/14/2022] Open
Abstract
Cancer is one of the deadly diseases leading to approximately 7.6 million deaths worldwide, with the mortality rate of 13%, and the number of deaths is expected to increase to 13.1 million within the next 10 years. In controlled drug delivery systems (DDS), the drug is transported to the desired location. Thus, the influence of drugs on vital tissues and undesirable side effects can be minimised. Additionally, DDS protects the drug from rapid degradation or clearance and enhances drug concentration in target tissues, and therefore, minimise the required dose of drug. This modern form of therapy is particularly important when there is a discrepancy between the dose and concentration of a drug. Cell-specific targeting can be achieved by attaching drugs to individually designed carriers. Recent developments in nanotechnology have shown that nanoparticles (particles with diameter < 100 nm in at least one dimension) have great potential as drug carriers. Because of their small size, these nanostructures exhibit unique physicochemical and biological properties that make them a favourable material for biomedical applications. Therefore, in this review, we aimed to describe the importance and types of nanomedicines and efficient ways in which new drug delivery systems for the treatment of cancer can be developed.
Collapse
Affiliation(s)
- Arash Abdolmaleki
- Department of Engineering Sciences, Faculty of Advanced Technologies, University of Mohaghegh Ardabili, Namin, Iran
- Bio Science and Biotechnology Research center (BBRC), Sabalan University of Advanced Technologies (SUAT), Namin, Iran
| | - Asadollah Asadi
- Department of Biology, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Krishnamoorthy Gurushankar
- Laboratory of Computational Modeling of Drugs, Higher Medical and Biological School, South Ural State University, Chelyabinsk-454 080, Russia
- Department of Physics, Kalasalingam Academy of Research and Education, Krishnankoil- 626126, Tamil Nadu, India
| | - Tahereh Karimi Shayan
- Department of Biology, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran
| | | |
Collapse
|
26
|
Promoting musculoskeletal system soft tissue regeneration by biomaterial-mediated modulation of macrophage polarization. Bioact Mater 2021; 6:4096-4109. [PMID: 33997496 PMCID: PMC8091177 DOI: 10.1016/j.bioactmat.2021.04.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/27/2021] [Accepted: 04/12/2021] [Indexed: 02/06/2023] Open
Abstract
Musculoskeletal disorders are common in clinical practice. Repairing critical-sized defects in musculoskeletal systems remains a challenge for researchers and surgeons, requiring the application of tissue engineering biomaterials. Successful application depends on the response of the host tissue to the biomaterial and specific healing process of each anatomical structure. The commonly-held view is that biomaterials should be biocompatible to minimize local host immune response. However, a growing number of studies have shown that active modulation of the immune cells, particularly macrophages, via biomaterials is an effective way to control immune response and promote tissue regeneration as well as biomaterial integration. Therefore, we critically review the role of macrophages in the repair of injured musculoskeletal system soft tissues, which have relatively poor regenerative capacities, as well as discuss further enhancement of target tissue regeneration via modulation of macrophage polarization by biomaterial-mediated immunomodulation (biomaterial properties and delivery systems). This active regulation approach rather than passive-evade strategy maximizes the potential of biomaterials to promote musculoskeletal system soft tissue regeneration and provides alternative therapeutic options for repairing critical-sized defects. Different phenotypes of macrophages play a crucial role in musculoskeletal system soft tissue regeneration. Biomaterials and biomaterial-based delivery systems can be utilized to modulate macrophage polarization. This review summarizes immunomodulatory biomaterials to spur musculoskeletal system soft tissue regeneration.
Collapse
|
27
|
Ullah S, Shah SWA, Qureshi MT, Hussain Z, Ullah I, Kalsoom UE, Rahim F, Rahman SSU, Sultana N, Khan MK. Antidiabetic and Hypolipidemic Potential of Green AgNPs against Diabetic Mice. ACS APPLIED BIO MATERIALS 2021; 4:3433-3442. [PMID: 35014427 DOI: 10.1021/acsabm.1c00005] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Green nanotechnology-based approaches have been acquired as environmentally friendly and cost effective with many biomedical applications. The present study reports the synthesis of silver nanoparticles (AgNPs) from the leaves of Emblica phyllanthus, characterized by UV-Vis spectroscopy, EDX, SEM, AFM, and XRD. The acute and chronic antidiabetic and hypolipidemic potential of AgNPs was studied in alloxan-induced diabetic mice. A total of 11 groups (G1-G11, n = 6) of mice were treated with different concentrations (150 and 300 mM) and sizes of AgNPs and compared with those treated with standard glibenclamide. A significant decrease (P > 0.05) in the glucose level was achieved for 30, 45, and 65 nm after 15 days of treatment compared to the diabetic control. The oral administration of optimal AgNPs reduced the glucose level from 280.83 ± 4.17 to 151.17 ± 3.54 mg/dL, while the standard drug glibenclamide showed the reduction in glucose from 265.5 ± 1.43 to 192 ± 3.4 mg/dL. Histopathological studies were performed in dissected kidney and liver tissues of the treated mice, which revealed significant recovery in the liver and kidney after AgNP treatment. Acute toxicity study revealed that AgNPs were safe up to a size of 400 nm and the raw leaf extract of Emblica phyllanthus was safe up to 2500 mg/kg b.w. This study may help provide more effective and safe treatment options for diabetes compared to traditionally prescribed antidiabetic drugs.
Collapse
Affiliation(s)
- Salim Ullah
- Department of Biochemistry, Hazara University, Mansehra 21120, Khyber Pakhtunkhwa, Pakistan.,University of Science and Technology China (USTC), Hefei 230026, China
| | - Syed Wadud Ali Shah
- Department of Pharmacy, University of Malakand, Chakdara 23051, Khyber Pakhtunkhwa, Pakistan
| | | | - Zahid Hussain
- University of Science and Technology China (USTC), Hefei 230026, China
| | - Ismat Ullah
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, CAS, Suzhou 215123, China
| | - Umm-E Kalsoom
- Department of Biochemistry, Hazara University, Mansehra 21120, Khyber Pakhtunkhwa, Pakistan
| | - Fazal Rahim
- University of Science and Technology China (USTC), Hefei 230026, China
| | | | - Nighat Sultana
- Department of Biochemistry, Hazara University, Mansehra 21120, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Kamran Khan
- Oxford Suzhou Centre for Advanced Research (OSCAR), University of Oxford, Suzhou 215123, China
| |
Collapse
|
28
|
Recent advances in iron oxide nanoparticles for brain cancer theranostics: from in vitro to clinical applications. Expert Opin Drug Deliv 2021; 18:949-977. [PMID: 33567919 DOI: 10.1080/17425247.2021.1888926] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Today, the development of multifunctional nanoplatforms is more seriously considered in the field of cancer theranostics.Areas covered: In this respect, nanoparticles provide several advantages over the routine, conventional diagnostic methods, and treatments. Due to the expedient properties of iron oxide nanoparticles, such as being readily modified, great payload potential, intrinsic magnetic qualification, considerable biocompatibility, and overwhelming response to targeting strategies, these nanoparticles can be considered good candidates for application as diagnostic contrast agents and drug/gene delivery vehicles, while also being incorporated into hyperthermia-based approaches. Interestingly, these agents are detectable with routine imaging modalities such as magnetic resonance imaging.Expert opinion: Therefore, combining the traditional diagnostics and therapies with nanotechnological approaches may leave a positive impact on the survival rate of patients with cancer. This review summarizes the application of magnetic iron oxide nanoparticles in both in vitro and in vivo models of brain tumors.
Collapse
|
29
|
Sadasivam R, Packirisamy G, Shakya S, Goswami M. Non-invasive multimodal imaging of Diabetic Retinopathy: A survey on treatment methods and Nanotheranostics. Nanotheranostics 2021; 5:166-181. [PMID: 33564616 PMCID: PMC7868006 DOI: 10.7150/ntno.56015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 12/22/2020] [Indexed: 12/12/2022] Open
Abstract
Diabetes Retinopathy (DR) is one of the most prominent microvascular complications of diabetes. It is one of the pre-eminent causes for vision impairment followed by blindness among the working-age population worldwide. The de facto cause for DR remains challenging, despite several efforts made to unveil the mechanism underlying the pathology of DR. There is quite less availability of the low cost pre-emptive theranostic imaging tools in terms of in-depth resolution, due to the multiple factors involved in the etiology of DR. This review work comprehensively explores the various reports and research works on all perspectives of diabetic retinopathy (DR), and its mechanism. It also discusses various advanced non-destructive imaging modalities, current, and future treatment approaches. Further, the application of various nanoparticle-based drug delivery strategies used for the treatment of DR are also discussed. In a nutshell, the present review work bolsters the pursuit of the development of an advanced non-invasive optical imaging modal with a nano-theranostic approach for the future diagnosis and treatment of DR and its associated ocular complications.
Collapse
Affiliation(s)
- Rajkumar Sadasivam
- Divyadrishti Imaging Laboratory, Department of Physics, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand-247667, India
| | - Gopinath Packirisamy
- Nanobiotechnology Laboratory, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand-247667, India
| | - Snehlata Shakya
- Department of clinical physiology, Lund University, Skåne University Hospital, Skåne, Sweden
| | - Mayank Goswami
- Divyadrishti Imaging Laboratory, Department of Physics, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand-247667, India
| |
Collapse
|
30
|
Alshehri AA, Malik MA. Phytomediated Photo-Induced Green Synthesis of Silver Nanoparticles Using Matricaria chamomilla L. and Its Catalytic Activity against Rhodamine B. Biomolecules 2020; 10:E1604. [PMID: 33256218 PMCID: PMC7760056 DOI: 10.3390/biom10121604] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 12/27/2022] Open
Abstract
The bio-fabrication of silver nanoparticles (AgNPs) was carried out through the facile green route, using the aqueous extract of Matricaria chamomilla L. Herein, we have developed a cost-efficient, ecofriendly, and photo-induced method for the biomolecule-assisted synthesis of AgNPs using an aqueous extract of Matricaria chamomilla L. as a bio-reducing and capping/stabilizing agent. The biomolecule-capped AgNPs were confirmed from the surface plasmon resonance (SPR) band at λmax = 450 nm using a UV-visible spectrometer. The stability of the AgNPs was confirmed by recording the UV-visible spectra for a more extended period, and no precipitation was observed in the sol. The morphology and structure of photo-induced biomolecule-capped AgNPs were characterized by different microscopic and spectroscopy techniques such as TEM, SEM, EDX, XRD, and FTIR analysis. The role of phytochemicals as reducing and stabilizing agents was confirmed by comparative FTIR analysis of the AgNPs and pure Matricaria chamomilla L. aqueous extract. The obtained result shows that the AgNPs are mostly spherical morphology with an average size of about 26 nm. Furthermore, the thermal stability of biomolecule-capped AgNPs was examined by TGA-DTG analysis that showed a weight loss of approximately 36.63% up to 800 °C. Moreover, the potential photocatalytic activity of photo-induced AgNPs against Rhodamine B (RB) was examined in the presence of UV light irradiation. The catalyst reusability, the effect of catalyst dosage and initial dye concentration, and the effect of the temperature and pH of the reaction medium were also assessed.
Collapse
Affiliation(s)
| | - Maqsood Ahmad Malik
- Chemistry Department, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia;
| |
Collapse
|
31
|
Zhang L, Wei F, Al-Ammari A, Sun D. An optimized mesoporous silica nanosphere-based carrier system with chemically removable Au nanoparticle caps for redox-stimulated and targeted drug delivery. NANOTECHNOLOGY 2020; 31:475102. [PMID: 32413886 DOI: 10.1088/1361-6528/ab9391] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
To date, numerous drug delivery systems based on mesoporous silica nanoparticles (MSNs) have been explored, but little has been done on optimizing the structure and composition of MSNs to achieve effective drug delivery for cancer cells. Ideal mesoporous drug carriers should incorporate drugs in a way that prevents pre-release in biological surroundings before reaching the targeted area, which usually requires the capping of the open ends on the surface and the incorporation of targeting ligands on the exterior of nanocarriers. In this study, an MSN-based drug carrier system was synthesized with biocompatible Au nanoparticles (NPs) as the 'hard caps', and folic acid conjugated to the surface for targeting folate receptor-overexpressed cancer cells. Disulfide bonds linking Au and MSN NPs were introduced to the MSN surface as the redox-sensitive and chemically removable components. To study the effect of structures of MSNs in drug release, three types of MSNs were compared, including hollow mesoporous silica NPs, large-pore hollow mesoporous silica NPs and typical nano-sized pores on the surface (MSN). To achieve optimal coverage of thiol groups, two methods of functionalization were compared in effecting drug loading and release in vitro. Finally, the effect of residual surfactant was also discussed in anticancer studies. Therefore, the appropriate MSN nanostructure for redox-sensitive and targeted drug delivery was optimized.
Collapse
Affiliation(s)
- Lei Zhang
- Chemicobiology and Functional Materials Institute, School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China. State Key laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| | | | | | | |
Collapse
|
32
|
Ansari MA, Chung IM, Rajakumar G, Alzohairy MA, Alomary MN, Thiruvengadam M, Pottoo FH, Ahmad N. Current Nanoparticle Approaches in Nose to Brain Drug Delivery and Anticancer Therapy - A Review. Curr Pharm Des 2020; 26:1128-1137. [PMID: 31951165 DOI: 10.2174/1381612826666200116153912] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 01/09/2020] [Indexed: 12/27/2022]
Abstract
Nanoparticles (NPs) are unique may be organic or inorganic, play a vital role in the development of drug delivery targeting the central nervous system (CNS). Intranasal drug delivery has shown to be an efficient strategy with attractive application for drug delivery to the CNS related diseases, such as Parkinson's disease, Alzheimer 's disease and brain solid tumors. Blood brain barrier (BBB) and blood-cerebrospinal fluid barriers are natural protective hindrances for entry of drug molecules into the CNS. Nanoparticles exhibit excellent intruding capacity for therapeutic agents and overcome protective barriers. By using nanotechnology based NPs targeted, drug delivery can be improved across BBB with discharge drugs in a controlled manner. NPs confer safe from degradation phenomenon. Several kinds of NPs are used for nose to the brain (N2B) enroute, such as lipidemic nanoparticles, polymeric nanoparticles, inorganic NPs, solid lipid NPs, dendrimers. Among them, popular lipidemic and polymeric NPs are discussed, and their participation in anti-cancer activity has also been highlighted in this review.
Collapse
Affiliation(s)
- Mohammad A Ansari
- Department of Epidemic Disease Research, Institutes for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, 31441 Dammam, Saudi Arabia
| | - Ill-Min Chung
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Korea
| | - Govindasamy Rajakumar
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Korea
| | - Mohammad A Alzohairy
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Qassim 51431, Saudi Arabia
| | - Mohammad N Alomary
- National Center of Biotechnology, Life Science and Environmental Research Institute, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Korea
| | - Faheem H Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P. O. Box 1982, Dammam 31441, Saudi Arabia
| | - Niyaz Ahmad
- Department of Pharmaceutics, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| |
Collapse
|
33
|
|
34
|
Silver Nanoparticles Agglomerate Intracellularly Depending on the Stabilizing Agent: Implications for Nanomedicine Efficacy. NANOMATERIALS 2020; 10:nano10101953. [PMID: 33007984 PMCID: PMC7601179 DOI: 10.3390/nano10101953] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 09/22/2020] [Accepted: 09/27/2020] [Indexed: 12/12/2022]
Abstract
Engineered nanoparticles are utilized as drug delivery carriers in modern medicine due to their high surface area and tailorable surface functionality. After in vivo administration, nanoparticles distribute and interact with biomolecules, such as polar proteins in serum, lipid membranes in cells, and high ionic conditions during digestion. Electrostatic forces and steric hindrances in a nanoparticle population are disturbed and particles agglomerate in biological fluids. Little is known about the stability of nanoparticles in relation to particle surface charge. Here, we compared three different surface-stabilized silver nanoparticles (50 nm) for intracellular agglomeration in human hepatocellular carcinoma cells (HepG2). Nanoparticles stabilized with branched polyethyleneimine conferred a positive surface charge, particles stabilized with lipoic acid conferred a negative surface charge, and particles stabilized with polyethylene glycol conferred a neutral surface charge. Particles were incubated in fetal bovine serum, simulated lung surfactant fluid, and simulated stomach digestion fluid. Each nanoparticle system was characterized via microscopic (transmission electron, fluorescence, and enhanced darkfield) and spectroscopic (hyperspectral, dynamic light scattering, and ultraviolet-visible absorption) techniques. Results showed that nanoparticle transformation included cellular internalization, agglomeration, and degradation and that these changes were dependent upon surface charge and incubation matrix. Hyperspectral analyses showed that positively charged silver nanoparticles red-shifted in spectral analysis after transformations, whereas negatively charged silver nanoparticles blue-shifted. Neutrally charged silver nanoparticles did not demonstrate significant spectral shifts. Spectral shifting indicates de-stabilization in particle suspension, which directly affects agglomeration intracellularly. These characteristics are translatable to critical quality attributes and can be exploited when developing nano-carriers for nanomedicine.
Collapse
|
35
|
Patil V, Patel A. Biodegradable Nanoparticles: A Recent Approach and Applications. Curr Drug Targets 2020; 21:1722-1732. [PMID: 32938346 DOI: 10.2174/1389450121666200916091659] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 07/14/2020] [Accepted: 07/22/2020] [Indexed: 11/22/2022]
Abstract
Biodegradable nanoparticles (NPs) are the novel carriers for the administration of drug molecules. Biodegradable nanoparticles have become popular recently because of their special features such as targeted delivery of drugs, improved bioavailability, and better therapeutic effectiveness to administer the drug at a constant rate. Polymeric NPs are very small-sized polymeric colloidal elements in which a drug of interest may be encapsulated or incorporated in their polymeric network or conjugated or adsorbed on the layer. Various polymers are employed in the manufacturing of nanoparticles, some of the frequently employed polymers are agents, chitosan, cellulose, gelatin, gliadin, polylactic acid, polylactic-co-glycolic acid, and pullulan. Nanoparticles have been progressively explored for the delivery of targeted ARVs to cells of HIV-infected and have performed the prolonged kinetic release. Drug embedded in this system can give better effectiveness, diminished resistance of drugs, reduction in systemic toxicity and symptoms, and also enhanced patient compliance. The present review highlights the frequently employed manufacturing methods for biodegradable nanoparticles, various polymers used, and its application in anti-retroviral therapy. Also, common evaluation parameters to check the purity of nanoparticles, ongoing and recently concluded clinical trials and patents filled by the various researchers, and the future implication of biodegradable NPs in an innovative drug delivery system are described. The biodegradable NPs are promising systems for the administration of a broad variety of drugs including anti-retroviral drugs, and hence biodegradable nanoparticles can be employed in the future for the treatment of several diseases and disorders.
Collapse
Affiliation(s)
- Vijay Patil
- Department of Pharmaceutics, Faculty of Pharmacy, Parul institute of Pharmacy, Parul University P.O.Limda, Ta.Waghodia, Vadodara, Gujarat 391760 Gujarat, India
| | - Asha Patel
- Department of Pharmaceutics, Faculty of Pharmacy, Parul institute of Pharmacy, Parul University P.O.Limda, Ta.Waghodia, Vadodara, Gujarat 391760 Gujarat, India
| |
Collapse
|
36
|
Nieto C, Vega MA, Martín del Valle EM. Trastuzumab: More than a Guide in HER2-Positive Cancer Nanomedicine. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1674. [PMID: 32859026 PMCID: PMC7557948 DOI: 10.3390/nano10091674] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 08/24/2020] [Accepted: 08/24/2020] [Indexed: 02/07/2023]
Abstract
HER2 overexpression, which occurs in a fifth of diagnosed breast cancers as well as in other types of solid tumors, has been traditionally linked to greater aggressiveness. Nevertheless, the clinical introduction of trastuzumab has helped to improve HER2-positive patients' outcomes. As a consequence, nanotechnology has taken advantage of the beneficial effects of the administration of this antibody and has employed it to develop HER2-targeting nanomedicines with promising therapeutic activity and limited toxicity. In this review, the molecular pathways that could be responsible for trastuzumab antitumor activity will be briefly summarized. In addition, since the conjugation strategies that are followed to develop targeting nanomedicines are essential to maintaining their efficacy and tolerability, the ones most employed to decorate drug-loaded nanoparticles and liposomes with trastuzumab will be discussed here. Thus, the advantages and disadvantages of performing this trastuzumab conjugation through adsorption or covalent bindings (through carbodiimide, maleimide, and click-chemistry) will be described, and several examples of targeting nanovehicles developed following these strategies will be commented on. Moreover, conjugation methods employed to synthesized trastuzumab-based antibody drug conjugates (ADCs), among which T-DM1 is well known, will be also examined. Finally, although trastuzumab-decorated nanoparticles and liposomes and trastuzumab-based ADCs have proven to have better selectivity and efficacy than loaded drugs, trastuzumab administration is sometimes related to side toxicities and the apparition of resistances. For this reason also, this review focuses at last on the important role that newer antibodies and peptides are acquiring these days in the development of HER2-targeting nanomedicines.
Collapse
Affiliation(s)
- Celia Nieto
- Departamento de Ingeniería Química, Facultad de Ciencias Químicas, Universidad de Salamanca, 37008 Salamanca, Spain;
| | | | - Eva M. Martín del Valle
- Departamento de Ingeniería Química, Facultad de Ciencias Químicas, Universidad de Salamanca, 37008 Salamanca, Spain;
| |
Collapse
|
37
|
Singh P, Manhas P, Sharma R, Pandey SK, Sharma RK, Katare OP, Wangoo N. Self-assembled dipeptide nanospheres as single component based delivery vehicle for ampicillin and doxorubicin. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113420] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
38
|
Alphandéry E. Natural Metallic Nanoparticles for Application in Nano-Oncology. Int J Mol Sci 2020; 21:E4412. [PMID: 32575884 PMCID: PMC7352233 DOI: 10.3390/ijms21124412] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/26/2020] [Accepted: 05/26/2020] [Indexed: 01/03/2023] Open
Abstract
Here, the various types of naturally synthesized metallic nanoparticles, which are essentially composed of Ce, Ag, Au, Pt, Pd, Cu, Ni, Se, Fe, or their oxides, are presented, based on a literature analysis. The synthesis methods used to obtain them most often involve the reduction of metallic ions by biological materials or organisms, i.e., essentially plant extracts, yeasts, fungus, and bacteria. The anti-tumor activity of these nanoparticles has been demonstrated on different cancer lines. They rely on various mechanisms of action, such as the release of chemotherapeutic drugs under a pH variation, nanoparticle excitation by radiation, or apoptotic tumor cell death. Among these natural metallic nanoparticles, one type, which consists of iron oxide nanoparticles produced by magnetotactic bacteria called magnetosomes, has been purified to remove endotoxins and abide by pharmacological regulations. It has been tested in vivo for anti-tumor efficacy. For that, purified and stabilized magnetosomes were injected in intracranial mouse glioblastoma tumors and repeatedly heated under the application of an alternating magnetic field, leading to the full disappearance of these tumors. As a whole, the results presented in the literature form a strong basis for pursuing the efforts towards the use of natural metallic nanoparticles for cancer treatment first pre-clinically and then clinically.
Collapse
Affiliation(s)
- Edouard Alphandéry
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Paris Sorbonne Université, Muséum National d’Histoire Naturelle, UMR CNRS 7590, IRD, IMPMC, 75005 Paris, France; ; Tel.: +33-632-697-020
- Nanobacterie SARL, 36 boulevard Flandrin, 75116 Paris, France
- Institute of Anatomy, UZH University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
39
|
Biswas K, Ilyas H, Datta A, Bhunia A. NMR Assisted Antimicrobial Peptide Designing: Structure Based Modifications and Functional Correlation of a Designed Peptide VG16KRKP. Curr Med Chem 2020; 27:1387-1404. [PMID: 31232231 DOI: 10.2174/0929867326666190624090817] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 05/16/2019] [Accepted: 05/29/2019] [Indexed: 01/08/2023]
Abstract
Antimicrobial Peptides (AMPs), within their realm incorporate a diverse group of structurally and functionally varied peptides, playing crucial roles in innate immunity. Over the last few decades, the field of AMP has seen a huge upsurge, mainly owing to the generation of the so-called drug resistant 'superbugs' as well as limitations associated with the existing antimicrobial agents. Due to their resilient biological properties, AMPs can very well form the sustainable alternative for nextgeneration therapeutic agents. Certain drawbacks associated with existing AMPs are, however, issues of major concern, circumventing which are imperative. These limitations mainly include proteolytic cleavage and hence poor stability inside the biological systems, reduced activity due to inadequate interaction with the microbial membrane, and ineffectiveness because of inappropriate delivery among others. In this context, the application of naturally occurring AMPs as an efficient prototype for generating various synthetic and designed counterparts has evolved as a new avenue in peptide-based therapy. Such designing approaches help to overcome the drawbacks of the parent AMPs while retaining the inherent activity. In this review, we summarize some of the basic NMR structure based approaches and techniques which aid in improving the activity of AMPs, using the example of a 16-residue dengue virus fusion protein derived peptide, VG16KRKP. Using first principle based designing technique and high resolution NMR-based structure characterization we validate different types of modifications of VG16KRKP, highlighting key motifs, which optimize its activity. The approaches and designing techniques presented can support our peers in their drug development work.
Collapse
Affiliation(s)
- Karishma Biswas
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII(M), Kolkata 700054, India
| | - Humaira Ilyas
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII(M), Kolkata 700054, India
| | - Aritreyee Datta
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII(M), Kolkata 700054, India
| | - Anirban Bhunia
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII(M), Kolkata 700054, India
| |
Collapse
|
40
|
Khalifehzadeh R, Arami H. Biodegradable calcium phosphate nanoparticles for cancer therapy. Adv Colloid Interface Sci 2020; 279:102157. [PMID: 32330734 PMCID: PMC7261203 DOI: 10.1016/j.cis.2020.102157] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 04/07/2020] [Accepted: 04/07/2020] [Indexed: 12/16/2022]
Abstract
Calcium phosphate is the inorganic mineral of hard tissues such as bone and teeth. Due to their similarities to the natural bone, calcium phosphates are highly biocompatible and biodegradable materials that have found numerous applications in dental and orthopedic implants and bone tissue engineering. In the form of nanoparticles, calcium phosphate nanoparticles (CaP's) can also be used as effective delivery vehicles to transfer therapeutic agents such as nucleic acids, drugs, proteins and enzymes into tumor cells. In addition, facile preparation and functionalization of CaP's, together with their inherent properties such as pH-dependent solubility provide advantages in delivery and release of these bioactive agents using CaP's as nanocarriers. In this review, the challenges and achievements in the intracellular delivery of these agents to tumor cells are discussed. Also, the most important issues in the design and potential applications of CaP-based biominerals are addressed with more focus on their biodegradability in tumor microenvironment.
Collapse
Affiliation(s)
- Razieh Khalifehzadeh
- Department of Chemical Engineering, Stanford University, Shriram Center, 443 Via Ortega, Stanford, California 94305, United States; Department of Radiology, Stanford University School of Medicine, James H. Clark Center, 318 Campus Drive, E-153, Stanford, California 94305, United States
| | - Hamed Arami
- Department of Radiology, Stanford University School of Medicine, James H. Clark Center, 318 Campus Drive, E-153, Stanford, California 94305, United States; Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, James H. Clark Center, 318 Campus Drive, E-153, Stanford, California 94305, United States.
| |
Collapse
|
41
|
Ross AM, Kennedy T, McNulty D, Leahy CI, Walsh DR, Murray P, Grabrucker AM, Mulvihill JJE. Comparing nanoparticles for drug delivery: The effect of physiological dispersion media on nanoparticle properties. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 113:110985. [PMID: 32487401 DOI: 10.1016/j.msec.2020.110985] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 03/24/2020] [Accepted: 04/17/2020] [Indexed: 01/30/2023]
Abstract
Delivering therapeutics to disease sites is a challenge facing modern medicine. Nanoparticle delivery systems are of considerable interest to overcome this challenge, but these systems suffer from poor clinical translation. It is believed this is, in part, due to incomplete understanding of nanoparticle physico-chemical properties in vivo. To understand how nanoparticle properties could change following intravenous delivery, Au, Ag, Fe2O3, TiO2, and ZnO nanoparticles of 5, 20, and 50 nm were characterised in water and physiological fluids. The effects of the dispersion medium, concentration, and incubation time on size, dispersion, and zeta potential were measured. Properties varied significantly depending on material type, size, and concentration over 24 h. Gold and silver nanoparticles were generally the most stable. Meanwhile, 20 nm nanoparticles appeared to be the least stable size, across materials. These results could have important implications for selecting nanoparticles for drug delivery that will elicit the desired physiological response.
Collapse
Affiliation(s)
- Aisling M Ross
- BioScience and Bioengineering Research (BioSciBer), Bernal Biomaterials, Bernal Institute, University of Limerick, Limerick, Ireland; School of Engineering, University of Limerick, Limerick, Ireland
| | - Tadhg Kennedy
- Department of Chemical Sciences, University of Limerick, Limerick, Ireland
| | - David McNulty
- Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
| | - Ciara I Leahy
- BioScience and Bioengineering Research (BioSciBer), Bernal Biomaterials, Bernal Institute, University of Limerick, Limerick, Ireland; Health Research Institute, (HRI), University of Limerick, Limerick, Ireland; Education and Health Sciences, University of Limerick, Limerick, Ireland
| | - Darragh R Walsh
- BioScience and Bioengineering Research (BioSciBer), Bernal Biomaterials, Bernal Institute, University of Limerick, Limerick, Ireland; School of Engineering, University of Limerick, Limerick, Ireland
| | - Paul Murray
- BioScience and Bioengineering Research (BioSciBer), Bernal Biomaterials, Bernal Institute, University of Limerick, Limerick, Ireland; Health Research Institute, (HRI), University of Limerick, Limerick, Ireland; Education and Health Sciences, University of Limerick, Limerick, Ireland
| | - Andreas M Grabrucker
- BioScience and Bioengineering Research (BioSciBer), Bernal Biomaterials, Bernal Institute, University of Limerick, Limerick, Ireland; Health Research Institute, (HRI), University of Limerick, Limerick, Ireland; Department of Biological Sciences, University of Limerick, Limerick, Ireland
| | - John J E Mulvihill
- BioScience and Bioengineering Research (BioSciBer), Bernal Biomaterials, Bernal Institute, University of Limerick, Limerick, Ireland; School of Engineering, University of Limerick, Limerick, Ireland; Health Research Institute, (HRI), University of Limerick, Limerick, Ireland.
| |
Collapse
|
42
|
Farooqi AA, Pinheiro M, Granja A, Farabegoli F, Reis S, Attar R, Sabitaliyevich UY, Xu B, Ahmad A. EGCG Mediated Targeting of Deregulated Signaling Pathways and Non-Coding RNAs in Different Cancers: Focus on JAK/STAT, Wnt/β-Catenin, TGF/SMAD, NOTCH, SHH/GLI, and TRAIL Mediated Signaling Pathways. Cancers (Basel) 2020; 12:cancers12040951. [PMID: 32290543 PMCID: PMC7226503 DOI: 10.3390/cancers12040951] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/02/2020] [Accepted: 04/04/2020] [Indexed: 12/12/2022] Open
Abstract
Decades of research have enabled us to develop a better and sharper understanding of multifaceted nature of cancer. Next-generation sequencing technologies have leveraged our existing knowledge related to intra- and inter-tumor heterogeneity to the next level. Functional genomics have opened new horizons to explore deregulated signaling pathways in different cancers. Therapeutic targeting of deregulated oncogenic signaling cascades by products obtained from natural sources has shown promising results. Epigallocatechin-3-gallate (EGCG) has emerged as a distinguished chemopreventive product because of its ability to regulate a myriad of oncogenic signaling pathways. Based on its scientifically approved anticancer activity and encouraging results obtained from preclinical trials, it is also being tested in various phases of clinical trials. A series of clinical trials associated with green tea extracts and EGCG are providing clues about significant potential of EGCG to mechanistically modulate wide ranging signal transduction cascades. In this review, we comprehensively analyzed regulation of JAK/STAT, Wnt/β-catenin, TGF/SMAD, SHH/GLI, NOTCH pathways by EGCG. We also discussed most recent evidence related to the ability of EGCG to modulate non-coding RNAs in different cancers. Methylation of the genome is also a widely studied mechanism and EGCG has been shown to modulate DNA methyltransferases (DNMTs) and protein enhancer of zeste-2 (EZH2) in multiple cancers. Moreover, the use of nanoformulations to increase the bioavailability and thus efficacy of EGCG will be also addressed. Better understanding of the pleiotropic abilities of EGCG to modulate intracellular pathways along with the development of effective EGCG delivery vehicles will be helpful in getting a step closer to individualized medicines.
Collapse
Affiliation(s)
- Ammad Ahmad Farooqi
- Institute of Biomedical and Genetic Engineering (IBGE), Islamabad 54000, Pakistan;
| | - Marina Pinheiro
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal; (A.G.); (S.R.)
- Correspondence:
| | - Andreia Granja
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal; (A.G.); (S.R.)
| | - Fulvia Farabegoli
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, 40126 Bologna, Italy;
| | - Salette Reis
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal; (A.G.); (S.R.)
| | - Rukset Attar
- Department of Obstetrics and Gynecology, Yeditepe University, Ataşehir/İstanbul 34755, Turkey;
| | - Uteuliyev Yerzhan Sabitaliyevich
- Department of Health Policy and Health Care Development, Kazakh Medical University of Continuing Education, Almaty 050004, Kazakhstan;
| | - Baojun Xu
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai 519087, China;
| | - Aamir Ahmad
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35205, USA;
| |
Collapse
|
43
|
Ferber S, Gonzalez RJ, Cryer AM, von Andrian UH, Artzi N. Immunology-Guided Biomaterial Design for Mucosal Cancer Vaccines. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1903847. [PMID: 31833592 DOI: 10.1002/adma.201903847] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/11/2019] [Indexed: 05/23/2023]
Abstract
Cancer of mucosal tissues is a major cause of worldwide mortality for which only palliative treatments are available for patients with late-stage disease. Engineered cancer vaccines offer a promising approach for inducing antitumor immunity. The route of vaccination plays a major role in dictating the migratory pattern of lymphocytes, and thus vaccine efficacy in mucosal tissues. Parenteral immunization, specifically subcutaneous and intramuscular, is the most common vaccination route. However, this induces marginal mucosal protection in the absence of tissue-specific imprinting signals. To circumvent this, the mucosal route can be utilized, however degradative mucosal barriers must be overcome. Hence, vaccine administration route and selection of materials able to surmount transport barriers are important considerations in mucosal cancer vaccine design. Here, an overview of mucosal immunity in the context of cancer and mucosal cancer clinical trials is provided. Key considerations are described regarding the design of biomaterial-based vaccines that will afford antitumor immune protection at mucosal surfaces, despite limited knowledge surrounding mucosal vaccination, particularly aided by biomaterials and mechanistic immune-material interactions. Finally, an outlook is given of how future biomaterial-based mucosal cancer vaccines will be shaped by new discoveries in mucosal vaccinology, tumor immunology, immuno-therapeutic screens, and material-immune system interplay.
Collapse
Affiliation(s)
- Shiran Ferber
- Department of Medicine, Engineering in Medicine Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02139, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Rodrigo J Gonzalez
- Department of Immunology, Harvard Medical School, Boston, MA, 02115, USA
| | - Alexander M Cryer
- Department of Medicine, Engineering in Medicine Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02139, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Ulrich H von Andrian
- Department of Immunology, Harvard Medical School, Boston, MA, 02115, USA
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard, Boston, MA, 02139, USA
| | - Natalie Artzi
- Department of Medicine, Engineering in Medicine Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02139, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, 02139, USA
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, China
| |
Collapse
|
44
|
Sabbagh HAK, Hussein-Al-Ali SH, Hussein MZ, Abudayeh Z, Ayoub R, Abudoleh SM. A Statistical Study on the Development of Metronidazole-Chitosan-Alginate Nanocomposite Formulation Using the Full Factorial Design. Polymers (Basel) 2020; 12:polym12040772. [PMID: 32244671 PMCID: PMC7240564 DOI: 10.3390/polym12040772] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/19/2020] [Accepted: 03/22/2020] [Indexed: 11/16/2022] Open
Abstract
The goal of this study was to develop and statistically optimize the metronidazole (MET), chitosan (CS) and alginate (Alg) nanoparticles (NP) nanocomposites (MET-CS-AlgNPs) using a (21 × 31 × 21) × 3 = 36 full factorial design (FFD) to investigate the effect of chitosan and alginate polymer concentrations and calcium chloride (CaCl2) concentration ondrug loading efficiency(LE), particle size and zeta potential. The concentration of CS, Alg and CaCl2 were taken as independent variables, while drug loading, particle size and zeta potential were taken as dependent variables. The study showed that the loading efficiency and particle size depend on the CS, Alg and CaCl2 concentrations, whereas zeta potential depends only on the Alg and CaCl2 concentrations. The MET-CS-AlgNPs nanocomposites were characterized by X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), thermal gravimetric analysis (TGA), scanning electron microscopy (SEM) and in vitro drug release studies. XRD datashowed that the crystalline properties of MET changed to an amorphous-like pattern when the nanocomposites were formed.The XRD pattern of MET-CS-AlgNPs showed reflections at 2θ = 14.2° and 22.1°, indicating that the formation of the nanocompositesprepared at the optimum conditions havea mean diameter of (165±20) nm, with a MET loading of (46.0 ± 2.1)% and a zeta potential of (−9.2 ± 0.5) mV.The FTIR data of MET-CS-AlgNPs showed some bands of MET, such as 3283, 1585 and 1413 cm−1, confirming the presence of the drug in the MET-CS-AlgNPs nanocomposites. The TGA for the optimized sample of MET-CS-AlgNPs showed a 70.2% weight loss compared to 55.3% for CS-AlgNPs, and the difference is due to the incorporation of MET in the CS-AlgNPs for the formation of MET-CS-AlgNPs nanocomposites. The release of MET from the nanocomposite showed sustained-release properties, indicating the presence of an interaction between MET and the polymer. The nanocomposite shows a smooth surface and spherical shape. The release profile of MET from its MET-CS-AlgNPs nanocomposites was found to be governed by the second kinetic model (R2 between 0.956–0.990) with more than 90% release during the first 50 h, which suggests that the release of the MET drug can be extended or prolonged via the nanocomposite formulation.
Collapse
Affiliation(s)
- Hazem Abdul Kader Sabbagh
- Department of Basic Pharmaceutical Science, Faculty of Pharmacy, Isra University, Amman 11622, Jordan; (H.A.K.S.); (Z.A.); (R.A.); (S.M.A.)
| | - Samer Hasan Hussein-Al-Ali
- Department of Basic Pharmaceutical Science, Faculty of Pharmacy, Isra University, Amman 11622, Jordan; (H.A.K.S.); (Z.A.); (R.A.); (S.M.A.)
- Department of Chemistry, Faculty of Science, Isra University, Amman 11622, Jordan
- Correspondence: (S.H.H.-A.-A.); (M.Z.H.)
| | - Mohd Zobir Hussein
- Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, 43400UPM Serdang, Selangor, Malaysia
- Correspondence: (S.H.H.-A.-A.); (M.Z.H.)
| | - Zead Abudayeh
- Department of Basic Pharmaceutical Science, Faculty of Pharmacy, Isra University, Amman 11622, Jordan; (H.A.K.S.); (Z.A.); (R.A.); (S.M.A.)
| | - Rami Ayoub
- Department of Basic Pharmaceutical Science, Faculty of Pharmacy, Isra University, Amman 11622, Jordan; (H.A.K.S.); (Z.A.); (R.A.); (S.M.A.)
| | - Suha Mujahed Abudoleh
- Department of Basic Pharmaceutical Science, Faculty of Pharmacy, Isra University, Amman 11622, Jordan; (H.A.K.S.); (Z.A.); (R.A.); (S.M.A.)
| |
Collapse
|
45
|
Homocysteine and Asymmetrical Dimethylarginine in Diabetic Rats Treated with Docosahexaenoic Acid-Loaded Zinc Oxide Nanoparticles. Appl Biochem Biotechnol 2020; 191:1127-1139. [PMID: 31960366 DOI: 10.1007/s12010-020-03230-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 01/08/2020] [Indexed: 12/17/2022]
Abstract
Hyperglycemia, the hallmark of diabetes mellitus, is considered one of the endothelial dysfunction risk factors, the main reason of vascular complication. In this study, we aimed to evaluate homocysteine (Hcy) and asymmetrical dimethylarginine (ADMA) levels in diabetic rats and the possibility to attenuate the elevation of these two parameters by supplementation of docosahexaenoic acid (DHA) alone or loaded zinc oxide nanoparticles (ZnONPs) to improve endothelial dysfunction in streptozotocin (STZ)-induced diabetic rats. Forty male albino rats weighing 180-200 g were classified as control, diabetic, diabetic treated with DHA, and diabetic treated with DHA-loaded zinc oxide nanoparticles (DHA/ZnONPs) groups. Fasting blood glucose, insulin, ADMA, Hcy, and nitric oxide (NO) were estimated. Fatty acids (linoleic acid (LA), arachidonic acid (AA), DHA, α-linolenic acid (ALA), and oleic acid (OA)) were also evaluated by reversed phase HPLC using a UV detector. The results showed that fasting blood sugar, insulin resistance, LA, AA, OA, ADMA, and Hcy increased significantly in diabetic rats compared with control while fasting insulin, DHA, ALA, and NO decreased significantly in diabetic rats. In both treated groups, fasting blood sugar, insulin resistance, LA, AA, OA, ADMA, and Hcy significantly decreased as compared with the diabetic group while fasting insulin, DHA, ALA, and NO were significantly increased. In conclusion, DHA and DHA/ZnONP supplementation protect against diabetic complications and improve endothelial dysfunction as well as hyperhomocysteinemia in diabetes. DHA/ZnONP-treated group appeared more efficient than DHA alone.
Collapse
|
46
|
Saini RK, Bajpai J, Bajpai AK. Synthesis of Poly(2-Hydroxyethyl Methacrylate) (PHEMA)-Based Superparamagnetic Nanoparticles for Biomedical and Pharmaceutical Applications. Methods Mol Biol 2020; 2118:165-174. [PMID: 32152979 DOI: 10.1007/978-1-0716-0319-2_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The performance of polymeric nanomaterials relies greatly upon their properties which are intimately related to the methods of fabrication of their materials. Among various synthetic polymers the polymers of 2-hydroxyethyl methacrylate (PHEMA) maintains a prime position in the biomedical field due to their useful physicochemical properties and suitability for controlled drug delivery applications. Furthermore, the addition of iron oxide to PHEMA nanoparticles imparts superparamagnetism to the nanoparticles and expands the range of their uses to include magnetic drug targeting applications. Here we focus on three methods for preparation of PHEMA nanoparticles, one by suspension polymerization, a second by emulsion polymerization without the use of any surfactants, and the final one with the incorporation of iron oxide into PHEMA nanoparticles.
Collapse
Affiliation(s)
- Rajesh K Saini
- Bose Memorial Research Laboratory, Department of Chemistry, Government Autonomous Science College, Jabalpur, MP, India
| | - Jaya Bajpai
- Bose Memorial Research Laboratory, Department of Chemistry, Government Autonomous Science College, Jabalpur, MP, India
| | - Anil K Bajpai
- Bose Memorial Research Laboratory, Department of Chemistry, Government Autonomous Science College, Jabalpur, MP, India.
| |
Collapse
|
47
|
|
48
|
Kundu P, Das S, Chattopadhyay N. Managing efficacy and toxicity of drugs: Targeted delivery and excretion. Int J Pharm 2019; 565:378-390. [DOI: 10.1016/j.ijpharm.2019.04.058] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/17/2019] [Accepted: 04/19/2019] [Indexed: 01/03/2023]
|
49
|
Hajizade A, Salmanian AH, Amani J, Ebrahimi F, Arpanaei A. EspA-loaded mesoporous silica nanoparticles can efficiently protect animal model against enterohaemorrhagic E. coli O157: H7. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 46:S1067-S1075. [PMID: 30638077 DOI: 10.1080/21691401.2018.1529676] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In the present study, the application of mesoporous silica nanoparticles (MSNPs) loaded with recombinant EspA protein, an immunogen of enterohaemorrhagic E. coli, was investigated in the case of BALB/c mice immunization against the bacterium. MSNPs of 96.9 ± 15.9 nm in diameter were synthesized using template removing method. The immunization of mice was carried out orally and subcutaneously. Significant immune responses to the antigen were observed for the immunized mice when rEspA-loaded MSNPs were administered in both routes in comparison to that of the antigen formulated using a well-known adjuvant, i.e. Freund's. According to the titretitre of serum IL-4, the most potent humoral responses were observed when the mice were immunized subcutaneously with antigen-loaded MSNPs (244, 36 and 14 ng/dL of IL-4 in the serum of mice immunized subcutaneously or orally by antigen-loaded MSNPs, and subcutaneously by Freund's adjuvant formulated-antigen, respectively). However, the difference in serum IgG and serum IgA was not significant in mice subcutaneously immunized with antigen-loaded MSNPs and mice immunized with Freund's adjuvant formulated-antigen. Finally, the immunized mice were challenged orally by enterohaemorrhagic E. coli cells. The amount of bacterial shedding was significantly reduced in faecesfaeces of the animals immunized by antigen-loaded MSNPs in both subcutaneous and oral routes.
Collapse
Affiliation(s)
- Abbas Hajizade
- a Applied Biotechnology Research Centre , Baqiyatallah University of Medical Sciences , Tehran , Iran
| | - Ali Hatef Salmanian
- b Agriculture Biotechnology Department , National Institute for Genetic Engineering and Biotechnology , Tehran , Iran
| | - Jafar Amani
- c Applied Microbiology Research Center, Systems Biology and Poisonings Institute , Baqiyatallah University of Medical Sciences , Tehran , Iran
| | - Firouz Ebrahimi
- d Biology Research Centre , Imam Hossein University , Tehran , Iran
| | - Ayyoob Arpanaei
- e Department of Industrial and Environmental Biotechnology , National Institute of Genetic Engineering and Biotechnology , Tehran , Iran
| |
Collapse
|
50
|
|