1
|
Fumasi FM, MacCulloch T, Bernal-Chanchavac J, Stephanopoulos N, Holloway JL. Using dynamic biomaterials to study the temporal role of bioactive peptides during osteogenesis. BIOMATERIALS ADVANCES 2024; 157:213726. [PMID: 38096646 PMCID: PMC10842892 DOI: 10.1016/j.bioadv.2023.213726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/23/2023] [Accepted: 12/05/2023] [Indexed: 12/26/2023]
Abstract
The extracellular matrix is a highly dynamic environment, and the precise temporal presentation of biochemical signals is critical for regulating cell behavior during development, healing, and disease progression. To mimic this behavior, we developed a modular DNA-based hydrogel platform to enable independent and reversible control over the immobilization of multiple biomolecules during in vitro cell culture. We combined reversible DNA handles with a norbornene-modified hyaluronic acid hydrogel to orthogonally add and remove multiple biomolecule-DNA conjugates at user-defined timepoints. We demonstrated that the persistent presentation of the cell adhesion peptide RGD was required to maintain cell spreading on hyaluronic acid hydrogels. Further, we discovered the delayed presentation of osteogenic growth peptide (OGP) increased alkaline phosphatase activity compared to other temporal variations. This finding is critically important when considering the design of OGP delivery approaches for bone repair. More broadly, this platform provides a unique approach to tease apart the temporal role of multiple biomolecules during development, regeneration, and disease progression.
Collapse
Affiliation(s)
- Fallon M Fumasi
- Chemical Engineering, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, United States of America
| | - Tara MacCulloch
- Biodesign Center for Molecular Design and Biomimetics, Arizona State University, Tempe, AZ, United States of America; School of Molecular Sciences, Arizona State University, Tempe, AZ, United States of America
| | - Julio Bernal-Chanchavac
- Biodesign Center for Molecular Design and Biomimetics, Arizona State University, Tempe, AZ, United States of America; School of Molecular Sciences, Arizona State University, Tempe, AZ, United States of America.
| | - Nicholas Stephanopoulos
- Biodesign Center for Molecular Design and Biomimetics, Arizona State University, Tempe, AZ, United States of America; School of Molecular Sciences, Arizona State University, Tempe, AZ, United States of America.
| | - Julianne L Holloway
- Chemical Engineering, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, United States of America; Biodesign Center for Molecular Design and Biomimetics, Arizona State University, Tempe, AZ, United States of America.
| |
Collapse
|
2
|
Szwed-Georgiou A, Płociński P, Kupikowska-Stobba B, Urbaniak MM, Rusek-Wala P, Szustakiewicz K, Piszko P, Krupa A, Biernat M, Gazińska M, Kasprzak M, Nawrotek K, Mira NP, Rudnicka K. Bioactive Materials for Bone Regeneration: Biomolecules and Delivery Systems. ACS Biomater Sci Eng 2023; 9:5222-5254. [PMID: 37585562 PMCID: PMC10498424 DOI: 10.1021/acsbiomaterials.3c00609] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/31/2023] [Indexed: 08/18/2023]
Abstract
Novel tissue regeneration strategies are constantly being developed worldwide. Research on bone regeneration is noteworthy, as many promising new approaches have been documented with novel strategies currently under investigation. Innovative biomaterials that allow the coordinated and well-controlled repair of bone fractures and bone loss are being designed to reduce the need for autologous or allogeneic bone grafts eventually. The current engineering technologies permit the construction of synthetic, complex, biomimetic biomaterials with properties nearly as good as those of natural bone with good biocompatibility. To ensure that all these requirements meet, bioactive molecules are coupled to structural scaffolding constituents to form a final product with the desired physical, chemical, and biological properties. Bioactive molecules that have been used to promote bone regeneration include protein growth factors, peptides, amino acids, hormones, lipids, and flavonoids. Various strategies have been adapted to investigate the coupling of bioactive molecules with scaffolding materials to sustain activity and allow controlled release. The current manuscript is a thorough survey of the strategies that have been exploited for the delivery of biomolecules for bone regeneration purposes, from choosing the bioactive molecule to selecting the optimal strategy to synthesize the scaffold and assessing the advantages and disadvantages of various delivery strategies.
Collapse
Affiliation(s)
- Aleksandra Szwed-Georgiou
- Department
of Immunology and Infectious Biology, Faculty of Biology and Environmental
Protection, University of Lodz, Lodz 90-136, Poland
| | - Przemysław Płociński
- Department
of Immunology and Infectious Biology, Faculty of Biology and Environmental
Protection, University of Lodz, Lodz 90-136, Poland
| | - Barbara Kupikowska-Stobba
- Biomaterials
Research Group, Lukasiewicz Research Network
- Institute of Ceramics and Building Materials, Krakow 31-983, Poland
| | - Mateusz M. Urbaniak
- Department
of Immunology and Infectious Biology, Faculty of Biology and Environmental
Protection, University of Lodz, Lodz 90-136, Poland
- The
Bio-Med-Chem Doctoral School, University of Lodz and Lodz Institutes
of the Polish Academy of Sciences, University
of Lodz, Lodz 90-237, Poland
| | - Paulina Rusek-Wala
- Department
of Immunology and Infectious Biology, Faculty of Biology and Environmental
Protection, University of Lodz, Lodz 90-136, Poland
- The
Bio-Med-Chem Doctoral School, University of Lodz and Lodz Institutes
of the Polish Academy of Sciences, University
of Lodz, Lodz 90-237, Poland
| | - Konrad Szustakiewicz
- Department
of Polymer Engineering and Technology, Faculty of Chemistry, Wroclaw University of Technology, Wroclaw 50-370, Poland
| | - Paweł Piszko
- Department
of Polymer Engineering and Technology, Faculty of Chemistry, Wroclaw University of Technology, Wroclaw 50-370, Poland
| | - Agnieszka Krupa
- Department
of Immunology and Infectious Biology, Faculty of Biology and Environmental
Protection, University of Lodz, Lodz 90-136, Poland
| | - Monika Biernat
- Biomaterials
Research Group, Lukasiewicz Research Network
- Institute of Ceramics and Building Materials, Krakow 31-983, Poland
| | - Małgorzata Gazińska
- Department
of Polymer Engineering and Technology, Faculty of Chemistry, Wroclaw University of Technology, Wroclaw 50-370, Poland
| | - Mirosław Kasprzak
- Biomaterials
Research Group, Lukasiewicz Research Network
- Institute of Ceramics and Building Materials, Krakow 31-983, Poland
| | - Katarzyna Nawrotek
- Faculty
of Process and Environmental Engineering, Lodz University of Technology, Lodz 90-924, Poland
| | - Nuno Pereira Mira
- iBB-Institute
for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de
Lisboa, Lisboa 1049-001, Portugal
- Associate
Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior
Técnico, Universidade de Lisboa, Lisboa 1049-001, Portugal
- Instituto
Superior Técnico, Universidade de Lisboa, Lisboa 1049-001, Portugal
| | - Karolina Rudnicka
- Department
of Immunology and Infectious Biology, Faculty of Biology and Environmental
Protection, University of Lodz, Lodz 90-136, Poland
| |
Collapse
|
3
|
Fumasi FM, MacCulloch T, Bernal-Chanchavac J, Stephanopoulos N, Holloway JL. Using dynamic biomaterials to study the temporal role of osteogenic growth peptide during osteogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.19.549767. [PMID: 37502890 PMCID: PMC10370201 DOI: 10.1101/2023.07.19.549767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
The extracellular matrix is a highly dynamic environment, and the precise temporal presentation of biochemical signals is critical for regulating cell behavior during development, healing, and disease progression. To mimic this behavior, we developed a modular DNA-based hydrogel platform to enable independent and reversible control over the immobilization of multiple biomolecules during in vitro cell culture. We combined reversible DNA handles with a norbornene-modified hyaluronic acid hydrogel to orthogonally add and remove multiple biomolecule-DNA conjugates at user-defined timepoints. We demonstrated that the persistent presentation of the cell adhesion peptide RGD was required to maintain cell spreading on hyaluronic acid hydrogels. Further, we discovered the delayed presentation of osteogenic growth peptide (OGP) increased alkaline phosphatase activity compared to other temporal variations. This finding is critically important when considering the design of OGP delivery approaches for bone repair. More broadly, this platform provides a unique approach to tease apart the temporal role of multiple biomolecules during development, regeneration, and disease progression.
Collapse
|
4
|
Ma Y, Zhang Y, Lin Y, Ding X, Zhang Y. Effects of osteogenic growth peptide C-terminal pentapeptide and its analogue on bone remodeling in an osteoporosis rat model. Open Med (Wars) 2023; 18:20230656. [PMID: 36874360 PMCID: PMC9982741 DOI: 10.1515/med-2023-0656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 03/06/2023] Open
Abstract
This study aimed to explore the effects of osteogenic growth peptide C-terminal pentapeptide (G36G), and its analog G48A on bone modeling in rats with ovariectomy-induced osteoporosis. Ovariectomized rats were administered PBS (OVX group), risedronate (RISE group), G36G combined with risedronate (36GRI group), G36G (G36G group), or G48A (G48A group). The sham-operation rats (SHAM group) were administered PBS. Serum osteocalcin and IGF-2 levels in the SHAM, OVX, G36G, G48A, and RISE groups were observably lower than the 36GRI group (P < 0.01) and the bone mineral density of the entire femur, distal metaphysis, and lumbar L1-L4 in the 36GRI group were notably increased (P < 0.05). The bending energy of the 36GRI group was prominently higher than the other groups (P < 0.05). Other features measured in the study that provided significant outcomes was the ratio of femora ash weight/dry weigh, parameters of trabecular bone volume (TBV)/total tissue volume, TBV/sponge bone volume, mean trabecular plate thickness, mean trabecular plate space, bone surface, parameters of sfract(s) and sfract(d), tetracycline-labeled, and osteoid surfaces. Bone loss in ovariectomized rats may be partially inhibited by G36G and G48A. A combination treatment with G36G and risedronate may be an effective intervention for osteoporosis.
Collapse
Affiliation(s)
- Yuhang Ma
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Ying Zhang
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Yi Lin
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Xiaoying Ding
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Yuntao Zhang
- School of Digital Construction, Shanghai Urban Construction Vocational College, Shanghai, 201999, China
| |
Collapse
|
5
|
Zhong J, Huang J, Chen L, Duan J. Construction of a biocompatible MWCNTs-chitosan composite interface and its application to impedance cytosensing of osteoblastic MC3T3-E1 cells. RSC Adv 2022; 12:31663-31670. [PMID: 36380931 PMCID: PMC9634715 DOI: 10.1039/d2ra05995a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 10/31/2022] [Indexed: 10/19/2023] Open
Abstract
In this work a carboxylated MWCNTs-chitosan composite sol-gel material was developed via one-step electrodeposition on a glassy carbon electrode as the cytosensing interface of a novel impedance cytosensor. SEM verified the formation of a three-dimensional hierarchical and porous microstructure favorable for the adhesion and spreading of osteoblastic MC3T3-E1 cells. By correlating impedance measurements with fluorescence microscopic characterization results, the cytosensor was demonstrated to have the ability to determine the MC3T3-E1 cell concentration ranging from 5 × 103 to 5 × 108 cell per mL with a detection limit of 1.8 × 103 cell per mL. The impedance cytosensor also enabled monitoring of the cell behavior regarding the processes of cell attachment, spreading, and proliferation in a label-free and quantitative manner. By taking advantage of this cytosensing method, investigating the effect of the C-terminal pentapeptide of osteogenic growth peptide (OGP(10-14)) on MC3T3-E1 cells was accomplished, demonstrating the potential for the application of OGP(10-14) in bone repair and regeneration. Therefore, this work afforded a convenient impedimetric strategy for osteoblastic cell counting and response monitoring that would be useful in evaluating the interactions between osteoblastic cells and specified drugs.
Collapse
Affiliation(s)
- Jun Zhong
- Department of Orthopedics, Renmin Hospital of Wuhan University Zhangzhidong Street 9 Wuhan 430060 People's Republic of China
| | - Jing Huang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Central China Normal University Wuhan 430079 China
| | - Liang Chen
- Department of Orthopedics, Renmin Hospital of Wuhan University Zhangzhidong Street 9 Wuhan 430060 People's Republic of China
| | - Jiang Duan
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Central China Normal University Wuhan 430079 China
| |
Collapse
|
6
|
Osteogenic growth peptide enhances osteogenic differentiation of human periodontal ligament stem cells. Heliyon 2022; 8:e09936. [PMID: 35874053 PMCID: PMC9304736 DOI: 10.1016/j.heliyon.2022.e09936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/09/2022] [Accepted: 07/07/2022] [Indexed: 11/21/2022] Open
Abstract
Bone tissue engineering consists of three major components namely cells, scaffolds, and signaling molecules to improve bone regeneration. These integrated principles can be applied in patients suffered from bone resorption diseases, such as osteoporosis and periodontitis. Osteogenic growth peptide (OGP) is a fourteen-amino acid sequence peptide that has the potential to regenerate bone tissues. This study aimed to disseminate the osteogenic differentiation of human periodontal ligament stem cells (hPDLSCs) with OGP treatment. OGP was elaborated for proliferation, cytotoxicity, osteogenic differentiation effects, and the involvement of osteogenic related signaling pathways in vitro. This study found that OGP at lower concentration shows better effects on cytotoxicity and proliferation. Moreover, OGP at concentration 0.01 nM had the most potential to differentiate hPDLSCs toward osteogenic lineage comparing with higher concentrations of OGP. The phenomenon was mainly involving transforming growth factor-beta (TGF-β), bone morphogenetic protein (BMP), Hedgehog, and Wingless-related (Wnt) pathways. Further, SB-431542 treatment demonstrated the partial involvement of OGP in regulating osteogenic differentiation of hPDLSCs. In conclusion, OGP at low concentration enhances osteogenic differentiation of hPDLSCs by governing TGF-β signaling pathway.
Collapse
|
7
|
Raphael-Mizrahi B, Attar-Lamdar M, Chourasia M, Cascio MG, Shurki A, Tam J, Neuman M, Rimmerman N, Vogel Z, Shteyer A, Pertwee RG, Zimmer A, Kogan N, Bab I, Gabet Y. Osteogenic growth peptide is a potent anti-inflammatory and bone preserving hormone via cannabinoid receptor type 2. eLife 2022; 11:65834. [PMID: 35604006 PMCID: PMC9154745 DOI: 10.7554/elife.65834] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 05/22/2022] [Indexed: 11/13/2022] Open
Abstract
The endocannabinoid system consists mainly of 2-arachidonoylglycerol and anandamide, as well as cannabinoid receptor type 1 (CB1) and type 2 (CB2). Based on previous studies, we hypothesized that a circulating peptide previously identified as Osteogenic Growth Peptide (OGP) maintains a bone-protective CB2 tone. We tested OGP activity in mouse models and cells, and in human osteoblasts. We show that the OGP effects on osteoblast proliferation, osteoclastogenesis, and macrophage inflammation in vitro, as well as rescue of ovariectomy-induced bone loss and prevention of ear edema in vivo are all abrogated by genetic or pharmacological ablation of CB2. We also demonstrate that OGP binds at CB2 and may act as both an agonist and positive allosteric modulator in the presence of other lipophilic agonists. In premenopausal women, OGP circulating levels significantly decline with age. In adult mice, exogenous administration of OGP completely prevented age-related bone loss. Our findings suggest that OGP attenuates age-related bone loss by maintaining a skeletal CB2 tone. Importantly, they also indicate the occurrence of an endogenous peptide that signals via CB2 receptor in health and disease.
Collapse
Affiliation(s)
| | - Malka Attar-Lamdar
- Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Mukesh Chourasia
- Institute for Drug Research, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Maria G Cascio
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Avital Shurki
- Institute for Drug Research, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Joseph Tam
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Moshe Neuman
- Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Neta Rimmerman
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Zvi Vogel
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Arie Shteyer
- Department of Oral and Maxillofacial Surgery, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Roger G Pertwee
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Andreas Zimmer
- Institute of Molecular Psychiatry, University of Bonn, Bonn, Germany
| | - Natalya Kogan
- Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Itai Bab
- Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yankel Gabet
- Department of Anatomy and Anthropology, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
8
|
Tian Y, Jiang P, Liu X, Wei L, Bai Y, Liu X, Li S. Production and identification of peptides with activity promoting osteoblast proliferation from meat dregs of Pinctada martensii. J Food Biochem 2021; 45:e13890. [PMID: 34374442 DOI: 10.1111/jfbc.13890] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/25/2021] [Accepted: 07/08/2021] [Indexed: 01/10/2023]
Abstract
As a by-product of pearl production, Pinctada martensii meat dregs have a high level of protein but cannot be fully utilized. In this study, P. martensii meat dregs were first hydrolyzed by three pepsin enzymes, resulting in neutral proteinase enzymatic hydrolysate that had a higher effect on stimulating the proliferation of MC3T3-E1 cells, and cell proliferation increases of 37.37 ± 0.03%. Subsequently, after purification of alcohol precipitation, ultrafiltration, and Superdex G-25 gel chromatography, five fractions were further separated and purified in which fraction ZP2 could effectively improve cell proliferation induced an increase of 43.95 ± 0.03% in MC3T3-E1 cells growth. Consequently, with the help of alkaline phosphatase and methyl thiazolyl tetrazolium assay, five novel peptides (FDNEGKGKLPEEY, FWDGRDGEVDGFK, VLQTDNDALGKAK, IVLDSGDGVTH, and MVAPEEHP) derived from fraction ZP2 with the strongest osteogenic activity were screened, and their sequences were identified using Orbitrap Fusion Lumos Tribrid Orbital liquid chromatography-mass spectrometry. Therefore, the research results demonstrated that P. martensii meat could be used as a promising material for producing food additives for improving osteoporosis. PRACTICAL APPLICATIONS: In this study, after enzymolysis and purification, the fraction ZP2, derived from Pinctada martensii meat dregs were found to have a better activity of promoting osteoblast proliferation, showing the higher osteogenic activity with an increase of 43.95 ± 0.03% in terms of cell proliferation. It is beneficial to realize the high value and resource utilization of P. martensii meat dregs as a by-product of pearl production. The research demonstrated that the meat dregs of P. martensii could be used as an attractive material for producing active peptides in functional foods. In addition, the molecular weight of the peptides we identified from the ZP2 fraction is suitable for the proliferation of MC3T3-E1 cells, which lays a foundation for the further synthesis of peptides that promote the high proliferation activity of osteocytes.
Collapse
Affiliation(s)
- Yufeng Tian
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Pingyingzi Jiang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Xiaoyue Liu
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Lulu Wei
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Yunxia Bai
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Xiaoling Liu
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Shubo Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| |
Collapse
|
9
|
Zhan J, Yan Z, Zhao M, Qi W, Lin J, Lin Z, Huang Y, Pan X, Xue X. Allicin inhibits osteoblast apoptosis and steroid-induced necrosis of femoral head progression by activating the PI3K/AKT pathway. Food Funct 2020; 11:7830-7841. [PMID: 32808945 DOI: 10.1039/d0fo00837k] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Steroid-induced avascular necrosis of the femoral head (SANFH) is a major complication of long-term or excessive clinical use of glucocorticoids. Allicin is a classical ingredient extracted from garlic and has many functions such as anti-apoptosis and antibacterial effects. The purpose of this study was to investigate the effect and the mechanism of allicin on apoptosis of osteoblasts induced by dexamethasone (Dex) and SANFH in rats. In vitro, we performed CCK-8, western blotting, TUNEL and other experiments, and the results of these experiments showed that allicin could inhibit the Dex-induced abnormal expression of C-caspase3, C-caspase9, Bax, cytochrome C and Bcl-2 by activating the PI3K/AKT pathway. In vivo, the results of micro-CT, hematoxylin-eosin staining and immunohistochemical analysis suggested that allicin could effectively inhibit the progress of SANFH in rats. In summary, our experiments indicate that allicin is a potential drug for the treatment of SANFH.
Collapse
Affiliation(s)
- Jingdi Zhan
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China. and Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325000, Zhejiang Province, China and The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Zijian Yan
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China. and Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325000, Zhejiang Province, China and The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Mengyao Zhao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China. and Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325000, Zhejiang Province, China and The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Weihui Qi
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China. and Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325000, Zhejiang Province, China and The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Jian Lin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China.
| | - Zeng Lin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China. and Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325000, Zhejiang Province, China and The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Yijiang Huang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China.
| | - Xiaoyun Pan
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China.
| | - Xinghe Xue
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China.
| |
Collapse
|
10
|
Saska S, Pires LC, Cominotte MA, Mendes LS, de Oliveira MF, Maia IA, da Silva JVL, Ribeiro SJL, Cirelli JA. Three-dimensional printing and in vitro evaluation of poly(3-hydroxybutyrate) scaffolds functionalized with osteogenic growth peptide for tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 89:265-273. [DOI: 10.1016/j.msec.2018.04.016] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 02/01/2018] [Accepted: 04/10/2018] [Indexed: 01/29/2023]
|
11
|
Saska S, Pigossi SC, Oliveira GJPL, Teixeira LN, Capela MV, Gonçalves A, de Oliveira PT, Messaddeq Y, Ribeiro SJL, Gaspar AMM, Marchetto R. Biopolymer-based membranes associated with osteogenic growth peptide for guided bone regeneration. ACTA ACUST UNITED AC 2018; 13:035009. [PMID: 29363620 DOI: 10.1088/1748-605x/aaaa2d] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Barrier membranes for guided bone regeneration (GBR) mainly promote mechanical maintenance of bone defect space and induce osteopromotion. Additionally, biopolymer-based membranes may provide greater bioactivity and biocompatibility due to their similarity to extracellular matrix (ECM). In this study, biopolymers-based membranes from bacterial cellulose (BC) and collagen (COL) associated with osteogenic growth peptide (OGP(10-14)) were evaluated to determine in vitro osteoinductive potential in early osteogenesis; moreover, histological study was performed to evaluate the BC-COL OGP(10-14) membranes on bone healing after GBR in noncritical defects in rat femur. The results showed that the BC-COL and BC-COL OGP(10-14) membranes promoted cell proliferation and alkaline phosphatase activity in osteoblastic cell cultures. However, ECM mineralization was similar between cultures grown on BC OGP(10-14) and BC-COL OGP(10-14) membranes. In vivo results showed that all the membranes tested, including the peptide-free BC membrane, promoted better bone regeneration than control group. Furthermore, the BC-COL OGP(10-14) membranes induced higher radiographic density in the repaired bone than the other groups at 1, 4 and 16 weeks. Histomorphometric analyses revealed that the BC-COL OGP(10-14) induced higher percentage of bone tissue in the repaired area at 2 and 4 weeks than others membranes. In general, these biopolymer-based membranes might be potential candidates for bone regeneration applications.
Collapse
Affiliation(s)
- Sybele Saska
- São Paulo State University-UNESP, Institute of Chemistry, Araraquara, SP, Brazil. São Paulo State University-UNESP, School of Dentistry, Araraquara, SP, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
Waste-free catalytic assembly of α-amino acids is fueled by a multiboron catalyst that features a characteristic B3NO2 heterocycle, providing a versatile catalytic protocol wherein functionalized natural α-amino acid units are accommodated and commonly used protecting groups are tolerated. The facile dehydrative conditions eliminate the use of engineered peptide coupling reagents, exemplifying a greener catalytic alternative for peptide coupling. The catalysis is sufficiently robust to enable pentapeptide synthesis, constructing all four amide bond linkages in a catalytic fashion.
Collapse
Affiliation(s)
- Zijian Liu
- Institute of Microbial Chemistry (BIKAKEN), Tokyo , 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan
| | - Hidetoshi Noda
- Institute of Microbial Chemistry (BIKAKEN), Tokyo , 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan
| | - Masakatsu Shibasaki
- Institute of Microbial Chemistry (BIKAKEN), Tokyo , 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan
| | - Naoya Kumagai
- Institute of Microbial Chemistry (BIKAKEN), Tokyo , 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan
| |
Collapse
|
13
|
Pandey M, Kapila R, Kapila S. Osteoanabolic activity of whey-derived anti-oxidative (MHIRL and YVEEL) and angiotensin-converting enzyme inhibitory (YLLF, ALPMHIR, IPA and WLAHK) bioactive peptides. Peptides 2018; 99:1-7. [PMID: 29122669 DOI: 10.1016/j.peptides.2017.11.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 11/01/2017] [Accepted: 11/05/2017] [Indexed: 01/15/2023]
Abstract
Exploring bone rebuilding anabolic agents has been gaining much attention due to their potential therapeutic effects in treating several bone disorders including osteoporosis. Whey protein has been reported to affect bone health osteoanabolically, in terms of proliferation and differentiation of primary osteoblast cells. This study investigates whether whey derived anti-oxidative (AO) (P1- MHIRL, P2- YVEEL) and angiotensin converting enzyme inhibitory (ACE inhibitory) (P3- YLLF, P4-ALPMHIR, P5-IPA, P6- WLAHK) bioactive peptides affect the proliferation and differentiation of primary osteoblast cells isolated from rat calvaria. The proliferation and osteogenic activity of osteoblast cells in presence of these peptides were determined by MTT assay, DNA quantification study, Alkaline phosphatase activity (ALP) and ALP staining, Alizarin red activity and staining, and secretory osteocalcin measurement. The expression of osteogenesis-related genes (COLI-α, ALP, OCN and RUNX2) were determined by real-time quantitative PCR (RT-PCR) analysis over a period of 21days. The peptide treated osteoblasts showed a significant increase in viable cell density and proliferation in the order of P2>P6>P3 at optimised concentration. Furthermore, the osteoblastic differentiation markers in response to these peptides were found to be significantly up regulated in the order of P2>P6>P3 when compared to the controls. These results demonstrated that bioactive whey-derived AO and ACE inhibitory peptides can play a potential therapeutic role in osteoporosis by activating osteoblasts anabolically.
Collapse
Affiliation(s)
- Masum Pandey
- Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Rajeev Kapila
- Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Suman Kapila
- Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, India.
| |
Collapse
|
14
|
Nanocellulose-collagen-apatite composite associated with osteogenic growth peptide for bone regeneration. Int J Biol Macromol 2017; 103:467-476. [DOI: 10.1016/j.ijbiomac.2017.05.086] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 04/12/2017] [Accepted: 05/16/2017] [Indexed: 12/21/2022]
|
15
|
Wang C, Liu Y, Fan Y, Li X. The use of bioactive peptides to modify materials for bone tissue repair. Regen Biomater 2017; 4:191-206. [PMID: 28596916 PMCID: PMC5458541 DOI: 10.1093/rb/rbx011] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 03/08/2017] [Accepted: 03/11/2017] [Indexed: 01/05/2023] Open
Abstract
It has been well recognized that the modification of biomaterials with appropriate bioactive peptides could further enhance their functions. Especially, it has been shown that peptide-modified bone repair materials could promote new bone formation more efficiently compared with conventional ones. The purpose of this article is to give a general review of recent studies on bioactive peptide-modified materials for bone tissue repair. Firstly, the main peptides for inducing bone regeneration and commonly used methods to prepare peptide-modified bone repair materials are introduced. Then, current in vitro and in vivo research progress of peptide-modified composites used as potential bone repair materials are reviewed and discussed. Generally speaking, the recent related studies have fully suggested that the modification of bone repair materials with osteogenic-related peptides provide promising strategies for the development of bioactive materials and substrates for enhanced bone regeneration and the therapy of bone tissue diseases. Furthermore, we have proposed some research trends in the conclusion and perspectives part.
Collapse
Affiliation(s)
- Cunyang Wang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Yan Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
- School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Xiaoming Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
- Key Laboratory of Advanced Materials of Ministry of Education of China, Tsinghua University, Beijing 100084, China
| |
Collapse
|
16
|
Akt drives buffalo casein-derived novel peptide-mediated osteoblast differentiation. J Nutr Biochem 2016; 38:134-144. [DOI: 10.1016/j.jnutbio.2016.08.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 08/09/2016] [Accepted: 08/28/2016] [Indexed: 01/02/2023]
|
17
|
Pigossi SC, Medeiros MC, Saska S, Cirelli JA, Scarel-Caminaga RM. Role of Osteogenic Growth Peptide (OGP) and OGP(10-14) in Bone Regeneration: A Review. Int J Mol Sci 2016; 17:ijms17111885. [PMID: 27879684 PMCID: PMC5133884 DOI: 10.3390/ijms17111885] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 10/24/2016] [Accepted: 11/02/2016] [Indexed: 12/16/2022] Open
Abstract
Bone regeneration is a process that involves several molecular mediators, such as growth factors, which directly affect the proliferation, migration and differentiation of bone-related cells. The osteogenic growth peptide (OGP) and its C-terminal pentapeptide OGP(10–14) have been shown to stimulate the proliferation, differentiation, alkaline phosphatase activity and matrix mineralization of osteoblastic lineage cells. However, the exact molecular mechanisms that promote osteoblastic proliferation and differentiation are not completely understood. This review presents the main chemical characteristics of OGP and/or OGP(10–14), and also discusses the potential molecular pathways induced by these growth factors to promote proliferation and differentiation of osteoblasts. Furthermore, since these peptides have been extensively investigated for bone tissue engineering, the clinical applications of these peptides for bone regeneration are discussed.
Collapse
Affiliation(s)
- Suzane C Pigossi
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, UNESP-São Paulo State University, Humaita St, 1680, CEP 14801-903 Araraquara, São Paulo, Brazil.
- Department of Morphology, School of Dentistry, UNESP- São Paulo State University, Humaita St, 1680, CEP 14801-903 Araraquara, São Paulo, Brazil.
| | - Marcell C Medeiros
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, UNESP-São Paulo State University, Humaita St, 1680, CEP 14801-903 Araraquara, São Paulo, Brazil.
| | - Sybele Saska
- Department of General and Inorganic Chemistry, Institute of Chemistry, UNESP-São Paulo State University, Professor Francisco Degni St, 55, CEP 14800-900 Araraquara, São Paulo, Brazil.
| | - Joni A Cirelli
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, UNESP-São Paulo State University, Humaita St, 1680, CEP 14801-903 Araraquara, São Paulo, Brazil.
| | - Raquel M Scarel-Caminaga
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, UNESP-São Paulo State University, Humaita St, 1680, CEP 14801-903 Araraquara, São Paulo, Brazil.
- Department of Morphology, School of Dentistry, UNESP- São Paulo State University, Humaita St, 1680, CEP 14801-903 Araraquara, São Paulo, Brazil.
| |
Collapse
|
18
|
Effect of buffalo casein-derived novel bioactive peptides on osteoblast differentiation. Eur J Nutr 2016; 57:593-605. [DOI: 10.1007/s00394-016-1346-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 11/10/2016] [Indexed: 12/17/2022]
|
19
|
Kanie K, Kurimoto R, Tian J, Ebisawa K, Narita Y, Honda H, Kato R. Screening of Osteogenic-Enhancing Short Peptides from BMPs for Biomimetic Material Applications. MATERIALS (BASEL, SWITZERLAND) 2016; 9:E730. [PMID: 28773850 PMCID: PMC5457080 DOI: 10.3390/ma9090730] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 08/17/2016] [Accepted: 08/19/2016] [Indexed: 01/13/2023]
Abstract
Bone regeneration is an important issue in many situations, such as bone fracture and surgery. Umbilical cord mesenchymal stem cells (UC-MSCs) are promising cell sources for bone regeneration. Bone morphogenetic proteins and their bioactive peptides are biomolecules known to enhance the osteogenic differentiation of MSCs. However, fibrosis can arise during the development of implantable biomaterials. Therefore, it is important to control cell organization by enhancing osteogenic proliferation and differentiation and inhibiting fibroblast proliferation. Thus, we focused on the screening of such osteogenic-enhancing peptides. In the present study, we developed new peptide array screening platforms to evaluate cell proliferation and alkaline phosphatase activity in osteoblasts, UC-MSCs and fibroblasts. The conditions for the screening platform were first defined using UC-MSCs and an osteogenic differentiation peptide known as W9. Next, in silico screening to define the candidate peptides was carried out to evaluate the homology of 19 bone morphogenetic proteins. Twenty-five candidate 9-mer peptides were selected for screening. Finally, the screening of osteogenic-enhancing (osteogenic cell-selective proliferation and osteogenic differentiation) short peptide was carried out using the peptide array method, and three osteogenic-enhancing peptides were identified, confirming the validity of this screening.
Collapse
Affiliation(s)
- Kei Kanie
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Aichi, Japan.
| | - Rio Kurimoto
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Ibaraki, Japan.
- Biomaterials Unit, International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan.
| | - Jing Tian
- Department of Biotechnology, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Aichi, Japan.
| | - Katsumi Ebisawa
- Department of Plastic and Reconstructive Surgery, Nagoya University Graduate School of Medicine, 65 Turumai-cho, Showa-ku, Nagoya 466-8550, Aichi, Japan.
| | - Yuji Narita
- Department of Cardiac Surgery, Nagoya University Graduate School of Medicine, 65 Turumai-cho, Showa-ku, Nagoya 466-8550, Aichi, Japan.
| | - Hiroyuki Honda
- Department of Biotechnology, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Aichi, Japan.
| | - Ryuji Kato
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Aichi, Japan.
| |
Collapse
|
20
|
Pountos I, Panteli M, Lampropoulos A, Jones E, Calori GM, Giannoudis PV. The role of peptides in bone healing and regeneration: a systematic review. BMC Med 2016; 14:103. [PMID: 27400961 PMCID: PMC4940902 DOI: 10.1186/s12916-016-0646-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Bone tissue engineering and the research surrounding peptides has expanded significantly over the last few decades. Several peptides have been shown to support and stimulate the bone healing response and have been proposed as therapeutic vehicles for clinical use. The aim of this comprehensive review is to present the clinical and experimental studies analysing the potential role of peptides for bone healing and bone regeneration. METHODS A systematic review according to PRISMA guidelines was conducted. Articles presenting peptides capable of exerting an upregulatory effect on osteoprogenitor cells and bone healing were included in the study. RESULTS Based on the available literature, a significant amount of experimental in vitro and in vivo evidence exists. Several peptides were found to upregulate the bone healing response in experimental models and could act as potential candidates for future clinical applications. However, from the available peptides that reached the level of clinical trials, the presented results are limited. CONCLUSION Further research is desirable to shed more light into the processes governing the osteoprogenitor cellular responses. With further advances in the field of biomimetic materials and scaffolds, new treatment modalities for bone repair will emerge.
Collapse
Affiliation(s)
- Ippokratis Pountos
- Department of Trauma & Orthopaedics, School of Medicine, University of Leeds, Leeds, UK
| | - Michalis Panteli
- Department of Trauma & Orthopaedics, School of Medicine, University of Leeds, Leeds, UK
| | | | - Elena Jones
- Unit of Musculoskeletal Disease, Leeds Institute of Rheumatic and Musculoskeletal Medicine, St. James University Hospital, University of Leeds, LS9 7TF, Leeds, UK
| | - Giorgio Maria Calori
- Department of Trauma & Orthopaedics, School of Medicine, ISTITUTO ORTOPEDICO GAETANO PINI, Milan, Italy
| | - Peter V Giannoudis
- Department of Trauma & Orthopaedics, School of Medicine, University of Leeds, Leeds, UK. .,NIHR Leeds Biomedical Research Unit, Chapel Allerton Hospital, LS7 4SA Leeds, West Yorkshire, Leeds, UK.
| |
Collapse
|
21
|
Amso Z, Cornish J, Brimble MA. Short Anabolic Peptides for Bone Growth. Med Res Rev 2016; 36:579-640. [DOI: 10.1002/med.21388] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 01/24/2016] [Accepted: 02/15/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Zaid Amso
- School of Chemical Sciences; The University of Auckland, 23 Symonds St; Auckland 1142 New Zealand
| | - Jillian Cornish
- Department of Medicine; The University of Auckland; Auckland 1010 New Zealand
| | - Margaret A. Brimble
- School of Chemical Sciences; The University of Auckland, 23 Symonds St; Auckland 1142 New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences; The University of Auckland; Auckland 1142 New Zealand
| |
Collapse
|
22
|
Pennington EC, Dionigi B, Gray FL, Ahmed A, Brazzo J, Dolinko A, Calderon N, Darrah T, Zurakowski D, Nazarian A, Snyder B, Fauza DO. Limb reconstruction with decellularized, non-demineralized bone in a young leporine model. ACTA ACUST UNITED AC 2015; 10:015021. [PMID: 25668190 DOI: 10.1088/1748-6041/10/1/015021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Limb salvage from a variety of pathological processes in children is often limited by the unavailability of optimal allograft bone, or an appropriate structural bone substitute. In this study, we sought to examine a practical alternative for pediatric limb repair, based on decellularized, non-demineralized bone grafts, and to determine whether controlled recellularization prior to implantation has any impact on outcome. Growing New Zealand rabbits (n = 12) with a complete, critical-size defect on the left tibiofibula were equally divided into two groups. One group received a decellularized, non-demineralized leporine tibiofibula graft. The other group received an equivalent graft seeded with mesenchymal stem cells labeled with green fluorescent protein (GFP), at a fixed density. Animals were euthanized at comparable time points 3-8 weeks post-implantation. Statistical analysis was by the Student t-test and Fisher's exact test (P < 0.05). There was no significant difference in the rate of non-union between the two groups, including on 3D micro-CT. Incorporated grafts achieved adequate axial bending rigidity, torsional rigidity, union yield and flexural strength, with no significant differences or unequal variances between the groups. Correspondingly, there were no significant differences in extracellular calcium levels, or alkaline phosphatase activity. Histology confirmed the presence of neobone in both groups, with GFP-positive cells in the recellularized grafts. It was shown that osseous grafts derived from decellularized, non-demineralized bone undergo adequate remodeling in vivo after the repair of critical-size limb defects in a growing leporine model, irrespective of subsequent recellularization. This methodology may become a practical alternative for pediatric limb reconstruction.
Collapse
Affiliation(s)
- Elliot C Pennington
- Department of Surgery, Boston Children's Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Chen C, Li H, Kong X, Zhang SM, Lee IS. Immobilizing osteogenic growth peptide with and without fibronectin on a titanium surface: effects of loading methods on mesenchymal stem cell differentiation. Int J Nanomedicine 2014; 10:283-95. [PMID: 25678785 PMCID: PMC4317146 DOI: 10.2147/ijn.s74746] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
In this study, to improve the osseointegration of implants, osteogenic growth peptide (OGP) and fibronectin (FN) were loaded within mineral, which was formed on titanium, through adsorption and coprecipitation methods. The release profiles of OGP loaded by either adsorption or coprecipitation and the effects of the loading methods to immobilize OGP with and without FN on rat mesenchymal stem cell (rMSC) osteogenic differentiation were studied. The coprecipitation approach slightly reduced the initial burst release, while the adsorption approach provided a more sustained release. Dual loading of OGP and FN further improved cell attachments compared with either OGP or FN alone. Dually loaded OGP and FN also had a positive impact on rMSC proliferation and osteogenic differentiation. The difference in methods of loading OGP with and without FN also had some effects on osteogenic differentiation. Compared with coprecipitated OGP alone, adsorbed OGP enhanced later differentiation, such as osteocalcin secretion and matrix mineralization. Simultaneously adsorbed OGP and FN led to higher proliferation and higher osteogenic differentiation in both early and late stages compared with sequentially loaded OGP and FN. rMSC culture clearly indicated that simultaneously adsorbed OGP and FN could improve osseointegration, and this treatment represents a potential method for effective surface modification of dental and orthopedic implants.
Collapse
Affiliation(s)
- Cen Chen
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan, People's Republic of China ; Bio-X Center, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, People's Republic of China
| | - Han Li
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xiangdong Kong
- Bio-X Center, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, People's Republic of China
| | - Sheng-Min Zhang
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - In-Seop Lee
- Bio-X Center, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, People's Republic of China ; Institute of Natural Sciences, Yonsei University, Seoul, Korea
| |
Collapse
|
24
|
Hydrogel depots for local co-delivery of osteoinductive peptides and mesenchymal stem cells. J Control Release 2014; 189:158-68. [DOI: 10.1016/j.jconrel.2014.06.030] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 06/04/2014] [Accepted: 06/19/2014] [Indexed: 01/17/2023]
|
25
|
Saska S, Scarel-Caminaga RM, Teixeira LN, Franchi LP, Dos Santos RA, Gaspar AMM, de Oliveira PT, Rosa AL, Takahashi CS, Messaddeq Y, Ribeiro SJL, Marchetto R. Characterization and in vitro evaluation of bacterial cellulose membranes functionalized with osteogenic growth peptide for bone tissue engineering. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2012; 23:2253-2266. [PMID: 22622695 DOI: 10.1007/s10856-012-4676-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 05/08/2012] [Indexed: 06/01/2023]
Abstract
The aim of this study was to characterize the physicochemical properties of bacterial cellulose (BC) membranes functionalized with osteogenic growth peptide (OGP) and its C-terminal pentapeptide OGP[10-14], and to evaluate in vitro osteoinductive potential in early osteogenesis, besides, to evaluate cytotoxic, genotoxic and/or mutagenic effects. Peptide incorporation into the BC membranes did not change the morphology of BC nanofibers and BC crystallinity pattern. The characterization was complemented by Raman scattering, swelling ratio and mechanical tests. In vitro assays demonstrated no cytotoxic, genotoxic or mutagenic effects for any of the studied BC membranes. Culture with osteogenic cells revealed no difference in cell morphology among all the membranes tested. Cell viability/proliferation, total protein content, alkaline phosphatase activity and mineralization assays indicated that BC-OGP membranes enabled the highest development of the osteoblastic phenotype in vitro. In conclusion, the negative results of cytotoxicity, genotoxicity and mutagenicity indicated that all the membranes can be employed for medical supplies, mainly in bone tissue engineering/regeneration, due to their osteoinductive properties.
Collapse
Affiliation(s)
- Sybele Saska
- Institute of Chemistry, Universidade Estadual Paulista, (UNESP), Rua Francisco Degni 55, Araraquara, SP, 14800-900, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Oxidative stress and heme oxygenase-1 regulated human mesenchymal stem cells differentiation. Int J Hypertens 2012; 2012:890671. [PMID: 22518296 PMCID: PMC3296285 DOI: 10.1155/2012/890671] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 11/09/2011] [Accepted: 11/14/2011] [Indexed: 12/21/2022] Open
Abstract
This paper describes the effect of increased expression of HO-1 protein and increased levels of HO activity on differentiation of bone-marrow-derived human MSCs. MSCs are multipotent cells that proliferate and differentiate into many different cell types including adipocytes and osteoblasts. HO, the rate-limiting enzyme in heme catabolism, plays an important role during MSCs differentiation. HO catalyzes the stereospecific degradation of heme to biliverdin, with the concurrent release of iron and carbon monoxide. Upregulation of HO-1 expression and increased HO activity are essential for MSC growth and differentiation to the osteoblast lineage consistent with the role of HO-1 in hematopoietic stem cell differentiation. HO-1 participates in the MSC differentiation process shifting the balance of MSC differentiation in favor of the osteoblast lineage by decreasing PPARγ and increasing osteogenic markers such as alkaline phosphatase and BMP-2. In this paper, we define HO-1 as a target molecule in the modulation of adipogenesis and osteogenesis from MSCs and examine the role of the HO system in diabetes, inflammation, osteoporosis, hypertension, and other pathologies, a burgeoning area of research.
Collapse
|
27
|
|
28
|
Battolla B, Bernardini N, Petrini M, Mattii L. The small peptide OGP(10-14) reduces proliferation and induces differentiation of TPO-primed M07-e cells through RhoA/TGFbeta1/SFK pathway. Med Sci Monit 2011; 17:SC1-5. [PMID: 21169922 PMCID: PMC3524689 DOI: 10.12659/msm.881309] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Background Osteogenic growth peptide (OGP) is a 14-mer peptide found in relevant concentration in blood, and its carboxy-terminal fragment [OGP(10-14)] represents the active portion of the full-length peptide. In addition to stimulating bone formation, OGP(10-14) shows hematological activity. In fact, it highly enhances hematopoiesis-affecting stem progenitors. Moreover, OGP(10-14) reduces the growth and induces the differentiation of the hematological tumour cell line trombophoietin(TPO)-primed M07-e by interfering with RhoA and Src kinase pathways. In the present report, we went deeper into this mechanism and evaluated the possible interference of the OGP(10-14) signal pathway with TGFβ1 and TPO receptor Mpl. Material/Methods In OGP(10-14)-treated M07-e cells cultured with or without RhoA and Src kinases inhibitors (C3 and PP2), expression of TGFβ1, Mpl, and Src kinases was analyzed by immunoperoxidase technique. Activated RhoA expression was studied using the G-LISA™ quantitative test. Results In M07-e cells, both OGP(10-14) and PP2 activate RhoA, inhibit Src kinases, reduce Mpl expression and increase TGFβ1 expression. OGP(10-14) and PP2 show the same behavior, causing an additive effect when associated. Conclusions OGP(10-14) induces TPO-primed M07-e cells differentiation through RhoA/TGFβ1/SFKs signalling pathway. In particular OGP(10-14) acts as a Src inhibitor, showing the same effects of PP2.
Collapse
Affiliation(s)
- Barbara Battolla
- Department of Human Morphology and Applied Biology, Section of Histology and General Embryology, University of Pisa, Italy
| | | | | | | |
Collapse
|
29
|
Zhao ZY, Shao L, Zhao HM, Zhong ZH, Liu JY, Hao CG. Osteogenic Growth Peptide Accelerates Bone Healing during Distraction Osteogenesis in Rabbit Tibia. J Int Med Res 2011; 39:456-63. [PMID: 21672349 DOI: 10.1177/147323001103900213] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Distraction osteogenesis is a valuable treatment method that allows limb lengthening or reconstruction of large bone defects. However, its major disadvantage is the long period required for the consolidation of a distraction callus. Osteogenic growth peptide (OGP) stimulates endochondral bone formation in fracture callus, but its capacity to promote regenerate ossification during distraction osteogenesis has not been evaluated. This study investigated whether intravenously administered OGP accelerated bone healing during distraction osteogenesis in 36 male New Zealand White rabbits, randomized into two groups. The treatment group received OGP (200 ng/kg body weight) in phosphate-buffered saline (PBS), intravenously, each day; the control group received PBS alone. A 15-mm lengthening of the right lower leg was performed using the method of Ilizarov. Evidence from biomechanical, histological and radiographic evaluations demonstrated that systemic OGP treatment promoted optimal new bone formation during distraction osteogenesis in this rabbit model.
Collapse
Affiliation(s)
- Z-Y Zhao
- Department of Orthopaedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - L Shao
- Department of Orthopaedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - H-M Zhao
- Department of Gynaecology, The Third Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Z-H Zhong
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - J-Y Liu
- Department of Orthopaedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - C-G Hao
- Department of Orthopaedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
30
|
Short-term application of dexamethasone enhances bone morphogenetic protein-7-induced ectopic bone formation in vivo. ACTA ACUST UNITED AC 2011; 69:1473-80. [PMID: 21150526 DOI: 10.1097/ta.0b013e3181dc59e4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Long-term administration of glucocorticoids may lead to bone loss and osteoporosis as reported in previous experimental and clinical studies. On the other hand, several in vitro studies have demonstrated that dexamethasone treatment induces proliferation and differentiation of human and murine osteoblast precursors. Thereby, a positive interaction of dexamethasone with the osteoinductive bone morphogenetic proteins (BMPs) is reported in vitro, but in vivo studies are still missing. Thus, the aim of this study was to determine whether short-term application of dexamethasone may improve BMP-7-induced bone formation in vivo. METHODS Ectopic bone formation was induced in control and dexamethasone-treated mice by application of BMP-7 into the hamstring muscles. After 20 days of treatment, each ectopic bone nodule was analyzed by contact radiography, microcomputed tomography, and histomorphometry. Furthermore, mice were subjected to histomorphometric analyses of their lumbar vertebrae and proximal tibiae to assess the systemic effect of short-term dexamethasone treatment on bone metabolism. RESULTS Dexamethasone application significantly increased the bone volume and osteoblast number of the ectopic bone nodules compared with untreated controls. Histomorphometric analyses of the lumbar vertebrae and proximal tibiae revealed no significant differences between the control and dexamethasone-treated mice. CONCLUSIONS This study demonstrates that BMP-7-induced ectopic bone formation is significantly enhanced by systemic short-term application of dexamethasone. These in vivo data confirm the results of previous in vitro studies and could be of interest for further studies with the intention to improve BMP-induced bone formation by short-term application of dexamethasone.
Collapse
|
31
|
Fei Q, Guo C, Xu X, Gao J, Zhang J, Chen T, Cui D. Osteogenic growth peptide enhances the proliferation of bone marrow mesenchymal stem cells from osteoprotegerin-deficient mice by CDK2/cyclin A. Acta Biochim Biophys Sin (Shanghai) 2010; 42:801-6. [PMID: 20926513 DOI: 10.1093/abbs/gmq086] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
To promote bone formation is one of the fundamental strategies in osteoporosis treatment and fractures repair. As one of the stimulators on bone formation, osteogenic growth peptide (OGP) increases both proliferation and differentiation of the osteoblasts in vitro and in vivo, in which osteoprotegerin (OPG) has been suggested being involved. In this study, we evaluated the effects of OGP on bone marrow mesenchymal stem cells (MSCs) from OPG-deficient mice in vitro by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, alkaline phosphatase (ALP) activity assay, real-time polymerase chain reaction, and western blot analysis. Results showed that OGP stimulated MSC proliferation and increased the expression of CDK2 and cyclin A in MSCs both at mRNA and protein levels. However, no differentiative effect of OGP was shown as ALP activity and the expression levels of Runx2 and Osterix were not increased significantly by OGP. Our study suggested that OGP may increase the bone formation in OPG-deficient mice by stimulating MSC proliferation rather than differentiation, and probably by triggering CDK2/cyclin A pathway.
Collapse
Affiliation(s)
- Qinming Fei
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.
| | | | | | | | | | | | | |
Collapse
|
32
|
Moore NM, Lin NJ, Gallant ND, Becker ML. The use of immobilized osteogenic growth peptide on gradient substrates synthesized via click chemistry to enhance MC3T3-E1 osteoblast proliferation. Biomaterials 2010; 31:1604-11. [DOI: 10.1016/j.biomaterials.2009.11.011] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Accepted: 11/03/2009] [Indexed: 01/23/2023]
|
33
|
Vanella L, Kim DH, Asprinio D, Peterson SJ, Barbagallo I, Vanella A, Goldstein D, Ikehara S, Abraham NG. HO-1 expression increases mesenchymal stem cell-derived osteoblasts but decreases adipocyte lineage. Bone 2010; 46:236-43. [PMID: 19853072 PMCID: PMC2818489 DOI: 10.1016/j.bone.2009.10.012] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 09/24/2009] [Accepted: 10/13/2009] [Indexed: 01/13/2023]
Abstract
Human bone marrow mesenchymal stem cells (MSC) are pleiotropic cells that differentiate to either adipocytes or osteoblasts as a result of cross-talk by specific signaling pathways including heme oxygenase (HO)-1/-2 expression. We examined the effect of inducers of HO-1 expression and inhibitors of HO activity on MSC differentiation to the osteoblast and adipocyte lineage. HO-1 expression is increased during osteoblast stem cell development but remains elevated at 25 days. The increase in HO-1 levels precedes an increase in alkaline phosphatase (AP) activity and an increase in BMP, osteonectin and RUNX-2 mRNA. Induction of HO-1 by osteogenic growth peptide (OGP) was associated with an increase in BMP-2 and osteonectin. Exposure of MSC to high glucose levels decreased osteocalcin and osteogenic protein expression, which was reversed by upregulation of the OGP-mediated increase in HO-1 expression. The glucose-mediated decrease in HO-1 resulted in decreased levels of pAMPK, pAKT and the eNOS signaling pathway and was reversed by OGP. In contrast, MSC-derived adipocytes were increased by glucose. HO-1 siRNA decreased HO-1 expression but increased adipocyte stem cell differentiation and the adipogenesis marker, PPARgamma. Thus, upregulation of HO-1 expression shifts the balance of MSC differentiation in favor of the osteoblast lineage. In contrast, a decrease in HO-1 or exposure to glucose drives the MSC towards adipogenesis. Thus, targeting HO-1 expression is a portal to increased osteoblast stem cell differentiation and to the attenuation of osteoporosis by the promotion of bone formation.
Collapse
Affiliation(s)
- Luca Vanella
- Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, Ohio
| | - Dong Hyun Kim
- Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, Ohio
| | - David Asprinio
- Department of Orthopedics, New York Medical College, Valhalla, NY
| | | | - Ignazio Barbagallo
- Department of Biological Chemistry, Medical Chemistry and Molecular Biology, University of Catania, Italy
| | - Angelo Vanella
- Department of Biological Chemistry, Medical Chemistry and Molecular Biology, University of Catania, Italy
| | - Dove Goldstein
- Department of Obstetrics and Gynecology, Columbia University, New York, NY
| | - Susumu Ikehara
- First Department of Pathology, Kansai Medical University, Osaka, Japan
| | - Nader G. Abraham
- Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, Ohio
- Department of Medicine, New York Medical College, Valhalla, NY
| |
Collapse
|
34
|
Inhibition of glycogen synthase kinase-3β attenuates glucocorticoid-induced bone loss. Life Sci 2009; 85:685-92. [DOI: 10.1016/j.lfs.2009.09.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Revised: 08/26/2009] [Accepted: 09/13/2009] [Indexed: 01/18/2023]
|
35
|
Yun SI, Yoon HY, Jeong SY, Chung YS. Glucocorticoid induces apoptosis of osteoblast cells through the activation of glycogen synthase kinase 3beta. J Bone Miner Metab 2009; 27:140-8. [PMID: 19066717 DOI: 10.1007/s00774-008-0019-5] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2007] [Accepted: 05/18/2008] [Indexed: 12/31/2022]
Abstract
Glucocorticoids (GCs), which play an important role in the normal regulation of bone remodeling, are widely used as anti-inflammatory and chemotherapeutic agents. However, continued exposure to GCs results in osteoporosis, which is partially due to apoptosis of osteoblasts and osteocytes. To understand the mechanism of how GCs induce cell death in osteoblasts, we examined apoptotic effects of dexamethasone (Dex), GC, on MC3T3-E1 osteoblast cells. Results revealed that Dex-induced apoptosis was inhibited by a GC receptor antagonist, mifepristone, and a general caspase inhibitor, Z-VAD-fmk, indicating that Dex induces apoptosis of MC3T3-E1 cells through the pathways involved in GC receptor and caspase. Glycogen synthase kinase 3beta (GSK3beta) is known to participate in apoptosis signaling in MC3T3-E1 cells. Dex activated both GSK3beta and p38-mitogen-activated protein kinase (MAPK). The inhibition of GSK3beta by inhibitor (LiCl) or small interference RNA (siRNA) decreased apoptosis. In contrast, the inhibition of p38-MAPK by inhibitor (SB203580) or siRNA did not decrease, but increase apoptosis. These results suggest that Dex-mediated apoptosis of osteoblasts is facilitated by GSK3beta, but prevented by p38-MAPK.
Collapse
Affiliation(s)
- Sun-Il Yun
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, San 5 Wonchon-Dong Yeongtong-Gu, Suwon City, Gyeonggi Province 443-721, South Korea
| | | | | | | |
Collapse
|
36
|
Oshina H, Sotome S, Yoshii T, Torigoe I, Sugata Y, Maehara H, Marukawa E, Omura K, Shinomiya K. Effects of continuous dexamethasone treatment on differentiation capabilities of bone marrow-derived mesenchymal cells. Bone 2007; 41:575-83. [PMID: 17690025 DOI: 10.1016/j.bone.2007.06.022] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2007] [Revised: 06/12/2007] [Accepted: 06/25/2007] [Indexed: 12/13/2022]
Abstract
Human bone marrow-derived mesenchymal cells (hBMMCs) originate from cell populations in the bone marrow and are capable of differentiating along multiple mesenchymal lineages. To differentiate hBMMCs into osteoblasts, adipocytes and chondrocytes, dexamethasone has been used as a differentiation reagent. We hypothesized that dexamethasone would augment the responsiveness of BMMCs to other differentiation reagents and not define the lineage. This study investigated the effect of continuous treatment with 100 nM dexamethasone on the differentiation of BMMCs into three different lineages. hBMMCs cultured with continuous dexamethasone treatment (100 nM) exhibited higher mRNA expression levels of osteogenic markers and higher positive rates of colony forming unit assays for osteogenesis compared to hBMMCs treated with dexamethasone only during the differentiation culture. Furthermore, continuous dexamethasone treatment augmented bone formation capability of monkey-derived BMMCs in a bone induction experimental model at an extra skeletal site. In addition, continuously dexamethasone-treated hBMMCs formed larger chondrogenic pellets and expressed SOX9 at higher level than the control BMMCs. Likewise, continuous dexamethasone treatment facilitated adipogenic differentiation based on mRNA level and colony forming unit analysis. To investigate the mechanism of the augmentation of differentiation, further studies on apoptosis were conducted. The studies indicated that dexamethasone selectively induced apoptosis of some populations of hBMMCs which were thought to have poor differentiation capability.
Collapse
Affiliation(s)
- Hidekazu Oshina
- Oral and Maxillofacial Surgery, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|