1
|
Wei Z, Babkirk K, Chen S, Pei M. Epithelial-to-mesenchymal transition transcription factors: New strategies for mesenchymal tissue regeneration. Cytokine Growth Factor Rev 2025:S1359-6101(25)00032-2. [PMID: 40011185 DOI: 10.1016/j.cytogfr.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 02/10/2025] [Indexed: 02/28/2025]
Abstract
The epithelial-mesenchymal transition transcription factors (EMT-TFs)-ZEB, SNAI, and TWIST families-have been extensively studied in embryonic development and tumor metastasis, providing valuable insight into their roles in cell behavior and transformation. These EMT-TFs have garnered increasing attention in the context of mesenchymal tissue regeneration, potentially contributing an approach for cell therapy. Given that dysregulated EMT-TF expression can impair cell survival and lineage differentiation, controlled regulation of their expression could offer significant advantages for tissue regeneration. However, there is a lack of comprehensive reviews to summarize the influence of the EMT-TFs on mesenchymal tissue regeneration and potential molecular mechanisms. This review explores the regulatory roles of ZEB, SNAI, and TWIST in the regeneration of bone, adipose, cartilage, muscle, and other mesenchymal tissues, with a focus on the underlying molecular signaling mechanisms. Gaining a deeper understanding of how EMT-TFs regulate cell proliferation, apoptosis, migration, and differentiation may offer new insights into the management of mesenchymal tissue repair and open novel avenues for enhancing tissue regeneration.
Collapse
Affiliation(s)
- Zhixin Wei
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, WV 26506, USA; Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Kiya Babkirk
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, WV 26506, USA; Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV 26506, USA
| | - Song Chen
- Department of Orthopaedics, The General Hospital of Western Theater Command, Chengdu, Sichuan 610083, China; Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command, Chengdu, Sichuan 610083, China.
| | - Ming Pei
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, WV 26506, USA; Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV 26506, USA; WVU Cancer Institute, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA.
| |
Collapse
|
2
|
Jin C, Adachi N, Yoshimoto Y, Sasabuchi A, Kawashima N, Ota MS, Iseki S. Fibroblast growth factor signalling regulates the development of tooth root. J Anat 2024; 244:1067-1077. [PMID: 38258312 PMCID: PMC11095309 DOI: 10.1111/joa.14014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/03/2023] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Fibroblast growth factor (FGF) signalling plays a crucial role in the morphogenesis of multiple tissues including teeth. While the role of the signal has been studied in tooth crown development, little is known about root development. Of several FGF ligands involved in hard tissue formation, we suggest that FGF18 regulates the development of murine tooth roots. We implanted FGF18-soaked heparin beads into the lower first molar tooth buds at postnatal day 6 (P6), followed by transplantation under the kidney capsule. After 3 weeks, FGF18 significantly facilitated root elongation and periodontal tissue formation compared to the control. In situ hybridisation showed that Fgf18 transcripts were initially localised in the dental pulp along Hertwig's epithelial root sheath at P6 and P10 and subsequently in the dental follicle cells at P14. Fgf receptors were expressed in various dental tissues during these stages. In vitro analysis using the dental pulp stem cells revealed that FGF18 inhibited cell proliferation and decreased expression levels of osteogenic markers, Runx2, Alpl and Sp7. Consistently, after 1 week of kidney capsule transplantation, FGF18 application did not induce the expression of Sp7 and Bsp, but upregulated Periostin in the apical region of dental mesenchyme in the grafted molar. These findings suggest that FGF18 facilitates molar root development by regulating the calcification of periodontal tissues.
Collapse
Affiliation(s)
- Chengxue Jin
- Department of Molecular Craniofacial Embryology and Oral Histology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
- Department of Oral, Plastic and Aesthetic Surgery, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Noritaka Adachi
- Department of Molecular Craniofacial Embryology and Oral Histology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Yuki Yoshimoto
- Department of Molecular Craniofacial Embryology and Oral Histology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Aino Sasabuchi
- Department of Molecular Craniofacial Embryology and Oral Histology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Nobuyuki Kawashima
- Department of Pulp Biology and Endodontics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Masato S Ota
- Laboratory of Anatomy, Physiology and Food Biological Science, Department of Food and Nutrition, Faculty of Human Sciences and Design, Japan Women's University, Tokyo, Japan
| | - Sachiko Iseki
- Department of Molecular Craniofacial Embryology and Oral Histology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
3
|
Khotib J, Marhaeny HD, Miatmoko A, Budiatin AS, Ardianto C, Rahmadi M, Pratama YA, Tahir M. Differentiation of osteoblasts: the links between essential transcription factors. J Biomol Struct Dyn 2023; 41:10257-10276. [PMID: 36420663 DOI: 10.1080/07391102.2022.2148749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 11/12/2022] [Indexed: 11/27/2022]
Abstract
Osteoblasts, cells derived from mesenchymal stem cells (MSCs) in the bone marrow, are cells responsible for bone formation and remodeling. The differentiation of osteoblasts from MSCs is triggered by the expression of specific genes, which are subsequently controlled by pro-osteogenic pathways. Mature osteoblasts then differentiate into osteocytes and are embedded in the bone matrix. Dysregulation of osteoblast function can cause inadequate bone formation, which leads to the development of bone disease. Various key molecules are involved in the regulation of osteoblastogenesis, which are transcription factors. Previous studies have heavily examined the role of factors that control gene expression during osteoblastogenesis, both in vitro and in vivo. However, the systematic relationship of these transcription factors remains unknown. The involvement of ncRNAs in this mechanism, particularly miRNAs, lncRNAs, and circRNAs, has been shown to influence transcriptional factor activity in the regulation of osteoblast differentiation. Here, we discuss nine essential transcription factors involved in osteoblast differentiation, including Runx2, Osx, Dlx5, β-catenin, ATF4, Ihh, Satb2, and Shn3. In addition, we summarize the role of ncRNAs and their relationship to these essential transcription factors in order to improve our understanding of the transcriptional regulation of osteoblast differentiation. Adequate exploration and understanding of the molecular mechanisms of osteoblastogenesis can be a critical strategy in the development of therapies for bone-related diseases.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Junaidi Khotib
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
| | - Honey Dzikri Marhaeny
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
| | - Andang Miatmoko
- Department of Pharmaceutical Science, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
| | - Aniek Setiya Budiatin
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
| | - Chrismawan Ardianto
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
| | - Mahardian Rahmadi
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
| | - Yusuf Alif Pratama
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
| | - Muhammad Tahir
- Department of Pharmaceutical Science, Kulliyah of Pharmacy, International Islamic University Malaysia, Pahang, Malaysia
| |
Collapse
|
4
|
Liang Y, Hu Z, Li Q, Liu X. Pyrophosphate inhibits periodontal ligament stem cell differentiation and mineralization through MAPK signaling pathways. J Periodontal Res 2021; 56:982-990. [PMID: 34142719 PMCID: PMC10018283 DOI: 10.1111/jre.12911] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND AND OBJECTIVE Periodontal ligament stem cells (PDLSCs) are the primary cell source for the regeneration and remodeling of periodontal ligament (PDL). It is crucial to prevent PDLSCs from mineralization when using the PDLSCs for PDL regeneration. At present, little is known about how to inhibit PDLSC mineralization. This study investigates the effects of pyrophosphate (PPi) on inhibiting PDLSC osteogenic differentiation and mineralization as well as the underlying mechanism. MATERIALS AND METHODS Human PDLSCs were cultured in an osteogenic differentiation medium with different PPi concentrations (0, 10, or 100 μM). The effects of PPi on osteogenic differentiation were assessed by ALP activity and the expressions of osteogenic related proteins (OPN, RUNX2, OSX, and DMP1). The mineralization formation was detected by alizarin red staining. The activation of MAPK signaling pathways (ERK1/2, JNK, and p38) was determined by western blotting and pathway blockade assays. The gene expressions of PPi's regulators (Ank, Enpp1, and Alpl) were assessed by real-time PCR. RESULTS Both low and high concentrations (10 μM and 100 μM) of PPi inhibited the mineralization of PDLSCs. The addition of PPi (10 μM or 100 μM) decreased the ALP activity of the PDLSCs to approximately two-thirds of the control group on day 3. PPi reduced the expressions of RUNX2, OSX, and DMP1 on days 7, 14, and 21, while it increased the expression of OPN at the three time points. PPi enhanced the phosphorylation of MAPK pathways, and the application of corresponding MAPK pathway inhibitors reversed the osteogenic inhibition effects of PPi. CONCLUSION PPi inhibits the osteogenic differentiation and mineralization of PDLSCs in vitro through activating ERK1/2, JNK, and p38 signaling pathways.
Collapse
Affiliation(s)
- Yongxi Liang
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, USA
| | - Zhiai Hu
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, USA
| | - Qian Li
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, USA
| | - Xiaohua Liu
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, USA
| |
Collapse
|
5
|
Iwata T, Mizuno N, Nagahara T, Kaneda-Ikeda E, Kajiya M, Kitagawa M, Takeda K, Yoshioka M, Yagi R, Takata T, Kurihara H. Identification of regulatory mRNA and microRNA for differentiation into cementoblasts and periodontal ligament cells. J Periodontal Res 2020; 56:69-82. [PMID: 32797637 DOI: 10.1111/jre.12794] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 07/09/2020] [Accepted: 07/18/2020] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Periodontitis causes periodontal tissue destruction and results in physiological tooth dysfunction. Therefore, periodontal regeneration is ideal therapy for periodontitis. Mesenchymal stem cells (MSCs) are useful for periodontal regenerative therapy as they can differentiate into periodontal cells; however, the underlying regulatory mechanism is unclear. In this study, we attempted to identify regulatory genes involved in periodontal cell differentiation and clarify the differentiation mechanism for effective periodontal regenerative therapy. BACKGROUND The cementum and periodontal ligament play important roles in physiological tooth function. Therefore, cementum and periodontal ligament regeneration are critical for periodontal regenerative therapy. Mesenchymal stem cell transplantation can be a common periodontal regenerative therapy because these cells have multipotency and self-renewal ability, which induces new cementum or periodontal ligament formation. Moreover, MSCs can differentiate into cementoblasts. Cementoblast- or periodontal ligament cell-specific proteins have been reported; however, it is unclear how these proteins are regulated. MicroRNA (miRNA) can also act as a key regulator of MSC function. Therefore, in this study, we identified regulatory genes involved in cementoblast or periodontal cell differentiation and commitment. METHODS Human MSCs (hMSCs), cementoblasts (HCEM), and periodontal ligament cells (HPL cells) were cultured, and mRNA or miRNA expression was evaluated. Additionally, cementoblast-specific genes were overexpressed or suppressed in hMSCs and their expression levels were investigated. RESULTS HCEM and HPL cells expressed characteristic genes, of which we focused on ets variant 1 (ETV1), miR-628-5p, and miR-383 because ETV1 is a differentiation-related transcription factor, miR-628-5p was the second-highest expressed gene in HCEM and lowest expressed gene in HPL cells, and miR-383 was the highest expressed gene in HCEM. miR-628-5p and miR-383 overexpression in hMSCs regulated ETV1 mRNA expression, and miR-383 overexpression downregulated miR-628-5p expression. Moreover, miR-383 suppression decreased miR-383 expression and enhanced ETV1 mRNA expression, but miR-383 suppression also decreased miR-628-5p. Furthermore, silencing of ETV1 expression in hMSCs regulated miR-628-5p and miR-383 expression. Concerning periodontal cell commitment, miR-628-5p, miR-383, and ETV1 regulated the expression of HCEM- or HPL cell-related genes by adjusting the expression of these miRNAs. CONCLUSION HCEM and HPL cells show characteristic mRNA and miRNA profiles. In particular, these cells have specific miR-383, miR-628-5p, and ETV1 expression patterns, and these genes interact with each other. Therefore, miR-383, miR-628-5p, and ETV1 are key genes involved in cementogenesis or HPL cell differentiation.
Collapse
Affiliation(s)
- Tomoyuki Iwata
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Noriyoshi Mizuno
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Takayoshi Nagahara
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Eri Kaneda-Ikeda
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Mikihito Kajiya
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Masae Kitagawa
- Department of Oral and Maxillofacial Pathobiology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan.,Center of Oral Clinical Examination, Hiroshima University Hospital, Hiroshima, Japan
| | - Katsuhiro Takeda
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan.,Department of Biological Endodontics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Minami Yoshioka
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Ryoichi Yagi
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Takashi Takata
- Department of Oral and Maxillofacial Pathobiology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan.,Tokuyama University, Tokuyama, Japan
| | - Hidemi Kurihara
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| |
Collapse
|
6
|
Manokawinchoke J, Sumrejkanchanakij P, Boonprakong L, Pavasant P, Egusa H, Osathanon T. NOTCH2 participates in Jagged1-induced osteogenic differentiation in human periodontal ligament cells. Sci Rep 2020; 10:13329. [PMID: 32770090 PMCID: PMC7414879 DOI: 10.1038/s41598-020-70277-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/27/2020] [Indexed: 02/06/2023] Open
Abstract
Jagged1 activates Notch signaling and subsequently promotes osteogenic differentiation in human periodontal ligament cells (hPDLs). The present study investigated the participation of the Notch receptor, NOTCH2, in the Jagged1-induced osteogenic differentiation in hPDLs. NOTCH2 and NOTCH4 mRNA expression levels increased during hPDL osteogenic differentiation. However, the endogenous NOTCH2 expression levels were markedly higher compared with NOTCH4. NOTCH2 expression knockdown using shRNA in hPDLs did not dramatically alter their proliferation or osteogenic differentiation compared with the shRNA control. After seeding on Jagged1-immobilized surfaces and maintaining the hPDLs in osteogenic medium, HES1 and HEY1 mRNA levels were markedly reduced in the shNOTCH2-transduced cells compared with the shControl group. Further, shNOTCH2-transduced cells exhibited less alkaline phosphatase enzymatic activity and in vitro mineralization than the shControl cells when exposed to Jagged1. MSX2 and COL1A1 mRNA expression after Jagged1 activation were reduced in shNOTCH2-transduced cells. Endogenous Notch signaling inhibition using a γ-secretase inhibitor (DAPT) attenuated mineralization in hPDLs. DAPT treatment significantly promoted TWIST1, but decreased ALP, mRNA expression, compared with the control. In conclusion, Notch signaling is involved in hPDL osteogenic differentiation. Moreover, NOTCH2 participates in the mechanism by which Jagged1 induced osteogenic differentiation in hPDLs.
Collapse
Affiliation(s)
- Jeeranan Manokawinchoke
- Center of Excellence for Regenerative Dentistry and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Piyamas Sumrejkanchanakij
- Center of Excellence for Regenerative Dentistry and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Lawan Boonprakong
- Oral Biology Research Center, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Prasit Pavasant
- Center of Excellence for Regenerative Dentistry and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Hiroshi Egusa
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, 980-8575, Japan
| | - Thanaphum Osathanon
- Center of Excellence for Regenerative Dentistry and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand. .,Oral Biology Research Center, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand. .,Genomics and Precision Dentistry Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
7
|
Ko HM, Moon JS, Shim HK, Lee SY, Kang JH, Kim MS, Chung HJ, Kim SH. Inhibitory effect of C-X-C motif chemokine ligand 14 on the osteogenic differentiation of human periodontal ligament cells through transforming growth factor-beta1. Arch Oral Biol 2020; 115:104733. [PMID: 32408131 DOI: 10.1016/j.archoralbio.2020.104733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/17/2020] [Accepted: 04/14/2020] [Indexed: 12/26/2022]
Abstract
OBJECTIVE This study aimed to determine the expression of chemokine (C-X-C motif) ligand 14 (CXCL14) in pulpal and periodontal cells in vivo and in vitro, and investigate function of CXCL14 and its underlying mechanism in the proliferation and osteogenic differentiation of human periodontal ligament (hPDL) cells. METHODS To determine the expression level of CXCL14 in adult rat oral tissues and in hPDL cells after application of biophysical forces, RT-PCR, western blot, and histological analyses were performed. The role of CXCL14 in proliferation and osteogenic differentiation of PDL cells was evaluated by measuring dehydrogenase activity and Alizarin red S staining. RESULTS Strong immunoreactivity against CXCL14 was observed in the PDL tissues and pulpal cells of rat molar, and attenuated apparently by orthodontic biophysical forces. As seen in rat molar, highly expressed CXCL14 was observed in human dental pulp and hPDL cells, and attenuated obviously by biophysical tensile force. CXCL14 expression in hPDL cells was increased in incubation time-dependent manner. Proliferation of hPDL cells was inhibited dramatically by small interfering (si) RNA against CXCL14. Furthermore, dexamethasone-induced osteogenic mineralization was inhibited by recombinant human (rh) CXCL14, and augmented by CXCL14 siRNA. rhCXCL14 increased transforming growth factor-beta1 (TGF- β1) in hPDL cells. Inhibition of the cell proliferation and osteogenic differentiation of hPDL cells by CXCL14 siRNA and rhCXCL14 were restored by rhTGF-β1 and SB431542, respectively. CONCLUSION These results suggest that CXCL14 may play roles as a growth factor and a negative regulator of osteogenic differentiation by increasing TGF-β1 expression in hPDL cells.
Collapse
Affiliation(s)
- Hyun-Mi Ko
- Dental Science Research Institute, Department of Oral Anatomy, School of Dentistry, Chonnam National University, Gwangju 61186, South Korea
| | - Jung-Sun Moon
- Dental Science Research Institute, Department of Oral Anatomy, School of Dentistry, Chonnam National University, Gwangju 61186, South Korea
| | - Hae-Kyoung Shim
- Dental Science Research Institute, Department of Oral Anatomy, School of Dentistry, Chonnam National University, Gwangju 61186, South Korea
| | - Su-Young Lee
- Dental Science Research Institute, Department of Oral Anatomy, School of Dentistry, Chonnam National University, Gwangju 61186, South Korea
| | - Jee-Hae Kang
- Dental Science Research Institute, Department of Oral Anatomy, School of Dentistry, Chonnam National University, Gwangju 61186, South Korea
| | - Min-Seok Kim
- Dental Science Research Institute, Department of Oral Anatomy, School of Dentistry, Chonnam National University, Gwangju 61186, South Korea
| | - Hyun-Ju Chung
- Dental Science Research Institute, Department of Periodontology, School of Dentistry, Chonnam National University, Gwangju 61186, South Korea
| | - Sun-Hun Kim
- Dental Science Research Institute, Department of Oral Anatomy, School of Dentistry, Chonnam National University, Gwangju 61186, South Korea.
| |
Collapse
|
8
|
Kaneda-Ikeda E, Iwata T, Mizuno N, Nagahara T, Kajiya M, Takeda K, Hirata R, Ishida S, Yoshioka M, Fujita T, Kawaguchi H, Kurihara H. Periodontal ligament cells regulate osteogenesis via miR-299-5p in mesenchymal stem cells. Differentiation 2020; 112:47-57. [PMID: 31951879 DOI: 10.1016/j.diff.2020.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/29/2019] [Accepted: 01/06/2020] [Indexed: 01/08/2023]
Abstract
BACKGROUND The periodontal ligament contains periodontal ligament cells, which is a heterogeneous cell population, and includes progenitor cells that can differentiate into osteoblasts/cementoblasts. Mesenchymal stem cells (MSCs) can differentiate into various cells and can be used for periodontal regenerative therapy. Therefore, transplanted MSCs can be affected by humoral factors from periodontal ligament cells via the transcription factors or microRNAs (miRNAs) of MSCs. In addition, periostin (POSTN) is secreted from HPL cells and can regulate periodontal regeneration and homeostasis. To clarify the regulatory mechanism of humoral factors from periodontal ligament cells, we attempted to identify key genes, specifically microRNAs, involved in this process. METHODS Human MSCs (hMSCs) were indirectly co-cultured with human periodontal ligament cells (HPL cells) and then evaluated for osteogenesis, undifferentiated MSCs markers, and miRNA profiles. Furthermore, hMSCs were indirectly co-cultured with HPL cells in the presence of anti-POSTN monoclonal antibody (anti-POSTN Ab) to block the effect of POSTN from HPL cells, and then evaluated for osteogenesis or undifferentiated MSC markers. Moreover, hMSCs showed alterations in miRNA expression or cultured with HPL were challenged with POSTN during osteogenesis, and cells were evaluated for osteogenesis or undifferentiated MSC markers. RESULTS hMSCs co-cultured with HPL cells showed suppressed osteogenesis and characteristic expression of SOX11, an undifferentiated MSC marker, as well as miR-299-5p. Overexpression of miR-299-5p regulated osteogenesis and SOX11 expression as observed with indirect co-culture with HPL cells. Furthermore, MSCs co-cultured with HPL cells were recovered from the suppression of osteogenesis and SOX11 mRNA expression by anti-POSTN Ab. However, POSTN induced miR-299-5p and SOX11 expression, and enhanced osteogenesis. CONCLUSION Humoral factors from HPL cells suppressed osteogenesis in hMSCs. The suppressive effect was mediated by miR-299-5p and SOX11 in hMSCs.
Collapse
Affiliation(s)
- Eri Kaneda-Ikeda
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, 734-8553, Japan
| | - Tomoyuki Iwata
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, 734-8553, Japan.
| | - Noriyoshi Mizuno
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, 734-8553, Japan
| | - Takayoshi Nagahara
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, 734-8553, Japan
| | - Mikihito Kajiya
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, 734-8553, Japan
| | - Katsuhiro Takeda
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, 734-8553, Japan; Department of Biological Endodontics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, 734-8553, Japan
| | - Reika Hirata
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, 734-8553, Japan
| | - Shu Ishida
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, 734-8553, Japan
| | - Minami Yoshioka
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, 734-8553, Japan
| | - Tsuyoshi Fujita
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, 734-8553, Japan
| | - Hiroyuki Kawaguchi
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, 734-8553, Japan; Department of Department of General Dentistry, Hiroshima University Hospital, Hiroshima, 734-8553, Japan
| | - Hidemi Kurihara
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, 734-8553, Japan
| |
Collapse
|
9
|
Gustafson JA, Park SS, Cunningham ML. Calvarial osteoblast gene expression in patients with craniosynostosis leads to novel polygenic mouse model. PLoS One 2019; 14:e0221402. [PMID: 31442251 PMCID: PMC6707563 DOI: 10.1371/journal.pone.0221402] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 08/06/2019] [Indexed: 12/21/2022] Open
Abstract
Craniosynostosis is the premature fusion of the sutures of the calvaria and is principally designated as being either syndromic (demonstrating characteristic extracranial malformations) or non-syndromic. While many forms of syndromic craniosynostosis are known to be caused by specific mutations, the genetic etiology of non-syndromic, single-suture craniosynostosis (SSC) is poorly understood. Based on the low recurrence rate (4-7%) and the fact that recurrent mutations have not been identified for most cases of SSC, we propose that some cases of isolated, single suture craniosynostosis may be polygenic. Previous work in our lab identified a disproportionately high number of rare and novel gain-of-function IGF1R variants in patients with SSC as compared to controls. Building upon this result, we used expression array data from calvarial osteoblasts isolated from infants with and without SSC to ascertain correlations between high IGF1 expression and expression of other osteogenic genes of interest. We identified a positive correlation between increased expression of IGF1 and RUNX2, a gene known to cause SSC with increased gene dosage. Subsequent phosphorylation assays revealed that osteoblast cell lines from cases with high IGF1 expression demonstrated inhibition of GSK3β, a serine/threonine kinase known to inhibit RUNX2, thus activating osteogenesis through the IRS1-mediated Akt pathway. With these findings, we have utilized established mouse strains to examine a novel model of polygenic inheritance (a phenotype influenced by more than one gene) of SSC. Compound heterozygous mice with selective disinhibition of RUNX2 and either overexpression of IGF1 or loss of function of GSK3β demonstrated an increase in the frequency and severity of synostosis as compared to mice with the RUNX2 disinhibition alone. These polygenic mouse models reinforce, in-vivo, that the combination of activation of the IGF1 pathway and disinhibition of the RUNX2 pathway leads to an increased risk of developing craniosynostosis and serves as a model of human SSC.
Collapse
Affiliation(s)
- Jonas A. Gustafson
- Seattle Children’s Research Institute, Center for Developmental Biology and Regenerative Medicine, Seattle, Washington, United States of America
| | - Sarah S. Park
- Seattle Children’s Research Institute, Center for Developmental Biology and Regenerative Medicine, Seattle, Washington, United States of America
| | - Michael L. Cunningham
- Seattle Children’s Research Institute, Center for Developmental Biology and Regenerative Medicine, Seattle, Washington, United States of America
- Seattle Children’s Hospital Craniofacial Center, Seattle, Washington, United States of America
- University of Washington, Department of Pediatrics, Seattle, Washington, United States of America
| |
Collapse
|
10
|
Abstract
Teeth are exposed to hundreds of oral bacteria and also challenged by the mastication forces; because teeth are situated in oral cavity, the entrance of the digestive tract, and penetrates through the oral epithelium. The periodontal ligament is a noncalcified tissue that possesses abundant blood vessels, which exist between tooth root and alveolar bone. The ligament is thought to play an important role in absorbing the impact of mastication, in the maintenance of periodontal homeostasis, and in periodontal wound healing. We succeeded in isolating mesenchymal stem cells (MSCs), so-called periodontal stem cells (PDLSCs), with self-renewability and multipotency from the periodontal ligament. We also demonstrated that PDLSCs share some cell surface markers with pericytes and that PDLSCs distribute themselves to stay with the endothelial cell networks and that PDLSCs maintain the endothelial cell networks when added to endothelial cell network formation systems. Pericytes are located in the proximity of microvascular endothelial cells and thought to stabilize and supply nutrients to blood vessels. Recently, it was also reported that pericytes possess multipotency and can be the source of tissue stem cells and/or progenitor cells. This review explores the distinctive features of the periodontal ligament tissue and PDLSCs as well as the puzzling similarities between PDLSCs and pericytes.
Collapse
|
11
|
Differentiation of Periodontal Ligament Stem Cells Into Osteoblasts on Hybrid Alginate/ Polyvinyl Alcohol/ Hydroxyapatite Nanofibrous Scaffolds. ARCHIVES OF NEUROSCIENCE 2018. [DOI: 10.5812/ans.74267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
12
|
Nowwarote N, Theerapanon T, Osathanon T, Pavasant P, Porntaveetus T, Shotelersuk V. Amelogenesis imperfecta: A novel FAM83H mutation and characteristics of periodontal ligament cells. Oral Dis 2018; 24:1522-1531. [PMID: 29949226 DOI: 10.1111/odi.12926] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 06/14/2018] [Accepted: 06/21/2018] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To delineate orodental features, dental mineral density, genetic aetiology and cellular characteristics associated with amelogenesis imperfecta (AI). MATERIALS AND METHODS Three affected patients in a family were recruited. Whole-exome sequencing was used to identify mutations confirmed by Sanger sequencing. The proband's teeth were subjected for mineral density analysis by microcomputerised tomography and characterisation of periodontal ligament cells (PDLCs). RESULTS The patients presented yellow-brown, pitted and irregular enamel. A novel nonsense mutation, c.1261G>T, p.E421*, in exon 5 of the FAM83H was identified. The mineral density of the enamel was significantly decreased in the proband. The patient's PDLCs (FAM83H cells) exhibited reduced ability of cell proliferation and colony-forming unit compared with controls. The formation of stress fibres was remarkably present. Upon cultured in osteogenic induction medium, FAM83H cells, at day 7 compared to day 3, had a significant reduction of BSP, COL1 and OCN mRNA expression and no significant change in RUNX2. The upregulation of ALP mRNA levels and mineral deposition were comparable between FAM83H and control cells. CONCLUSIONS We identified the novel mutation in FAM83H associated with autosomal dominant hypocalcified AI. The FAM83H cells showed reduced cell proliferation and expression of osteogenic markers, suggesting altered PDLCs in FAM83H-associated AI.
Collapse
Affiliation(s)
- Nunthawan Nowwarote
- Genomics and Precision Dentistry Research Unit, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Thanakorn Theerapanon
- Genomics and Precision Dentistry Research Unit, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Thanaphum Osathanon
- Department of Anatomy, Faculty of Dentistry, Excellence Center in Regenerative Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Prasit Pavasant
- Department of Anatomy, Faculty of Dentistry, Excellence Center in Regenerative Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Thantrira Porntaveetus
- Genomics and Precision Dentistry Research Unit, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Vorasuk Shotelersuk
- Center of Excellence for Medical Genomics, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Excellence Center for Medical Genetics, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
| |
Collapse
|
13
|
Galler KM, Yasue A, Cavender AC, Bialek P, Karsenty G, D'Souza RN. A Novel Role for Twist-1 in Pulp Homeostasis. J Dent Res 2016; 86:951-5. [PMID: 17890670 DOI: 10.1177/154405910708601007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The molecular mechanisms that maintain the equilibrium of odontoblast progenitor cells in dental pulp are unknown. Here we tested whether homeostasis in dental pulp is modulated by Twist-1, a nuclear protein that partners with Runx2 during osteoblast differentiation. Our analysis of Twist-1(+/−) mice revealed phenotypic changes that involved an earlier onset of dentin matrix formation, increased alkaline phosphatase activity, and pulp stones within the pulp. RT-PCR analyses revealed Twist-1 expression in several adult organs, including pulp. Decreased levels of Twist-1 led to higher levels of type I collagen and Dspp gene expression in perivascular cells associated with the pulp stones. In mice heterozygous for both Twist-1 and Runx2 inactivation, the phenotype of pulp stones appeared completely rescued. These findings suggest that Twist-1 plays a key role in restraining odontoblast differentiation, thus maintaining homeostasis in dental pulp. Furthermore, Twist-1 functions in dental pulp are dependent on its interaction with Runx2.
Collapse
Affiliation(s)
- K M Galler
- Department of Biomedical Sciences, Texas A&M University Health Science Center, Baylor College of Dentistry, 3302 Gaston Avenue, Dallas, TX 75246, USA
| | | | | | | | | | | |
Collapse
|
14
|
Pigossi SC, Medeiros MC, Saska S, Cirelli JA, Scarel-Caminaga RM. Role of Osteogenic Growth Peptide (OGP) and OGP(10-14) in Bone Regeneration: A Review. Int J Mol Sci 2016; 17:ijms17111885. [PMID: 27879684 PMCID: PMC5133884 DOI: 10.3390/ijms17111885] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 10/24/2016] [Accepted: 11/02/2016] [Indexed: 12/16/2022] Open
Abstract
Bone regeneration is a process that involves several molecular mediators, such as growth factors, which directly affect the proliferation, migration and differentiation of bone-related cells. The osteogenic growth peptide (OGP) and its C-terminal pentapeptide OGP(10–14) have been shown to stimulate the proliferation, differentiation, alkaline phosphatase activity and matrix mineralization of osteoblastic lineage cells. However, the exact molecular mechanisms that promote osteoblastic proliferation and differentiation are not completely understood. This review presents the main chemical characteristics of OGP and/or OGP(10–14), and also discusses the potential molecular pathways induced by these growth factors to promote proliferation and differentiation of osteoblasts. Furthermore, since these peptides have been extensively investigated for bone tissue engineering, the clinical applications of these peptides for bone regeneration are discussed.
Collapse
Affiliation(s)
- Suzane C Pigossi
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, UNESP-São Paulo State University, Humaita St, 1680, CEP 14801-903 Araraquara, São Paulo, Brazil.
- Department of Morphology, School of Dentistry, UNESP- São Paulo State University, Humaita St, 1680, CEP 14801-903 Araraquara, São Paulo, Brazil.
| | - Marcell C Medeiros
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, UNESP-São Paulo State University, Humaita St, 1680, CEP 14801-903 Araraquara, São Paulo, Brazil.
| | - Sybele Saska
- Department of General and Inorganic Chemistry, Institute of Chemistry, UNESP-São Paulo State University, Professor Francisco Degni St, 55, CEP 14800-900 Araraquara, São Paulo, Brazil.
| | - Joni A Cirelli
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, UNESP-São Paulo State University, Humaita St, 1680, CEP 14801-903 Araraquara, São Paulo, Brazil.
| | - Raquel M Scarel-Caminaga
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, UNESP-São Paulo State University, Humaita St, 1680, CEP 14801-903 Araraquara, São Paulo, Brazil.
- Department of Morphology, School of Dentistry, UNESP- São Paulo State University, Humaita St, 1680, CEP 14801-903 Araraquara, São Paulo, Brazil.
| |
Collapse
|
15
|
Ning S, Chen Z, Fan D, Sun C, Zhang C, Zeng Y, Li W, Hou X, Qu X, Ma Y, Yu H. Genetic differences in osteogenic differentiation potency in the thoracic ossification of the ligamentum flavum under cyclic mechanical stress. Int J Mol Med 2016; 39:135-143. [PMID: 28004120 PMCID: PMC5179181 DOI: 10.3892/ijmm.2016.2803] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 11/02/2016] [Indexed: 11/05/2022] Open
Abstract
Mechanical stress and genetic factors play important roles in the occurrence of thoracic ossification of ligament flavum (TOLF), which can occur at one, two, or multiple levels of the spine. It is unclear whether single- and multiple-level TOLF differ in terms of osteogenic differentiation potency and osteogenesis-related gene expression under cyclic mechanical stress. This was addressed in the present study using patients with non‑TOLF and single‑ and multiple‑level TOLF (n=8 per group). Primary ligament cells were cultured and osteogenesis was induced by application of cyclic mechanical stress. Osteogenic differentiation was assessed by evaluating alkaline phosphatase (ALP) activity and the mRNA and protein expression of osteogenesis‑related genes, including ALP, bone morphogenetic protein 2 (BMP2), Runt‑related transcription factor‑2 (Runx‑2), osterix, osteopontin (OPN) and osteocalcin. The application of cyclic mechanical stress resulted in higher ALP activity in the multiple‑level than in the single‑level TOLF group, whereas no changes were observed in the non‑TOLF group. The ALP, BMP2, OPN and osterix mRNA levels were higher in the multiple‑level as compared to the single‑level TOLF group, and the levels of all osteogenesis-related genes, apart from Runx2, were higher in the multiple‑level as compared to the non‑TOLF group. The osterix and ALP protein levels were higher in the multiple‑level TOLF group than in the other 2 groups, and were increased with the longer duration of stress. These results highlight the differences in osteogenic differentiation potency between single‑ and multiple‑level TOLF that may be related to the different pathogenesis and genetic background.
Collapse
Affiliation(s)
- Shanglong Ning
- Department of Orthopedics, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Zhongqiang Chen
- Department of Orthopedics, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Dongwei Fan
- Department of Orthopedics, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Chuiguo Sun
- Department of Orthopedics, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Chi Zhang
- Bone Research Laboratory, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yan Zeng
- Department of Orthopedics, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Weishi Li
- Department of Orthopedics, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Xiaofei Hou
- Department of Orthopedics, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Xiaochen Qu
- Department of Orthopedics, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Yunlong Ma
- Department of Orthopedics, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Huilei Yu
- Department of Orthopedics, Peking University Third Hospital, Beijing 100191, P.R. China
| |
Collapse
|
16
|
Sukarawan W, Peetiakarawach K, Pavasant P, Osathanon T. Effect of Jagged-1 and Dll-1 on osteogenic differentiation by stem cells from human exfoliated deciduous teeth. Arch Oral Biol 2016; 65:1-8. [PMID: 26826998 DOI: 10.1016/j.archoralbio.2016.01.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Revised: 01/18/2016] [Accepted: 01/19/2016] [Indexed: 02/09/2023]
Abstract
OBJECTIVE The aim of the present study was to determine the influence of Notch ligands, Jagged-1 and Dll-1, on osteogenic differentiation by stem cells from human exfoliated deciduous teeth. DESIGN Notch ligands were immobilized on tissue culture surface using an indirect affinity immobilization technique. Cells from the remaining of dental pulp tissues from human deciduous teeth were isolated and characterized using flow cytometry and differentiation assay. Alkaline phosphatase (ALP) enzymatic activity, osteogenic marker gene expression, and mineralization were determined using ALP assay, real-time polymerase chain reaction, and alizarin red staining, respectively. RESULTS The isolated cells exhibited CD44, CD90, and CD105 expression but lack of CD45 expression. Further, these cells were able to differentiate toward osteogenic lineage. The upregulation of HES-1 and HEY-1 was observed in those cells on Dll-1 and Jagged-1 coated surface. The significant increase of ALP activity and mineralization was noted in those cells seeded on Jagged-1 surface and these results were attenuated when cells were pretreated with gamma secretase inhibitor. The significant upregulation of ALP and collagen type I gene expression was also observed in those cells seeded on Jagged-1 surface. The inconsistent Dll-1 induced osteogenic differentiation was found and high Dll-1 immobilized dose (50 nM) slightly enhanced alkaline phosphatase enzymatic activity. However, the statistical significant difference was not obtained as compared to the hFc control. CONCLUSION The surface immobilization of Notch ligands, Jagged-1 and Dll-1, likely to enhance osteogenic differentiation of SHEDs. However, Jagged-1 had more ability in enhancing osteogenic differentiation than Dll-1 in our model.
Collapse
Affiliation(s)
- Waleerat Sukarawan
- Department of Pediatric Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330 Thailand; Mineralized Tissue Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330 Thailand.
| | - Karnnapas Peetiakarawach
- Department of Pediatric Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330 Thailand; Mineralized Tissue Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330 Thailand
| | - Prasit Pavasant
- Mineralized Tissue Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330 Thailand; Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330 Thailand
| | - Thanaphum Osathanon
- Mineralized Tissue Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330 Thailand; Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330 Thailand.
| |
Collapse
|
17
|
Quarto N, Senarath-Yapa K, Renda A, Longaker MT. TWIST1 silencing enhances in vitro and in vivo osteogenic differentiation of human adipose-derived stem cells by triggering activation of BMP-ERK/FGF signaling and TAZ upregulation. Stem Cells 2015; 33:833-47. [PMID: 25446627 DOI: 10.1002/stem.1907] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 10/06/2014] [Accepted: 10/15/2014] [Indexed: 01/10/2023]
Abstract
Mesenchymal stem cells (MSCs) show promise for cellular therapy and regenerative medicine. Human adipose tissue-derived stem cells (hASCs) represent an attractive source of seed cells in bone regeneration. How to effectively improve osteogenic differentiation of hASCs in the bone tissue engineering has become a very important question with profound translational implications. Numerous regulatory pathways dominate osteogenic differentiation of hASCs involving transcriptional factors and signaling molecules. However, how these factors combine with each other to regulate hASCs osteogenic differentiation still remains to be illustrated. The highly conserved developmental proteins TWIST play key roles for transcriptional regulation in mesenchymal cell lineages. This study investigates TWIST1 function in hASCs osteogenesis. Our results show that TWIST1 shRNA silencing increased the osteogenic potential of hASCs in vitro and their skeletal regenerative ability when applied in vivo. We demonstrate that the increased osteogenic capacity observed with TWIST1 knockdown in hASCs is mediated through endogenous activation of BMP and ERK/FGF signaling leading, in turn, to upregulation of TAZ, a transcriptional modulator of MSCs differentiation along the osteoblast lineage. Inhibition either of BMP or ERK/FGF signaling suppressed TAZ upregulation and the enhanced osteogenesis in shTWIST1 hASCs. Cosilencing of both TWIST1 and TAZ abrogated the effect elicited by TWIST1 knockdown thus, identifying TAZ as a downstream mediator through which TWIST1 knockdown enhanced osteogenic differentiation in hASCs. Our functional study contributes to a better knowledge of molecular mechanisms governing the osteogenic ability of hASCs, and highlights TWIST1 as a potential target to facilitate in vivo bone healing.
Collapse
Affiliation(s)
- Natalina Quarto
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Stanford University, School of Medicine, Stanford, California, USA; Dipartimento di Scienze Biomediche Avanzate, Universita' degli Studi di Napoli Federico II, Napoli, Italy
| | | | | | | |
Collapse
|
18
|
|
19
|
Takimoto A, Kawatsu M, Yoshimoto Y, Kawamoto T, Seiryu M, Takano-Yamamoto T, Hiraki Y, Shukunami C. Scleraxis and osterix antagonistically regulate tensile force-responsive remodeling of the periodontal ligament and alveolar bone. Development 2015; 142:787-96. [PMID: 25670797 DOI: 10.1242/dev.116228] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The periodontal ligament (PDL) is a mechanosensitive noncalcified fibrous tissue connecting the cementum of the tooth and the alveolar bone. Here, we report that scleraxis (Scx) and osterix (Osx) antagonistically regulate tensile force-responsive PDL fibrogenesis and osteogenesis. In the developing PDL, Scx was induced during tooth eruption and co-expressed with Osx. Scx was highly expressed in elongated fibroblastic cells aligned along collagen fibers, whereas Osx was highly expressed in the perialveolar/apical osteogenic cells. In an experimental model of tooth movement, Scx and Osx expression was significantly upregulated in parallel with the activation of bone morphogenetic protein (BMP) signaling on the tension side, in which bone formation compensates for the widened PDL space away from the bone under tensile force by tooth movement. Scx was strongly expressed in Scx(+)/Osx(+) and Scx(+)/Osx(-) fibroblastic cells of the PDL that does not calcify; however, Scx(-)/Osx(+) osteogenic cells were dominant in the perialveolar osteogenic region. Upon BMP6-driven osteoinduction, osteocalcin, a marker for bone formation was downregulated and upregulated by Scx overexpression and knockdown of endogenous Scx in PDL cells, respectively. In addition, mineralization by osteoinduction was significantly inhibited by Scx overexpression in PDL cells without affecting Osx upregulation, suggesting that Scx counteracts the osteogenic activity regulated by Osx in the PDL. Thus, Scx(+)/Osx(-), Scx(+)/Osx(+) and Scx(-)/Osx(+) cell populations participate in the regulation of tensile force-induced remodeling of periodontal tissues in a position-specific manner.
Collapse
Affiliation(s)
- Aki Takimoto
- Department of Cellular Differentiation, Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Masayoshi Kawatsu
- Department of Cellular Differentiation, Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8507, Japan Department of Orthodontic and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Yuki Yoshimoto
- Department of Molecular Biology and Biochemistry, Division of Basic Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Tadafumi Kawamoto
- Radioisotope Research Institute, Tsurumi University School of Dental Medicine, Tsurumi, Yokohama 230-8501, Japan
| | - Masahiro Seiryu
- Department of Orthodontic and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Teruko Takano-Yamamoto
- Department of Orthodontic and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Yuji Hiraki
- Department of Cellular Differentiation, Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Chisa Shukunami
- Department of Cellular Differentiation, Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8507, Japan Department of Molecular Biology and Biochemistry, Division of Basic Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| |
Collapse
|
20
|
Zhang XW, Zhang BY, Wang SW, Gong DJ, Han L, Xu ZY, Liu XH. Twist-related protein 1 negatively regulated osteoblastic transdifferentiation of human aortic valve interstitial cells by directly inhibiting runt-related transcription factor 2. J Thorac Cardiovasc Surg 2014; 148:1700-1708.e1. [DOI: 10.1016/j.jtcvs.2014.02.084] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Revised: 02/27/2014] [Accepted: 02/28/2014] [Indexed: 12/30/2022]
|
21
|
Yamamoto T, Ugawa Y, Yamashiro K, Shimoe M, Tomikawa K, Hongo S, Kochi S, Ideguchi H, Maeda H, Takashiba S. Osteogenic differentiation regulated by Rho-kinase in periodontal ligament cells. Differentiation 2014; 88:33-41. [PMID: 25278479 DOI: 10.1016/j.diff.2014.09.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 08/26/2014] [Accepted: 09/03/2014] [Indexed: 12/23/2022]
Abstract
The periodontal ligament is a multifunctional soft connective tissue, which functions not only as a cushion supporting the teeth against occlusal force, but is also a source of osteogenic cells that can regenerate neighboring hard tissues. Periodontal ligament cells (PDL cells) contain heterogeneous cell populations, including osteogenic cell progenitors. However, the precise mechanism underlying the differentiation process remains elusive. Cell differentiation is regulated by the local biochemical and mechanical microenvironment that can modulate gene expression and cell morphology by altering actin cytoskeletal organization mediated by Rho-associated, coiled-coil containing protein kinase (ROCK). To determine its role in PDL cell differentiation, we examined the effects of ROCK on cytoskeletal changes and kinetics of gene expression during osteogenic differentiation. PDL cells were isolated from human periodontal ligament on extracted teeth and cultured in osteogenic medium for 14 days. Y-27632 was used for ROCK inhibition assay. Osteogenic phenotype was determined by monitoring alkaline phosphatase (ALP) activity and calcium deposition by Alizarin Red staining. ROCK-induced cytoskeletal changes were examined by immunofluorescence analysis of F-actin and myosin light chain 2 (MLC2) expression. Real-time PCR was performed to examine the kinetics of osteogenic gene expression. F-actin and phospho-MLC2 were markedly induced during osteogenic differentiation, which coincided with upregulation of ALP activity and mineralization. Subsequent inhibition assay indicated that Y-27632 significantly inhibited F-actin and phospho-MLC2 expression in a dose-dependent manner with concomitant partial reversal of the PDL cell osteogenic phenotype. PCR array analysis of osteogenic gene expression indicated that extracellular matrix genes, such as fibronectin 1, collagen type I and III, and biglycan, were significantly downregulated by Y27632. These findings indicated crucial effects of ROCK in cytoskeletal reorganization and differentiation of PDL cells toward osteogenic cells. ROCK contributes to induction of osteogenic differentiation by synergistic increases in extracellular matrix gene expression in PDL cells.
Collapse
Affiliation(s)
- Tadashi Yamamoto
- Department of Pathophysiology-Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8525, Japan
| | - Yuki Ugawa
- Department of Pathophysiology-Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8525, Japan
| | - Keisuke Yamashiro
- Department of Pathophysiology-Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8525, Japan
| | - Masayuki Shimoe
- Department of Pathophysiology-Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8525, Japan
| | - Kazuya Tomikawa
- Department of Pathophysiology-Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8525, Japan
| | - Shoichi Hongo
- Department of Pathophysiology-Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8525, Japan
| | - Shinsuke Kochi
- Department of Pathophysiology-Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8525, Japan
| | - Hidetaka Ideguchi
- Department of Pathophysiology-Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8525, Japan
| | - Hiroshi Maeda
- Department of Pathophysiology-Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8525, Japan
| | - Shogo Takashiba
- Department of Pathophysiology-Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8525, Japan.
| |
Collapse
|
22
|
Suzuki R, Nemoto E, Shimauchi H. Cyclic tensile force up-regulates BMP-2 expression through MAP kinase and COX-2/PGE2 signaling pathways in human periodontal ligament cells. Exp Cell Res 2014; 323:232-241. [PMID: 24561081 DOI: 10.1016/j.yexcr.2014.02.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 02/07/2014] [Accepted: 02/11/2014] [Indexed: 12/15/2022]
Abstract
Periodontal ligament cells play important roles in the homeostasis of periodontal tissue by mechanical stress derived from mastication, such as tension, compression, fluid shear, and hydrostatic force. In the present study, we showed that cyclic tensile force increased the gene expression level of bone morphogenetic protein (BMP)-2, a crucial regulator of mineralization, in human periodontal ligament cells using real-time PCR. Signaling inhibitors, PD98059/U0126 (extracellular signal-regulated kinase (ERK) inhibitors) and SB203580/SB202190 (p38 inhibitors), revealed that tensile force-mediated BMP-2 expression was dependent on activation of the ERK1/2 and p38 mitogen-activated protein (MAP) kinase pathways. Cyclic tensile force also induced cyclooxygenase-2 (COX-2) gene expression in a manner dependent on ERK1/2 and p38 MAP kinase pathways, and induced prostaglandin E2 (PGE2) biosynthesis. NS-398, a COX-2 inhibitor, significantly reduced tensile force-mediated BMP-2 expression, indicating that PGE2 synthesized by COX-2 may be involved in the BMP-2 induction. The inhibitory effect of NS-398 was completely restored by the addition of exogenous PGE2. However, stimulation with PGE2 alone in the absence of tensile force had no effect on the BMP-2 induction, indicating that some critical molecule(s) other than COX-2/PGE2 may be required for cyclic tensile force-mediated BMP-2 induction. Collectively, the results indicate that cyclic tensile force activates ERK1/2 and p38 MAP kinase signaling pathways, and induces COX-2 expression, which is responsible for the sequential PGE2 biosynthesis and release, and furthermore, mediates the increase in BMP-2 expression at the transcriptional level.
Collapse
Affiliation(s)
- Risako Suzuki
- Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Eiji Nemoto
- Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan.
| | - Hidetoshi Shimauchi
- Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| |
Collapse
|
23
|
González Alva P, Gómez Plata E, Arzate H. Localización de las proteínas específicas del cemento radicular CEMP1 y CAP en células neoplásicas. JOURNAL OF ORAL RESEARCH 2013. [DOI: 10.17126/joralres.2013.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
24
|
Suto M, Nemoto E, Kanaya S, Suzuki R, Tsuchiya M, Shimauchi H. Nanohydroxyapatite increases BMP-2 expression via a p38 MAP kinase dependent pathway in periodontal ligament cells. Arch Oral Biol 2013; 58:1021-8. [PMID: 23518236 DOI: 10.1016/j.archoralbio.2013.02.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 01/18/2013] [Accepted: 02/28/2013] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Bone morphogenetic protein (BMP)-2 promotes the osteoblastic differentiation of human periodontal ligament (PDL) cells, which play a pivotal role in periodontal regeneration. Recently, nano-sized hydroxyapatite (nano-HA) has been highlighted due to its advantageous features over micro-sized materials. DESIGN AND RESULTS We investigated the effect of nano-HA on BMP-2 expression in human PDL cells. Real time PCR analysis revealed that the expression of BMP-2 increased upon stimulation with nano-HA in dose- and time-dependent manners. An immunofluorescence assay demonstrated the synthesis of BMP-2 proteins. Concentrations of Ca(2+) as well as phosphate (Pi) in culture supernatants were unchanged, suggesting that nano-HA functioned as a nanoparticle rather than as a possible source for releasing Ca(2+) and/or Pi extracellularly, which were shown to also enhance the expression of BMP-2. Nano-HA-induced BMP-2 expression was dependent on the p38 MAP kinase pathway because increases in BMP-2 expression were inhibited by treatment with SB203580, a p38 inhibitor, and phosphorylation of p38 was detected by Western blotting. CONCLUSIONS This novel mechanism of nano-HA will be important for the rational design of future periodontal regeneration.
Collapse
Affiliation(s)
- Mizuki Suto
- Division of Periodontology and Endodontology, Tohoku University, Graduate School of Dentistry, Sendai 980-8575, Japan
| | | | | | | | | | | |
Collapse
|
25
|
Chandrasekaran S, Ramachandran A, Eapen A, George A. Stimulation of periodontal ligament stem cells by dentin matrix protein 1 activates mitogen-activated protein kinase and osteoblast differentiation. J Periodontol 2013; 84:389-95. [PMID: 22612367 PMCID: PMC3680598 DOI: 10.1902/jop.2012.120004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Periodontitis can ultimately result in tooth loss. Many natural and synthetic materials have been tried to achieve periodontal regeneration, but the results remain variable and unpredictable. We hypothesized that exogenous treatment with dentin matrix protein 1 (DMP1) activates specific genes and results in phenotypic and functional changes in human periodontal ligament stem cells (hPDLSCs). METHODS hPDLSCs were isolated from extracted teeth and cultured in the presence or absence of DMP1. Quantitative polymerase chain reactions were performed to analyze the expression of several genes involved in periodontal regeneration. hPDLSCs were also processed for immunocytochemical and Western blot analysis using phosphorylated extracellular signal-regulated kinase (pERK) and ERK antibodies. Alkaline phosphatase and von Kossa staining were performed to characterize the differentiation of hPDLSCs into osteoblasts. Field emission scanning electron microscopic analysis of the treated and control cell cultures were also performed. RESULTS Treatment with DMP1 resulted in the upregulation of genes, such as matrix metalloproteinase-2, alkaline phosphatase, and transforming growth factor β1. Activation of ERK mitogen-activated protein kinase signaling pathway and translocation of pERK from the cytoplasm to the nucleus was observed. Overall, DMP1-treated cells showed increased expression of alkaline phosphatase, increased matrix, and mineralized nodule formation when compared with untreated controls. CONCLUSION DMP1 can orchestrate a coordinated expression of genes and phenotypic changes in hPDLSCs by activation of the ERK signaling pathway, which may provide a valuable strategy for tissue engineering approaches in periodontal regeneration.
Collapse
Affiliation(s)
| | - Amsaveni Ramachandran
- Brodie Tooth Development Genetics and Regenerative Medicine Research Laboratory, University of Illinois at Chicago
| | - Asha Eapen
- Brodie Tooth Development Genetics and Regenerative Medicine Research Laboratory, University of Illinois at Chicago
| | - Anne George
- Brodie Tooth Development Genetics and Regenerative Medicine Research Laboratory, University of Illinois at Chicago
| |
Collapse
|
26
|
Li R, Li X, Zhou M, Han N, Zhang Q. Quantitative determination of matrix Gla protein (MGP) and BMP-2 during the osteogenic differentiation of human periodontal ligament cells. Arch Oral Biol 2012; 57:1408-17. [PMID: 22871356 DOI: 10.1016/j.archoralbio.2012.07.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 05/07/2012] [Accepted: 07/12/2012] [Indexed: 11/19/2022]
Abstract
BACKGROUND AND OBJECTIVE Matrix Gla protein (MGP) has been recognized as a potent calcification inhibitor and a regulator for bone morphogenetic protein-2 (BMP-2). The periodontal ligament (PDL) is a non-mineralized connective tissue located between two mineralized tissues, the cementum and the alveolar bone. However, the mechanism by which PDL prevents mineralization has yet to be defined. This study aims to examine the expression pattern of MGP and BMP-2 during human periodontal ligament cells (hPDLCs) osteogenic differentiation in vitro, preliminarily exploring their roles in this process. MATERIALS AND METHODS hPDLCs were obtained and cultured in mineralizing medium. The expression of MGP and BMP-2 was confirmed by RT-PCR and immunofluorescence staining. In the process of osteogenic induction, alkaline phosphatase (ALP) activity, extracelluar calcium deposition, and mineralized nodules were measured. Quantitative real-time RT-PCR was performed to evaluate mRNA expression of MGP, BMP-2 and osteogenic marker genes, including ALP, bone sialoprotein (BSP), type I collagen (COLI), osteocalcin (OCN), and runt-related transcription factor 2 (Runx2). The protein expression of MGP and BMP-2 was analyzed by western blotting. RESULTS Co-localization of MGP and BMP-2 was visualized in hPDLCs. After osteogenic induction, ALP activity, calcium deposition, mineralized nodules, and osteogenic marker genes were significantly up-regulated. mRNA expression of MGP and BMP-2 generally decreased, although MGP mRNA increased on day 14 and 21 compared with the control, and protein expression of MGP and BMP-2 was down-regulated. CONCLUSION Our results indicate that MGP might regulate hPDLCs osteogenic differentiation which might keep a potential relationship with BMP-2 in this process.
Collapse
Affiliation(s)
- Ran Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Lab of Oral Biomedicine Ministry of Education (KLOBM), School & Hospital of Stomatology, Wuhan University, Wuhan 430079, Hubei, PR China
| | | | | | | | | |
Collapse
|
27
|
Osathanon T, Ritprajak P, Nowwarote N, Manokawinchoke J, Giachelli C, Pavasant P. Surface-bound orientated Jagged-1 enhances osteogenic differentiation of human periodontal ligament-derived mesenchymal stem cells. J Biomed Mater Res A 2012; 101:358-67. [PMID: 22847978 DOI: 10.1002/jbm.a.34332] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 03/28/2012] [Accepted: 06/18/2012] [Indexed: 12/20/2022]
Abstract
Notch signaling plays critical roles in various cell types by regulating cell fate determination and differentiation. Here, we investigated the ability to control differentiation of human periodontal ligament derived mesenchymal stem cells using modified surfaces containing the affinity immobilized Notch ligand, Jagged-1. After seeding human periodontal ligament derived mesenchymal stem cells (HPDLs) on Jagged-1 modified surfaces, expression of Notch signaling target genes, Hes-1 and Hey-1, was higher than those exposed to soluble Jagged-1 or control surfaces. Upregulation of Notch signaling target genes was attenuated after treatment with the γ secretase inhibitor. Upon seeding the cells on Jagged-1 immobilized surface and maintained in osteogenic medium, alkaline phosphatase enzymatic activity and mineralization as well as mRNA expression of alkaline phosphatase (ALP), collagen type I (COL I) and osteopontin (OPN) were significantly increased compared to those of controls. However, osteocalcin (OCN) mRNA expression level was decreased when cells were exposed to Jagged-1 modified surfaces. HPDLs on Jagged-1 modified surfaces expressed lower TWIST2 mRNA levels than the control, suggesting that the mechanism whereby Jagged-1 enhances osteogenic differentiation of HPDLs may occur through Notch signaling and TWIST regulation. In summary, an alteration of biomaterial interface using Notch ligands illustrates a promising system to control HPDLs differentiation toward osteogenic lineage.
Collapse
Affiliation(s)
- Thanaphum Osathanon
- Research Unit of Mineralized Tissue, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | | | | | | | | | | |
Collapse
|
28
|
Komaki M, Iwasaki K, Arzate H, Narayanan AS, Izumi Y, Morita I. Cementum protein 1 (CEMP1) induces a cementoblastic phenotype and reduces osteoblastic differentiation in periodontal ligament cells. J Cell Physiol 2011; 227:649-57. [DOI: 10.1002/jcp.22770] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
29
|
Peng F, Wu H, Zheng Y, Xu X, Yu J. The effect of noncoherent red light irradiation on proliferation and osteogenic differentiation of bone marrow mesenchymal stem cells. Lasers Med Sci 2011; 27:645-53. [PMID: 22016038 DOI: 10.1007/s10103-011-1005-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2010] [Accepted: 09/23/2011] [Indexed: 12/13/2022]
Abstract
Mesenchymal stem cells (MSCs) are promising for use in regenerative medicine. Low-level light irradiation (LLLI) has been shown to modulate various processes in different biological systems. The aim of our study was to investigate the effect of red light emitted from a light-emitting diode (LED) on bone marrow MSCs with or without osteogenic supplements. MSCs both with and without osteogenic supplements were divided into four groups, and each group was irradiated at doses of 0, 1, 2 and 4 J/cm(2). Cellular proliferation was evaluated using WST-8 and 5-ethynyl-2'-deoxyuridine (EdU) fluorescence staining. The alkaline phosphatase activity, mineralization, and expression of osteoblast master genes (Col1α1, Alpl, Bglap and Runx2) were monitored as indicators of MSC differentiation towards osteoblasts. In groups without osteogenic supplements, red light at all doses significantly stimulated cellular proliferation, whereas the osteogenic phenotype of the MSCs was not enhanced. In groups with osteogenic supplements, red light increased alkaline phosphatase activity and mineralized nodule formation, and stimulated the expression of Bglap and Runx2, but decreased cellular proliferation. In conclusion, nonconherent red light can promote proliferation but cannot induce osteogenic differentiation of MSCs in normal media, while it enhances osteogenic differentiation and decreases proliferation of MSCs in media with osteogenic supplements.
Collapse
Affiliation(s)
- Fei Peng
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | | | | | | | | |
Collapse
|
30
|
Mi HW, Lee MC, Chiang YC, Chow LP, Lin CP. Single-Molecule Imaging of Bmp4 Dimerization on Human Periodontal Ligament Cells. J Dent Res 2011; 90:1318-24. [DOI: 10.1177/0022034511418340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
We expressed bone morphogenetic protein 4 (BMP4) fused with enhanced green fluorescent protein (BMP4-EGFP) in the secretory pathways of producer cells. Fluorescent EGFP was acquired only after we interrupted the transport of BMP4-EGFP by culturing cells at a lower temperature (20°C), and the dynamics of BMP4-EGFP could be monitored by single-molecule microscopy. Western blotting analysis confirmed that exposure to low temperature helped the integrated formation of BMP4-EGFP fusion proteins. In this study, for the first time, we could image the fluorescently labeled BMP4 molecules localized on the plasma membrane of living hPDL cells. The one-step photobleaching with EGFP and the “blinking” behavior of quantum dots suggest that the fluorescent spots represent the events of single BMP4 molecules. Single-molecule tracking showed that the BMP receptors (BMPR) dimerize after BMP4 stimulation, or that a complex of one BMP4 molecule and a pre-formed BMPR dimer develops first, followed by the binding of the second BMP4 molecule. Furthermore, BMP4-EGFP enhanced the osteogenic differentiation of hPDL cells via signal transduction involving BMP receptors. This single-molecule imaging technique might be a valuable tool for the future development of BMP4 gene therapy and regenerative medicine mediated by hPDLs. Abbreviations: BMP4, bone morphogenetic protein 4; BMPR, BMP receptor; EGFP, enhanced green fluorescent protein; hPDL cells, human periodontal ligament cells; QDs, quantum dots; TIRFM, total internal reflection fluorescence microscopy; 293 cells, human embryonic kidney cells; oDM, osteogenic differentiation medium; HcoI, type I collagen; ALP, alkaline phosphatase; BSP, bone sialoprotein; GAPDH, glyceraldehyde-3-phosphate dehydrogenase.
Collapse
Affiliation(s)
- H.-W. Mi
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University and National Taiwan University Hospital, No.1, Changde St., Jhongjheng District, Taipei 100, Taiwan, ROC
| | - M.-C. Lee
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Y.-C. Chiang
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University and National Taiwan University Hospital, No.1, Changde St., Jhongjheng District, Taipei 100, Taiwan, ROC
| | - L.-P. Chow
- Graduate Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - C.-P. Lin
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University and National Taiwan University Hospital, No.1, Changde St., Jhongjheng District, Taipei 100, Taiwan, ROC
| |
Collapse
|
31
|
|
32
|
Implications of cultured periodontal ligament cells for the clinical and experimental setting: a review. Arch Oral Biol 2011; 56:933-43. [PMID: 21470594 DOI: 10.1016/j.archoralbio.2011.03.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2010] [Revised: 02/08/2011] [Accepted: 03/06/2011] [Indexed: 01/17/2023]
Abstract
The periodontal ligament (PDL) is a key contributor to the process of regeneration of the periodontium. The heterogeneous nature of the PDL tissue, its development during early adulthood, and the different conditions to which the PDL tissue is exposed to in vivo impart on the PDL unique characteristics that may be of consequence during its cultivation in vitro. Several factors affecting the in vivo setting influence the behaviour of PDL fibroblasts in culture. The purpose of this review is to address distinct factors that influence the behaviour of PDL fibroblasts in culture -in vivo-in vitro transitions, cell identification/isolation markers, primary PDL cultures and cell lines, tooth-specific factors, and donor-specific factors. Based on the reviewed studies, the authors recommendations include the use of several identification markers to confirm cell identity, use of primary cultures at early passage to maintain unique PDL heterogeneic characteristics, and noting donor conditions such as age, systemic health status, and tooth health status. Continued efforts will expand our understanding of the in vitro and in vivo behaviour of cells, with the goal of orchestrating optimal periodontal regeneration. This understanding will lead to improved evidence-based rationales for more individualized and predictable periodontal regenerative therapies.
Collapse
|
33
|
Mi HW, Lee MC, Fu E, Chow LP, Lin CP. Highly efficient multipotent differentiation of human periodontal ligament fibroblasts induced by combined BMP4 and hTERT gene transfer. Gene Ther 2011; 18:452-61. [DOI: 10.1038/gt.2010.158] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
34
|
Kiss J, Balla B, Kósa JP, Borsy A, Podani J, Takács I, Lazáry A, Nagy Z, Bácsi K, Kis A, Szlávy E, Szendroi M, Speer G, Orosz L, Lakatos P. Gene expression patterns in the bone tissue of women with fibrous dysplasia. Am J Med Genet A 2010; 152A:2211-20. [PMID: 20683988 DOI: 10.1002/ajmg.a.33559] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Fibrous dysplasia is an isolated skeletal disorder caused by a somatic activating mutation of GNAS gene with abnormal unmineralized matrix overproduction and extensive undifferentiated bone cell accumulation in the fibro-osseous lesions. The aim of our investigation was to identify genes that are differently expressed in fibrous versus non-fibrous human bone and to describe the relationships between these genes using multivariate data analysis. Six bone tissue samples from female patients with fibrous dysplastia (FD) and seven bone tissue samples from women without FD (non-FD) were examined. The expression differences of selected 118 genes were analyzed by the TaqMan probe-based quantitative real-time RT-PCR system. The Mann-Whitney U-test indicated marked differences in the expression of 22 genes between FD and non-FD individuals. Nine genes were upregulated in FD women compared to non-FD ones and 18 genes showed a downregulated pattern. These altered genes code for minor collagen molecules, extracellular matrix digesting enzymes, transcription factors, adhesion molecules, growth factors, pro-inflammatory cytokines, and lipid metabolism-affected substrates. Canonical variates analysis demonstrated that FD and non-FD bone tissues can be distinguished by the multiple expression profile analysis of numerous genes controlled via a G-protein coupled pathway and BMP cascade as well as genes coding for extracellular matrix composing molecules. The remarkable changed gene expression profile observed in the fibrous dysplastic human bone tissue may provide further insight into the pathogenetic process of fibrous degeneration of bone.
Collapse
Affiliation(s)
- János Kiss
- Department of Orthopaedics, Semmelweis University, Budapest, Hungary
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Franco HL, Casasnovas J, Rodríguez-Medina JR, Cadilla CL. Redundant or separate entities?--roles of Twist1 and Twist2 as molecular switches during gene transcription. Nucleic Acids Res 2010; 39:1177-86. [PMID: 20935057 PMCID: PMC3045590 DOI: 10.1093/nar/gkq890] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Twist1 and Twist2 are highly conserved members of the Twist subfamily of bHLH proteins responsible for the transcriptional regulation of the developmental programs in mesenchymal cell lineages. The regulation of such processes requires that Twist1 and Twist2 function as molecular switches to activate and repress target genes by employing several direct and indirect mechanisms. Modes of action by these proteins include direct DNA binding to conserved E-box sequences and recruitment of coactivators or repressors, sequestration of E-protein modulators, and interruption of proper activator/repressor function through protein–protein interactions. Regulatory outcomes of Twist1 and Twist2 are themselves controlled by spatial-temporal expression, phosphoregulation, dimer choice and cellular localization. Although these two proteins are highly conserved and exhibit similar functions in vitro, emerging literature have demonstrated different roles in vivo. The involvement of Twist1 and Twist2 in a broad spectrum of regulatory pathways highlights the importance of understanding their roles in normal development, homeostasis and disease. Here we focus on the mechanistic models of transcriptional regulation and summarize the similarities and differences between Twist1 and Twist2 in the context of myogenesis, osteogenesis, immune system development and cancer.
Collapse
Affiliation(s)
- Hector L Franco
- Human Molecular Genetics Lab, Department of Biochemistry, School of Medicine University of Puerto Rico, Medical Sciences Campus, PO Box 365067, San Juan, PR 00936, USA
| | | | | | | |
Collapse
|
36
|
Kiss J, Balla B, Kósa PJ, Borsy A, Podani J, Takács I, Lazáry A, Nagy Z, Bácsi K, Szlávy E, Szendrôi M, Speer G, Orosz L, Lakatos P. [Changes of gene expression and its role in pathogenesis in fibrous and non-fibrous dysplastic bone tissues in women]. Orv Hetil 2010; 151:1656-65. [PMID: 20860962 DOI: 10.1556/oh.2010.28967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
UNLABELLED Fibrous dysplasia is an isolated skeletal disorder caused by a somatic activating mutation of GNAS1 gene with abnormal unmineralized matrix overproduction and extensive undifferentiated bone cell accumulation in fibro-osseous lesions. The aim of the investigation was to identify genes that are differently expressed in fibrous vs. non-fibrous human bone and to describe the relationships between these genes using multivariate data analysis. MATERIALS AND METHODS Six bone tissue samples from fibrous dysplastic female patients and 7 bone tissue samples from non-fibrous dysplastic women were examined. The 6 female fibrous samples were taken from the fibrous dysplastic lesion itself while the control samples of 7 non-fibrous dysplastic females were taken from the femoral neck during the hip replacement procedure. The expression differences of selected 118 genes were analyzed in TaqMan probe based quantitative real-time RT-PCR system. RESULTS The Mann-Whitney U test indicated significant differences in the expression of 27 genes of fibrous dysplasial and non fibrous dysplasial individuals (p≤0.05). Nine genes were significantly up-regulated in fibrous dysplasial women compared to non fibrous dysplasial ones and eighteen genes showed a down-regulated pattern. These significantly altered genes coding for minor collagen molecules, extracellular matrix digesting enzymes, transcription factors, adhesion molecules, growth factors, pro-inflammatory cytokines and lipid metabolism-affected substrates. Canonical variety analysis demonstrated that fibrous dysplastic and non fibrous dysplastic bone tissues can be distinguished by the multiple expression profile analysis of numerous genes controlled via a G-protein coupled pathway and BMP cascade as well as genes coding for extracellular matrix composing molecules. CONCLUSIONS The significantly altered gene expression profile observed in the fibrous dysplastic human bone tissue may provide further insight into the pathogenetic process of fibrous degeneration of bone.
Collapse
Affiliation(s)
- János Kiss
- Semmelweis Egyetem, Altalános Orvostudományi Kar Ortopédiai Klinika Budapest Karolina út 27. 1113.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Yang Y, Tao C, Zhao D, Li F, Zhao W, Wu H. EMF acts on rat bone marrow mesenchymal stem cells to promote differentiation to osteoblasts and to inhibit differentiation to adipocytes. Bioelectromagnetics 2010; 31:277-85. [PMID: 20041434 DOI: 10.1002/bem.20560] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The use of electromagnetic fields (EMFs) to treat nonunion fractures developed from observations in the mid-1900s. Whether EMF directly regulates the bone marrow mesenchymal stem cells (MSCs), differentiating into osteoblasts or adipocytes, remains unknown. In the present study, we investigated the roles of sinusoidal EMF of 15 Hz, 1 mT in differentiation along these separate lineages using rat bone marrow MSCs. Our results showed that EMF promoted osteogenic differentiation of the stem cells and concurrently inhibited adipocyte formation. EMF increased alkaline phosphatase (ALP) activity and mineralized nodule formation, and stimulated osteoblast-specific mRNA expression of RUNX2, ALP, BMP2, DLX5, and BSP. In contrast, EMF decreased adipogenesis and inhibited adipocyte-specific mRNA expression of adipsin, AP-2, and PPARgamma2, and also inhibited protein expression of PPARgamma2. These observations suggest that commitment of MSCs into osteogenic or adipogenic lineages is influenced by EMF.
Collapse
Affiliation(s)
- Yong Yang
- Department of Orthopedics, Tongji Hospital, Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | | | | | | | | |
Collapse
|
38
|
Cakouros D, Raices RM, Gronthos S, Glackin C. Twist-ing cell fate: Mechanistic insights into the role of twist in lineage specification/differentiation and tumorigenesis. J Cell Biochem 2010; 110:1288-98. [DOI: 10.1002/jcb.22651] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
39
|
Miraoui H, Severe N, Vaudin P, Pagès JC, Marie PJ. Molecular silencing of Twist1 enhances osteogenic differentiation of murine mesenchymal stem cells: Implication of FGFR2 signaling. J Cell Biochem 2010; 110:1147-54. [DOI: 10.1002/jcb.22628] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
40
|
Ishikawa I, Iwata T, Washio K, Okano T, Nagasawa T, Iwasaki K, Ando T. Cell sheet engineering and other novel cell-based approaches to periodontal regeneration. Periodontol 2000 2010; 51:220-38. [PMID: 19878477 DOI: 10.1111/j.1600-0757.2009.00312.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
41
|
Isenmann S, Arthur A, Zannettino ACW, Turner JL, Shi S, Glackin CA, Gronthos S. TWIST family of basic helix-loop-helix transcription factors mediate human mesenchymal stem cell growth and commitment. Stem Cells 2010; 27:2457-68. [PMID: 19609939 DOI: 10.1002/stem.181] [Citation(s) in RCA: 158] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The TWIST family of basic helix-loop-helix transcription factors, Twist-1 and Dermo-1 are known mediators of mesodermal tissue development and contribute to correct patterning of the skeleton. In this study, we demonstrate that freshly purified human bone marrow-derived mesenchymal stromal/stem cells (MSC) express high levels of Twist-1 and Dermo-1 which are downregulated following ex vivo expansion. Enforced expression of Twist-1 or Dermo-1 in human MSC cultures increased expression of the MSC marker, STRO-1, and the early osteogenic transcription factors, Runx2 and Msx2. Conversely, overexpression of Twist-1 and Dermo-1 was associated with a decrease in the gene expression of osteoblast-associated markers, bone morphogenic protein-2, bone sialoprotein, osteopontin, alkaline phosphatase and osteocalcin. High expressing Twist-1 or Dermo-1 MSC lines exhibited an enhanced proliferative potential of approximately 2.5-fold compared with control MSC populations that were associated with elevated levels of Id-1 and Id-2 gene expression. Functional studies demonstrated that high expressing Twist-1 and Dermo-1 MSC displayed a decreased capacity for osteo/chondrogenic differentiation and an enhanced capacity to undergo adipogenesis. These findings implicate the TWIST gene family members as potential mediators of MSC self-renewal and lineage commitment in postnatal skeletal tissues by exerting their effects on genes involved in the early stages of bone development.
Collapse
Affiliation(s)
- Sandra Isenmann
- Mesenchymal Stem Cell Group, Division of Haematology, Institute of Medical and Veterinary Science/Hanson Institute/ CSCR, University of Adelaide, SA, Australia
| | | | | | | | | | | | | |
Collapse
|
42
|
Fleischmannova J, Matalova E, Sharpe PT, Misek I, Radlanski RJ. Formation of the tooth-bone interface. J Dent Res 2009; 89:108-15. [PMID: 20042740 DOI: 10.1177/0022034509355440] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Not only are teeth essential for mastication, but also missing teeth are considered a social handicap due to speech and aesthetic problems, with a resulting high impact on emotional well-being. Several treatment procedures are currently available for tooth replacement with mostly inert prosthetic materials and implants. Natural tooth substitution based on copying the developmental process of tooth formation is particularly challenging and creates a rapidly developing area of molecular dentistry. In any approach, functional interactions among the tooth, the surrounding bone, and the periodontium must be established. Therefore, recent research in craniofacial genetics searches for mechanisms responsible for correct cell and tissue interactions, not only within a specific structure, but also in the context of supporting structures. A tooth crown that is not functionally anchored to roots and bone is useless. This review aims to summarize the developmental and tissue homeostatic aspects of the tooth-bone interface, from the initial patterning toward tooth eruption and lifelong interactions between the tooth and its surrounding alveolar bone.
Collapse
Affiliation(s)
- J Fleischmannova
- Institute of Animal Physiology and Genetics CAS v.v.i., Brno, Czech Republic.
| | | | | | | | | |
Collapse
|
43
|
Abstract
Basic helix-loop-helix (bHLH) transcription factors play critical roles in lymphoid and erythroid development; however, little is known about their role in myeloid lineage development. In this study, we identify the bHLH transcription factor Twist-2 as a key negative regulator of myeloid lineage development, as manifested by marked increases in mature myeloid populations of macrophages, neutrophils, and basophils in Twist-2-deficient mice. Mechanistic studies demonstrate that Twist-2 inhibits the proliferation as well as differentiation of granulocyte macrophage progenitors (GMP) by interacting with and inhibiting the transcription factors Runx1 and C/EBPalpha. Moreover, Twist-2 was found to have a contrasting effect on cytokine production: inhibiting the production of proinflammatory cytokines such as interleukin-12 (IL-12) and interferon-gamma (IFNgamma) while promoting the regulatory cytokine IL-10 by myeloid cells. The data from further analyses suggest that Twist-2 activates the transcription factor c-Maf, leading to IL-10 expression. In addition, Twist-2 was found to be essential for endotoxin tolerance. Thus, this study reveals the critical role of Twist-2 in regulating the development of myeloid lineages, as well as the function and inflammatory responses of mature myeloid cells.
Collapse
|
44
|
Wang XL, Deng FY, Tan LJ, Deng HY, Liu YZ, Papasian CJ, Recker RR, Deng HW. Bivariate whole genome linkage analyses for total body lean mass and BMD. J Bone Miner Res 2008; 23:447-52. [PMID: 17967140 PMCID: PMC2669157 DOI: 10.1359/jbmr.071033] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Revised: 08/22/2007] [Accepted: 10/26/2007] [Indexed: 01/09/2023]
Abstract
UNLABELLED A genome-wide bivariate analysis was conducted for TBLM and BMD at the spine and hip in a large white sample. We found some QTLs shared by TBLM and BMD in the entire sample and the sex-specific subgroups, and QTLs with potential pleiotropy were disclosed. INTRODUCTION Previous studies suggested that total body lean mass (TBLM) and BMD are highly genetically correlated. However, the specific shared genetic factors between TBLM and BMD are unknown. MATERIALS AND METHODS To identify the specific quantitative trait loci (QTLs) shared by TBLM and BMD at the spine (L1-L4) and total hip, we performed bivariate whole genome linkage analysis (WGLA) in a large sample involving 4498 white subjects of European origin. RESULTS Multipoint bivariate linkage analyses for 22 autosomes showed evidence of significant linkage with an LOD score of 4.86 at chromosome region 15q13 for TBLM and spine BMD in women, and suggestive linkage findings (LOD > 2.2) at 7p22 for TBLM and spine BMD for the entire sample, at 7q32 for TBLM and BMD at both spine and hip in women, and at 7q21 and 13p11 for TBLM and BMD at both spine and hip in men. Two-point linkage analyses for chromosome X also showed significant linkage signals at several regions such as Xq25. Complete pleiotropy (a single locus influencing both traits) was suggested at 7q32 and 13q11 for TBLM and BMD. Additionally, complete co-incident linkage (separate tightly clustered loci each influencing a single trait) was detected at 7p22 for TBLM and spine BMD. CONCLUSIONS We identified several genomic regions shared by TBLM and BMD in whites. Further studies may focus on fine mapping and identification of the specific QTLs in these candidate genomic regions.
Collapse
Affiliation(s)
- Xiang-Li Wang
- Laboratory of Molecular and Statistical Genetics and the Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Fei-Yan Deng
- Laboratory of Molecular and Statistical Genetics and the Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
- Departments of Orthopaedic Surgery and Basic Medical Sciences, University of Missouri–Kansas City, Kansas City, Missouri, USA
| | - Li-Jun Tan
- Laboratory of Molecular and Statistical Genetics and the Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Hong-Yi Deng
- Departments of Orthopaedic Surgery and Basic Medical Sciences, University of Missouri–Kansas City, Kansas City, Missouri, USA
| | - Yao-Zhong Liu
- Departments of Orthopaedic Surgery and Basic Medical Sciences, University of Missouri–Kansas City, Kansas City, Missouri, USA
| | - Christopher J Papasian
- Departments of Orthopaedic Surgery and Basic Medical Sciences, University of Missouri–Kansas City, Kansas City, Missouri, USA
| | - Robert R Recker
- Osteoporosis Research Center and Department of Biomedical Sciences, Creighton University Medical Center, Omaha, Nebraska, USA
| | - Hong-Wen Deng
- Laboratory of Molecular and Statistical Genetics and the Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
- Departments of Orthopaedic Surgery and Basic Medical Sciences, University of Missouri–Kansas City, Kansas City, Missouri, USA
- Institute of Molecular Genetics and the Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiao Tong University, Xi'an, Shanxi, China
| |
Collapse
|
45
|
Inai K, Norris RA, Hoffman S, Markwald RR, Sugi Y. BMP-2 induces cell migration and periostin expression during atrioventricular valvulogenesis. Dev Biol 2007; 315:383-96. [PMID: 18261719 DOI: 10.1016/j.ydbio.2007.12.028] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2007] [Revised: 12/19/2007] [Accepted: 12/20/2007] [Indexed: 11/26/2022]
Abstract
Atrioventricular (AV) endocardium transforms into the cushion mesenchyme, the primordia of the valves and membranous septa, through epithelial-mesenchymal transformation (EMT). While bone morphogenetic protein (BMP)-2 is known to be critical for AV EMT, the role of BMP-2 in post-EMT AV valvulogenesis remains to be elucidated. To find BMP signaling loops, we first localized Type I BMP receptors (BMPRs), BMPR-1A (ALK3), -1B (ALK6) and ALK2 in AV cushion mesenchyme in stage-24 chick embryos. Based on the BMP receptor expression pattern, we examined the functional roles of BMP-2 and BMP signaling in post-EMT valvulogenesis by using stage-24 AV cushion mesenchymal cell aggregates cultured on 3D-collagen gels. Exogenous BMP-2 or constitutively active (ca) BMPR-1B (ALK6)-virus treatments induced migration of the mesenchymal cells into the collagen gels, whereas noggin, an antagonist of BMPs, or dominant-negative (dn) BMPR-1 B (ALK6)-virus treatments reduced cell migration from the mesenchymal cell aggregates. Exogenous BMP-2 or caBMPR-1B (ALK6) treatments significantly promoted expression of an extracellular matrix (ECM) protein, periostin, a known valvulogenic matrix maturation mediator, at both mRNA and protein levels, whereas periostin expression was repressed by adding noggin or dnBMPR-1B (ALK6)-virus to the culture. Moreover, transcripts of Twist and Id1, which have been implicated in cell migration in embryogenesis and activation of the periostin promoter, were induced by BMP-2 but repressed by noggin in cushion mesenchymal cell cultures. These data provide evidence that BMP-2 and BMP signaling induce biological processes involved in early AV valvulogenesis, i.e. mesenchymal cell migration and expression of periostin, indicating critical roles for BMP signaling in post-EMT AV cushion tissue maturation and differentiation.
Collapse
Affiliation(s)
- Kei Inai
- Department of Cell Biology and Anatomy and Cardiovascular Developmental Biology Center, Medical University of South Carolina, 171 Ashley Ave., Charleston, SC 29425, USA
| | | | | | | | | |
Collapse
|