1
|
Zhang X, Li P, Gan Y, Xiang S, Gu L, Zhou J, Zhou X, Wu P, Zhang B, Deng D. Driving effect of P16 methylation on telomerase reverse transcriptase-mediated immortalization and transformation of normal human fibroblasts. Chin Med J (Engl) 2025; 138:332-342. [PMID: 38420748 PMCID: PMC11771662 DOI: 10.1097/cm9.0000000000003004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND P16 inactivation is frequently accompanied by telomerase reverse transcriptase ( TERT ) amplification in human cancer genomes. P16 inactivation by DNA methylation often occurs automatically during immortalization of normal cells by TERT . However, direct evidence remains to be obtained to support the causal effect of epigenetic changes, such as P16 methylation, on cancer development. This study aimed to provide experimental evidence that P16 methylation directly drives cancer development. METHODS A zinc finger protein-based P16 -specific DNA methyltransferase (P16-Dnmt) vector containing a "Tet-On" switch was used to induce extensive methylation of P16 CpG islands in normal human fibroblast CCD-18Co cells. Battery assays were used to evaluate cell immortalization and transformation throughout their lifespan. Cell subcloning and DNA barcoding were used to track the diversity of cell evolution. RESULTS Leaking P16-Dnmt expression (without doxycycline-induction) could specifically inactivate P16 expression by DNA methylation. P16 methylation only promoted proliferation and prolonged lifespan but did not induce immortalization of CCD-18Co cells. Notably, cell immortalization, loss of contact inhibition, and anchorage-independent growth were always prevalent in P16-Dnmt&TERT cells, indicating cell transformation. In contrast, almost all TERT cells died in the replicative crisis. Only a few TERT cells recovered from the crisis, in which spontaneous P16 inactivation by DNA methylation occurred. Furthermore, the subclone formation capacity of P16-Dnmt&TERT cells was two-fold that of TERT cells. DNA barcoding analysis showed that the diversity of the P16-Dnmt&TERT cell population was much greater than that of the TERT cell population. CONCLUSION P16 methylation drives TERT -mediated immortalization and transformation of normal human cells that may contribute to cancer development.
Collapse
Affiliation(s)
- Xuehong Zhang
- Key Laboratory of Carcinogenesis and Translational Research (MOE/Beijing), Division of Etiology, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Paiyun Li
- Division of Etiology, Beijing Cancer Hospital, Beijing 100142, China
- Radiation Oncology Department, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Ying Gan
- Key Laboratory of Carcinogenesis and Translational Research (MOE/Beijing), Division of Etiology, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Shengyan Xiang
- Key Laboratory of Carcinogenesis and Translational Research (MOE/Beijing), Division of Etiology, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Liankun Gu
- Key Laboratory of Carcinogenesis and Translational Research (MOE/Beijing), Division of Etiology, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Jing Zhou
- Key Laboratory of Carcinogenesis and Translational Research (MOE/Beijing), Division of Etiology, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Xiaorui Zhou
- Department of Biomedical Engineering, Peking University Cancer Hospital and Institute, Beijing 100871, China
| | - Peihuang Wu
- Department of Biomedical Engineering, Peking University Cancer Hospital and Institute, Beijing 100871, China
| | - Baozhen Zhang
- Key Laboratory of Carcinogenesis and Translational Research (MOE/Beijing), Division of Etiology, Peking University Cancer Hospital and Institute, Beijing 100142, China
- Division of Etiology, Beijing Cancer Hospital, Beijing 100142, China
| | - Dajun Deng
- Key Laboratory of Carcinogenesis and Translational Research (MOE/Beijing), Division of Etiology, Peking University Cancer Hospital and Institute, Beijing 100142, China
| |
Collapse
|
2
|
The Application of a Bone Marrow Mesenchymal Stem Cell Membrane in the Vascularization of a Decellularized Tracheal Scaffold. Stem Cells Int 2021; 2021:6624265. [PMID: 33747094 PMCID: PMC7960062 DOI: 10.1155/2021/6624265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/27/2021] [Accepted: 02/14/2021] [Indexed: 12/18/2022] Open
Abstract
Airway stenosis is a common problem in the neonatal intensive care unit (NICU) and pediatric intensive care unit (PICU). A tissue-engineered trachea is a new therapeutic method and a research hotspot. Successful vascularization is the key to the application of a tissue-engineered trachea. However, successful vascularization studies lack a complete description. In this study, it was assumed that rabbit bone marrow mesenchymal stem cells were obtained and induced by ascorbic acid to detect the tissue structure, ultrastructure, and gene expression of the extracellular matrix. A vascular endothelial cell culture medium was added in vitro to induce the vascularization of the stem cell sheet (SCS), and the immunohistochemistry and gene expression of vascular endothelial cell markers were detected. At the same time, vascular growth-related factors were added and detected during SCS construction. After the SCS and decellularized tracheal (DT) were constructed, a tetrandrine allograft was performed to observe its vascularization potential. We established the architecture and identified rabbit bone marrow mesenchymal stem cell membranes by 14 days of ascorbic acid, studied the role of a vascularized membrane in inducing bone marrow mesenchymal stem cells by in vitro ascorbic acid, and assessed the role of combining the stem cell membranes and noncellular tracheal scaffolds in vivo. Fourteen experiments confirmed that cell membranes promote angiogenesis at gene level. The results of 21-day in vitro experiments showed that the composite tissue-engineered trachea had strong angiogenesis. In vivo experiments show that a composite tissue-engineered trachea has strong potential for angiogenesis. It promotes the understanding of diseases of airway stenosis and tissue-engineered tracheal regeneration in newborns and small infants.
Collapse
|
3
|
Grimes DR, Fletcher AG. Close Encounters of the Cell Kind: The Impact of Contact Inhibition on Tumour Growth and Cancer Models. Bull Math Biol 2020; 82:20. [PMID: 31970500 PMCID: PMC6976547 DOI: 10.1007/s11538-019-00677-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 12/02/2019] [Indexed: 01/24/2023]
Abstract
Cancer is a complex phenomenon, and the sheer variation in behaviour across different types renders it difficult to ascertain underlying biological mechanisms. Experimental approaches frequently yield conflicting results for myriad reasons, and mathematical modelling of cancer is a vital tool to explore what we cannot readily measure, and ultimately improve treatment and prognosis. Like experiments, models are underpinned by certain biological assumptions, variation of which can lead to divergent predictions. An outstanding and important question concerns contact inhibition of proliferation (CIP), the observation that proliferation ceases when cells are spatially confined by their neighbours. CIP is a characteristic of many healthy adult tissues, but it remains unclear to which extent it holds in solid tumours, which exhibit regions of hyper-proliferation, and apparent breakdown of CIP. What precisely occurs in tumour tissue remains an open question, which mathematical modelling can help shed light on. In this perspective piece, we explore the implications of different hypotheses and available experimental evidence to elucidate the implications of these scenarios. We also outline how erroneous conclusions about the nature of tumour growth may be arrived at by looking selectively at biological data in isolation, and how this might be circumvented.
Collapse
Affiliation(s)
- David Robert Grimes
- School of Physical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland.
- Department of Oncology, University of Oxford, Old Road Campus, Oxford, OX3 7DQ, UK.
| | - Alexander G Fletcher
- School of Mathematics and Statistics, University of Sheffield, Sheffield, S3 7RH, UK
- Bateson Centre, University of Sheffield, Sheffield, S10 2TN, UK
| |
Collapse
|
4
|
Al-Zeer MA, Dutkiewicz M, von Hacht A, Kreuzmann D, Röhrs V, Kurreck J. Alternatively spliced variants of the 5'-UTR of the ARPC2 mRNA regulate translation by an internal ribosome entry site (IRES) harboring a guanine-quadruplex motif. RNA Biol 2019; 16:1622-1632. [PMID: 31387452 DOI: 10.1080/15476286.2019.1652524] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
The 5'-UTR of the actin-related protein 2/3 complex subunit 2 (ARPC2) mRNA exists in two variants. Using a bicistronic reporter construct, the present study demonstrates that the longer variant of the 5'-UTR harbours an internal ribosome entry site (IRES) which is lacking in the shorter one. Multiple control assays confirmed that only this variant promotes cap-independent translation. Furthermore, it includes a guanine-rich region that is capable of forming a guanine-quadruplex (G-quadruplex) structure which was found to contribute to the IRES activity. To investigate the cellular function of the IRES element, we determined the expression level of ARPC2 at various cell densities. At high cell density, the relative ARPC2 protein level increases, supporting the presumed function of IRES elements in driving the expression of certain genes under stressful conditions that compromise cap-dependent translation. Based on chemical probing experiments and computer-based predictions, we propose a structural model of the IRES element, which includes the G-quadruplex motif exposed from the central stem-loop element. Taken together, our study describes the functional relevance of two alternative 5'-UTR splice variants of the ARPC2 mRNA, one of which contains an IRES element with a G-quadruplex as a central motif, promoting translation under stressful cellular conditions.
Collapse
Affiliation(s)
- Munir A Al-Zeer
- Institute of Biotechnology, Technische Universität Berlin , Berlin , Germany
| | - Mariola Dutkiewicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences , Poznan , Poland
| | | | - Denise Kreuzmann
- Institute of Biotechnology, Technische Universität Berlin , Berlin , Germany
| | - Viola Röhrs
- Institute of Biotechnology, Technische Universität Berlin , Berlin , Germany
| | - Jens Kurreck
- Institute of Biotechnology, Technische Universität Berlin , Berlin , Germany
| |
Collapse
|
5
|
Oliva J, Florentino A, Bardag-Gorce F, Niihara Y. Engineering, differentiation and harvesting of human adipose-derived stem cell multilayer cell sheets. Regen Med 2019; 14:151-163. [PMID: 30829557 DOI: 10.2217/rme-2018-0053] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Aim: The study goals were to engineer and harvest scaffold-free undifferentiated/differentiated multilayer human adipose-derived stem cell (hADSC) cell sheets, in absence of treatment. Materials & methods: The hADSC are seeded in 35 mm culture dishes. At confluence or when multilayer cell sheets are formed, hADSC are treated with predefined differentiation culture media (adipocyte, chondrocyte and osteoblast). Results: Undifferentiated hADSC and differentiated adipocyte, osteoblast and chondrocyte hADSC multilayer cell sheets (hADSCmCS) have been harvested. Hematoxylin & eosin showed the formation of multilayer cell sheets. Undifferentiated hADSC multilayer cell sheets preserve their stem cell markers. Differentiated adipocyte, osteoblast and chondrocyte hADSCmCS expressed specific markers. Conclusion: This simple protocol opens possibilities to engineer scaffold-free hADSCm cell sheet to transplant them on damaged organs.
Collapse
Affiliation(s)
- Joan Oliva
- Department of Medicine, LA BioMed at Harbor UCLA Medical Center, Torrance, CA 90502, USA.,Emmaus Life Sciences, Inc., 21250 Hawthorne Blvd., Suite 800, Torrance, CA 90503, USA
| | - Arjie Florentino
- Department of Medicine, LA BioMed at Harbor UCLA Medical Center, Torrance, CA 90502, USA
| | - Fawzia Bardag-Gorce
- Department of Medicine, LA BioMed at Harbor UCLA Medical Center, Torrance, CA 90502, USA
| | - Yutaka Niihara
- Department of Medicine, LA BioMed at Harbor UCLA Medical Center, Torrance, CA 90502, USA.,Emmaus Life Sciences, Inc., 21250 Hawthorne Blvd., Suite 800, Torrance, CA 90503, USA
| |
Collapse
|
6
|
Cell-cell contacts protect against t-BuOOH-induced cellular damage and ferroptosis in vitro. Arch Toxicol 2019; 93:1265-1279. [PMID: 30798349 DOI: 10.1007/s00204-019-02413-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 02/13/2019] [Indexed: 02/07/2023]
Abstract
Ferroptosis is a recently discovered pathway of regulated necrosis dependent on iron and lipid peroxidation. It has gained broad attention since it is a promising approach to overcome resistance to apoptosis in cancer chemotherapy. We have recently identified tertiary-butyl hydroperoxide (t-BuOOH) as a novel inducer of ferroptosis. t-BuOOH is a widely used compound to induce oxidative stress in vitro. t-BuOOH induces lipid peroxidation and consequently ferroptosis in murine and human cell lines. t-BuOOH additionally results in a loss of mitochondrial membrane potential, formation of DNA double-strand breaks, and replication block. Here, we specifically address the question whether cell-cell contacts regulate t-BuOOH-induced ferroptosis and cellular damage. To this end, murine NIH3T3 or human HaCaT cells were seeded to confluence, but below their saturation density to allow the establishment of cell-cell contacts without inducing quiescence. Cells were then treated with t-BuOOH (50 or 200 µM, respectively). We revealed that cell-cell contacts reduce basal and t-BuOOH-triggered lipid peroxidation and consequently block ferroptosis. Similar results were obtained with the specific ferroptosis inducer erastin. Cell-cell contacts further protect against t-BuOOH-induced loss of mitochondrial membrane potential, and formation of DNA double-strand breaks. Interestingly, cell-cell contacts failed to prevent t-BuOOH-mediated replication block or formation of the oxidative base lesion 8-oxo-dG. Since evidence of protection against cell death was both (i) observed after treatment with hydrogen peroxide, methyl methanesulfonate or UV-C, and (ii) seen in several cell lines, we conclude that protection by cell-cell contacts is a widespread phenomenon. The impact of cell-cell contacts on toxicity might have important implications in cancer chemotherapy.
Collapse
|
7
|
Hung CLK, Maiuri T, Bowie LE, Gotesman R, Son S, Falcone M, Giordano JV, Gillis T, Mattis V, Lau T, Kwan V, Wheeler V, Schertzer J, Singh K, Truant R. A patient-derived cellular model for Huntington's disease reveals phenotypes at clinically relevant CAG lengths. Mol Biol Cell 2018; 29:2809-2820. [PMID: 30256717 PMCID: PMC6249865 DOI: 10.1091/mbc.e18-09-0590] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The huntingtin protein participates in several cellular processes that are disrupted when the polyglutamine tract is expanded beyond a threshold of 37 CAG DNA repeats in Huntington’s disease (HD). Cellular biology approaches to understand these functional disruptions in HD have primarily focused on cell lines with synthetically long CAG length alleles that clinically represent outliers in this disease and a more severe form of HD that lacks age onset. Patient-derived fibroblasts are limited to a finite number of passages before succumbing to cellular senescence. We used human telomerase reverse transcriptase (hTERT) to immortalize fibroblasts taken from individuals of varying age, sex, disease onset, and CAG repeat length, which we have termed TruHD cells. TruHD cells display classic HD phenotypes of altered morphology, size and growth rate, increased sensitivity to oxidative stress, aberrant adenosine diphosphate/adenosine triphosphate (ADP/ATP) ratios, and hypophosphorylated huntingtin protein. We additionally observed dysregulated reactive oxygen species (ROS)-dependent huntingtin localization to nuclear speckles in HD cells. We report the generation and characterization of a human, clinically relevant cellular model for investigating disease mechanisms in HD at the single-cell level, which, unlike transformed cell lines, maintains functions critical for huntingtin transcriptional regulation and genomic integrity.
Collapse
Affiliation(s)
- Claudia Lin-Kar Hung
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Tamara Maiuri
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Laura Erin Bowie
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Ryan Gotesman
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Susie Son
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Mina Falcone
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - James Victor Giordano
- Center for Genomic Medicine, Harvard Medical School, Boston, MA 02114.,Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Tammy Gillis
- Center for Genomic Medicine, Harvard Medical School, Boston, MA 02114.,Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Virginia Mattis
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Trevor Lau
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Vickie Kwan
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada.,Stem Cell and Cancer Research Institute, Faculty of Health Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Vanessa Wheeler
- Center for Genomic Medicine, Harvard Medical School, Boston, MA 02114.,Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Jonathan Schertzer
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Karun Singh
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Ray Truant
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| |
Collapse
|
8
|
Fu Y, Chen L, Chen C, Ge Y, Kang M, Song Z, Li J, Feng Y, Huo Z, He G, Hou M, Chen S, Xu A. Crosstalk between alternative polyadenylation and miRNAs in the regulation of protein translational efficiency. Genome Res 2018; 28:1656-1663. [PMID: 30228199 PMCID: PMC6211650 DOI: 10.1101/gr.231506.117] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 09/11/2018] [Indexed: 11/24/2022]
Abstract
3′ UTRs play important roles in the gene regulation network via their influence on mRNA stability, translational efficiency, and subcellular localization. For a given gene, 3′ UTRs of different lengths generated by alternative polyadenylation (APA) may result in functional differences in regulation. The mechanistic details of how length changes of 3′ UTRs alter gene function remain unclear. By combining APA sequencing and polysome profiling, we observed that mRNA isoforms with shorter 3′ UTRs were bound with more polysomes in six cell lines but not in NIH3T3 cells, suggesting that changing 3′ UTRs to shorter isoforms may lead to a higher gene translational efficiency. By interfering with the expression of TNRC6A and analyzing AGO2-PAR-CLIP data, we revealed that the APA effect on translational efficiency was mainly regulated by miRNAs, and this regulation was cell cycle dependent. The discrepancy between NIH3T3 and other cell lines was due to contact inhibition of NIH3T3. Thus, the crosstalk between APA and miRNAs may be needed for the regulation of protein translational efficiency.
Collapse
Affiliation(s)
- Yonggui Fu
- State Key Laboratory for Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, Higher Education Mega Center, Guangzhou, 510006, China
| | - Liutao Chen
- State Key Laboratory for Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, Higher Education Mega Center, Guangzhou, 510006, China
| | - Chengyong Chen
- State Key Laboratory for Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, Higher Education Mega Center, Guangzhou, 510006, China
| | - Yutong Ge
- State Key Laboratory for Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, Higher Education Mega Center, Guangzhou, 510006, China
| | - Mingjing Kang
- State Key Laboratory for Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, Higher Education Mega Center, Guangzhou, 510006, China
| | - Zili Song
- State Key Laboratory for Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, Higher Education Mega Center, Guangzhou, 510006, China
| | - Jingwen Li
- State Key Laboratory for Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, Higher Education Mega Center, Guangzhou, 510006, China
| | - Yuchao Feng
- State Key Laboratory for Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, Higher Education Mega Center, Guangzhou, 510006, China
| | - Zhanfeng Huo
- State Key Laboratory for Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, Higher Education Mega Center, Guangzhou, 510006, China
| | - Guopei He
- State Key Laboratory for Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, Higher Education Mega Center, Guangzhou, 510006, China
| | - Mengmeng Hou
- State Key Laboratory for Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, Higher Education Mega Center, Guangzhou, 510006, China
| | - Shangwu Chen
- State Key Laboratory for Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, Higher Education Mega Center, Guangzhou, 510006, China
| | - Anlong Xu
- State Key Laboratory for Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, Higher Education Mega Center, Guangzhou, 510006, China.,School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| |
Collapse
|
9
|
Galgoczi E, Jeney F, Gazdag A, Erdei A, Katko M, Nagy DM, Ujhelyi B, Steiber Z, Gyory F, Berta E, Nagy EV. Cell density-dependent stimulation of PAI-1 and hyaluronan synthesis by TGF-β in orbital fibroblasts. J Endocrinol 2016; 229:187-96. [PMID: 26979769 DOI: 10.1530/joe-15-0524] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 03/15/2016] [Indexed: 02/06/2023]
Abstract
During the course of Graves' orbitopathy (GO), orbital fibroblasts are exposed to factors that lead to proliferation and extracellular matrix (ECM) overproduction. Increased levels of tissue plasminogen activator inhibitor type 1 (PAI-1 (SERPINE1)) might promote the accumulation of ECM components. PAI-1 expression is regulated by cell density and various cytokines and growth factors including transforming growth factorβ(TGF-β). We examined the effects of increasing cell densities and TGF-β on orbital fibroblasts obtained from GO patients and controls. Responses were evaluated by the measurement of proliferation, PAI-1 expression, and ECM production. There was an inverse correlation between cell density and the per cell production of PAI-1. GO orbital, normal orbital, and dermal fibroblasts behaved similarly in this respect. Proliferation rate also declined with increasing cell densities. Hyaluronan (HA) production was constant throughout the cell densities tested in all cell lines. In both GO and normal orbital fibroblasts, but not in dermal fibroblasts, TGF-β stimulated PAI-1 production in a cell density-dependent manner, reaching up to a five-fold increase above baseline. This has been accompanied by increased HA secretion and pericellular HA levels at high cell densities. Increasing cell density is a negative regulator of proliferation and PAI-1 secretion both in normal and GO orbital fibroblasts; these negative regulatory effects are partially reversed in the presence of TGF-β. Cell density-dependent regulation of PAI-1 expression in the orbit, together with the local cytokine environment, may have a regulatory role in the turnover of the orbital ECM and may contribute to the expansion of orbital soft tissue in GO.
Collapse
Affiliation(s)
- Erika Galgoczi
- Division of EndocrinologyDepartment of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Florence Jeney
- Division of EndocrinologyDepartment of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Annamaria Gazdag
- Division of EndocrinologyDepartment of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Annamaria Erdei
- Division of EndocrinologyDepartment of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Monika Katko
- Division of EndocrinologyDepartment of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Domonkos M Nagy
- Division of EndocrinologyDepartment of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Bernadett Ujhelyi
- Department of OphthalmologyFaculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zita Steiber
- Department of OphthalmologyFaculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ferenc Gyory
- Department of SurgeryFaculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Eszter Berta
- Division of EndocrinologyDepartment of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Endre V Nagy
- Division of EndocrinologyDepartment of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
10
|
Dunn SJ, Osborne JM, Appleton PL, Näthke I. Combined changes in Wnt signaling response and contact inhibition induce altered proliferation in radiation-treated intestinal crypts. Mol Biol Cell 2016; 27:1863-74. [PMID: 27053661 PMCID: PMC4884076 DOI: 10.1091/mbc.e15-12-0854] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 03/30/2016] [Indexed: 12/15/2022] Open
Abstract
Wnt concentration gradients operate in many tissues. Modeling of proliferation in control and irradiated intestinal crypts shows that the Wnt concentrations that cells experience when they are born set their proliferative fate and cell cycle duration. The simulations also predict the initial proportion of cells damaged by tumor-promoting radiation. Curative intervention is possible if colorectal cancer is identified early, underscoring the need to detect the earliest stages of malignant transformation. A candidate biomarker is the expanded proliferative zone observed in crypts before adenoma formation, also found in irradiated crypts. However, the underlying driving mechanism for this is not known. Wnt signaling is a key regulator of proliferation, and elevated Wnt signaling is implicated in cancer. Nonetheless, how cells differentiate Wnt signals of varying strengths is not understood. We use computational modeling to compare alternative hypotheses about how Wnt signaling and contact inhibition affect proliferation. Direct comparison of simulations with published experimental data revealed that the model that best reproduces proliferation patterns in normal crypts stipulates that proliferative fate and cell cycle duration are set by the Wnt stimulus experienced at birth. The model also showed that the broadened proliferation zone induced by tumorigenic radiation can be attributed to cells responding to lower Wnt concentrations and dividing at smaller volumes. Application of the model to data from irradiated crypts after an extended recovery period permitted deductions about the extent of the initial insult. Application of computational modeling to experimental data revealed how mechanisms that control cell dynamics are altered at the earliest stages of carcinogenesis.
Collapse
Affiliation(s)
- S-J Dunn
- Microsoft Research, Cambridge CB1 3LS, United Kingdom
| | - J M Osborne
- School of Mathematics and Statistics, University of Melbourne, Melbourne, VIC 3010, Australia
| | - P L Appleton
- Division of Cell and Developmental Biology, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - I Näthke
- Division of Cell and Developmental Biology, University of Dundee, Dundee DD1 5EH, United Kingdom
| |
Collapse
|
11
|
Jeon Y, Lee MS, Cheon YP. Decreased contact inhibition in mouse adipose mesenchymal stem cells. Dev Reprod 2015; 16:329-38. [PMID: 25949108 PMCID: PMC4282245 DOI: 10.12717/dr.2012.16.4.329] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 12/02/2012] [Accepted: 12/09/2012] [Indexed: 12/12/2022]
Abstract
The proliferation of embryonic cells or adult stem cells in tissue is critically regulated during development and repair. How limited the proliferation of cells, so far, is not much explored. Cell-cell contact proliferation inhibition is known as a crucial mechanism regulating cell proliferation in vitro and in vivo. In this study we examined the characters of mouse subcutaneous adipose derived stem cells (msADSC) whether they lost or get contact inhibition during in vitro culture. The characters of msADSC growth after confluence were analyzed using confocal microscope and the expression profiles of contact inhibition related genes were analyzed according to the morphological changes using real-time PCR method. msADSC showed overlapping growth between them but not after passage 14. The cell shapes were also changed after passage 14. The expression profiles of genes which are involved in contact inhibition were modified in the msADSC after passage 14. The differentiation ability of msADSCs to adipocyte, chondrocyte and osteocyte was not changed by such changes of gene expression profiles. Based on these results, it is revealed that smADSC were characterized by getting of strong cell-cell contact inhibition after passage 14 but the proliferation and developmental ability were not blocked by the change of cell-cell contact proliferation inhibition. These finding will help to understand the growth of adipose tissue, although further studies are needed to evaluate the physiological meaning of the cell-cell contact proliferation inhibition during in vitro culture of msADSC.
Collapse
Affiliation(s)
- Yunmi Jeon
- Division of Developmental Biology and Physiology, School of Biosciences and Chemistry, Sungshin Womens University, Seoul 142-732, Korea
| | - Myung Sook Lee
- Dept. of Food and Nutrition, Sungshin Womens University, Seoul 142-732, Korea
| | - Yong-Pil Cheon
- Division of Developmental Biology and Physiology, School of Biosciences and Chemistry, Sungshin Womens University, Seoul 142-732, Korea
| |
Collapse
|
12
|
Vogel P, Gelfman CM, Issa T, Payne BJ, Hansen GM, Read RW, Jones C, Pitcher MR, Ding ZM, DaCosta CM, Shadoan MK, Vance RB, Powell DR. Nephronophthisis and retinal degeneration in tmem218-/- mice: a novel mouse model for Senior-Løken syndrome? Vet Pathol 2014; 52:580-95. [PMID: 25161209 DOI: 10.1177/0300985814547392] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Mice deficient in TMEM218 (Tmem218(-/-) ) were generated as part of an effort to identify and validate pharmaceutically tractable targets for drug development through large-scale phenotypic screening of knockout mice. Routine diagnostics, expression analysis, histopathology, and electroretinogram analyses completed on Tmem218(-/-) mice identified a previously unknown role for TMEM218 in the development and function of the kidney and eye. The major observed phenotypes in Tmem218(-/-) mice were progressive cystic kidney disease and retinal degeneration. The renal lesions were characterized by diffuse renal cyst development with tubulointerstitial nephropathy and disruption of tubular basement membranes in essentially normal-sized kidneys. The retinal lesions were characterized by slow-onset loss of photoreceptors, which resulted in reduced electroretinogram responses. These renal and retinal lesions are most similar to those associated with nephronophthisis (NPHP) and retinitis pigmentosa in humans. At least 10% of NPHP cases present with extrarenal conditions, which most often include retinal degeneration. Senior-Løken syndrome is characterized by the concurrent development of autosomal recessive NPHP and retinitis pigmentosa. Since mutations in the known NPHP genes collectively account for only about 30% of NPHP cases, it is possible that TMEM218 could be involved in the development of similar ciliopathies in humans. In reviewing all other reported mouse models of NPHP, we suggest that Tmem218(-/-) mice could provide a useful model for elucidating the pathogenesis of cilia-associated disease in both the kidney and the retina, as well as in developing and testing novel therapeutic strategies for Senior-Løken syndrome.
Collapse
Affiliation(s)
- P Vogel
- Department of Pathology, Lexicon Pharmaceuticals Inc., The Woodlands, TX, USA
| | - C M Gelfman
- Department of Ophthalmology, Lexicon Pharmaceuticals Inc., The Woodlands, TX, USA
| | - T Issa
- Department of Ophthalmology, Lexicon Pharmaceuticals Inc., The Woodlands, TX, USA
| | - B J Payne
- Department of Pathology, Lexicon Pharmaceuticals Inc., The Woodlands, TX, USA
| | - G M Hansen
- Department of Molecular Genetics, Lexicon Pharmaceuticals Inc., The Woodlands, TX, USA
| | - R W Read
- Department of Pathology, Lexicon Pharmaceuticals Inc., The Woodlands, TX, USA
| | - C Jones
- Department of Ophthalmology, Lexicon Pharmaceuticals Inc., The Woodlands, TX, USA
| | - M R Pitcher
- Department of Ophthalmology, Lexicon Pharmaceuticals Inc., The Woodlands, TX, USA
| | - Z-M Ding
- Department of Metabolism, Lexicon Pharmaceuticals Inc., The Woodlands, TX, USA
| | - C M DaCosta
- Department of Metabolism, Lexicon Pharmaceuticals Inc., The Woodlands, TX, USA
| | - M K Shadoan
- Department of Metabolism, Lexicon Pharmaceuticals Inc., The Woodlands, TX, USA
| | - R B Vance
- Department of Pathology, Lexicon Pharmaceuticals Inc., The Woodlands, TX, USA
| | - D R Powell
- Department of Metabolism, Lexicon Pharmaceuticals Inc., The Woodlands, TX, USA
| |
Collapse
|
13
|
Mechanisms of miRNA-Mediated Gene Regulation from Common Downregulation to mRNA-Specific Upregulation. Int J Genomics 2014; 2014:970607. [PMID: 25180174 PMCID: PMC4142390 DOI: 10.1155/2014/970607] [Citation(s) in RCA: 370] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 07/09/2014] [Accepted: 07/17/2014] [Indexed: 12/12/2022] Open
Abstract
Discovered in 1993, micoRNAs (miRNAs) are now recognized as one of the major regulatory gene families in eukaryotes. To date, 24521 microRNAs have been discovered and there are certainly more to come. It was primarily acknowledged that miRNAs result in gene expression repression at both the level of mRNA stability by conducting mRNA degradation and the level of translation (at initiation and after initiation) by inhibiting protein translation or degrading the polypeptides through binding complementarily to 3′UTR of the target mRNAs. Nevertheless, some studies revealed that miRNAs have the capability of activating gene expression directly or indirectly in respond to different cell types and conditions and in the presence of distinct cofactors. This reversibility in their posttranslational gene regulatory natures enables the bearing cells to rapidly response to different cell conditions and consequently block unnecessary energy wastage or maintain the cell state. This paper provides an overview of the current understandings of the miRNA characteristics including their genes and biogenesis, as well as their mediated downregulation. We also review up-to-date knowledge of miRNA-mediated gene upregulation through highlighting some notable examples and discuss the emerging concepts of their associations with other posttranscriptional gene regulation processes.
Collapse
|
14
|
Malpass GE, Arimilli S, Prasad GL, Howlett AC. Regulation of gene expression by tobacco product preparations in cultured human dermal fibroblasts. Toxicol Appl Pharmacol 2014; 279:211-9. [PMID: 24927667 DOI: 10.1016/j.taap.2014.06.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 05/06/2014] [Accepted: 06/03/2014] [Indexed: 12/23/2022]
Abstract
Skin fibroblasts comprise the first barrier of defense against wounds, and tobacco products directly contact the oral cavity. Cultured human dermal fibroblasts were exposed to smokeless tobacco extract (STE), total particulate matter (TPM) from tobacco smoke, or nicotine at concentrations comparable to those found in these extracts for 1h or 5h. Differences were identified in pathway-specific genes between treatments and vehicle using qRT-PCR. At 1h, IL1α was suppressed significantly by TPM and less significantly by STE. Neither FOS nor JUN was suppressed at 1h by tobacco products. IL8, TNFα, VCAM1, and NFκB1 were suppressed after 5h with STE, whereas only TNFα and NFκB1 were suppressed by TPM. At 1h with TPM, secreted levels of IL10 and TNFα were increased. Potentially confounding effects of nicotine were exemplified by genes such as ATF3 (5h), which was increased by nicotine but suppressed by other components of STE. Within 2h, TPM stimulated nitric oxide production, and both STE and TPM increased reactive oxygen species. The biological significance of these findings and utilization of the gene expression changes reported herein regarding effects of the tobacco product preparations on dermal fibroblasts will require additional research.
Collapse
Affiliation(s)
- Gloria E Malpass
- Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA.
| | - Subhashini Arimilli
- Department of Microbiology and Immunology, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA.
| | - G L Prasad
- R&D Department, R.J. Reynolds Tobacco Company, Winston-Salem, NC 27102, USA.
| | - Allyn C Howlett
- Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA.
| |
Collapse
|
15
|
|
16
|
Wierstra I. The transcription factor FOXM1 (Forkhead box M1): proliferation-specific expression, transcription factor function, target genes, mouse models, and normal biological roles. Adv Cancer Res 2013; 118:97-398. [PMID: 23768511 DOI: 10.1016/b978-0-12-407173-5.00004-2] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
FOXM1 (Forkhead box M1) is a typical proliferation-associated transcription factor, which stimulates cell proliferation and exhibits a proliferation-specific expression pattern. Accordingly, both the expression and the transcriptional activity of FOXM1 are increased by proliferation signals, but decreased by antiproliferation signals, including the positive and negative regulation by protooncoproteins or tumor suppressors, respectively. FOXM1 stimulates cell cycle progression by promoting the entry into S-phase and M-phase. Moreover, FOXM1 is required for proper execution of mitosis. Accordingly, FOXM1 regulates the expression of genes, whose products control G1/S-transition, S-phase progression, G2/M-transition, and M-phase progression. Additionally, FOXM1 target genes encode proteins with functions in the execution of DNA replication and mitosis. FOXM1 is a transcriptional activator with a forkhead domain as DNA binding domain and with a very strong acidic transactivation domain. However, wild-type FOXM1 is (almost) inactive because the transactivation domain is repressed by three inhibitory domains. Inactive FOXM1 can be converted into a very potent transactivator by activating signals, which release the transactivation domain from its inhibition by the inhibitory domains. FOXM1 is essential for embryonic development and the foxm1 knockout is embryonically lethal. In adults, FOXM1 is important for tissue repair after injury. FOXM1 prevents premature senescence and interferes with contact inhibition. FOXM1 plays a role for maintenance of stem cell pluripotency and for self-renewal capacity of stem cells. The functions of FOXM1 in prevention of polyploidy and aneuploidy and in homologous recombination repair of DNA-double-strand breaks suggest an importance of FOXM1 for the maintenance of genomic stability and chromosomal integrity.
Collapse
|
17
|
Tanaka S, Nakao K, Sekimoto T, Oka M, Yoneda Y. Cell density-dependent nuclear accumulation of ELK3 is involved in suppression of PAI-1 expression. Cell Struct Funct 2013; 38:145-54. [PMID: 23708702 DOI: 10.1247/csf.13007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Cell-cell contact regulates the proliferation and differentiation of non-transformed cells, e.g., NIH/3T3 cells show growth arrest at high cell density. However, only a few reports described the dynamic behavior of transcription factors involved in this process. In this study, we showed that the mRNA levels of plasminogen activator inhibitor type 1 (PAI-1) decreased drastically at high cell density, and that ELK3, a member of the Ets transcription factor family, repressed PAI-1 expression. We also demonstrated that while ELK3 was distributed evenly throughout the cell at low cell density, it accumulated in the nucleus at high cell density, and that binding of DNA by ELK3 at the A domain facilitated its nuclear accumulation. Furthermore, we found that ETS1, a PAI-1 activator, occupied the ELK3-binding site within the PAI-1 promoter at low cell density, while it was released at high cell density. These results suggest that at high cell density, the switching of binding of transcription factors from ETS1 to ELK3 occurs at a specific binding site of the PAI-1 promoter, leading to the cell-density dependent suppression of PAI-1 expression.
Collapse
Affiliation(s)
- Shu Tanaka
- Department of Frontier Biosciences, Graduate School of Frontier Biosciences, Osaka University, Yamada-oka, Suita, Osaka, Japan
| | | | | | | | | |
Collapse
|
18
|
Acosta-Rodríguez VA, Márquez S, Salvador GA, Pasquaré SJ, Gorné LD, Garbarino-Pico E, Giusto NM, Guido ME. Daily rhythms of glycerophospholipid synthesis in fibroblast cultures involve differential enzyme contributions. J Lipid Res 2013; 54:1798-811. [PMID: 23641021 DOI: 10.1194/jlr.m034264] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Circadian clocks regulate the temporal organization of several biochemical processes, including lipid metabolism, and their disruption leads to severe metabolic disorders. Immortalized cell lines acting as circadian clocks display daily variations in [(32)P]phospholipid labeling; however, the regulation of glycerophospholipid (GPL) synthesis by internal clocks remains unknown. Here we found that arrested NIH 3T3 cells synchronized with a 2 h-serum shock exhibited temporal oscillations in a) the labeling of total [(3)H] GPLs, with lowest levels around 28 and 56 h, and b) the activity of GPL-synthesizing and GPL-remodeling enzymes, such as phosphatidate phosphohydrolase 1 (PAP-1) and lysophospholipid acyltransferases (LPLAT), respectively, with antiphase profiles. In addition, we investigated the temporal regulation of phosphatidylcholine (PC) biosynthesis. PC is mainly synthesized through the Kennedy pathway with choline kinase (ChoK) and CTP:phosphocholine cytidylyltranferase (CCT) as key regulatory enzymes. We observed that the PC labeling exhibited daily changes, with the lowest levels every ~28 h, that were accompanied by brief increases in CCT activity and the oscillation in ChoK mRNA expression and activity. Results demonstrate that the metabolisms of GPLs and particularly of PC in synchronized fibroblasts are subject to a complex temporal control involving concerted changes in the expression and/or activities of specific synthesizing enzymes.
Collapse
Affiliation(s)
- Victoria A Acosta-Rodríguez
- CIQUIBIC-CONICET, Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Faust D, Vondráček J, Krčmář P, Šmerdová L, Procházková J, Hrubá E, Hulinková P, Kaina B, Dietrich C, Machala M. AhR-mediated changes in global gene expression in rat liver progenitor cells. Arch Toxicol 2012. [DOI: 10.1007/s00204-012-0979-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
20
|
Faust D, Al-Butmeh F, Linz B, Dietrich C. Involvement of the transcription factor FoxM1 in contact inhibition. Biochem Biophys Res Commun 2012; 426:659-63. [PMID: 22982677 DOI: 10.1016/j.bbrc.2012.09.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 09/01/2012] [Indexed: 11/24/2022]
Abstract
Contact inhibition is a crucial mechanism regulating proliferation in vitro and in vivo. Although it is generally accepted that contact inhibition plays a pivotal role in maintaining tissue homeostasis, the molecular mechanisms of contact inhibition are still not fully understood. FoxM1 is known as a proliferation-associated transcription factor and is upregulated in many cancer types. Vice versa, anti-proliferative signals, such as TGF-β and differentiation signals decrease FoxM1 expression. Here we investigated the role of FoxM1 in contact inhibition in fibroblasts. We show that protein expression of FoxM1 is severely and rapidly downregulated upon contact inhibition, probably by inhibition of ERK activity, which then leads to decreased expression of cyclin A and polo-like kinase 1. Vice versa, ectopic expression of FoxM1 prevents the decrease in cyclin A and polo-like kinase 1 and causes a two-fold increase in saturation density indicating loss of contact inhibition. Hence, we show that downregulation of FoxM1 is required for contact inhibition by regulating expression of cyclin A and polo-like kinase 1.
Collapse
Affiliation(s)
- Dagmar Faust
- Institute of Toxicology, Medical Center of the Johannes Gutenberg-University, Obere Zahlbacherstr. 67, 55131 Mainz, Germany
| | | | | | | |
Collapse
|
21
|
Alberghina L, Gaglio D, Gelfi C, Moresco RM, Mauri G, Bertolazzi P, Messa C, Gilardi MC, Chiaradonna F, Vanoni M. Cancer cell growth and survival as a system-level property sustained by enhanced glycolysis and mitochondrial metabolic remodeling. Front Physiol 2012; 3:362. [PMID: 22988443 PMCID: PMC3440026 DOI: 10.3389/fphys.2012.00362] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 08/23/2012] [Indexed: 12/14/2022] Open
Abstract
Systems Biology holds that complex cellular functions are generated as system-level properties endowed with robustness, each involving large networks of molecular determinants, generally identified by “omics” analyses. In this paper we describe four basic cancer cell properties that can easily be investigated in vitro: enhanced proliferation, evasion from apoptosis, genomic instability, and inability to undergo oncogene-induced senescence. Focusing our analysis on a K-ras dependent transformation system, we show that enhanced proliferation and evasion from apoptosis are closely linked, and present findings that indicate how a large metabolic remodeling sustains the enhanced growth ability. Network analysis of transcriptional profiling gives the first indication on this remodeling, further supported by biochemical investigations and metabolic flux analysis (MFA). Enhanced glycolysis, down-regulation of TCA cycle, decoupling of glucose and glutamine utilization, with increased reductive carboxylation of glutamine, so to yield a sustained production of growth building blocks and glutathione, are the hallmarks of enhanced proliferation. Low glucose availability specifically induces cell death in K-ras transformed cells, while PKA activation reverts this effect, possibly through at least two mitochondrial targets. The central role of mitochondria in determining the two investigated cancer cell properties is finally discussed. Taken together the findings reported herein indicate that a system-level property is sustained by a cascade of interconnected biochemical pathways that behave differently in normal and in transformed cells.
Collapse
Affiliation(s)
- Lilia Alberghina
- SysBio Centre for Systems Biology Milano and Rome, Italy ; Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza Milano, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Dunn SJ, Appleton PL, Nelson SA, Näthke IS, Gavaghan DJ, Osborne JM. A two-dimensional model of the colonic crypt accounting for the role of the basement membrane and pericryptal fibroblast sheath. PLoS Comput Biol 2012; 8:e1002515. [PMID: 22654652 PMCID: PMC3359972 DOI: 10.1371/journal.pcbi.1002515] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 03/22/2012] [Indexed: 12/22/2022] Open
Abstract
The role of the basement membrane is vital in maintaining the integrity and structure of an epithelial layer, acting as both a mechanical support and forming the physical interface between epithelial cells and the surrounding connective tissue. The function of this membrane is explored here in the context of the epithelial monolayer that lines the colonic crypt, test-tube shaped invaginations that punctuate the lining of the intestine and coordinate a regular turnover of cells to replenish the epithelial layer every few days. To investigate the consequence of genetic mutations that perturb the system dynamics and can lead to colorectal cancer, it must be possible to track the emerging tissue level changes that arise in the crypt. To that end, a theoretical crypt model with a realistic, deformable geometry is required. A new discrete crypt model is presented, which focuses on the interaction between cell- and tissue-level behaviour, while incorporating key subcellular components. The model contains a novel description of the role of the surrounding tissue and musculature, based upon experimental observations of the tissue structure of the crypt, which are also reported. A two-dimensional (2D) cross-sectional geometry is considered, and the shape of the crypt is allowed to evolve and deform. Simulation results reveal how the shape of the crypt may contribute mechanically to the asymmetric division events typically associated with the stem cells at the base. The model predicts that epithelial cell migration may arise due to feedback between cell loss at the crypt collar and density-dependent cell division, an hypothesis which can be investigated in a wet lab. This work forms the basis for investigation of the deformation of the crypt structure that can occur due to proliferation of cells exhibiting mutant phenotypes, experiments that would not be possible in vivo or in vitro.
Collapse
Affiliation(s)
- Sara-Jane Dunn
- Department of Computer Science, University of Oxford, Oxford, United Kingdom.
| | | | | | | | | | | |
Collapse
|
23
|
Chai YC, Roberts SJ, Van Bael S, Chen Y, Luyten FP, Schrooten J. Multi-Level Factorial Analysis of Ca2+/Pi Supplementation as Bio-Instructive Media for In Vitro Biomimetic Engineering of Three-Dimensional Osteogenic Hybrids. Tissue Eng Part C Methods 2012; 18:90-103. [DOI: 10.1089/ten.tec.2011.0248] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Yoke Chin Chai
- Laboratory for Skeletal Development and Joint Disorders, Katholieke Universiteit Leuven, Leuven, Belgium
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
- Prometheus, Division of Skeletal Tissue Engineering, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Scott J. Roberts
- Laboratory for Skeletal Development and Joint Disorders, Katholieke Universiteit Leuven, Leuven, Belgium
- Prometheus, Division of Skeletal Tissue Engineering, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Simon Van Bael
- Prometheus, Division of Skeletal Tissue Engineering, Katholieke Universiteit Leuven, Leuven, Belgium
- Division of Biomechanics and Engineering Design, Katholieke Universiteit Leuven, Heverlee, Belgium
- Division of Production Engineering, Machine Design and Automation, Department of Mechanical Engineering, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Yantian Chen
- Laboratory for Skeletal Development and Joint Disorders, Katholieke Universiteit Leuven, Leuven, Belgium
- Prometheus, Division of Skeletal Tissue Engineering, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Frank P. Luyten
- Laboratory for Skeletal Development and Joint Disorders, Katholieke Universiteit Leuven, Leuven, Belgium
- Prometheus, Division of Skeletal Tissue Engineering, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Jan Schrooten
- Prometheus, Division of Skeletal Tissue Engineering, Katholieke Universiteit Leuven, Leuven, Belgium
- Department of Metallurgy and Materials Engineering, Katholieke Universiteit Leuven, Leuven, Belgium
| |
Collapse
|
24
|
Tanaka K, Sato K, Yoshida T, Fukuda T, Hanamura K, Kojima N, Shirao T, Yanagawa T, Watanabe H. Evidence for cell density affecting C2C12 myogenesis: possible regulation of myogenesis by cell-cell communication. Muscle Nerve 2012; 44:968-77. [PMID: 22102468 DOI: 10.1002/mus.22224] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
INTRODUCTION Community effect is a phenomenon caused by cell-cell communication during myogenesis. In myogenic C2C12 cells in vitro, the confluent phase is needed for myogenesis induction. METHODS To examine the cell-density effect, growth kinetics and myogenic differentiation were investigated in cells plated at four different cell densities. RESULTS We found that expression of a myogenic differentiation marker was high in a density-dependent manner. At high density, where cell-cell contact was obvious, contact inhibition after the proliferation stage was accompanied by microarray findings demonstrating upregulation of negative regulating cell-cycle markers, including CDKI p21 and the muscle differentiation markers MyoD and myogenin. Interestingly, developmentally regulated protein expression (drebrin) protein expression was also upregulated in a density-dependent manner. CONCLUSIONS These results suggest that contact inhibition after the proliferation stage may induce growth arrest via cell-cell communication through the expression of CDKI p21 and may be responsible for progressing cell fusion.
Collapse
Affiliation(s)
- Kanako Tanaka
- Course of Health Sciences, Gunma University Graduate School of Health Sciences, Showa, Maebashi, Gunma, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Sellitti DF, Koles N, Mendonça MC. Regulation of C-type natriuretic peptide expression. Peptides 2011; 32:1964-71. [PMID: 21816187 DOI: 10.1016/j.peptides.2011.07.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 07/15/2011] [Accepted: 07/15/2011] [Indexed: 01/17/2023]
Abstract
C-type natriuretic peptide (CNP) is a member of the small family of natriuretic peptides that also includes atrial natriuretic peptide (ANP) and brain, or B-type natriuretic peptide (BNP). Unlike them, it performs its major functions in an autocrine or paracrine manner. Those functions, mediated through binding to the membrane guanylyl cyclase natriuretic peptide receptor B (NPR-B), or by signaling through the non-enzyme natriuretic peptide receptor C (NPR-C), include the regulation of endochondral ossification, reproduction, nervous system development, and the maintenance of cardiovascular health. To date, the regulation of CNP gene expression has not received the attention that has been paid to regulation of the ANP and BNP genes. CNP expression in vitro is regulated by TGF-β and receptor tyrosine kinase growth factors in a cell/tissue-specific and sometimes species-specific manner. Expression of CNP in vivo is altered in diseased organs and tissues, including atherosclerotic vessels, and the myocardium of failing hearts. Analysis of the human CNP gene has led to the identification of a number of regulatory sites in the proximal promoter, including a GC-rich region approximately 50 base pairs downstream of the Tata box, and shown to be a binding site for several putative regulatory proteins, including transforming growth factor clone 22 domain 1 (TSC22D1) and a serine threonine kinase (STK16). The purpose of this review is to summarize the current literature on the regulation of CNP expression, emphasizing in particular the putative regulatory elements in the CNP gene and the potential DNA-binding proteins that associate with them.
Collapse
Affiliation(s)
- Donald F Sellitti
- Department of Medicine, Division of Endocrinology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4799, USA.
| | | | | |
Collapse
|
26
|
Chiaradonna F, Moresco RM, Airoldi C, Gaglio D, Palorini R, Nicotra F, Messa C, Alberghina L. From cancer metabolism to new biomarkers and drug targets. Biotechnol Adv 2011; 30:30-51. [PMID: 21802503 DOI: 10.1016/j.biotechadv.2011.07.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Accepted: 07/13/2011] [Indexed: 12/14/2022]
Abstract
Great interest is presently given to the analysis of metabolic changes that take place specifically in cancer cells. In this review we summarize the alterations in glycolysis, glutamine utilization, fatty acid synthesis and mitochondrial function that have been reported to occur in cancer cells and in human tumors. We then propose considering cancer as a system-level disease and argue how two hallmarks of cancer, enhanced cell proliferation and evasion from apoptosis, may be evaluated as system-level properties, and how this perspective is going to modify drug discovery. Given the relevance of the analysis of metabolism both for studies on the molecular basis of cancer cell phenotype and for clinical applications, the more relevant technologies for this purpose, from metabolome and metabolic flux analysis in cells by Nuclear Magnetic Resonance and Mass Spectrometry technologies to positron emission tomography on patients, are analyzed. The perspectives offered by specific changes in metabolism for a new drug discovery strategy for cancer are discussed and a survey of the industrial activity already going on in the field is reported.
Collapse
Affiliation(s)
- F Chiaradonna
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Akiba J, Murakami Y, Noda M, Watari K, Ogasawara S, Yoshida T, Kawahara A, Sanada S, Yasumoto M, Yamaguchi R, Kage M, Kuwano M, Ono M, Yano H. N-myc downstream regulated gene1/Cap43 overexpression suppresses tumor growth by hepatic cancer cells through cell cycle arrest at the G0/G1 phase. Cancer Lett 2011; 310:25-34. [PMID: 21775055 DOI: 10.1016/j.canlet.2011.05.034] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 05/24/2011] [Accepted: 05/30/2011] [Indexed: 01/05/2023]
Abstract
N-myc downstream regulated gene-1 (NDRG1)/Cap43 regulates tumor growth and metastasis in various carcinomas. In this study we examined whether and how NDRG1/Cap43 modulates tumor growth by human hepatocellular carcinoma (HCC) cells. NDRG1/Cap43 cDNA was used to transfect HCC cell lines (KIM-1), and stable transfectants overexpressing NDRG1/Cap43 (KIM-1/Cap43) were obtained. Cell cycle analysis showed that KIM-1/Cap43 cells were arrested in the G0/G1 phase. Western blot analysis demonstrated an increase in p21 in KIM-1/Cap43 cells in culture under full confluency as compared with KIM-1/Mock. When KIM-1 cells, which are very low in NDRG1/Cap43 expression, were treated with mimosine, a G0/G1 cell cycle blocker, expression of NDRG1/Cap43 was induced in a dose dependent manner, together with p21 induction and CDK4 reduction. In vivo, KIM-1/Cap43 cells showed markedly decreased tumor growth rates compared with those of KIM-1/Mock. Immunohistochemical staining demonstrated markedly higher p21 labeling index in the KIM-1/Cap43 tumor than KIM-1/Mock tumor, and lower CDK4 and Ki-67 labeling index in the KIM-1/Cap43 than KIM-1/Mock. In order to confirm suppressive effects of NDRG1/Cap43, we further established a stable transfectant expressing NDRG1/Cap43 (HAK-1B/Cap43) using another HCC cell line, HAK-1B. Western blot analysis demonstrated an increase in p21 and a decrease in CDK4 in HAK-1B/Cap43 cells in culture under full confluency as compared with HAK-1B/Mock. HAK-1B/Cap43 also showed decreased tumor growth rates as compared with its control counterpart in vivo. NDRG1/Cap43 overexpression thus induced cell cycle arrest at the G0/G1 phase accompanied by increased p21 and decreased CDK4 expression in HCC cells. NDRG1/Cap43 might play a key role in the cell cycle control of G0/G1 in HCC cells.
Collapse
Affiliation(s)
- Jun Akiba
- Department of Pathology, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Cooksey GA, Elliott JT, Plant AL. Reproducibility and robustness of a real-time microfluidic cell toxicity assay. Anal Chem 2011; 83:3890-6. [PMID: 21506521 DOI: 10.1021/ac200273f] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Numerous opportunities exist to apply microfluidic technology to high-throughput and high-content cell-based assays. However, maximizing the value of microfluidic assays for applications such as drug discovery, screening, or toxicity evaluation will require assurance of within-device repeatability, day-to-day reproducibility, and robustness to variations in conditions that might occur from laboratory to laboratory. This report describes a study of the performance and variability of a cell-based toxicity assay in microfluidic devices made of poly(dimethylsiloxane) (PDMS). The assay involves expression of destabilized green fluorescent protein (GFP) as a reporter of intracellular protein synthesis and degradation. Reduction in cellular GFP due to inhibition of ribosome activity by cycloheximide (CHX) was quantified with real-time quantitative fluorescence imaging. Assay repeatability was measured within a 64-chamber microfluidic device. Assay performance across a range of cell loading densities within a single device was assessed, as was replication of measurements in microfluidic devices prepared on different days. Assay robustness was tested using different fluorescence illumination sources and reservoir-to-device tubing choices. Both microfluidic and larger scale assay conditions showed comparable GFP decay rates upon CHX exposure, but the microfluidic data provided the higher level of confidence.
Collapse
|
29
|
Küppers M, Faust D, Linz B, Dietrich C. Regulation of ERK1/2 activity upon contact inhibition in fibroblasts. Biochem Biophys Res Commun 2011; 406:483-7. [DOI: 10.1016/j.bbrc.2011.02.080] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Accepted: 02/15/2011] [Indexed: 10/18/2022]
|