1
|
Hsu CC, Yao X, Chen SY, Tsuo TC, Wang IC. The conformation of FOXM1 homodimers in vivo is crucial for regulating transcriptional activities. Nucleic Acids Res 2024; 52:13625-13643. [PMID: 39535028 DOI: 10.1093/nar/gkae988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 09/24/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024] Open
Abstract
Conformational changes in a transcription factor can significantly affect its transcriptional activity. The activated form of the FOXM1 transcription factor regulates the transcriptional network of genes essential for cell cycle progression and carcinogenesis. However, the mechanism and impact of FOXM1 conformational change on its transcriptional activity in vivo throughout the cell cycle progression remain unexplored. Here, we demonstrate that FOXM1 proteins form novel intermolecular homodimerizations in vivo, and these conformational changes in FOXM1 homodimers impact activity during the cell cycle. Specifically, during the G1 phase, FOXM1 undergoes autorepressive homodimerization, wherein the αβα motif in the C-terminal transcriptional activation domain interacts with the ββαβ motif in the N-terminal repression domain, as evidenced by FRET imaging. Phosphorylation of the αβα motif by PLK1 at S715/S724 disrupts ββαβ-αβα hydrophobic interactions, thereby facilitating a conserved αβα motif switch binding partner to the novel intrinsically disordered regions, leading to FOXM1 autostimulatory homodimerization persisting from the S phase to the G2/M phase in vivo. Furthermore, we identified a minimal ββαβ motif peptide that effectively inhibits cancer cell proliferation both in cell culture and in a mouse tumor model, suggesting a promising autorepression approach for targeting FOXM1 in cancer therapy.
Collapse
Affiliation(s)
- Chia-Chan Hsu
- Institute of Biotechnology, National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Road, Hsinchu 300044, Taiwan
| | - Xiang Yao
- Institute of Biotechnology, National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Road, Hsinchu 300044, Taiwan
| | - Shang-Yao Chen
- Institute of Biotechnology, National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Road, Hsinchu 300044, Taiwan
| | - Tsui-Chun Tsuo
- National Institute of Environmental Health Sciences, National Health Research Institutes, No. 35, Keyan Road, Zhunan Town, Miaoli 350401, Taiwan
| | - I-Ching Wang
- Institute of Biotechnology, National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Road, Hsinchu 300044, Taiwan
- Department of Life Sciences, National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Road, Hsinchu 300044, Taiwan
- Brain Research Center, National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Road, Hsinchu 300044, Taiwan
| |
Collapse
|
2
|
Dong H, Chen S, Liang X, Cai Q, Zhang X, Xie J, Sun Z. Vitamin D and Its Receptors in Cervical Cancer. J Cancer 2024; 15:926-938. [PMID: 38230221 PMCID: PMC10788714 DOI: 10.7150/jca.87499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 11/22/2023] [Indexed: 01/18/2024] Open
Abstract
Several studies have investigated the relationship between vitamin D (VD) and its receptors (VDR) and the risk of cervical cancer. However, the underlying mechanisms that underpin these associations remain incompletely comprehended. In this review, we analyzed the impacts of VD and VDR on cervical cancer and related mechanisms, and discussed the effects of VD, calcium, and other vitamins on cervical cancer. Our literature research found that VD, VDR and their related signaling pathways played indispensable roles in the occurrence and progression of cervical cancer. Epidemiological studies have established associations between VD, VDR, and cervical cancer susceptibility. Current studies have shown that the inhibitory effect of VD and VDR on cervical cancer may be attributed to a variety of molecules and pathways, such as the EAG potassium channel, HCCR-1, estrogen and its receptor, p53, pRb, TNF-α, the PI3K/Akt pathway, and the Wnt/β-catenin pathway. This review also briefly discussed the association between VDR gene polymorphisms and cervical cancer, albeit a comprehensive elucidation of this relationship remains an ongoing research endeavor. Additionally, the potential ramifications of VD, calcium, and other vitamins on cervical cancer has been elucidated, yet further exploration into the precise mechanistic underpinnings of these potential effects is warranted. Therefore, we suggest that further studies should focus on explorations into the intricate interplay among diverse molecular pathways and entities, elucidation of the mechanistic underpinnings of VDR polymorphic loci changes in the context of HPV infection and VD, inquiries into the mechanisms of VD in conjunction with calcium and other vitamins, as well as investigations of the efficacy of VD supplementation or VDR agonists as part of cervical cancer treatment strategies in the clinical trials.
Collapse
Affiliation(s)
- Hanyu Dong
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China
- Tianjin Center for International Collaborative Research in Environment, Nutrition and Public Health, Tianjin, China
| | - Shiyue Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China
- Tianjin Center for International Collaborative Research in Environment, Nutrition and Public Health, Tianjin, China
| | - Xiaoshan Liang
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China
- Tianjin Center for International Collaborative Research in Environment, Nutrition and Public Health, Tianjin, China
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Qiliang Cai
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xumei Zhang
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China
- Tianjin Center for International Collaborative Research in Environment, Nutrition and Public Health, Tianjin, China
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Juan Xie
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China
- Tianjin Center for International Collaborative Research in Environment, Nutrition and Public Health, Tianjin, China
| | - Zhuoyu Sun
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China
- Tianjin Center for International Collaborative Research in Environment, Nutrition and Public Health, Tianjin, China
| |
Collapse
|
3
|
Sadaf, Hazazi A, Alkhalil SS, Alsaiari AA, Gharib AF, Alhuthali HM, Rana S, Aloliqi AA, Eisa AA, Hasan MR, Dev K. Role of Fork-Head Box Genes in Breast Cancer: From Drug Resistance to Therapeutic Targets. Biomedicines 2023; 11:2159. [PMID: 37626655 PMCID: PMC10452497 DOI: 10.3390/biomedicines11082159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/17/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Breast cancer has been acknowledged as one of the most notorious cancers, responsible for millions of deaths around the globe. Understanding the various factors, genetic mutations, comprehensive pathways, etc., that are involved in the development of breast cancer and how these affect the development of the disease is very important for improving and revitalizing the treatment of this global health issue. The forkhead-box gene family, comprising 19 subfamilies, is known to have a significant impact on the growth and progression of this cancer. The article looks into the various forkhead genes and how they play a role in different types of cancer. It also covers their impact on cancer drug resistance, interaction with microRNAs, explores their potential as targets for drug therapies, and their association with stem cells.
Collapse
Affiliation(s)
- Sadaf
- Department of Biotechnology, Jamia Millia Islamia, New Delhi 110025, India;
| | - Ali Hazazi
- Department of Pathology and Laboratory Medicine, Security Forces Hospital Program, Riyadh 11481, Saudi Arabia;
| | - Samia S. Alkhalil
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Alquwayiyah 11961, Saudi Arabia;
| | - Ahad Amer Alsaiari
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia; (A.A.A.); (A.F.G.); (H.M.A.)
| | - Amal F. Gharib
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia; (A.A.A.); (A.F.G.); (H.M.A.)
| | - Hayaa M. Alhuthali
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia; (A.A.A.); (A.F.G.); (H.M.A.)
| | - Shanika Rana
- School of Biosciences, Apeejay Stya University, Gurugram 122003, India;
| | - Abdulaziz A. Aloliqi
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia;
| | - Alaa Abdulaziz Eisa
- Department of Medical Laboratories Technology, College of Applied Medical Sciences, Taibah University, Medina 30002, Saudi Arabia;
| | - Mohammad Raghibul Hasan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Alquwayiyah 11961, Saudi Arabia;
| | - Kapil Dev
- Department of Biotechnology, Jamia Millia Islamia, New Delhi 110025, India;
| |
Collapse
|
4
|
Kang Y. Landscape of NcRNAs involved in drug resistance of breast cancer. Clin Transl Oncol 2023; 25:1869-1892. [PMID: 37067729 PMCID: PMC10250522 DOI: 10.1007/s12094-023-03189-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 07/02/2022] [Indexed: 04/18/2023]
Abstract
Breast cancer (BC) leads to the most amounts of deaths among women. Chemo-, endocrine-, and targeted therapies are the mainstay drug treatments for BC in the clinic. However, drug resistance is a major obstacle for BC patients, and it leads to poor prognosis. Accumulating evidences suggested that noncoding RNAs (ncRNAs) are intricately linked to a wide range of pathological processes, including drug resistance. Till date, the correlation between drug resistance and ncRNAs is not completely understood in BC. Herein, we comprehensively summarized a dysregulated ncRNAs landscape that promotes or inhibits drug resistance in chemo-, endocrine-, and targeted BC therapies. Our review will pave way for the effective management of drug resistance by targeting oncogenic ncRNAs, which, in turn will promote drug sensitivity of BC in the future.
Collapse
Affiliation(s)
- Yujuan Kang
- Department of Breast Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China.
| |
Collapse
|
5
|
Varun BR, Ramani P, Arya I, Palani J, Joseph AP. Epithelial-mesenchymal transition in cancer stem cells: Therapeutic implications. J Oral Maxillofac Pathol 2023; 27:359-363. [PMID: 37854925 PMCID: PMC10581319 DOI: 10.4103/jomfp.jomfp_308_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/29/2022] [Accepted: 11/14/2022] [Indexed: 10/20/2023] Open
Abstract
Cancer stem cells (CSCs) are cancer cells that possess characteristics associated with normal stem cells, specifically the ability to give rise to all cell types found in a particular cancer sample. CSCs may generate tumors through the processes of self-renewal and differentiation into multiple cell types. CSCs present in tumors are normally resistant to conventional therapy and may contribute to tumor recurrence. Tumor residuals present after therapy, with CSCs enrichment, have all the hallmarks of epithelial-mesenchymal transition (EMT). In this review, we discuss the relationship between EMT and CSCs in cancer progression and its therapeutic implications in oral squamous cell carcinoma.
Collapse
Affiliation(s)
- BR Varun
- Department of Oral and Maxillofacial Pathology, PMS College of Dental Sciences and Research, Trivandrum, Kerala, India
| | - Pratiba Ramani
- Department of Oral and Maxillofacial Pathology, Saveetha Dental College, Poonamallee High Road, Chennai, Tamil Nadu, India
| | - I Arya
- Department of Oral and Maxillofacial Pathology, PMS College of Dental Sciences and Research, Trivandrum, Kerala, India
| | - Jayanthi Palani
- Department of Oral and Maxillofacial Pathology, Azeezia College of Dental Sciences and Research, Meyyannoor, Kollam, Kerala, India
| | - Anna P. Joseph
- Department of Oral and Maxillofacial Pathology, PMS College of Dental Sciences and Research, Trivandrum, Kerala, India
| |
Collapse
|
6
|
Pan Z, Zhang M, Zhang F, Pan H, Li Y, Shao Y, Yuan X, Wang J, Chen J. Single-Cell Transcriptomics Unveils the Dedifferentiation Mechanism of Lung Adenocarcinoma Stem Cells. Int J Mol Sci 2022; 24:ijms24010482. [PMID: 36613925 PMCID: PMC9820263 DOI: 10.3390/ijms24010482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/14/2022] [Accepted: 12/17/2022] [Indexed: 12/30/2022] Open
Abstract
Lung adenocarcinoma (LUAD) is a major subtype of lung cancer, and its prognosis is still poor due to therapy resistance, metastasis, and recurrence. In recent years, increasing evidence has shown that the existence of lung cancer stem cells is responsible for the propagation, metastasis, therapy resistance, and recurrence of the tumor. During their transition to cancer stem cells, tumor cells need to inhibit cell differentiation and acquire invasive characteristics. However, our understanding of the property and role of such lung cancer stem cells is still limited. In this study, lung adenocarcinoma cancer stem cells (LCSCs) were enriched from the PC-9 cell line in a serum-free condition. PC-9 cells grew into spheres and showed higher survival rates when exposed to gefitinib: the drug used for the treatment of LUAD. Additionally, we found that the canonical stemness marker protein CD44 was significantly increased in the enriched LCSCs. Then, LCSCs were inoculated into the groin of nude mice for 1.5 months, and tumors were detected in the animals, indicating the strong stemness of the cells. After that, we performed single-cell RNA sequencing (scRNA-seq) on 7320 LCSCs and explored the changes in their transcriptomic signatures. We identified cell populations with a heterogeneous expression of cancer stem marker genes in LCSCs and subsets with different degrees of differentiation. Further analyses revealed that the activation of the FOXM1 (oncoprotein) transcription factor is a key factor in cell dedifferentiation, which enables tumor cells to acquire an epithelial-mesenchymal transition phenotype and increases the LCSC surface marker CD44. Moreover, we found that the combination of CD44, ABCG2, and ALCAM was a specific marker for LCSCs. In summary, this study identified the potential factors and molecular mechanisms underlying the stemness properties of LUAD cancer cells; it could also provide insight into developing novel and effective therapeutic approaches.
Collapse
Affiliation(s)
- Zhenhua Pan
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Meidi Zhang
- School of Biomedical Engineering, Tianjin Medical University, Tianjin 300070, China
| | - Fengyu Zhang
- School of Biomedical Engineering, Tianjin Medical University, Tianjin 300070, China
| | - Hongli Pan
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yongwen Li
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yi Shao
- Department of Lung Cancer Surgery, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Xin Yuan
- School of Biomedical Engineering, Tianjin Medical University, Tianjin 300070, China
| | - Ju Wang
- School of Biomedical Engineering, Tianjin Medical University, Tianjin 300070, China
- Correspondence: (J.W.); (J.C.)
| | - Jun Chen
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
- Department of Lung Cancer Surgery, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
- Correspondence: (J.W.); (J.C.)
| |
Collapse
|
7
|
Zangouei AS, Tolue Ghasaban F, Dalili A, Akhlaghipour I, Moghbeli M. MicroRNAs as the pivotal regulators of Forkhead box protein family during gastrointestinal tumor progression and metastasis. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
8
|
Post-Translational Modification of ZEB Family Members in Cancer Progression. Int J Mol Sci 2022; 23:ijms232315127. [PMID: 36499447 PMCID: PMC9737314 DOI: 10.3390/ijms232315127] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
Post-translational modification (PTM), the essential regulatory mechanisms of proteins, play essential roles in physiological and pathological processes. In addition, PTM functions in tumour development and progression. Zinc finger E-box binding homeobox (ZEB) family homeodomain transcription factors, such as ZEB1 and ZEB2, play a pivotal role in tumour progression and metastasis by induction epithelial-mesenchymal transition (EMT), with activation of stem cell traits, immune evasion and epigenetic reprogramming. However, the relationship between ZEB family members' post-translational modification (PTM) and tumourigenesis remains largely unknown. Therefore, we focussed on the PTM of ZEBs and potential therapeutic approaches in cancer progression. This review provides an overview of the diverse functions of ZEBs in cancer and the mechanisms and therapeutic implications that target ZEB family members' PTMs.
Collapse
|
9
|
The Molecular and Cellular Strategies of Glioblastoma and Non-Small-Cell Lung Cancer Cells Conferring Radioresistance. Int J Mol Sci 2022; 23:ijms232113577. [PMID: 36362359 PMCID: PMC9656305 DOI: 10.3390/ijms232113577] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Ionizing radiation (IR) has been shown to play a crucial role in the treatment of glioblastoma (GBM; grade IV) and non-small-cell lung cancer (NSCLC). Nevertheless, recent studies have indicated that radiotherapy can offer only palliation owing to the radioresistance of GBM and NSCLC. Therefore, delineating the major radioresistance mechanisms may provide novel therapeutic approaches to sensitize these diseases to IR and improve patient outcomes. This review provides insights into the molecular and cellular mechanisms underlying GBM and NSCLC radioresistance, where it sheds light on the role played by cancer stem cells (CSCs), as well as discusses comprehensively how the cellular dormancy/non-proliferating state and polyploidy impact on their survival and relapse post-IR exposure.
Collapse
|
10
|
Xu H, Ma H, Zha L, Li Q, Pan H, Zhang L. Genistein promotes apoptosis of lung cancer cells through the IMPDH2/AKT1 pathway. Am J Transl Res 2022; 14:7040-7051. [PMID: 36398246 PMCID: PMC9641449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 08/29/2022] [Indexed: 06/16/2023]
Abstract
OBJECTIVE Lung cancer (LC) is a clinically challenging cancer. Genistein is a natural isoflavone product with anti-tumor effects. This study aims to investigate the effect of genistein on A549 cell apoptosis, to provide more experimental evidence for clinical treatment. METHODS Real-time quantitative polymerase chain reaction, western blotting, molecular docking, and target prediction methods were performed to detect the effect of genistein on LC cells. Cell viability of A549 treated by genistein was measured by a CCK-8 assay. The A549 cell apoptosis after genistein treatment was detected by flow cytometry. RESULTS Genistein promoted the apoptosis of LC cells in a time- and concentration-dependent manner. In addition, the low expression of inosine monophosphate dehydrogenase-2 (IMPDH2) inhibited the effect of genistein on LC cells. By predicting IMPDH2 LC-related apoptosis genes and finding the closely related gene protein kinase B (AKT1), it was found that the highly expressed AKT1 inhibited the effect of genistein on LC cell apoptosis and viability. CONCLUSION Genistein may be a promising treatment for LC.
Collapse
Affiliation(s)
- Hao Xu
- Department of Respiratory Medicine, The People's Hospital of Danyang, Affiliated Danyang Hospital of Nantong University Danyang 212300, Jiangsu, P.R. China
| | - Hongda Ma
- Department of Respiratory Medicine, The People's Hospital of Danyang, Affiliated Danyang Hospital of Nantong University Danyang 212300, Jiangsu, P.R. China
| | - Lifen Zha
- Department of Respiratory Medicine, The People's Hospital of Danyang, Affiliated Danyang Hospital of Nantong University Danyang 212300, Jiangsu, P.R. China
| | - Qian Li
- Department of Respiratory Medicine, The People's Hospital of Danyang, Affiliated Danyang Hospital of Nantong University Danyang 212300, Jiangsu, P.R. China
| | - Huiming Pan
- Department of Respiratory Medicine, The People's Hospital of Danyang, Affiliated Danyang Hospital of Nantong University Danyang 212300, Jiangsu, P.R. China
| | - Ladi Zhang
- Department of Respiratory Medicine, The People's Hospital of Danyang, Affiliated Danyang Hospital of Nantong University Danyang 212300, Jiangsu, P.R. China
| |
Collapse
|
11
|
Demirtas Korkmaz F, Dogan Turacli I, Esendagli G, Ekmekci A. Effects of thiostrepton alone or in combination with selumetinib on triple-negative breast cancer metastasis. Mol Biol Rep 2022; 49:10387-10397. [PMID: 36097108 DOI: 10.1007/s11033-022-07751-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 11/29/2022]
Abstract
OBJECTIVE FoxM1 transcription factor contributes to tumor metastasis and poor prognosis in many cancers including triple-negative breast cancer (TNBC). In this study, we examined the effects of FoxM1 inhibitor Thiostrepton (THIO) alone or in combination with MEK inhibitor Selumetinib (SEL) on metastatic parameters in vitro and in vivo. METHODS Cell viability was determined by MTT assay. Immunoblotting and immunohistochemistry was used to assess metastasis-related protein expressions in 4T1 cells and its allograft tumor model in BALB/c mice. In vivo uPA activity was determined by enzymatic methods. RESULTS Both inhibitors were effective on the expressions of FoxM1, ERK, p-ERK, Twist, E-cadherin, and Vimentin alone or in combination in vitro. THIO significantly decreased 4T1 cell migration and changed the cell morphology from mesenchymal-like to epithelial-like structure. THIO was more effective than in combination with SEL in terms of metastatic protein expressions in vivo. THIO alone significantly inhibited mean tumor growth, decreased lung metastasis rate and tumor foci, however, no significant changes in these parameters were observed in the combined group. Immunohistochemically, FoxM1 expression intensity was decreased with THIO and its combination with SEL in the tumors. CONCLUSIONS This study suggests that inhibiting FoxM1 as a single target is more effective than combined treatment with MEK in theTNBC allograft model. The therapeutic efficacy of THIO should be investigated with further studies on appropriate drug delivery systems.
Collapse
Affiliation(s)
- Funda Demirtas Korkmaz
- Department of Medical Biology and Genetics, Faculty of Medicine, Gazi University, Ankara, Turkey. .,Department of Medical Biology, Faculty of Medicine, Giresun University, Giresun, 28100, Turkey.
| | - Irem Dogan Turacli
- Department of Medical Biology, Faculty of Medicine, Ufuk University, Ankara, Turkey
| | - Guldal Esendagli
- Department of Medical Pathology, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Abdullah Ekmekci
- Department of Medical Biology and Genetics, Faculty of Medicine, Gazi University, Ankara, Turkey
| |
Collapse
|
12
|
Laminarin Attenuates ROS-Mediated Cell Migration and Invasiveness through Mitochondrial Dysfunction in Pancreatic Cancer Cells. Antioxidants (Basel) 2022; 11:antiox11091714. [PMID: 36139787 PMCID: PMC9495390 DOI: 10.3390/antiox11091714] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 12/26/2022] Open
Abstract
Background: Pancreatic ductal adenocarcinoma (PDAC) is a notoriously aggressive type of cancer with a high metastasis rate. It is conventionally treated by surgical resection and neoadjuvant chemotherapy. However, continuous chemotherapy leads to relapse in most PDAC patients due to chemical resistance. Therefore, novel anticancer agents need to be identified and developed. The antitumor activities of laminarin extracted from brown algae against hepatocarcinoma, lung, and colon cancer have been established. However, its effects on pancreatic cancer have remained obscure. Purpose: Our study identified the anticancer effects of laminarin on pancreatic cancer cells and tried to explain its intracellular mechanisms. Methods: We assessed the cell viability of PANC-1 and MIA PaCa-2 cells using MTT assay. Hanging drop method was used for the spheroid formation. Flow cytometry was conducted to evaluate the several intracellular alterations including apoptosis, ROS production, mitochondrial membrane potential (MMP), and calcium concentration induced by laminarin. An invasion test was performed to assess the inhibitory effect of laminarin on cell migration and the invasive genes were evaluated by RT-qPCR. Signaling pathway related with anticancer effects of laminarin was analyzed by western blot. Results: We report that inhibiting laminarin increased the proliferation and viability of the representative pancreatic cancer cell lines, MIA PaCa-2 and PANC-1. Laminarin triggered apoptosis and mitochondrial impairment as evidenced by depolarized mitochondrial membranes, disrupted calcium, and suppressed cell migration caused by reactive oxygen species production and related intracellular signaling pathways. Moreover, laminarin showed synergistic effects when combined with 5-FU, a standard anticancer agent for PDAC. Conclusion: The present study is the first to report that laminarin exerts anticancer effect through ROS production in pancreatic cancer cells. Laminarin shows potential to serve as a new anticancer agent for treating PDAC.
Collapse
|
13
|
Shim JK, Lim SH, Jeong JH, Choi RJ, Oh Y, Park J, Choi S, Hong J, Kim SJ, Moon JH, Kim EH, Teo WY, Park BJ, Chang JH, Ryu JH, Kang SG. A lignan from Alnus japonica inhibits glioblastoma tumorspheres by suppression of FOXM1. Sci Rep 2022; 12:13990. [PMID: 35978012 PMCID: PMC9385634 DOI: 10.1038/s41598-022-18185-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 08/08/2022] [Indexed: 11/08/2022] Open
Abstract
Forkhead Box M1 (FOXM1) is known to regulate cell proliferation, apoptosis and tumorigenesis. The lignan, (-)-(2R,3R)-1,4-O-diferuloylsecoisolariciresinol (DFS), from Alnus japonica has shown anti-cancer effects against colon cancer cells by suppressing FOXM1. The present study hypothesized that DFS can have anti-cancer effects against glioblastoma (GBM) tumorspheres (TSs). Immunoprecipitation and luciferase reporter assays were performed to evaluate the ability of DFS to suppress nuclear translocation of β-catenin through β-catenin/FOXM1 binding. DFS-pretreated GBM TSs were evaluated to assess the ability of DFS to inhibit GBM TSs and their transcriptional profiles. The in vivo efficacy was examined in orthotopic xenograft models of GBM. Expression of FOXM1 was higher in GBM than in normal tissues. DFS-induced FOXM1 protein degradation blocked β-catenin translocation into the nucleus and consequently suppressed downstream target genes of FOXM1 pathways. DFS inhibited cell viability and ATP levels, while increasing apoptosis, and it reduced tumorsphere formation and the invasiveness of GBM TSs. And DFS reduced the activities of transcription factors related to tumorigenesis, stemness, and invasiveness. DFS significantly inhibited tumor growth and prolonged the survival rate of mice in orthotopic xenograft models of GBM. It suggests that DFS inhibits the proliferation of GBM TSs by suppressing FOXM1. DFS may be a potential therapeutic agent to treat GBM.
Collapse
Affiliation(s)
- Jin-Kyoung Shim
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seung Hoon Lim
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Neurosurgery, Kyung Hee University College of Medicine, Seoul, Republic of Korea
| | - Ji Hye Jeong
- Research Institute of Pharmaceutical Sciences and College of Pharmacy, Sookmyung Women's University, Seoul, Republic of Korea
| | - Ran Joo Choi
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yoojung Oh
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Junseong Park
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
- Precision Medicine Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sunghee Choi
- Research Institute of Pharmaceutical Sciences and College of Pharmacy, Sookmyung Women's University, Seoul, Republic of Korea
| | - Junpyo Hong
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seo Jin Kim
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ju Hyung Moon
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Eui Hyun Kim
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Wan-Yee Teo
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore, Singapore
- Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore
| | - Bong Jin Park
- Department of Neurosurgery, Kyung Hee University College of Medicine, Seoul, Republic of Korea
| | - Jong Hee Chang
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jae-Ha Ryu
- Research Institute of Pharmaceutical Sciences and College of Pharmacy, Sookmyung Women's University, Seoul, Republic of Korea.
| | - Seok-Gu Kang
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea.
- Department of Medical Science, Yonsei University Graduate School, Seoul, Republic of Korea.
| |
Collapse
|
14
|
Mederer T, Elsner F, Robold T, Großer C, Neu R, Ried M, Bleicher S, Schamberger T, Blochberger I, Hofmann HS, Klein CA. EpCAM-positive disseminated cancer cells in bone marrow impact on survival of early-stage NSCLC patients. Lung Cancer 2022; 167:73-77. [DOI: 10.1016/j.lungcan.2022.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/15/2022] [Accepted: 02/18/2022] [Indexed: 10/19/2022]
|
15
|
Jingyang Z, Jinhui C, Lu X, Weizhong Y, Yunjiu L, Haihong W, Wuyuan Z. Mir-320b Inhibits Pancreatic Cancer Cell Proliferation by Targeting FOXM1. Curr Pharm Biotechnol 2021; 22:1106-1113. [PMID: 32942974 DOI: 10.2174/1389201021999200917144704] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/20/2020] [Accepted: 08/08/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Pancreatic Ductal Adenocarcinoma (PDAC) is the most common and deadly cancer. Surgical resection is the only possible cure for pancreatic cancer but often has a poor prognosis, and the role of adjuvant therapy is urgently explored. METHODS MicroRNAs (miRNAs) play a very important role in tumorigenesis by regulating the target genes. In this study, we identified miR-320b lower-expressed in human pancreatic cancer tissues but relatively higher-expressed in the adjacent non-tumor tissues. RESULTS Consistently, the expression of miR-320b in different pancreatic cancer cell lines was significantly lower than the normal pancreatic cells. In order to identify the effects of miR-320b on cell growth, we overexpressed miR-320b in PANC-1 and FG pancreatic cancer cell lines, CCK8 and BrdU incorporation assay results showed that miR-320b inhibited cell proliferation. DISCUSSION We next predicted miR-320b targeted FOXM1 (Forkhead box protein M1) and identified the negative relationship between miR-320b and FOXM1. We also demonstrated that elevated miR- 320b expression inhibited tumor growth in vivo. CONCLUSION All of these results showed that miR-320b suppressed pancreatic cancer cell proliferation by targeting FOXM1, which might provide a new diagnostic marker for pancreatic cancer.
Collapse
Affiliation(s)
- Zhou Jingyang
- Queen Mary School, Nanchang University, Nanchang, Jiangxi, 330027, China
| | - Che Jinhui
- The Department of Hepatopancreatobillary Surgery, Xuzhou City Cancer Hospital, Xuzhou, Jiangsu 221005, China
| | - Xu Lu
- The Department of Hepatopancreatobillary Surgery, Xuzhou City Cancer Hospital, Xuzhou, Jiangsu 221005, China
| | - Yang Weizhong
- The Department of Hepatopancreatobillary Surgery, Xuzhou City Cancer Hospital, Xuzhou, Jiangsu 221005, China
| | - Li Yunjiu
- The Department of Hepatopancreatobillary Surgery, Xuzhou City Cancer Hospital, Xuzhou, Jiangsu 221005, China
| | - Wang Haihong
- The Department of Hepatopancreatobillary Surgery, Xuzhou City Cancer Hospital, Xuzhou, Jiangsu 221005, China
| | - Zhou Wuyuan
- The Department of Hepatopancreatobillary Surgery, Xuzhou City Cancer Hospital, Xuzhou, Jiangsu 221005, China
| |
Collapse
|
16
|
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most aggressive and invasive type of pancreatic cancer (PCa) and is expected to be the second most common cause of cancer-associated deaths. The high mortality rate is due to the asymptomatic progression of the clinical features until the advanced stages of the disease and the limited effectiveness of the current therapeutics. Aberrant expression of several microRNAs (miRs/miRNAs) has been related to PDAC progression and thus they could be potential early diagnostic, prognostic, and/or therapeutic predictors for PDAC. miRs are small (18 to 24 nucleotides long) non-coding RNAs, which regulate the expression of key genes by targeting their 3′-untranslated mRNA region. Increased evidence has also suggested that the chemoresistance of PDAC cells is associated with metabolic alterations. Metabolic stress and the dysfunctionality of systems to compensate for the altered metabolic status of PDAC cells is the foundation for cellular damage. Current data have implicated multiple systems as hallmarks of PDAC development, such as glutamine redox imbalance, oxidative stress, and mitochondrial dysfunction. Hence, both the aberrant expression of miRs and dysregulation in metabolism can have unfavorable effects in several biological processes, such as apoptosis, cell proliferation, growth, survival, stress response, angiogenesis, chemoresistance, invasion, and migration. Therefore, due to these dismal statistics, it is crucial to develop beneficial therapeutic strategies based on an improved understanding of the biology of both miRs and metabolic mediators. This review focuses on miR-mediated pathways and therapeutic resistance mechanisms in PDAC and evaluates the impact of metabolic alterations in the progression of PDAC.
Collapse
|
17
|
Jonckheere S, Adams J, De Groote D, Campbell K, Berx G, Goossens S. Epithelial-Mesenchymal Transition (EMT) as a Therapeutic Target. Cells Tissues Organs 2021; 211:157-182. [PMID: 33401271 DOI: 10.1159/000512218] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/11/2020] [Indexed: 11/19/2022] Open
Abstract
Metastasis is the spread of cancer cells from the primary tumour to distant sites and organs throughout the body. It is the primary cause of cancer morbidity and mortality, and is estimated to account for 90% of cancer-related deaths. During the initial steps of the metastatic cascade, epithelial cancer cells undergo an epithelial-mesenchymal transition (EMT), and as a result become migratory and invasive mesenchymal-like cells while acquiring cancer stem cell properties and therapy resistance. As EMT is involved in such a broad range of processes associated with malignant transformation, it has become an increasingly interesting target for the development of novel therapeutic strategies. Anti-EMT therapeutic strategies could potentially not only prevent the invasion and dissemination of cancer cells, and as such prevent the formation of metastatic lesions, but also attenuate cancer stemness and increase the effectiveness of more classical chemotherapeutics. In this review, we give an overview about the pros and cons of therapies targeting EMT and discuss some already existing candidate drug targets and high-throughput screening tools to identify novel anti-EMT compounds.
Collapse
Affiliation(s)
- Sven Jonckheere
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Jamie Adams
- Department of Biomedical Science, The University of Sheffield, Sheffield, United Kingdom
| | - Dominic De Groote
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - Kyra Campbell
- Department of Biomedical Science, The University of Sheffield, Sheffield, United Kingdom
| | - Geert Berx
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Steven Goossens
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium, .,Department of Diagnostic Sciences, Ghent University, Ghent, Belgium,
| |
Collapse
|
18
|
Fu Z, Cao X, Liu L, Cao X, Cui Y, Li X, Quan M, Ren K, Chen A, Xu C, Qiu Y, Chen X, Wang Z, Cao J. Genistein inhibits lung cancer cell stem-like characteristics by modulating MnSOD and FoxM1 expression. Oncol Lett 2020; 20:2506-2515. [PMID: 32782570 PMCID: PMC7400602 DOI: 10.3892/ol.2020.11802] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 05/01/2020] [Indexed: 01/21/2023] Open
Abstract
Manganese superoxide dismutase (MnSOD) promotes invasive and migratory activities by upregulating Forkhead box protein M1 (FoxM1) expression. The present study investigated whether modulation of MnSOD and FoxM1 expression was responsible for the antitumor effects of genistein on cancer stem-like cells (CSLCs) derived from non-small cell lung cancer cells (NSCLCs). Spheroids prepared from H460 or A549 cells were defined as lung cancer stem-like cells (LCSLCs) and were treated with genistein. The Cell Counting Kit-8 assay was performed to assess human lung fibroblast IMR-90 cell proliferation, as well as NSCLC H460 and A549 cell proliferation following treatment with genistein. MnSOD, FoxM1, cluster of differentiation (CD)133, CD44, BMI1 proto-oncogene, polycomb ring finger (Bmi1) and Nanog homeobox (Nanog) protein expression levels were examined via western blotting. The sphere formation assay was conducted to evaluate LCSLC self-renewal potential, and LSCLC migratory and invasive activities were analyzed using the wound healing and Transwell invasion assays, respectively. Knockdown and overexpression of MnSOD and FOXM1 via short hairpin-RNA or cDNA transfection were performed. The results indicated that genistein (80 and 100 µM) suppressed H460 and A549 cell viability compared with IMR-90 cells. Sub-cytotoxic concentrations of genistein (20 and 40 µM) inhibited sphere formation activity and decreased the protein expression levels of CD133, CD44, Bmi1 and Nanog in LCSLCs compared with the control group. Genistein also suppressed the migratory and invasive activities of LCSLCs compared with the control group. MnSOD and FoxM1 overexpression antagonized the effects of genistein (40 µM), whereas MnSOD and FoxM1 knockdown enhanced the inhibitory effects of genistein (20 µM) on CSLC characteristics of LCSLCs. Overall, the results suggested that genistein suppressed lung cancer cell CSLC characteristics by modulating MnSOD and FoxM1 expression levels.
Collapse
Affiliation(s)
- Zhimin Fu
- Department of Cardiothoracic Surgery, The First People's Hospital of Chenzhou, Chenzhou, Hunan 423000, P.R. China
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, P.R. China
- Department of Thoracic Surgery, Pingshan General Hospital of Southern Medical University, Shenzhen, Guangdong 518118, P.R. China
| | - Xiaocheng Cao
- Laboratory of Molecular and Statistical Genetics, Hunan Normal University, Changsha, Hunan 410081, P.R. China
- Department of Pharmaceutical Science, Medical College, Hunan Normal University, Changsha, Hunan 410013, P.R. China
- Key Laboratory of Study and Discover of Small Targeted Molecules of Hunan Province, Changsha, Hunan 410013, P.R. China
| | - Lihua Liu
- Department of Pharmacology, Shenzhen People's Hospital 2nd Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| | - Xiaozheng Cao
- Department of Pharmacology, Shenzhen People's Hospital 2nd Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| | - Yinghong Cui
- Department of Pharmaceutical Science, Medical College, Hunan Normal University, Changsha, Hunan 410013, P.R. China
- Key Laboratory of Study and Discover of Small Targeted Molecules of Hunan Province, Changsha, Hunan 410013, P.R. China
| | - Xiang Li
- Department of Pharmaceutical Science, Medical College, Hunan Normal University, Changsha, Hunan 410013, P.R. China
- Key Laboratory of Study and Discover of Small Targeted Molecules of Hunan Province, Changsha, Hunan 410013, P.R. China
| | - Meifang Quan
- Department of Pharmaceutical Science, Medical College, Hunan Normal University, Changsha, Hunan 410013, P.R. China
- Key Laboratory of Study and Discover of Small Targeted Molecules of Hunan Province, Changsha, Hunan 410013, P.R. China
| | - Kaiqun Ren
- Department of Pharmaceutical Science, Medical College, Hunan Normal University, Changsha, Hunan 410013, P.R. China
- Key Laboratory of Study and Discover of Small Targeted Molecules of Hunan Province, Changsha, Hunan 410013, P.R. China
| | - A Chen
- Department of Pharmaceutical Science, Medical College, Hunan Normal University, Changsha, Hunan 410013, P.R. China
- Key Laboratory of Study and Discover of Small Targeted Molecules of Hunan Province, Changsha, Hunan 410013, P.R. China
| | - Chang Xu
- Department of Pharmaceutical Science, Medical College, Hunan Normal University, Changsha, Hunan 410013, P.R. China
- Key Laboratory of Study and Discover of Small Targeted Molecules of Hunan Province, Changsha, Hunan 410013, P.R. China
| | - Yebei Qiu
- Department of Pharmaceutical Science, Medical College, Hunan Normal University, Changsha, Hunan 410013, P.R. China
- Key Laboratory of Study and Discover of Small Targeted Molecules of Hunan Province, Changsha, Hunan 410013, P.R. China
| | - Xiangding Chen
- Department of Thoracic Surgery, Pingshan General Hospital of Southern Medical University, Shenzhen, Guangdong 518118, P.R. China
| | - Zheng Wang
- Department of Thoracic Surgery, The 2nd Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| | - Jianguo Cao
- Department of Pharmaceutical Science, Medical College, Hunan Normal University, Changsha, Hunan 410013, P.R. China
- Key Laboratory of Study and Discover of Small Targeted Molecules of Hunan Province, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
19
|
Lv X, Huang H, Feng H, Wei Z. Circ-MMP2 (circ-0039411) induced by FOXM1 promotes the proliferation and migration of lung adenocarcinoma cells in vitro and in vivo. Cell Death Dis 2020; 11:426. [PMID: 32513952 PMCID: PMC7280516 DOI: 10.1038/s41419-020-2628-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 12/15/2022]
Abstract
Numerous reports have stated the significance of cellular events such as proliferation, migration and EMT (epithelial-mesenchymal transition) for cancer development, but the related molecular mechanism remains elusive. FOXM1 (forkhead box transcription M1) is a nuclear co-activator participating in lung adenocarcinoma (LUAD). Thus, this study tried to explain the function of FOXM1 and its downstream molecular mechanism in LUAD. We uncovered FOXM1 upregulation in LUAD and demonstrated that FOXM1 facilitated β-catenin nuclear translocation to activate the transcription of downstream genes. Moreover, we discovered that FOXM1 transcriptionally activated circ0039411 which derived from matrix metallopeptidase 2 (MMP2) (also named as circ-MMP2), while MMP2 is a known downstream target of β-catenin. As for functional investigation, knockdown of circ-0039411 suppressed the proliferation, migration and EMT in LUAD cells and also hindered in vivo growth and metastasis of LUAD tumor. Mechanistically, circ-0039411 enhanced the stability of FOXM1 mRNA by recruiting IGF2BP3 (insulin like growth factor 2 mRNA binding protein 3), thus forming a positive feedback loop. In conclusion, this study revealed that FOXM1-induced circ-MMP2 (circ-0039411) contributes to malignant behaviors of LUAD cells via relying on FOXM1, potentially infusing inspirations for the search of new molecular targets for LUAD treatment.
Collapse
Affiliation(s)
- Xin Lv
- Department of Respiration, Linyi People's Hospital, Linyi, 276000, Shandong, China
| | - Hongping Huang
- Department of Eastern Respiratory and Critical Care Medicine, Linyi People's Hospital, Linyi, 276034, Shandong, China.
| | - Hui Feng
- Linyi People's Hospital Office, Linyi, 276000, Shandong, China
| | - Zhonghua Wei
- Department of Eastern General Internal Medicine, Linyi People's Hospital, Linyi, 276034, Shandong, China
| |
Collapse
|
20
|
Zhang J, Lu J, Chen Y, Li H, Lin L. WHSC1 promotes wnt/β-catenin signaling in a FoxM1-dependent manner facilitating proliferation, invasion and epithelial-mesenchymal transition in breast cancer. J Recept Signal Transduct Res 2020; 40:410-418. [PMID: 32314642 DOI: 10.1080/10799893.2020.1747490] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Objectives: Wolf-Hirschhorn syndrome candidate gene-1 (WHSC1) is highly expressed in various malignant tumors. We investigated the correlation and regulatory pathway of WHSC1 in the progression of breast cancer (BC).Methods: The expression and distribution of WHSC1 in the BC tissues and cell lines were determined by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and immunohistochemical staining. Spearman correlation analysis demonstrated the correlation between WHSC1 high expression level and the clinical characteristics of BC patients. The effects of WHSC1 on the proliferation, apoptosis, migration and invasion of BC cells were analyzed by cell transfection, MTT, colony formation, scratch assay, and transwell. Furthermore, the expression of Forkhead box M1 (FoxM1) and the location of β-catenin were detected by qRT-PCR and western blot.Results: Firstly, WHSC1 expression was up-regulated in BC tissues and cell lines. The high expression of WHSC1 in BC is associated with the tumor size (p = 0.027), metastasis (p = 0.018) and pathological stages (p = 0.025) of the BC patients. The knockdown of WHSC1 inhibited the growth, proliferation migration, invasion and EMT of BC cell lines. Furthermore, WHSC1 could promote the expression of FoxM1 in BC cells and tissues. WHSC1 enhanced the expression of FoxM1, and promoted the nuclear localization of β-catenin, and thus activated the downstream genes expression of Wnt/β-catenin signaling pathway to regulate the development of BC.Conclusion: In summary, our study elucidates the correlation and specific regulatory mechanism between WHSC1 and the progression of BC, thus implying that WHSC1 may function as molecular diagnosis, prognosis and molecular targeted therapy of BC.
Collapse
Affiliation(s)
- Jinfan Zhang
- Department of Breast Surgery, The Affiliated Hospital of Putian University, Putian City, Fujian Province, China
| | - Jingyu Lu
- Department of Breast Surgery, The Affiliated Hospital of Putian University, Putian City, Fujian Province, China
| | - Yu Chen
- Department of Breast Surgery, The Affiliated Hospital of Putian University, Putian City, Fujian Province, China
| | - Hang Li
- Department of Breast Surgery, The Affiliated Hospital of Putian University, Putian City, Fujian Province, China
| | - Lisheng Lin
- Department of Breast Surgery, The Affiliated Hospital of Putian University, Putian City, Fujian Province, China
| |
Collapse
|
21
|
Chen L, Wu M, Ji C, Yuan M, Liu C, Yin Q. Silencing transcription factor FOXM1 represses proliferation, migration, and invasion while inducing apoptosis of liver cancer stem cells by regulating the expression of ALDH2. IUBMB Life 2019; 72:285-295. [PMID: 31580537 DOI: 10.1002/iub.2166] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 08/28/2019] [Indexed: 12/19/2022]
Abstract
OBJECTIVE This study is performed to explore the role of transcription factor FOXM1 in promoting the self-renewal and proliferation of liver cancer stem cells (LCSCs) by regulating the expression of acetaldehyde dehydrogenase-2 (ALDH2). METHODS CD133+ CD24+ LCSCs were sorted and identified. A series of experiments were carried out to determine the proliferation, colony formation rate, migration, invasion, and apoptosis of LCSCs after interfering with FOXM1. Proliferation-, epithelial-mesenchymal transition (EMT)-, apoptosis-, and stemness-related factors were then detected by western blot analysis. Tumor xenograft in nude mice was used to figure out the role of FOXM1 in tumorigenesis in vivo by regulating ALDH2 expression. Luciferase activity assay was conducted to determine whether FOXM1 could target ALDH2 promoter region and thereby affecting ALDH2 expression. RESULTS The sorted CD133+ CD24+ Huh-7 cells had the characteristic of stem cells. FOXM1 was highly expressed in CD133+ CD24+ Huh-7 cells. Silencing FOXM1 inhibited the proliferation and colony formation of LCSCs and decreased the expression of proliferating cell nuclear antigen and Ki-67 protein; inhibited the migration, invasion, and EMT of LCSCs while promoting the apoptosis of LCSCs, as well as promoted the expression of Bax and cleaved-caspase-3, and inhibited the expression of Bcl-2. Silencing FOXM1 inhibited the expression of Nanog, Oct4, and Sox2 in LCSCs by decreasing the expression of ALDH2. in vivo experiment, silencing FOXM1 suppressed tumorigenesis of LCSCs by decreasing the expression of ALDH2. CONCLUSION Our study provides evidence that silencing FOXM1 inhibits stemness of LCSCs by decreasing the expression of ALDH2, and represses the proliferation, migration, invasion, and tumorigenesis while inducing the apoptosis of LCSCs.
Collapse
Affiliation(s)
- Lijian Chen
- Department of General Surgery, Hunan Children's Hospital, Changsha, China
| | - Meiyun Wu
- NP, RN, Department of Nursing, Chang Gung Memorial Hospital Kaohsiung, Doctoral student, College of Nursing, Kaohsiung Medical University
| | - Chunyi Ji
- Department of General Surgery, Hunan Children's Hospital, Changsha, China
| | - Miaoxian Yuan
- Department of General Surgery, Hunan Children's Hospital, Changsha, China
| | - Chaoyang Liu
- Department of General Surgery, Hunan Children's Hospital, Changsha, China
| | - Qiang Yin
- Department of General Surgery, Hunan Children's Hospital, Changsha, China
| |
Collapse
|
22
|
Chang WH, Lai AG. Aberrations in Notch-Hedgehog signalling reveal cancer stem cells harbouring conserved oncogenic properties associated with hypoxia and immunoevasion. Br J Cancer 2019; 121:666-678. [PMID: 31523055 PMCID: PMC6889439 DOI: 10.1038/s41416-019-0572-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 08/13/2019] [Accepted: 08/20/2019] [Indexed: 12/30/2022] Open
Abstract
Background Cancer stem cells (CSCs) have innate abilities to resist even the harshest of therapies. To eradicate CSCs, parallels can be drawn from signalling modules that orchestrate pluripotency. Notch-Hedgehog hyperactivation are seen in CSCs, yet, not much is known about their conserved roles in tumour progression across cancers. Methods Employing a comparative approach involving 21 cancers, we uncovered clinically-relevant, pan-cancer drivers of Notch and Hedgehog. GISTIC datasets were used to evaluate copy number alterations. Receiver operating characteristic and Cox regression were employed for survival analyses. Results We identified a Notch-Hedgehog signature of 13 genes exhibiting high frequencies of somatic amplifications leading to transcript overexpression. The signature successfully predicted patients at risk of death in five cancers (n = 2278): glioma (P < 0.0001), clear cell renal cell (P = 0.0022), papillary renal cell (P = 0.00099), liver (P = 0.014) and stomach (P = 0.011). The signature was independent of other clinicopathological parameters and offered an additional resolution to stratify similarly-staged tumours. High-risk patients exhibited features of stemness and had more hypoxic tumours, suggesting that hypoxia may influence CSC behaviour. Notch-Hedgehog+ CSCs had an immune privileged phenotype associated with increased regulatory T cell function. Conclusion This study will set the stage for exploring adjuvant therapy targeting the Notch-Hedgehog axis to help optimise therapeutic regimes leading to successful CSC elimination.
Collapse
Affiliation(s)
- Wai Hoong Chang
- Institute of Health Informatics, University College London, 222 Euston Road, London, NW1 2DA, UK
| | - Alvina G Lai
- Institute of Health Informatics, University College London, 222 Euston Road, London, NW1 2DA, UK.
| |
Collapse
|
23
|
Tan X, Li Z, Ren S, Rezaei K, Pan Q, Goldstein AT, Macri CJ, Cao D, Brem RF, Fu SW. Dynamically decreased miR-671-5p expression is associated with oncogenic transformation and radiochemoresistance in breast cancer. Breast Cancer Res 2019; 21:89. [PMID: 31391072 PMCID: PMC6686561 DOI: 10.1186/s13058-019-1173-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 07/19/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Understanding the molecular alterations associated with breast cancer (BC) progression may lead to more effective strategies for both prevention and management. The current model of BC progression suggests a linear, multistep process from normal epithelial to atypical ductal hyperplasia (ADH), to ductal carcinoma in situ (DCIS), and then invasive ductal carcinoma (IDC). Up to 20% ADH and 40% DCIS lesions progress to invasive BC if left untreated. Deciphering the molecular mechanisms during BC progression is therefore crucial to prevent over- or under-treatment. Our previous work demonstrated that miR-671-5p serves as a tumor suppressor by targeting Forkhead box protein M1 (FOXM1)-mediated epithelial-to-mesenchymal transition (EMT) in BC. Here, we aim to explore the role of miR-671-5p in the progression of BC oncogenic transformation and treatment. METHODS The 21T series cell lines, which were originally derived from the same patient with metastatic BC, including normal epithelia (H16N2), ADH (21PT), primary DCIS (21NT), and cells derived from pleural effusion of lung metastasis (21MT), and human BC specimens were used. Microdissection, miRNA transfection, dual-luciferase, radio- and chemosensitivity, and host-cell reactivation (HCR) assays were performed. RESULTS Expression of miR-671-5p displays a gradual dynamic decrease from ADH, to DCIS, and to IDC. Interestingly, the decreased expression of miR-671-5p detected in ADH coexisted with advanced lesions, such as DCIS and/or IDC (cADH), but not in simple ADH (sADH). Ectopic transfection of miR-671-5p significantly inhibited cell proliferation in 21NT (DCIS) and 21MT (IDC), but not in H16N2 (normal) and 21PT (ADH) cell lines. At the same time, the effect exhibited in time- and dose-dependent manner. Interestingly, miR-671-5p significantly suppressed invasion in 21PT, 21NT, and 21MT cell lines. Furthermore, miR-671-5p suppressed FOXM1-mediated EMT in all 21T cell lines. In addition, miR-671-5p sensitizes these cell lines to UV and chemotherapeutic exposure by reducing the DNA repair capability. CONCLUSIONS miR-671-5p displays a dynamic decrease expression during the oncogenic transition of BC by suppressing FOXM1-mediated EMT and DNA repair. Therefore, miR-671-5p may serve as a novel biomarker for early BC detection as well as a therapeutic target for BC management.
Collapse
Affiliation(s)
- Xiaohui Tan
- Department of Medicine, Division of Genomic Medicine, and Department of Microbiology, Immunology and Tropical Medicine, The George Washington University School of Medicine and Health Sciences, 2300 Eye Street, N.W. Ross Hall 402C, Washington, DC, 20037 USA
| | - Zhongwu Li
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Shuchang Ren
- Department of Medicine, Division of Genomic Medicine, and Department of Microbiology, Immunology and Tropical Medicine, The George Washington University School of Medicine and Health Sciences, 2300 Eye Street, N.W. Ross Hall 402C, Washington, DC, 20037 USA
| | - Katayoon Rezaei
- Department of Pathology, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Qing Pan
- Department of Statistics, The George Washington University, Washington, DC, USA
| | - Andrew T. Goldstein
- Department of Obstetrics and Gynecology, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Charles J. Macri
- Department of Obstetrics and Gynecology, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Dengfeng Cao
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Rachel F. Brem
- Department of Radiology, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Sidney W. Fu
- Department of Medicine, Division of Genomic Medicine, and Department of Microbiology, Immunology and Tropical Medicine, The George Washington University School of Medicine and Health Sciences, 2300 Eye Street, N.W. Ross Hall 402C, Washington, DC, 20037 USA
| |
Collapse
|
24
|
Jiang X, Hou D, Wei Z, Zheng S, Zhang Y, Li J. Extracellular and intracellular microRNAs in pancreatic cancer: from early diagnosis to reducing chemoresistance. ACTA ACUST UNITED AC 2019. [DOI: 10.1186/s41544-019-0014-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
25
|
Luo YD, Ding X, Du HM, Wu YN, Li HQ, Wu HM, Zhang XM. FOXM1 is a novel predictor of recurrence in patients with oral squamous cell carcinoma associated with an increase in epithelial‑mesenchymal transition. Mol Med Rep 2019; 19:4101-4108. [PMID: 30942437 PMCID: PMC6471394 DOI: 10.3892/mmr.2019.10094] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 01/22/2019] [Indexed: 12/25/2022] Open
Abstract
Although forkhead box protein M1 (FOXM1) is markedly upregulated in human premalignant and oral squamous cell carcinoma (OSCC) tissues and cultured cells, the association of FOXM1 expression with OSCC prognosis is not well understood. The present study investigated the possible association of FOXM1 expression in patients with OSCC with their clinicopathological characteristics and clinical outcomes. The expression of FOXM1 protein in OSCC tissues from 119 patients was evaluated by immunohistochemistry, and the results demonstrated that FOXM1 overexpression in patients with OSCC was associated with tumour recurrence and poor prognosis. To study the in vitro effects of FOXM1, its expression was decreased by small interfering RNA (siRNA) in OSCC cell lines, and FOXM1 knockdown decreased the proliferative, migratory and invasive capacities of cells. FOXM1 inhibition by siRNA gave rise to reduced expression of vimentin and increased expression of E‑cadherin. The present study reported FOXM1 as a novel predictor of tumour recurrence in patients with OSCC and its potential involvement in epithelial‑mesenchymal transition in OSCC cells.
Collapse
Affiliation(s)
- Ya-Dong Luo
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Xu Ding
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Hong-Ming Du
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yu-Nong Wu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Huai-Qi Li
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - He-Ming Wu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Xiao-Min Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
26
|
Hemming ML, Lawlor MA, Andersen JL, Hagan T, Chipashvili O, Scott TG, Raut CP, Sicinska E, Armstrong SA, Demetri GD, Bradner JE, Ganz PA, Tomlinson G, Olopade OI, Couch FJ, Wang X, Lindor NM, Pankratz VS, Radice P, Manoukian S, Peissel B, Zaffaroni D, Barile M, Viel A, Allavena A, Dall'Olio V, Peterlongo P, Szabo CI, Zikan M, Claes K, Poppe B, Foretova L, Mai PL, Greene MH, Rennert G, Lejbkowicz F, Glendon G, Ozcelik H, Andrulis IL, Thomassen M, Gerdes AM, Sunde L, Cruger D, Birk Jensen U, Caligo M, Friedman E, Kaufman B, Laitman Y, Milgrom R, Dubrovsky M, Cohen S, Borg A, Jernström H, Lindblom A, Rantala J, Stenmark-Askmalm M, Melin B, Nathanson K, Domchek S, Jakubowska A, Lubinski J, Huzarski T, Osorio A, Lasa A, Durán M, Tejada MI, Godino J, Benitez J, Hamann U, Kriege M, Hoogerbrugge N, van der Luijt RB, van Asperen CJ, Devilee P, Meijers-Heijboer EJ, Blok MJ, Aalfs CM, Hogervorst F, Rookus M, Cook M, Oliver C, Frost D, Conroy D, Evans DG, Lalloo F, Pichert G, Davidson R, Cole T, Cook J, Paterson J, Hodgson S, Morrison PJ, Porteous ME, Walker L, Kennedy MJ, Dorkins H, Peock S, et alHemming ML, Lawlor MA, Andersen JL, Hagan T, Chipashvili O, Scott TG, Raut CP, Sicinska E, Armstrong SA, Demetri GD, Bradner JE, Ganz PA, Tomlinson G, Olopade OI, Couch FJ, Wang X, Lindor NM, Pankratz VS, Radice P, Manoukian S, Peissel B, Zaffaroni D, Barile M, Viel A, Allavena A, Dall'Olio V, Peterlongo P, Szabo CI, Zikan M, Claes K, Poppe B, Foretova L, Mai PL, Greene MH, Rennert G, Lejbkowicz F, Glendon G, Ozcelik H, Andrulis IL, Thomassen M, Gerdes AM, Sunde L, Cruger D, Birk Jensen U, Caligo M, Friedman E, Kaufman B, Laitman Y, Milgrom R, Dubrovsky M, Cohen S, Borg A, Jernström H, Lindblom A, Rantala J, Stenmark-Askmalm M, Melin B, Nathanson K, Domchek S, Jakubowska A, Lubinski J, Huzarski T, Osorio A, Lasa A, Durán M, Tejada MI, Godino J, Benitez J, Hamann U, Kriege M, Hoogerbrugge N, van der Luijt RB, van Asperen CJ, Devilee P, Meijers-Heijboer EJ, Blok MJ, Aalfs CM, Hogervorst F, Rookus M, Cook M, Oliver C, Frost D, Conroy D, Evans DG, Lalloo F, Pichert G, Davidson R, Cole T, Cook J, Paterson J, Hodgson S, Morrison PJ, Porteous ME, Walker L, Kennedy MJ, Dorkins H, Peock S, Godwin AK, Stoppa-Lyonnet D, de Pauw A, Mazoyer S, Bonadona V, Lasset C, Dreyfus H, Leroux D, Hardouin A, Berthet P, Faivre L, Loustalot C, Noguchi T, Sobol H, Rouleau E, Nogues C, Frénay M, Vénat-Bouvet L, Hopper JL, Daly MB, Terry MB, John EM, Buys SS, Yassin Y, Miron A, Goldgar D, Singer CF, Dressler AC, Gschwantler-Kaulich D, Pfeiler G, Hansen TVO, Jønson L, Agnarsson BA, Kirchhoff T, Offit K, Devlin V, Dutra-Clarke A, Piedmonte M, Rodriguez GC, Wakeley K, Boggess JF, Basil J, Schwartz PE, Blank SV, Toland AE, Montagna M, Casella C, Imyanitov E, Tihomirova L, Blanco I, Lazaro C, Ramus SJ, Sucheston L, Karlan BY, Gross J, Schmutzler R, Wappenschmidt B, Engel C, Meindl A, Lochmann M, Arnold N, Heidemann S, Varon-Mateeva R, Niederacher D, Sutter C, Deissler H, Gadzicki D, Preisler-Adams S, Kast K, Schönbuchner I, Caldes T, de la Hoya M, Aittomäki K, Nevanlinna H, Simard J, Spurdle AB, Holland H, Chen X, Platte R, Chenevix-Trench G, Easton DF. Enhancer Domains in Gastrointestinal Stromal Tumor Regulate KIT Expression and Are Targetable by BET Bromodomain Inhibition. Cancer Res 2019. [PMID: 18483246 DOI: 10.1158/0008-5472] [Show More Authors] [Citation(s) in RCA: 750] [Impact Index Per Article: 125.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gastrointestinal stromal tumor (GIST) is a mesenchymal neoplasm characterized by activating mutations in the related receptor tyrosine kinases KIT and PDGFRA. GIST relies on expression of these unamplified receptor tyrosine kinase (RTK) genes through a large enhancer domain, resulting in high expression levels of the oncogene required for tumor growth. Although kinase inhibition is an effective therapy for many patients with GIST, disease progression from kinase-resistant mutations is common and no other effective classes of systemic therapy exist. In this study, we identify regulatory regions of the KIT enhancer essential for KIT gene expression and GIST cell viability. Given the dependence of GIST upon enhancer-driven expression of RTKs, we hypothesized that the enhancer domains could be therapeutically targeted by a BET bromodomain inhibitor (BBI). Treatment of GIST cells with BBIs led to cell-cycle arrest, apoptosis, and cell death, with unique sensitivity in GIST cells arising from attenuation of the KIT enhancer domain and reduced KIT gene expression. BBI treatment in KIT-dependent GIST cells produced genome-wide changes in the H3K27ac enhancer landscape and gene expression program, which was also seen with direct KIT inhibition using a tyrosine kinase inhibitor (TKI). Combination treatment with BBI and TKI led to superior cytotoxic effects in vitro and in vivo, with BBI preventing tumor growth in TKI-resistant xenografts. Resistance to select BBI in GIST was attributable to drug efflux pumps. These results define a therapeutic vulnerability and clinical strategy for targeting oncogenic kinase dependency in GIST. SIGNIFICANCE: Expression and activity of mutant KIT is essential for driving the majority of GIST neoplasms, which can be therapeutically targeted using BET bromodomain inhibitors.
Collapse
Affiliation(s)
- Matthew L Hemming
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts. .,Center for Sarcoma and Bone Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Matthew A Lawlor
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Jessica L Andersen
- Center for Sarcoma and Bone Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Timothy Hagan
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Otari Chipashvili
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Thomas G Scott
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Chandrajit P Raut
- Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Ewa Sicinska
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Scott A Armstrong
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - George D Demetri
- Center for Sarcoma and Bone Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.,Ludwig Center at Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - James E Bradner
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Cao J, Li J, Sun L, Qin T, Xiao Y, Chen K, Qian W, Duan W, Lei J, Ma J, Ma Q, Han L. Hypoxia-driven paracrine osteopontin/integrin αvβ3 signaling promotes pancreatic cancer cell epithelial-mesenchymal transition and cancer stem cell-like properties by modulating forkhead box protein M1. Mol Oncol 2018; 13:228-245. [PMID: 30367545 PMCID: PMC6360359 DOI: 10.1002/1878-0261.12399] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/05/2018] [Accepted: 09/19/2018] [Indexed: 12/30/2022] Open
Abstract
Pancreatic stellate cells (PSCs), a key component of the tumor microenvironment, contribute to tumor invasion, metastasis, and chemoresistance. Osteopontin (OPN), a phosphorylated glycoprotein, is overexpressed in pancreatic cancer. However, OPN expression in PSCs and its potential roles in tumor–stroma interactions remain unclear. The present study first showed that OPN is highly expressed and secreted in activated PSCs driven by hypoxia, and this process is in a ROS‐dependent manner; in addition, OPN was shown to be involved in the PSC‐induced epithelial–mesenchymal transition (EMT) and cancer stem cell (CSC)‐like properties of pancreatic cancer cells (PCCs). Mechanistically, OPN from activated PSCs interacts with the transmembrane receptor integrin αvβ3 on PCCs to upregulate forkhead box protein M1 (FOXM1) expression and induce malignant phenotypes of PCCs. Moreover, the Akt and Erk pathways participate in OPN/integrin αvβ3 axis‐induced FOXM1 expression of PCCs. Our further analysis showed that OPN and FOXM1 are significantly upregulated in pancreatic cancer tissues and are associated with poor clinical outcome, indicating that OPN and FOXM1 might be considered as diagnostic and prognostic biomarkers for patients with pancreatic cancer. In conclusion, we show here for the first time that OPN promotes the EMT and CSC‐like properties of PCCs by activating the integrin αvβ3‐Akt/Erk‐FOXM1 cascade in a paracrine manner, suggesting that targeting the tumor microenvironment represents a promising therapeutic strategy in pancreatic cancer.
Collapse
Affiliation(s)
- Junyu Cao
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Xi'an Jiaotong University, China
| | - Jie Li
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Xi'an Jiaotong University, China
| | - Liankang Sun
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Xi'an Jiaotong University, China
| | - Tao Qin
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Xi'an Jiaotong University, China
| | - Ying Xiao
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Xi'an Jiaotong University, China
| | - Ke Chen
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Xi'an Jiaotong University, China
| | - Weikun Qian
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Xi'an Jiaotong University, China
| | - Wanxing Duan
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Xi'an Jiaotong University, China
| | - Jianjun Lei
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Xi'an Jiaotong University, China
| | - Jiguang Ma
- Department of Anesthesiology, First Affiliated Hospital, Xi'an Jiaotong University, China
| | - Qingyong Ma
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Xi'an Jiaotong University, China
| | - Liang Han
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Xi'an Jiaotong University, China
| |
Collapse
|
28
|
Fu Z, Cao X, Yang Y, Song Z, Zhang J, Wang Z. Upregulation of FoxM1 by MnSOD Overexpression Contributes to Cancer Stem-Like Cell Characteristics in the Lung Cancer H460 Cell Line. Technol Cancer Res Treat 2018; 17:1533033818789635. [PMID: 30111255 PMCID: PMC6096686 DOI: 10.1177/1533033818789635] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Manganese superoxide dismutase promotes migration and invasion in lung cancer cells via upregulation of the transcription factor forkhead box M1. Here, we assessed whether upregulation of forkhead box M1 by manganese superoxide dismutase overexpression mediates the acquisition of cancer stem-like cell characteristics in non-small cell lung cancer H460 cells. The second-generation spheroids from H460 cells were used as lung cancer stem-like cells. The levels of manganese superoxide dismutase, forkhead box M1, stemness markers (CD133, CD44, and ALDH1), and transcription factors (Bmi1, Nanog, and Sox2) were analyzed by Western blot. Sphere formation in vitro and carcinogenicity of lung cancer stem-like cells were evaluated by spheroid formation assay and limited dilution xenograft assays. Knockdown or overexpression of manganese superoxide dismutase or/and forkhead box M1 by transduction with short hairpin RNA(shRNA) or complementary DNA were performed for mechanistic studies. We showed that manganese superoxide dismutase and forkhead box M1 amounts as well as the expression levels of stemness markers and transcription factors sphere formation in vitro, and carcinogenicity of lung cancer stem-like cells were higher than in monolayer cells. Lung cancer stem-like cells transduced with manganese superoxide dismutase shRNA or FoxM1 shRNA exhibited decreased sphere formation and lower amounts of stemness markers and transcription factors. Overexpression of manganese superoxide dismutase or FoxM1 in H460 cells resulted in elevated sphere formation rates and protein levels of stemness markers and transcription factors. Meanwhile, manganese superoxide dismutase knockdown or overexpression accordingly altered forkhead box M1 levels. However, forkhead box M1 knockdown or overexpression had no effect on manganese superoxide dismutase levels but inhibited or promoted lung cancer stem-like cell functions. Interestingly, forkhead box M1 overexpression alleviated the inhibitory effects of manganese superoxide dismutase knockdown in lung cancer stem-like cells. In a panel of non-small cell lung cancer cells, including H441, H1299, and H358 cells, compared to the respective monolayer counterparts, the expression levels of manganese superoxide dismutase and forkhead box M1 were elevated in the corresponding spheroids. These findings revealed the role of forkhead box M1 upregulation by manganese superoxide dismutase overexpression in maintaining lung cancer stem-like cell properties. Therefore, inhibition of forkhead box M1 upregulation by manganese superoxide dismutase overexpression may represent an effective therapeutic strategy for non-small cell lung cancer.
Collapse
Affiliation(s)
- Zhimin Fu
- 1 Department of Cardiothoracic Surgery, the First People's Hospital of Chenzhou, Chenzhou, Hunan, People's Republic of China.,2 Department of Thoracic Surgery, The 2nd Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, Guangzhou Shi, People's Republic of China
| | - Xiaocheng Cao
- 3 Laboratory of Medicine, Medical College, Hunan Normal University, Changsha, Hunan, People's Republic of China
| | - Yi Yang
- 4 Department of Gynecology, The 2nd Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, Guangzhou, People's Republic of China
| | - Zhenwei Song
- 3 Laboratory of Medicine, Medical College, Hunan Normal University, Changsha, Hunan, People's Republic of China
| | - Jiansong Zhang
- 3 Laboratory of Medicine, Medical College, Hunan Normal University, Changsha, Hunan, People's Republic of China
| | - Zheng Wang
- 2 Department of Thoracic Surgery, The 2nd Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, Guangzhou Shi, People's Republic of China
| |
Collapse
|
29
|
Bach DH, Long NP, Luu TTT, Anh NH, Kwon SW, Lee SK. The Dominant Role of Forkhead Box Proteins in Cancer. Int J Mol Sci 2018; 19:E3279. [PMID: 30360388 PMCID: PMC6213973 DOI: 10.3390/ijms19103279] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/19/2018] [Accepted: 10/20/2018] [Indexed: 12/16/2022] Open
Abstract
Forkhead box (FOX) proteins are multifaceted transcription factors that are significantly implicated in cancer, with various critical roles in biological processes. Herein, we provide an overview of several key members of the FOXA, FOXC, FOXM1, FOXO and FOXP subfamilies. Important pathophysiological processes of FOX transcription factors at multiple levels in a context-dependent manner are discussed. We also specifically summarize some major aspects of FOX transcription factors in association with cancer research such as drug resistance, tumor growth, genomic alterations or drivers of initiation. Finally, we suggest that targeting FOX proteins may be a potential therapeutic strategy to combat cancer.
Collapse
Affiliation(s)
- Duc-Hiep Bach
- College of Pharmacy, Seoul National University, Seoul 08826, Korea.
| | | | | | - Nguyen Hoang Anh
- College of Pharmacy, Seoul National University, Seoul 08826, Korea.
| | - Sung Won Kwon
- College of Pharmacy, Seoul National University, Seoul 08826, Korea.
| | - Sang Kook Lee
- College of Pharmacy, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
30
|
Mihanfar A, Aghazadeh Attari J, Mohebbi I, Majidinia M, Kaviani M, Yousefi M, Yousefi B. Ovarian cancer stem cell: A potential therapeutic target for overcoming multidrug resistance. J Cell Physiol 2018; 234:3238-3253. [PMID: 30317560 DOI: 10.1002/jcp.26768] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 04/27/2018] [Indexed: 12/24/2022]
Abstract
The cancer stem cell (CSC) model encompasses an advantageous paradigm that in recent decades provides a better elucidation for many important biological aspects of cancer initiation, progression, metastasis, and, more important, development of multidrug resistance (MDR). Such several other hematological malignancies and solid tumors and the identification and isolation of ovarian cancer stem cells (OV-CSCs) show that ovarian cancer also follows this hierarchical model. Gaining a better insight into CSC-mediated resistance holds promise for improving current ovarian cancer therapies and prolonging the survival of recurrent ovarian cancer patients in the future. Therefore, in this review, we will discuss some important mechanisms by which CSCs can escape chemotherapy, and then review the recent and growing body of evidence that supports the contribution of CSCs to MDR in ovarian cancer.
Collapse
Affiliation(s)
- Aynaz Mihanfar
- Faculty of Medicine, Department of Biochemistry, Urmia University of Medical Sciences, Urmia, Iran
| | | | - Iraj Mohebbi
- Department of Occupational Health, Urmia University of Medical Sciences, Urmia, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Mojtaba Kaviani
- School of Nutrition and Dietetics, Acadia University, Wolfville, Nova Scotia, Canada
| | - Mehdi Yousefi
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
31
|
Zhao S, Wang Y, Lou Y, Wang Y, Sun J, Luo M, Li W, Miao L. MicroRNA‑320a suppresses tumour cell proliferation and invasion of renal cancer cells by targeting FoxM1. Oncol Rep 2018; 40:1917-1926. [PMID: 30066895 PMCID: PMC6111456 DOI: 10.3892/or.2018.6597] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 07/17/2018] [Indexed: 12/20/2022] Open
Abstract
An increasing body of evidence has indicated that microRNAs (miRNAs/miRs) may play an important role in tumourigenesis and tumour progression. Recent studies have demonstrated that miR‑320a is aberrantly expressed in a variety of different types of human cancer. The results of the present study confirmed that the expression of miR‑320a was decreased in clinical specimens and cell lines. Expression of miR‑320a inhibited the growth and invasive ability of ACHN and Caki‑1 cells. Bioinformatics analysis and a luciferase reporter assay demonstrated that forkhead box protein M1 (FoxM1) was directly regulated by miR‑320a. Rescue experiments in vitro revealed that the upregulation of FoxM1 antagonized the miR‑320a‑mediated malignant phenotype in renal cancer. Furthermore, experiments employing a xenograft mouse model revealed that the upregulation of miR‑320a inhibited the proliferation of renal cancer cells in nude mice when FoxM1 protein expression was reduced. Collectively, the present study demonstrated a novel molecular interaction regulated by miR‑320a, which may provide a novel insight into the treatments for renal cancer.
Collapse
Affiliation(s)
- Shiyue Zhao
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Yangwei Wang
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Yan Lou
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Yonggang Wang
- Department of Cardiology, The First Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Jing Sun
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Manyu Luo
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Wen Li
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Lining Miao
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| |
Collapse
|
32
|
Meyer-Schaller N, Heck C, Tiede S, Yilmaz M, Christofori G. Foxf2 plays a dual role during transforming growth factor beta-induced epithelial to mesenchymal transition by promoting apoptosis yet enabling cell junction dissolution and migration. Breast Cancer Res 2018; 20:118. [PMID: 30285803 PMCID: PMC6167826 DOI: 10.1186/s13058-018-1043-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 08/20/2018] [Indexed: 01/06/2023] Open
Abstract
Background The most life-threatening step during malignant tumor progression is reached when cancer cells leave the primary tumor mass and seed metastasis in distant organs. To infiltrate the surrounding tissue and disseminate throughout the body, single motile tumor cells leave the tumor mass by breaking down cell-cell contacts in a process called epithelial to mesenchymal transition (EMT). An EMT is a complex molecular and cellular program enabling epithelial cells to abandon their differentiated phenotype, including cell-cell adhesion and cell polarity, and to acquire mesenchymal features and invasive properties. Methods We employed gene expression profiling and functional experiments to study transcriptional control of transforming growth factor (TGF)β-induced EMT in normal murine mammary gland epithelial (NMuMG) cells. Results We identified that expression of the transcription factor forkhead box protein F2 (Foxf2) is upregulated during the EMT process. Although it is not required to gain mesenchymal markers, Foxf2 is essential for the disruption of cell junctions and the downregulation of epithelial markers in NMuMG cells treated with TGFβ. Foxf2 is critical for the downregulation of E-cadherin by promoting the expression of the transcriptional repressors of E-cadherin, Zeb1 and Zeb2, while repressing expression of the epithelial maintenance factor Id2 and miRNA 200 family members. Moreover, Foxf2 is required for TGFβ-mediated apoptosis during EMT by the transcriptional activation of the proapoptotic BH3-only protein Noxa and by the negative regulation of epidermal growth factor receptor (EGFR)-mediated survival signaling through direct repression of its ligands betacellulin and amphiregulin. The dual function of Foxf2 during EMT is underscored by the finding that high Foxf2 expression correlates with good prognosis in patients with early noninvasive stages of breast cancer, but with poor prognosis in advanced breast cancer. Conclusions Our data identify the transcription factor Foxf2 as one of the important regulators of EMT, displaying a dual function in promoting tumor cell apoptosis as well as tumor cell migration. Electronic supplementary material The online version of this article (10.1186/s13058-018-1043-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nathalie Meyer-Schaller
- Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058, Basel, Switzerland.,Present address: Institute of Pathology, University Hospital of Basel, Basel, Switzerland
| | - Chantal Heck
- Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058, Basel, Switzerland.,Present address: Integra Biosciences AG, Zizers, Switzerland
| | - Stefanie Tiede
- Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058, Basel, Switzerland
| | - Mahmut Yilmaz
- Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058, Basel, Switzerland.,Present address: Roche Pharma, Basel, Switzerland
| | - Gerhard Christofori
- Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058, Basel, Switzerland.
| |
Collapse
|
33
|
Hwang SM, Lee HJ, Jung JH, Sim DY, Hwang J, Park JE, Shim BS, Kim SH. Inhibition of Wnt3a/FOXM1/β-Catenin Axis and Activation of GSK3β and Caspases are Critically Involved in Apoptotic Effect of Moracin D in Breast Cancers. Int J Mol Sci 2018; 19:ijms19092681. [PMID: 30201862 PMCID: PMC6164368 DOI: 10.3390/ijms19092681] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 09/07/2018] [Accepted: 09/07/2018] [Indexed: 12/12/2022] Open
Abstract
Although Moracin D derived from Morus alba was known to have anti-inflammatory and antioxidant activities, the underlying antitumor mechanism of Moracin D has not been unveiled thus far. Thus, in the recent study, the apoptotic mechanism of Moracin D was elucidated in breast cancer cells. Herein, Moracin D exerted significant cytotoxicity in MDA-MB-231 and MCF-7 cells. Furthermore, Moracin D increased sub G1 population; cleaved poly (Adenosine diphosphate (ADP-ribose)) polymerase (PARP); activated cysteine aspartyl-specific protease 3 (caspase 3); and attenuated the expression of c-Myc, cyclin D1, B-cell lymphoma 2 (Bcl-2), and X-linked inhibitor of apoptosis protein (XIAP) in MDA-MB231 cells. Of note, Moracin D reduced expression of Forkhead box M1 (FOXM1), β-catenin, Wnt3a, and upregulated glycogen synthase kinase 3 beta (GSK3β) on Tyr216 along with disturbed binding of FOXM1 with β-catenin in MDA-MB-231 cells. Conversely, GSK3β inhibitor SB216763 reversed the apoptotic ability of Moracin D to reduce expression of FOXM1, β-catenin, pro-caspase3, and pro-PARP in MDA-MB-231 cells. Overall, these findings provide novel insight that Moracin D inhibits proliferation and induces apoptosis via suppression of Wnt3a/FOXM1/β-catenin signaling and activation of caspases and GSK3β.
Collapse
Affiliation(s)
- Sung Min Hwang
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea.
| | - Hyo-Jung Lee
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea.
| | - Ji Hoon Jung
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea.
| | - Deok Yong Sim
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea.
| | - Jisung Hwang
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea.
| | - Ji Eon Park
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea.
| | - Bum Sang Shim
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea.
| | - Sung-Hoon Kim
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea.
| |
Collapse
|
34
|
Breyer J, Wirtz RM, Erben P, Rinaldetti S, Worst TS, Stoehr R, Eckstein M, Sikic D, Denzinger S, Burger M, Hartmann A, Otto W. FOXM1 overexpression is associated with adverse outcome and predicts response to intravesical instillation therapy in stage pT1 non-muscle-invasive bladder cancer. BJU Int 2018; 123:187-196. [PMID: 30120861 DOI: 10.1111/bju.14525] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To investigate the role of forkhead box protein M1 (FOXM1) mRNA expression and its prognostic value in stage pT1 non-muscle-invasive bladder cancer (NMIBC). PATIENTS AND METHODS Clinical data and formalin-fixed paraffin-embedded tissues from transurethral resection of the bladder from patients with stage pT1 NMIBC, treated with an organ-preserving approach, were analysed retrospectively. Total RNA was isolated using commercial RNA extraction kits, and mRNA expression of FOXM1, MKI67, KRT20 and KRT5 was measured by single-step quantitative RT-PCR using RNA-specific TaqMan Assays. Statistical analysis was performed using Spearman's Rho, Wilcoxon or Kruskal-Wallis tests, Kaplan-Meier estimates of recurrence-free (RFS), progression-free (PFS) and cancer-specific survival (CSS) and Cox regression analysis. RESULTS Data from 296 patients (79.4% men, median age 72 years) were available for the final evaluation. Spearman correlation analysis showed that mRNA expression of FOXM1 was significantly correlated with MKI67 (ρ: 0.6530, P < 0.001) and with the luminal subtype, reflected by the positive correlation with KRT20 (ρ: 0.2113, P < 0.001). Furthermore, there was also a strong correlation of FOXM1 expression with adverse clinical and pathological variables, such as concomitant carcinoma in situ (P = 0.05), multifocal tumours (P = 0.005) and World Health Organization 1973 grade 3 disease (P < 0.001). Kaplan-Meier analysis showed overexpression of FOMX1 to be associated with worse PFS (P = 0.028) and worse CSS (P = 0.015). FOXM1 overexpression was also shown to be a predictive risk factor for CSS (hazard ratio 1.61 [1.13-2.34], L-R chi-squared: 7.19, P = 0.007). FOXM1 overexpression identified a subgroup of patients within the luminal subtype with worse RFS (P = 0.017), PFS (P < 0.001) and CSS (P = 0.015). Patients with low FOXM1 expression had better outcomes, irrespective of instillation therapy, whereas patients with high FOXM1 expression benefitted from intravesical chemotherapy with mitomycin C. CONCLUSION High FOXM1 expression was associated with adverse clinical and pathological features and worse outcomes, and predicted response to intravesical instillation therapy in patients with stage pT1 NMIBC.
Collapse
Affiliation(s)
- Johannes Breyer
- Department of Urology, Caritas St. Josef Medical Centre, University of Regensburg, Regensburg, Germany
| | - Ralph M Wirtz
- STRATIFYER Molecular Pathology GmbH, Cologne, Germany.,Institute of Pathology, St Elisabeth Hospital Köln-Hohenlind, Cologne, Germany
| | - Philipp Erben
- Department of Urology, Medical Faculty Mannheim, University Medical Centre Mannheim, Heidelberg University, Mannheim, Germany
| | - Sebastien Rinaldetti
- Department of Haematology and Oncology, Medical Faculty Mannheim, University Medical Centre Mannheim, Heidelberg University, Mannheim, Germany
| | - Thomas S Worst
- Department of Urology, Medical Faculty Mannheim, University Medical Centre Mannheim, Heidelberg University, Mannheim, Germany
| | - Robert Stoehr
- Institute of Pathology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Markus Eckstein
- Institute of Pathology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Danijel Sikic
- Department of Urology and Paediatric Urology, University Hospital Erlangen, Erlangen, Germany
| | - Stefan Denzinger
- Department of Urology, Caritas St. Josef Medical Centre, University of Regensburg, Regensburg, Germany
| | - Maximilian Burger
- Department of Urology, Caritas St. Josef Medical Centre, University of Regensburg, Regensburg, Germany
| | - Arndt Hartmann
- Institute of Pathology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Wolfgang Otto
- Department of Urology, Caritas St. Josef Medical Centre, University of Regensburg, Regensburg, Germany
| |
Collapse
|
35
|
Malta TM, Sokolov A, Gentles AJ, Burzykowski T, Poisson L, Weinstein JN, Kamińska B, Huelsken J, Omberg L, Gevaert O, Colaprico A, Czerwińska P, Mazurek S, Mishra L, Heyn H, Krasnitz A, Godwin AK, Lazar AJ, Stuart JM, Hoadley KA, Laird PW, Noushmehr H, Wiznerowicz M. Machine Learning Identifies Stemness Features Associated with Oncogenic Dedifferentiation. Cell 2018; 173:338-354.e15. [PMID: 29625051 PMCID: PMC5902191 DOI: 10.1016/j.cell.2018.03.034] [Citation(s) in RCA: 1462] [Impact Index Per Article: 208.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 01/30/2018] [Accepted: 03/14/2018] [Indexed: 12/16/2022]
Abstract
Cancer progression involves the gradual loss of a differentiated phenotype and acquisition of progenitor and stem-cell-like features. Here, we provide novel stemness indices for assessing the degree of oncogenic dedifferentiation. We used an innovative one-class logistic regression (OCLR) machine-learning algorithm to extract transcriptomic and epigenetic feature sets derived from non-transformed pluripotent stem cells and their differentiated progeny. Using OCLR, we were able to identify previously undiscovered biological mechanisms associated with the dedifferentiated oncogenic state. Analyses of the tumor microenvironment revealed unanticipated correlation of cancer stemness with immune checkpoint expression and infiltrating immune cells. We found that the dedifferentiated oncogenic phenotype was generally most prominent in metastatic tumors. Application of our stemness indices to single-cell data revealed patterns of intra-tumor molecular heterogeneity. Finally, the indices allowed for the identification of novel targets and possible targeted therapies aimed at tumor differentiation.
Collapse
Affiliation(s)
- Tathiane M Malta
- Henry Ford Health System, Detroit, MI 48202, USA; University of São Paulo, Ribeirão Preto-SP 14049, Brazil
| | | | | | | | | | - John N Weinstein
- The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Bożena Kamińska
- Nencki Institute of Experimental Biology of PAS, 02093 Warsaw, Poland
| | - Joerg Huelsken
- Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015 Lausanne; Switzerland
| | | | | | - Antonio Colaprico
- Université Libre de Bruxelles, 1050 Bruxelles, Belgium; Interuniversity Institute of Bioinformatics in Brussels (IB)(2), 1050 Bruxelles; Belgium
| | | | - Sylwia Mazurek
- Poznań University of Medical Sciences, 61701 Poznań, Poland; Postgraduate School of Molecular Medicine, Medical University of Warsaw, 02109 Warsaw, Poland
| | - Lopa Mishra
- George Washington University, Washington, D.C. 20052, USA
| | - Holger Heyn
- Centre for Genomic Regulation (CNAG-CRG), 08003 Barcelona, Spain
| | - Alex Krasnitz
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Andrew K Godwin
- University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Alexander J Lazar
- The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Joshua M Stuart
- University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | | | - Peter W Laird
- Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Houtan Noushmehr
- Henry Ford Health System, Detroit, MI 48202, USA; University of São Paulo, Ribeirão Preto-SP 14049, Brazil.
| | - Maciej Wiznerowicz
- Poznań University of Medical Sciences, 61701 Poznań, Poland; Greater Poland Cancer Center, 61866 Poznań, Poland; International Institute for Molecular Oncology, 60203 Poznań, Poland.
| |
Collapse
|
36
|
Li M, Sun Q, Wang X. Transcriptional landscape of human cancers. Oncotarget 2018; 8:34534-34551. [PMID: 28427185 PMCID: PMC5470989 DOI: 10.18632/oncotarget.15837] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 02/08/2017] [Indexed: 12/21/2022] Open
Abstract
The homogeneity and heterogeneity in somatic mutations, copy number alterations and methylation across different cancer types have been extensively explored. However, the related exploration based on transcriptome data is lacking. In this study we explored gene expression profiles across 33 human cancer types using The Cancer Genome Atlas (TCGA) data. We identified consistently upregulated genes (such as E2F1, EZH2, FOXM1, MYBL2, PLK1, TTK, AURKA/B and BUB1) and consistently downregulated genes (such as SCARA5, MYOM1, NKAPL, PEG3, USP2, SLC5A7 and HMGCLL1) across various cancers. The dysregulation of these genes is likely to be associated with poor clinical outcomes in cancer. The dysregulated pathways commonly in cancers include cell cycle, DNA replication, repair, and recombination, Notch signaling, p53 signaling, Wnt signaling, TGFβ signaling, immune response etc. We also identified genes consistently upregulated or downregulated in highly-advanced cancers compared to lowly-advanced cancers. The highly (low) expressed genes in highly-advanced cancers are likely to have higher (lower) expression levels in cancers than in normal tissue, indicating that common gene expression perturbations drive cancer initiation and cancer progression. In addition, we identified a substantial number of genes exclusively dysregulated in a single cancer type or inconsistently dysregulated in different cancer types, demonstrating the intertumor heterogeneity. More importantly, we found a number of genes commonly dysregulated in various cancers such as PLP1, MYOM1, NKAPL and USP2 which were investigated in few cancer related studies, and thus represent our novel findings. Our study provides comprehensive portraits of transcriptional landscape of human cancers.
Collapse
Affiliation(s)
- Mengyuan Li
- School of Science, China Pharmaceutical University, Nanjing 211198, China
| | - Qingrong Sun
- School of Science, China Pharmaceutical University, Nanjing 211198, China
| | - Xiaosheng Wang
- Department of Basic Medicine, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
37
|
Li Y, Huo J, Pan X, Wang C, Ma X. MicroRNA 302b-3p/302c-3p/302d-3p inhibits epithelial-mesenchymal transition and promotes apoptosis in human endometrial carcinoma cells. Onco Targets Ther 2018; 11:1275-1284. [PMID: 29563806 PMCID: PMC5846301 DOI: 10.2147/ott.s154517] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background Studies have shown that the microRNA miR-302 can affect the proliferation, migration and cell cycle progression of endometrial carcinoma (EC). miR-302 clusters have been shown to play an important role in the proliferation and differentiation of cancer cells and in their tumorigenicity. Subjects and methods In this study, we detected the expression of genes through quantitative reverse transcription polymerase chain reaction (qRT-PCR). We detected the expression of proteins through Western blot. The Annexin V-fluorescein isothiocyanate (FITC)/propidium iodide (PI) double-staining assay were used to detect the ability of miR-302b-3p/302c-3p/302d-3p to affect the cell apoptosis. The CCK-8 were used to detect the ability of miR-302b-3p/302c-3p/302d-3p to affect the cell proliferation. The Cell cycle analysis were used to detect the ability of miR-302b-3p/302c-3p/302d-3p to affect the cell cycle. Finally, the wound healing assay was used to detect the ability of miR-302b-3p/302c-3p/302d-3p to impact cell migration. Results We found that miR-302b-3p/302c-3p/302d-3p of the miR-302 cluster was downregulated in EC, and it altered the epithelial-mesenchymal transition (EMT) process in the EC cell lines Ishikawa and HEC-1A. Western blot and the Annexin V- FITC/PI double-staining assay were used to detect the ability of miR-302b-3p/302c-3p/302d-3p to promote the apoptosis of Ishikawa and HEC-1A cells. In addition, qRT-PCR results showed that overexpression of miR-302b-3p/302c-3p/302d-3p significantly inhibited the expression of ZEB1, suppressed the expression of Bcl-2 and promoted the expression of BAX. The overexpression of miR-302b-3p/302c-3p/302d-3p inhibited the proliferation and migration of Ishikawa and HEC-1A cells. Cell cycle analysis showed that miR-302b-3p/302c-3p/302d-3p arrested cell cycle progression in the G0/G1 phase. Conclusion All results showed that miR-302b-3p/302c-3p/302d-3p can be used as a tumor suppressor in EC and is expected to be a new target for the treatment of EC.
Collapse
Affiliation(s)
- Yibing Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Jianing Huo
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Xin Pan
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Cuicui Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Xiaoxin Ma
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| |
Collapse
|
38
|
Zhang Y, Yang C, Cheng H, Fan Z, Huang Q, Lu Y, Fan K, Luo G, Jin K, Wang Z, Liu C, Yu X. Novel agents for pancreatic ductal adenocarcinoma: emerging therapeutics and future directions. J Hematol Oncol 2018; 11:14. [PMID: 29386069 PMCID: PMC5793409 DOI: 10.1186/s13045-017-0551-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 12/28/2017] [Indexed: 02/08/2023] Open
Abstract
A poor prognosis of pancreatic ductal adenocarcinoma (PDAC) associated with chemoresistance has not changed for the past three decades. A multidisciplinary diagnosis followed by surgery and chemo(radiation)therapy is the main treatment approach. However, gemcitabine- and 5-fluorouracil-based therapies did not present satisfying outcomes. Novel regimens targeting pancreatic cancer cells, the tumor microenvironment, and immunosuppression are emerging. Biomarkers concerning the treatment outcome and patient selection are being discovered in preclinical or clinical studies. Combination therapies of classic chemotherapeutic drugs and novel agents or novel therapeutic combinations might bring hope to the dismal prognosis for PDAC patients.
Collapse
Affiliation(s)
- Yiyin Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 DongAn Road, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, No. 270 DongAn Road, Shanghai, 200032, People's Republic of China
- Shanghai Pancreatic Cancer Institute, No. 270 DongAn Road, Shanghai, 200032, People's Republic of China
- Pancreatic Cancer Institute, Fudan University, No. 270 DongAn Road, Shanghai, 200032, People's Republic of China
| | - Chao Yang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 DongAn Road, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, No. 270 DongAn Road, Shanghai, 200032, People's Republic of China
- Shanghai Pancreatic Cancer Institute, No. 270 DongAn Road, Shanghai, 200032, People's Republic of China
- Pancreatic Cancer Institute, Fudan University, No. 270 DongAn Road, Shanghai, 200032, People's Republic of China
| | - He Cheng
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 DongAn Road, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, No. 270 DongAn Road, Shanghai, 200032, People's Republic of China
- Shanghai Pancreatic Cancer Institute, No. 270 DongAn Road, Shanghai, 200032, People's Republic of China
- Pancreatic Cancer Institute, Fudan University, No. 270 DongAn Road, Shanghai, 200032, People's Republic of China
| | - Zhiyao Fan
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 DongAn Road, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, No. 270 DongAn Road, Shanghai, 200032, People's Republic of China
- Shanghai Pancreatic Cancer Institute, No. 270 DongAn Road, Shanghai, 200032, People's Republic of China
- Pancreatic Cancer Institute, Fudan University, No. 270 DongAn Road, Shanghai, 200032, People's Republic of China
| | - Qiuyi Huang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 DongAn Road, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, No. 270 DongAn Road, Shanghai, 200032, People's Republic of China
- Shanghai Pancreatic Cancer Institute, No. 270 DongAn Road, Shanghai, 200032, People's Republic of China
- Pancreatic Cancer Institute, Fudan University, No. 270 DongAn Road, Shanghai, 200032, People's Republic of China
| | - Yu Lu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 DongAn Road, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, No. 270 DongAn Road, Shanghai, 200032, People's Republic of China
- Shanghai Pancreatic Cancer Institute, No. 270 DongAn Road, Shanghai, 200032, People's Republic of China
- Pancreatic Cancer Institute, Fudan University, No. 270 DongAn Road, Shanghai, 200032, People's Republic of China
| | - Kun Fan
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 DongAn Road, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, No. 270 DongAn Road, Shanghai, 200032, People's Republic of China
- Shanghai Pancreatic Cancer Institute, No. 270 DongAn Road, Shanghai, 200032, People's Republic of China
- Pancreatic Cancer Institute, Fudan University, No. 270 DongAn Road, Shanghai, 200032, People's Republic of China
| | - Guopei Luo
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 DongAn Road, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, No. 270 DongAn Road, Shanghai, 200032, People's Republic of China
- Shanghai Pancreatic Cancer Institute, No. 270 DongAn Road, Shanghai, 200032, People's Republic of China
- Pancreatic Cancer Institute, Fudan University, No. 270 DongAn Road, Shanghai, 200032, People's Republic of China
| | - Kaizhou Jin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 DongAn Road, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, No. 270 DongAn Road, Shanghai, 200032, People's Republic of China
- Shanghai Pancreatic Cancer Institute, No. 270 DongAn Road, Shanghai, 200032, People's Republic of China
- Pancreatic Cancer Institute, Fudan University, No. 270 DongAn Road, Shanghai, 200032, People's Republic of China
| | - Zhengshi Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 DongAn Road, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, No. 270 DongAn Road, Shanghai, 200032, People's Republic of China
- Shanghai Pancreatic Cancer Institute, No. 270 DongAn Road, Shanghai, 200032, People's Republic of China
- Pancreatic Cancer Institute, Fudan University, No. 270 DongAn Road, Shanghai, 200032, People's Republic of China
| | - Chen Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 DongAn Road, Shanghai, 200032, People's Republic of China.
- Department of Oncology, Shanghai Medical College, Fudan University, No. 270 DongAn Road, Shanghai, 200032, People's Republic of China.
- Shanghai Pancreatic Cancer Institute, No. 270 DongAn Road, Shanghai, 200032, People's Republic of China.
- Pancreatic Cancer Institute, Fudan University, No. 270 DongAn Road, Shanghai, 200032, People's Republic of China.
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 DongAn Road, Shanghai, 200032, People's Republic of China.
- Department of Oncology, Shanghai Medical College, Fudan University, No. 270 DongAn Road, Shanghai, 200032, People's Republic of China.
- Shanghai Pancreatic Cancer Institute, No. 270 DongAn Road, Shanghai, 200032, People's Republic of China.
- Pancreatic Cancer Institute, Fudan University, No. 270 DongAn Road, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
39
|
Yao S, Fan LYN, Lam EWF. The FOXO3-FOXM1 axis: A key cancer drug target and a modulator of cancer drug resistance. Semin Cancer Biol 2017; 50:77-89. [PMID: 29180117 PMCID: PMC6565931 DOI: 10.1016/j.semcancer.2017.11.018] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 10/30/2017] [Accepted: 11/23/2017] [Indexed: 12/11/2022]
Abstract
The FOXO3 and FOXM1 forkhead box transcription factors, functioning downstream of the essential PI3K-Akt, Ras-ERK and JNK/p38MAPK signalling cascades, are crucial for cell proliferation, differentiation, cell survival, senescence, DNA damage repair and cell cycle control. The development of resistance to both conventional and newly emerged molecularly targeted therapies is a major challenge confronting current cancer treatment in the clinic. Intriguingly, the mechanisms of resistance to ‘classical’ cytotoxic chemotherapeutics and to molecularly targeted therapies are invariably linked to deregulated signalling through the FOXO3 and FOXM1 transcription factors. This is owing to the involvement of FOXO3 and FOXM1 in the regulation of genes linked to crucial drug action-related cellular processes, including stem cell renewal, DNA repair, cell survival, drug efflux, and deregulated mitosis. A better understanding of the mechanisms regulating the FOXO3-FOXM1 axis, as well as their downstream transcriptional targets and functions, may render these proteins reliable and early diagnostic/prognostic factors as well as crucial therapeutic targets for cancer treatment and importantly, for overcoming chemotherapeutic drug resistance.
Collapse
Affiliation(s)
- Shang Yao
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK
| | - Lavender Yuen-Nam Fan
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK
| | - Eric Wing-Fai Lam
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK.
| |
Collapse
|
40
|
Lulla AR, Slifker MJ, Zhou Y, Lev A, Einarson MB, Dicker DT, El-Deiry WS. miR-6883 Family miRNAs Target CDK4/6 to Induce G 1 Phase Cell-Cycle Arrest in Colon Cancer Cells. Cancer Res 2017; 77:6902-6913. [PMID: 29061672 DOI: 10.1158/0008-5472.can-17-1767] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 08/22/2017] [Accepted: 10/03/2017] [Indexed: 11/16/2022]
Abstract
CDK4/6 targeting is a promising therapeutic strategy under development for various tumor types. In this study, we used computational methods and The Cancer Genome Atlas dataset analysis to identify novel miRNAs that target CDK4/6 and exhibit potential for therapeutic development in colorectal cancer. The 3'UTR of CDK4/6 mRNAs are targeted by a family of miRNAs, which includes miR-6883-5p, miR-149*, miR-6785-5p, and miR-4728-5p. Ectopic expression of miR-6883-5p or miR-149* downregulated CDK4 and CDK6 levels in human colorectal cancer cells. RNA-seq analysis revealed an inverse relationship between the expression of CDK4/6 and miR-149* and intronic miRNA-6883-5p encoding the clock gene PER1 in colorectal cancer patient samples. Restoring expression of miR-6883-5p and miR-149* blocked cell growth leading to G0-G1 phase cell-cycle arrest and apoptosis in colorectal cancer cells. CDK4/6 targeting by miR-6883-5p and miR-149* could only partially explain the observed antiproliferative effects. Notably, both miRNAs synergized with the frontline colorectal cancer chemotherapy drug irinotecan. Further, they resensitized mutant p53-expressing cell lines resistant to 5-fluorouracil. Taken together, our results established the foundations of a candidate miRNA-based theranostic strategy to improve colorectal cancer management. Cancer Res; 77(24); 6902-13. ©2017 AACR.
Collapse
Affiliation(s)
- Amriti R Lulla
- Fox Chase Cancer Center, Philadelphia, Pennsylvania.,Penn State College of Medicine, Hershey, Pennsylvania
| | | | - Yan Zhou
- Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Avital Lev
- Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | | | | | - Wafik S El-Deiry
- Fox Chase Cancer Center, Philadelphia, Pennsylvania. .,Penn State College of Medicine, Hershey, Pennsylvania
| |
Collapse
|
41
|
Peroxiredoxin 3 maintains the survival of endometrial cancer stem cells by regulating oxidative stress. Oncotarget 2017; 8:92788-92800. [PMID: 29190956 PMCID: PMC5696222 DOI: 10.18632/oncotarget.21580] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 09/08/2017] [Indexed: 11/25/2022] Open
Abstract
Cancer stem cell (CSC)-targeted therapy could reduce tumor growth, recurrence, and metastasis in endometrial cancer (EC). The mitochondria of CSCs have been recently found to be an important target for cancer treatment, but the mitochondrial features of CSCs and their regulators, which maintain mitochondrial function, remain unclear. Here, we investigated the mitochondrial properties of CSCs, and identified specific targets for eliminating CSCs in EC. We found that endometrial CSCs displayed higher mitochondrial membrane potential, Ca2+, reactive oxygen species, ATP levels, and oxygen consumption rates than non-CSCs. Further, we also verified that mitochondrial peroxiredoxin 3 (Prx3) was upregulated, and that it contributed to the survival of CSCs in EC. The knockdown of the Prx3 gene resulted not only in decreased sphere formation, but also reduced the viability of endometrial CSCs, by causing mitochondrial dysfunction. Furthermore, we found that the forkhead box protein M1 (FoxM1), an important transcriptional factor, is overexpressed in patients with EC. FoxM1 expression correlates with elevated Prx3 expression levels, in agreement with the tumorigenic ability of Prx3 in endometrial CSCs. Taken together, our findings indicate that human endometrial CSCs have enhanced mitochondrial function compared to that of endometrial tumor cells. Endometrial CSCs show increased expression of the mitochondrial Prx3, which is required for the maintenance of mitochondrial function and survival, and is induced by FoxM1. Based on our findings, we believe that these proteins might represent valuable therapeutic targets and could provide new insights into the development of new therapeutic strategies for patients with endometrial cancer.
Collapse
|
42
|
The Emerging Role of Polo-Like Kinase 1 in Epithelial-Mesenchymal Transition and Tumor Metastasis. Cancers (Basel) 2017; 9:cancers9100131. [PMID: 28953239 PMCID: PMC5664070 DOI: 10.3390/cancers9100131] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 09/22/2017] [Accepted: 09/25/2017] [Indexed: 12/31/2022] Open
Abstract
Polo-like kinase 1 (PLK1) is a serine/threonine kinase that plays a key role in the regulation of the cell cycle. PLK1 is overexpressed in a variety of human tumors, and its expression level often correlates with increased cellular proliferation and poor prognosis in cancer patients. It has been suggested that PLK1 controls cancer development through multiple mechanisms that include canonical regulation of mitosis and cytokinesis, modulation of DNA replication, and cell survival. However, emerging evidence suggests novel and previously unanticipated roles for PLK1 during tumor development. In this review, we will summarize the recent advancements in our understanding of the oncogenic functions of PLK1, with a focus on its role in epithelial-mesenchymal transition and tumor invasion. We will further discuss the therapeutic potential of these functions.
Collapse
|
43
|
Zhang T, Ma G, Zhang Y, Huo H, Zhao Y. miR-216b inhibits glioma cell migration and invasion through suppression of FoxM1. Oncol Rep 2017; 38:1751-1759. [PMID: 28731180 DOI: 10.3892/or.2017.5824] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 06/23/2017] [Indexed: 11/06/2022] Open
Abstract
MicroRNAs (miRNAs) play a vital role in tumour biological and pathologic processes. In the present study, we aimed to detect the expression and biological role of miR-216b in glioma. Our data showed that miR-216b was significantly downregulated in human glioma tissues and cells. Ectopic expression of miR-216b inhibited the proliferation and invasion of U87 and U251 cells and suppressed the growth of xenograft tumours in vivo. Bioinformatic and luciferase reporter analyses identified Forkhead box protein M1 (FoxM1) as a direct target of miR-216b. Overexpression of miR-216b inhibited the expression of FoxM1 in glioma cells. Rescue experiments demonstrated that co-transfection of FoxM1 lacking the 3'-untranslated region partially prevented miR‑216b-induced inhibition of glioma cell growth and invasion. In vivo studies indicated that ectopic expression of miR-216b impeded the proliferation of glioma xenograft tumours in nude mice, coupled with a decreased in FoxM1 protein expression and the percentage of Ki-67-positive tumour cells. Taken together, our results provide evidence of the suppressive activity of miR‑216b in glioma, which is largely ascribed to downregulation of FoxM1. Restoration of miR-216b may provide a novel potential therapeutic agent for glioma.
Collapse
Affiliation(s)
- Tingting Zhang
- School of Basic Medical Science, Central South University, Changsha, Hunan 410078, P.R. China
| | - Guangtao Ma
- Department of Neurosurgery, Daqing Oil Field General Hospital, Daqing, Heilongjiang 163000, P.R. China
| | - Yan Zhang
- Department of The Heart of Non-Invasive Examination, Daqing Oil Field General Hospital, Daqing, Heilongjiang 163000, P.R. China
| | - Hongda Huo
- Daqing Convalescence Hospital, Daqing, Heilongjiang 163000, P.R. China
| | - Yuqian Zhao
- School of Information Science and Engineering, Central South University, Changsha, Hunan 410078, P.R. China
| |
Collapse
|
44
|
Wang J, Li W, Zhao Y, Kang D, Fu W, Zheng X, Pang X, Du G. Members of FOX family could be drug targets of cancers. Pharmacol Ther 2017; 181:183-196. [PMID: 28830838 DOI: 10.1016/j.pharmthera.2017.08.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
FOX families play important roles in biological processes, including metabolism, development, differentiation, proliferation, apoptosis, migration, invasion and longevity. Here we are focusing on roles of FOX members in cancers, FOX members and drug resistance, FOX members and stem cells. Finally, FOX members as drug targets of cancer treatment were discussed. Future perspectives of FOXC1 research were described in the end.
Collapse
Affiliation(s)
- Jinhua Wang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, 100050 Beijing, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, 100050 Beijing, China
| | - Wan Li
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, 100050 Beijing, China
| | - Ying Zhao
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, 100050 Beijing, China
| | - De Kang
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, 100050 Beijing, China
| | - Weiqi Fu
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, 100050 Beijing, China
| | - Xiangjin Zheng
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, 100050 Beijing, China
| | - Xiaocong Pang
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, 100050 Beijing, China
| | - Guanhua Du
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, 100050 Beijing, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, 100050 Beijing, China.
| |
Collapse
|
45
|
Wang JM, Ju BH, Pan CJ, Gu Y, Li MQ, Sun L, Xu YY, Yin LR. MiR-214 inhibits cell migration, invasion and promotes the drug sensitivity in human cervical cancer by targeting FOXM1. Am J Transl Res 2017; 9:3541-3557. [PMID: 28861147 PMCID: PMC5575170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 04/10/2017] [Indexed: 06/07/2023]
Abstract
OBJECT MicroRNAs (miRNAs) play key roles in progression of cervical cancer. In the present study, we investigated the role of miR-214 in the process of migration, invasion and drug sensitivity to cisplatin in cervical cancer. METHODS We detected the differential expression of miR-214 in 19 cases cervical cancer tissues and normal tissues as well as 4 cervical cancer cells and one normal cervical cells by Real-time PCR. Then, wound healing assay, transwell invasion assay and MTT were used to detect the effects of migration, invasion and sensitivity to cisplatin of cervical cancer when miR-214 was overexpressed. Western blot, immunofluorescence and Flow Cytometry were used to detect the mechanism of migration, invasion and sensitivity to cisplatin. Next, bioinformatics analysis was used to find the target of miR-214. Through the luciferase reporter assay, Real-time PCR and western blot, we confirmed the binding relationship of miR-214 and FOXM1. In cervical cancer tissues, the expression of FOXM1 was detected by western blot and Immunohistochemistry. We also knocked down FOXM1 in cervical cancer cells, wound healing assay, transwell invasion assay and MTT were performed to detect the migration, invasion and sensitivity to cisplatin abilities of FOXM1. Western blot and Flow Cytometry were used to detect the mechanism of migration, invasion and sensitivity to cisplatin by FOXM1. Finally, we performed rescue expriments to confirm the function relationship between miR-214 and FOXM1. RESULTS 1. Our results showed that miR-214 was frequently downregulated in tumor tissues and cancer cells especially in CIN III and cervical cancer stages. 2. Overexpression of miR-214 significantly inhibited migration and invasion of cervical cancer cells and prompted the sensitivity to cisplatin. 3. FOXM1 was identified as a target of miR-214 and down-regulated by miR-214. 4. Knocking down FOXM1 could inhibited migration and invasion of cervical cancer cells and prompted the sensitivity to cisplatin. 5. FOXM1 was upregulated in tumor tissues. 6. The mechanism of migration, invasion and sensitivity to cisplatin were the resluts of changes of EMT and apoptosis. 7. The restoration of FOXM1 expression can counteract the effect of miR-214 on cell migration, invasion and sensitivity to cisplatin of cervical cancer cells. CONCLUSIONS These findings indicate that miR-214 acts as a tumor suppressor during the process of migration, invasion and drug sensitivity through targeting FOXM1, suggesting miR-214 as a potential new diagnostic and therapeutic target for the treatment of cervical cancer.
Collapse
Affiliation(s)
- Jian-Mei Wang
- Department of Gynecology, The Second Hospital of Tianjin Medical UniversityTianjin 300060, China
| | - Bao-Hui Ju
- Department of Gynecology, The Second Hospital of Tianjin Medical UniversityTianjin 300060, China
| | - Cai-Jun Pan
- Gratuate School of Tianjin Medical UniversityTianjin 300060, China
| | - Yan Gu
- Department of Gynecology, The Second Hospital of Tianjin Medical UniversityTianjin 300060, China
| | - Meng-Qi Li
- Gratuate School of Tianjin Medical UniversityTianjin 300060, China
| | - Li Sun
- Department of Gynecology, The Second Hospital of Tianjin Medical UniversityTianjin 300060, China
| | - Yan-Ying Xu
- Department of Gynecology, The Second Hospital of Tianjin Medical UniversityTianjin 300060, China
| | - Li-Rong Yin
- Department of Gynecology, The Second Hospital of Tianjin Medical UniversityTianjin 300060, China
| |
Collapse
|
46
|
USP5 promotes tumorigenesis and progression of pancreatic cancer by stabilizing FoxM1 protein. Biochem Biophys Res Commun 2017; 492:48-54. [PMID: 28807830 DOI: 10.1016/j.bbrc.2017.08.040] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 08/10/2017] [Indexed: 02/08/2023]
Abstract
Increased ubiquitin-specific protease 5 (USP5) has been associated with tumorigenesis of malignancy including glioblastoma, melanoma and hepatocellular carcinoma. However, the role of USP5 in tumorigenesis of pancreatic ductal adenocarcinoma (PDAC) has not been studied yet. In this study, we demonstrated that USP5 was significantly upregulated in a panel of PDAC cell lines and correlated with FoxM1 protein expression. USP5 knockdown inhibited proliferation of PANC-1 and SW1990, two PDAC cell lines. In the mouse xenografted pancreatic tumor model, suppression of USP5 significantly decreased tumor growth, correlated with down regulation of FoxM1. Additionally, we found that overexpression of USP5 stabilized the FoxM1 protein in PDAC cells. Overexpression of USP5 extended the half-life of FoxM1. Knockdown of USP5 in PANC-1 cells decreased FoxM1 protein level while the proteasome inhibitor MG-132 treatment restored FoxM1 expression. We also found that endogenous USP5 was coimmunoprecipitated with an endogenous FoxM1 from PANC-1 cells while FoxM1 was also coimmunoprecipitated with USP5. Furthermore, we also confirmed that USP5 regulated proliferation of PDAC via FoxM1 by rescuing the inhibitory effect of USP5 knockdown with ectopic expression of FoxM1 in USP5-depleted cells. Taken together, our study demonstrates that USP5 plays a critical role in tumorigenesis and progression of pancreatic cancer by stabilizing FoxM1 protein, and provides a rationale for USP5 being a potential therapeutic approach against PDAC.
Collapse
|
47
|
Klymenko Y, Kim O, Stack MS. Complex Determinants of Epithelial: Mesenchymal Phenotypic Plasticity in Ovarian Cancer. Cancers (Basel) 2017; 9:cancers9080104. [PMID: 28792442 PMCID: PMC5575607 DOI: 10.3390/cancers9080104] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 08/02/2017] [Accepted: 08/06/2017] [Indexed: 02/07/2023] Open
Abstract
Unlike most epithelial malignancies which metastasize hematogenously, metastasis of epithelial ovarian cancer (EOC) occurs primarily via transcoelomic dissemination, characterized by exfoliation of cells from the primary tumor, avoidance of detachment-induced cell death (anoikis), movement throughout the peritoneal cavity as individual cells and multi-cellular aggregates (MCAs), adhesion to and disruption of the mesothelial lining of the peritoneum, and submesothelial matrix anchoring and proliferation to generate widely disseminated metastases. This exceptional microenvironment is highly permissive for phenotypic plasticity, enabling mesenchymal-to-epithelial (MET) and epithelial-to-mesenchymal (EMT) transitions. In this review, we summarize current knowledge on EOC heterogeneity in an EMT context, outline major regulators of EMT in ovarian cancer, address controversies in EMT and EOC chemoresistance, and highlight computational modeling approaches toward understanding EMT/MET in EOC.
Collapse
Affiliation(s)
- Yuliya Klymenko
- Department of Chemistry and Biochemistry, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46617, USA.
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, IN 47405, USA.
| | - Oleg Kim
- Department of Applied and Computational Mathematics and Statistics, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46617, USA.
- Department of Mathematics, University of California Riverside, Riverside, CA 92521, USA.
| | - M Sharon Stack
- Department of Chemistry and Biochemistry, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46617, USA.
| |
Collapse
|
48
|
Gao YL, Liu MR, Yang SX, Dong YJ, Tan XF. Prognostic significance of ACP5 expression in patients with lung adenocarcinoma. CLINICAL RESPIRATORY JOURNAL 2017; 12:1100-1105. [PMID: 28398694 DOI: 10.1111/crj.12637] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 03/21/2017] [Accepted: 04/05/2017] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Tartrate-resistant acid phosphatase 5 (ACP5), which is essential for bone resorption and osteoclast differentiation, promotes cell motility through the modulation of focal adhesion kinase phosphorylation. This study seeks to elucidate the association of ACP5 expression and the clinicopathologic characteristics of patients with lung adenocarcinoma (AD). METHODS The expression of ACP5 was measured by Immunohistochemistry and Western blot analysis in lung AD and matched tumor-adjacent tissues, and the χ2 test was applied to analyze the correlation between ACP5 expression and clinicopathologic features. Using the Kaplan-Meier method, univariate and multivariate regression analysis was to explore the correlation between ACP5 expression and overall survival (OS). RESULTS We found that ACP5 was frequently upregulated in lung AD tissues. The high expression of ACP5 was significantly related to lymph node status, tumor-node-metastasis (TNM) stage, and differentiation. From the results of univariate survival analysis, it indicated that the patients with high expression of ACP5 expression had a significantly lower OS than the patients with low expression of ACP5 expression. As it showed in Multivariate Cox regression analysis, the high expression of ACP5 expression was an independent prognostic factor for OS. CONCLUSIONS Our results suggest that high expression of ACP5 correlates with tumor progression and may serve as a potential prognostic biomarker in lung AD.
Collapse
Affiliation(s)
- Ya-Li Gao
- Department of Radiotherapy, Cangzhou Central Hospital, Cangzhou, Hebei, 061001, China
| | - Mei-Rong Liu
- Department of General Internal Medicine, Tianjin Hospital, Tianjin, 300211, China
| | - Shu-Xiang Yang
- Department of General Internal Medicine, Tianjin Hospital, Tianjin, 300211, China
| | - Yu-Jin Dong
- Department of Radiotherapy, Zibo Central Hospital, Zibo, Shandong, 255020, China
| | - Xiao-Feng Tan
- Department of General Internal Medicine, Tianjin Hospital, Tianjin, 300211, China
| |
Collapse
|
49
|
Zhong S, Zhou A, Qi F, Li Z, Yu Z, Lu Y, Liu X. Downregulating forkhead box M1 inhibits proliferation by inhibiting autophagy in the sw480 cell line. Biomed Rep 2017; 7:47-50. [PMID: 28685059 DOI: 10.3892/br.2017.915] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 03/30/2017] [Indexed: 11/06/2022] Open
Abstract
Forkhead Box M1 (FoxM1) is one of the most important oncogenes, and overexpression of FoxM1 has been reported in many cancers, including colon cancer. In the present study, the authors attempted to reveal the mechanism underlying its effects on proliferation through autophagy in the sw480 cell line. FoxM1 is knocked down through short hairpin (sh)RNA in the sw480 cell line. A series of experiments were conducted to examine it function on proliferation and LC3 and P62 were used to measure level of autophagy. Autophagy in the shFoxM1 cell was demonstrated as significantly inhibited compared with the negative control. Additional auto-fluex was also tested, downregulation of FoxM1 served the same role as BA1 in autophagy. Furthermore, downregulating FoxM1 inhibited cell proliferation in the sw480 cell line.
Collapse
Affiliation(s)
- Shibiao Zhong
- Department of Anorectal Surgery, Minzu Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530001, P.R. China
| | - Aiyan Zhou
- Department of Traditional Chinese Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 510080, P.R. China
| | - Fanghua Qi
- Department of Traditional Chinese Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 510080, P.R. China
| | - Zhen Li
- Department of Anorectal Surgery, Minzu Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530001, P.R. China
| | - Zeyan Yu
- Department of Anorectal Surgery, Minzu Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530001, P.R. China
| | - Yongchao Lu
- Department of Traditional Chinese Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 510080, P.R. China
| | - Xudong Liu
- Department of Pain, Qilu Hospital of Shandong University, Jinan, Shandong 250000, P.R. China
| |
Collapse
|
50
|
Khalafalla FG, Khan MW. Inflammation and Epithelial-Mesenchymal Transition in Pancreatic Ductal Adenocarcinoma: Fighting Against Multiple Opponents. CANCER GROWTH AND METASTASIS 2017; 10:1179064417709287. [PMID: 28579826 PMCID: PMC5436837 DOI: 10.1177/1179064417709287] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 04/06/2017] [Indexed: 12/11/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most common type of pancreatic cancer and one of the most lethal human cancers. Inflammation is a critical component in PDAC initiation and progression. Inflammation also contributes to the aggressiveness of PDAC indirectly via induction of epithelial-mesenchymal transition (EMT), altogether leading to enhanced resistance to chemotherapy and poor survival rates. This review gives an overview of the key pro-inflammatory signaling pathways involved in PDAC pathogenesis and discusses the role of inflammation in induction of EMT and development of chemoresistance in patients with PDAC.
Collapse
|