1
|
HARE-Mediated Endocytosis of Hyaluronan and Heparin Is Targeted by Different Subsets of Three Endocytic Motifs. Int J Cell Biol 2015; 2015:524707. [PMID: 25883656 PMCID: PMC4390207 DOI: 10.1155/2015/524707] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 12/21/2014] [Indexed: 01/22/2023] Open
Abstract
The hyaluronan (HA) receptor for endocytosis (HARE) is a multifunctional recycling clearance
receptor for 14 different ligands, including HA and heparin (Hep), which bind to discrete nonoverlapping
sites. Four different functional endocytic motifs (M) in the cytoplasmic domain
(CD) target coated pit mediated uptake: (YSYFRI2485 (M1), FQHF2495 (M2), NPLY2519 (M3), and
DPF2534 (M4)). We previously found (Pandey et al. J. Biol. Chem. 283, 21453, 2008) that M1,
M2, and M3 mediate endocytosis of HA. Here we assessed the ability of HARE variants with a
single-motif deletion or containing only a single motif to endocytose HA or Hep. Single-motif
deletion variants lacking M1, M3, or M4 (a different subset than involved in HA uptake) showed decreased Hep
endocytosis, although M3 was the most active; the remaining redundant motifs did not
compensate for loss of other motifs. Surprisingly, a HARE CD variant with only M3 internalized
both HA and Hep, whereas variants with either M2 or M4 alone did not endocytose either ligand.
Internalization of HA
and Hep by HARE CD mutants was dynamin-dependent and was inhibited by
hyperosmolarity, confirming clathrin-mediated endocytosis. The results indicate a complicated
relationship among multiple CD motifs that target coated pit uptake and a more fundamental role
for motif M3.
Collapse
|
2
|
Pandey MS, Weigel PH. Hyaluronic acid receptor for endocytosis (HARE)-mediated endocytosis of hyaluronan, heparin, dermatan sulfate, and acetylated low density lipoprotein (AcLDL), but not chondroitin sulfate types A, C, D, or E, activates NF-κB-regulated gene expression. J Biol Chem 2013; 289:1756-67. [PMID: 24247245 DOI: 10.1074/jbc.m113.510339] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The hyaluronan (HA) receptor for endocytosis (HARE; Stab2) clears 14 systemic ligands, including HA and heparin. Here, we used NF-κB promoter-driven luciferase reporter assays to test HARE-mediated intracellular signaling during the uptake of eight ligands, whose binding sites in the HARE ectodomain were mapped by competition studies (Harris, E. N., and Weigel, P. H. (2008) Glycobiology 18, 638-648). Unique intermediate size Select-HA(TM), heparin, dermatan sulfate, and acetylated LDL stimulated dose-dependent HARE-mediated NF-κB activation of luciferase expression, with half-maximal values of 10-25 nM. In contrast, chondroitin sulfate types A, C, D, and E did not stimulate NF-κB activation. Moreover, degradation of endogenous IkB-α (an NF-κB inhibitor) was stimulated only by the signaling ligands. The stimulatory activities of pairwise combinations of the four signaling ligands were additive. The four nonstimulatory chondroitin sulfate types, which compete for HA binding, also effectively blocked HA-stimulated signaling. Clathrin siRNA decreased clathrin expression by ∼50% and completely eliminated NF-κB-mediated signaling by all four ligands, indicating that activation of signaling complexes occurs after endocytosis. These results indicate that HARE not only binds and clears extracellular matrix degradation products (e.g. released normally or during infection, injury, tumorigenesis, or other stress situations) but that a subset of ligands also serves as signaling indicator ligands. HARE may be part of a systemic tissue-stress sensor feedback system that responds to abnormal tissue turnover or damage as a danger signal; the signaling indicator ligands would reflect the homeostatic status, whether normal or pathological, of tissue cells and biomatrix components.
Collapse
Affiliation(s)
- Madhu S Pandey
- From the Department of Biochemistry and Molecular Biology, Oklahoma Center for Medical Glycobiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | | |
Collapse
|
3
|
Kluetzman KS, Thomas RM, Nechamen CA, Dias JA. Decreased degradation of internalized follicle-stimulating hormone caused by mutation of aspartic acid 6.30(550) in a protein kinase-CK2 consensus sequence in the third intracellular loop of human follicle-stimulating hormone receptor. Biol Reprod 2011; 84:1154-63. [PMID: 21270425 DOI: 10.1095/biolreprod.110.087965] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
A naturally occurring mutation in follicle-stimulating hormone receptor (FSHR) gene has been reported: an amino acid change to glycine occurs at a conserved aspartic acid 550 (D550, D567, D6.30(567)). This residue is contained in a protein kinase-CK2 consensus site present in human FSHR (hFSHR) intracellular loop 3 (iL3). Because CK2 has been reported to play a role in trafficking of some receptors, the potential roles for CK2 and D550 in FSHR function were evaluated by generating a D550A mutation in the hFSHR. The hFSHR-D550A binds hormone similarly to WT-hFSHR when expressed in HEK293T cells. Western blot analyses showed lower levels of mature hFSHR-D550A. Maximal cAMP production of both hFSHR-D550A as well as the naturally occurring mutation hFSHR-D550G was diminished, but constitutive activity was not observed. Unexpectedly, when (125)I-hFSH bound to hFSHR-D550A or hFSHR-D550G, intracellular accumulation of radiolabeled FSH was observed. Both sucrose and dominant-negative dynamin blocked internalization of radiolabeled FSH and its commensurate intracellular accumulation. Accumulation of radiolabeled FSH in cells transfected with hFSHR-D550A is due to a defect in degradation of hFSH as measured in pulse chase studies, and confocal microscopy imaging revealed that FSH accumulated in large intracellular structures. CK2 kinase activity is not required for proper degradation of internalized FSH because inhibition of CK2 kinase activity in cells expressing hFSHR did not uncouple degradation of internalized radiolabeled FSH. Additionally, the CK2 consensus site in FSHR iL3 is not required for binding because CK2alpha coimmunoprecipitated with hFSHR-D550A. Thus, mutation of D550 uncouples the link between internalization and degradation of hFSH.
Collapse
|
4
|
Harris EN, Weigel JA, Weigel PH. The human hyaluronan receptor for endocytosis (HARE/Stabilin-2) is a systemic clearance receptor for heparin. J Biol Chem 2008; 283:17341-50. [PMID: 18434317 DOI: 10.1074/jbc.m710360200] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The hyaluronic acid receptor for endocytosis (HARE; also designated Stabilin-2) mediates systemic clearance of hyaluronan and chondroitin sulfates from the vascular and lymphatic circulations. The internalized glycosaminoglycans are degraded in lysosomes, thus completing their normal turnover process. Sinusoidal endothelial cells of human liver, lymph node, and spleen express two HARE isoforms of 315 and 190 kDa. Here we report that the 190- and 315-kDa HARE isoforms, expressed stably either in Flp-In 293 cell lines or as soluble ectodomains, specifically bind heparin (Hep). The K(d) for Hep binding to purified 190- and 315-kDa HARE ectodomains was 17.2 +/- 4.9 and 23.4 +/- 5.3 nm, respectively. Cells expressing HARE readily and specifically internalized (125)I-streptavidin-biotin-Hep complexes, which was inhibited >70% by hyperosmolar conditions, confirming that uptake is mediated by the clathrin-coated pit pathway. Internalization of Hep occurred for many hours with an estimated HARE recycling time of approximately 12 min. Internalized fluorescent streptavidin-biotin-Hep was present in a typical endocytic vesicular pattern and was delivered to lysosomes. We conclude that HARE in the sinusoidal endothelial cells of lymph nodes and liver likely mediates the efficient systemic clearance of Hep and many different Hep-binding protein complexes from the lymphatic and vascular circulations.
Collapse
Affiliation(s)
- Edward N Harris
- Department of Biochemistry and Molecular Biology, and The Oklahoma Center for Medical Glycobiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73190, USA
| | | | | |
Collapse
|
5
|
Clustering endothelial E-selectin in clathrin-coated pits and lipid rafts enhances leukocyte adhesion under flow. Blood 2007; 111:1989-98. [PMID: 18029551 DOI: 10.1182/blood-2007-09-113423] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
During inflammation, E-selectin expressed on cytokine-activated endothelial cells mediates leukocyte rolling under flow. E-selectin undergoes endocytosis and may associate with lipid rafts. We asked whether distribution of E-selectin in membrane domains affects its functions. E-selectin was internalized in transfected CHO cells or cytokine-activated human umbilical vein endothelial cells (HUVECs). Confocal microscopy demonstrated colocalization of E-selectin with alpha-adaptin, a clathrin-associated protein. Deleting the cytoplasmic domain of E-selectin or disrupting clathrin-coated pits with hypertonic medium blocked internalization of E-selectin, reduced colocalization of E-selectin with alpha-adaptin, and inhibited E-selectin-mediated neutrophil rolling under flow. Unlike CHO cells, HUVECs expressed a small percentage of E-selectin in lipid rafts. Even fewer neutrophils rolled on E-selectin in HUVECs treated with hypertonic medium and with methyl-beta-cyclodextrin, which disrupts lipid rafts. These data demonstrate that E-selectin clusters in both clathrin-coated pits and lipid rafts of endothelial cells but is internalized in clathrin-coated pits. Distribution in both domains markedly enhances E-selectin's ability to mediate leukocyte rolling under flow.
Collapse
|
6
|
Harris EN, Kyosseva SV, Weigel JA, Weigel PH. Expression, processing, and glycosaminoglycan binding activity of the recombinant human 315-kDa hyaluronic acid receptor for endocytosis (HARE). J Biol Chem 2006; 282:2785-97. [PMID: 17145755 DOI: 10.1074/jbc.m607787200] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The hyaluronic acid (HA) receptor for endocytosis (HARE; also designated stabilin-2 and FEEL-2) mediates systemic clearance of glycosaminoglycans from the circulatory and lymphatic systems via coated pit-mediated uptake. HARE is primarily found as two isoforms (315- and 190-kDa) in sinusoidal endothelial cells of the liver, lymph node, and spleen. Here we characterize the ligand specificity and function of the large stably expressed 315-HARE isoform in Flp-In 293 cell lines. Like human spleen sinusoidal endothelial cells, Flp-In 293 cell lines transfected with a single cDNA encoding the full-length 315-HARE express both the 315-kDa and the proteolytically truncated 190-kDa isoforms in a ratio of approximately 3-4:1. The 190-kDa HARE isoform generated from the 315-kDa HARE and the 315-kDa HARE specifically bound 125I-HA. Like the 190-kDa HARE expressed alone (Harris, E. N., Weigel, J. A., and Weigel, P. H. (2004) J. Biol. Chem. 279, 36201-36209), the 190- and 315-kDa HARE isoforms expressed in 315-HARE cell lines were recognized by anti-HARE monoclonal antibodies 30, 154, and 159. All 315-HARE cell lines could endocytose and degrade 125I-HA. Competition studies with live cells indicate that 190-HARE and 315-HARE bind HA with higher apparent affinity (Kd approximately 10-20 nM) than chondroitin sulfate (CS) types A, C, D, or E. Only slight competition of HA endocytosis was observed with CS-B (dermatan sulfate) and chondroitin. Direct binding assays with the 315-HARE ectodomain revealed high affinity HA binding, and lower binding affinities for CS-C, CS-D, and CS-E. A majority of each HARE isoform was intracellular, within the endocytic system, suggesting transient surface residency typical of an active endocytic recycling receptor.
Collapse
Affiliation(s)
- Edward N Harris
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73190, USA
| | | | | | | |
Collapse
|
7
|
Vassiliou G, McPherson R. A novel efflux-recapture process underlies the mechanism of high-density lipoprotein cholesteryl ester-selective uptake mediated by the low-density lipoprotein receptor-related protein. Arterioscler Thromb Vasc Biol 2004; 24:1669-75. [PMID: 15178567 DOI: 10.1161/01.atv.0000134295.09932.60] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE To determine the mechanism of low-density lipoprotein (LDL) receptor-related protein (LRP)-mediated selective uptake of high-density lipoprotein (HDL)-derived cholesteryl esters (CE). METHODS AND RESULTS Apolipoprotein E (apoE) and heparin sulfate proteoglycans are required for LRP-mediated selective uptake in adipocytes. Furthermore, 2-deoxyglucose and NaN(3) abolish this process, indicating that cellular energy is required. LRP-mediated selective uptake is also abolished by monensin or when clathrin-mediated internalization is inhibited (using hypotonic, K(+)-free medium or hyperosmolar sucrose), clearly implicating receptor endocytosis. The receptor-associated protein (RAP), an inhibitor of ligand binding to LRP, reduced the transport of CE into an intracellular compartment but not into the plasma membrane. Remarkably, the CE that is ultimately transported by LRP first enters the plasma membrane then undergoes apoE-mediated CE efflux before being recaptured and internalized by LRP. CONCLUSIONS According to this "efflux-recapture" model, LRP contributes to selective uptake because it recovers CE that would normally be lost by efflux mediated by apoE. In adipocytes, the LDL receptor-related protein contributes to selective uptake when it recaptures and internalizes HDL-derived cholesteryl esters that are otherwise lost by apoE-mediated efflux. This novel "efflux-recapture" process explains some conflicting observations of selective uptake and underscores the bi-directional nature of efflux.
Collapse
Affiliation(s)
- Gerard Vassiliou
- Lipoprotein and Atherosclerosis Group, Lab H453, University of Ottawa Heart Institute, Ottawa ON K1Y 4W7, Canada.
| | | |
Collapse
|
8
|
Mousavi SA, Kjeken R, Berg TO, Seglen PO, Berg T, Brech A. Effects of inhibitors of the vacuolar proton pump on hepatic heterophagy and autophagy. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1510:243-57. [PMID: 11342162 DOI: 10.1016/s0005-2736(00)00354-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Bafilomycin A(1) (BAF) and concanamycin A (ConcA) are selective inhibitors of the H(+)-ATPases of the vacuolar system. We have examined the effects of these inhibitors on different steps in endocytic pathways in rat hepatocytes, using [(125)I]tyramine-cellobiose-labeled asialoorosomucoid ([(125)I]TC-AOM) and [(125)I]tyramine-cellobiose-labeled bovine serum albumin ([(125)I]TC-BSA) as probes for respectively receptor-mediated endocytosis and pinocytosis (here defined as fluid phase endocytosis). The effects of BAF and ConcA were in principle identical, although ConcA was more effective than BAF. The main findings were as follows. (1) BAF/ConcA reduced the rate of uptake of both [(125)I]TC-AOM and [(125)I]TC-BSA. The reduced uptake of [(125)I]TC-AOM was partly due to a redistribution of the asialoglycoprotein receptors (ASGPR) such that the number of surface receptors was reduced approximately 40% without a change in the total number of receptors. (2) BAF/ConcA at the same time increased retroendocytosis (recycling) of both probes. The increased recycling of the ligand ([(125)I]TC-AOM) is partly a consequence of the enhanced pH in endosomes, which prevents dissociation of ligand. (3) It was furthermore found that the ligand remained bound to the receptor in presence of BAF/ConcA and that the total amount of ligand molecules internalized in BAF/ConcA-treated cells was only slightly in excess of the total number of receptors. These data indicate that reduced pH in endosomes is the prime cause of receptor inactivation and release of ligand in early endosomes. (4) Subcellular fractionation experiments showed that [(125)I]TC-AOM remained in early endosomes, well separated from lysosomes in sucrose gradients. The fluid phase marker, [(125)I]TC-BSA, on the other hand, seemed to reach a later endosome in the BAF/ConcA-treated cells. This organelle coincided with lysosomes in the gradient, but hypotonic medium was found to selectively release a lysosomal enzyme (beta-acetylglucosaminidase), indicating that even [(125)I]TC-BSA remained in a prelysosomal compartment in the BAF/ConcA-treated cells. (5) Electron microscopy using horseradish peroxidase (HRP) as a fluid phase marker verified that BAF/ConcA inhibited transfer of material from late endosomes ('multivesicular bodies'). (6) BAF/ConcA led to accumulation of lactate dehydrogenase (LDH) in autophagic vacuoles, but although the drugs partly inhibited fusion between autophagosomes and lysosomes a number of autolysosomes was formed in the presence of BAF/ConcA. This observation explains the reduced buoyant density of lysosomes (revealed in sucrose density gradients). In conclusion, BAF/ConcA inhibit transfer of endocytosed material from late endosomes to lysosomes, but do not at the same time prevent fusion between autophagosomes and lysosomes.
Collapse
Affiliation(s)
- S A Mousavi
- Department of Biology, University of Oslo, Norway
| | | | | | | | | | | |
Collapse
|
9
|
Synnes M, Prydz K, Løvdal T, Brech A, Berg T. Fluid phase endocytosis and galactosyl receptor-mediated endocytosis employ different early endosomes. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1421:317-28. [PMID: 10518701 DOI: 10.1016/s0005-2736(99)00134-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Endocytosis may originate both in coated pits and in uncoated regions of the plasma membrane. In hepatocytes it has been shown that fluid phase endocytosis (here defined as 'pinocytosis') is unaffected by treatments that arrest coated pit-mediated endocytosis, indicating that pinocytosis is primarily a clathrin-independent process. In this study we have tried to determine possible connections between pinocytosis and clathrin-dependent endocytosis in rat hepatocytes by means of subcellular fractionation, electron microscopy, and by assessing the influence of inhibitors of clathrin-dependent endocytosis on pinocytosis. As marker for clathrin-dependent endocytosis was used asialoorosomucoid (AOM) labelled with [(125)I]tyramine cellobiose ([(125)I]TC). [(125)I]TC-labelled bovine serum albumin ([(125)I]TC-BSA) was found to be a useful marker for pinocytosis. Its uptake in the cells is not saturable, and any remnants of [(125)I]TC-BSA associated with the cell surface could be removed by incubating the cells with 0.3% pronase at 0 degrees C for 60 min. The data obtained by electron microscopy and by subcellular fractionation suggested that early after initiation of uptake (<15 min) [(125)I]TC-BSA and [(125)I]TC-AOM were present in different endocytic vesicles. The two probes probably join prior to their entrance in the lysosomal compartment. The relation between endocytosis via coated pits and pinocytosis was also studied with techniques that induced a selective density shift either in the clathrin-dependent pathway (by AOM-HRP) or in the pinocytic pathway (by allowing uptake of AuBSA). Both treatments indicated that the two probes ([(125)I]TC-AOM and [(125)I]TC-BSA) were early after uptake, at least partly, in separate endocytic compartments. The different distribution of the fluid phase marker and the ligand (internalised via coated pits) was not due to a difference in the rate at which they enter a later compartment, since a lowering of the incubation temperature to 18 degrees C, which should keep the probes in the early endosomes, did not affect their early density distribution. Incubation of cells in a hypertonic medium reduced uptake both of [(125)I]TC-AOM and [(125)I]TC-BSA; the uptake of [(125)I]TC-AOM was, however, reduced much more than that of the fluid phase marker. This finding supports the notion that the two probes enter the cells via different routes.
Collapse
Affiliation(s)
- M Synnes
- Division of Molecular Cell Biology, Institute of Biology, University of Oslo, P.O. Box 1050, Blindern, 0316, Oslo, Norway
| | | | | | | | | |
Collapse
|
10
|
Brech A, Kjeken R, Synnes M, Berg T, Roos N, Prydz K. Endocytosed ricin and asialoorosomucoid follow different intracellular pathways in hepatocytes. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1373:195-208. [PMID: 9733965 DOI: 10.1016/s0005-2736(98)00104-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Earlier studies have suggested that fluid phase endocytosis in rat hepatocytes takes place via a clathrin-independent mechanism [1,2]. This observation suggests that a relatively large amount of plasma membrane outside coated pits may be involved in hepatic endocytosis. Ricin, which binds to galactose residues on glycoproteins and glycolipids, has, in this report, been used as a general marker for the plasma membrane of hepatocytes. The endocytosis of ricin was compared with that of asialoorosomucoid (AOM) which is taken up exclusively via clathrin-coated pits. Hypertonic medium has been shown to inhibit uptake via coated pits more effectively than clathrin-independent uptake [3-5]. It was found, in this study, that the addition of 100 mM sucrose to the incubation medium inhibited the uptake of 125I-tyramine-cellobiose-asialoorosomucoid (125I-TC-AOM) more extensively than that of 125I-tyramine-cellobiose-ricin (125I-TC-ricin), compatible with the notion that the two probes are internalised via different mechanisms. Subcellular fractionation experiments indicated that 125I-TC-ricin entered a denser endocytic organelle than that receiving 125I-TC-AOM. To determine whether the separation of the two probes was due to a different transport kinetics (i.e. that 125I-TC-ricin is transported more rapidly to a later, denser compartment than 125I-TC-AOM) the cells were incubated at 18 degreesC to allow a slower internalisation/transport of the labelled probes. The results obtained showed, again, that the early endosomes containing 125I-TC-ricin were significantly denser than those containing 125I-TC-AOM. We also employed the horseradish peroxidase (HRP)-diaminobenzidine (DAB) density shift technique of Courtoy et al. [6] to determine whether 125I-TC-ricin and 125I-TC-AOM were in separate endosomes early after their uptake. The results showed that early endosomes containing 125I-TC-AOM were density shifted whereas those containing 125I-TC-ricin were unaffected by the density shift procedure. The use of probes labelled with 125I-TC allowed us to identify compartments involved in the degradation of 125I-TC-AOM and 125I-TC-ricin, by measuring acid soluble radioactivities in the gradient fractions. It was found that 125I-TC-ricin was degraded mainly in endosomes, whereas 125I-TC-AOM, as expected, was degraded mainly in lysosomes.
Collapse
Affiliation(s)
- A Brech
- University of Oslo, Department of Biology, Division of Molecular Cell Biology, Oslo, Norway
| | | | | | | | | | | |
Collapse
|
11
|
Casey CA, Wiegert RL, Tuma DJ. Effect of hyperosmolarity on both receptor-mediated and fluid-phase endocytosis in ethanol-fed animals. Biochem Pharmacol 1995; 49:1117-23. [PMID: 7748193 DOI: 10.1016/0006-2952(95)98509-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We have shown previously that chronic ethanol administration impairs hepatic receptor-mediated endocytosis (RME) of asialoorosomucoid (ASOR), epidermal growth factor and insulin, whereas early uptake by fluid-phase endocytosis (FPE) of a fluorescent dye, Lucifer Yellow (LY), is not altered. Results of these studies suggested that ethanol-induced injury was primarily affecting endocytosis in coated pit areas of the plasma membrane while internalization in noncoated membrane areas was unaffected. In the present study, we investigated the effects of blocking clathrin-coated pit mediated endocytosis by hyperosmolarity on FPE of LY and on RME of ASOR. We also examined the effects of hyperosmolarity on the binding and internalization of insulin, a ligand endocytosed by both RME and FPE. Uptake of LY by noncoated regions of the membrane was not altered in control animals, whereas in hepatocytes from ethanol-fed animals uptake of LY was decreased by 35-40% in the presence of 0.12 M sucrose (P < 0.05). These hyperosmolar conditions almost completely inhibited (> 85%) the endocytosis of 125I-ASOR by RME in both ethanol and control cells. Results with insulin showed slight effects (20-30% impairment) on uptake of the ligand in the presence of sucrose. These results are consistent with previous reports that in normal cells the coated pit pathway is impaired by hyperosmolarity, whereas endocytosis in noncoated regions is unaltered. It appears, however, that both FPE and RME in hepatocytes from ethanol-fed animals are susceptible to perturbation by hyperosmolarity. These results indicate that the noncoated pit pathway may be sensitive to stressful conditions such as hyperosmolarity after ethanol treatment.
Collapse
Affiliation(s)
- C A Casey
- Liver Study Unit, VA Medical Center, Omaha, NE 68105, USA
| | | | | |
Collapse
|
12
|
Affiliation(s)
- P H Weigel
- Department of Human Biological Chemistry and Genetics, University of Texas Medical Branch, Galveston 77555-0647
| |
Collapse
|
13
|
Frost SJ, Chen YM, Whitson PA. Atrial natriuretic peptide degradation by CPA47 cells: evidence for a divalent cation-independent cell-surface proteolytic activity. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1112:45-51. [PMID: 1420268 DOI: 10.1016/0005-2736(92)90252-h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Atrial natriuretic peptide (ANP) is rapidly cleared and degraded in vivo. Nonguanylate-cyclase receptors (C-ANPR) and a metalloproteinase, neutral endopeptidase (EC 3.4.24.11) (NEP 24.11), are thought to be responsible for its metabolism. We investigated the mechanisms of ANP degradation by an endothelial-derived cell line, CPA47. CPA47 cells degraded 88% of 125I-ANP after 1 h at 37 degrees C as determined by HPLC. Medium preconditioned by these cells degraded 41% of the 125I-ANP, and this activity was inhibited by a divalent cation chelator, EDTA. Furthermore, a cell-surface proteolytic activity degraded 125I-ANP in the presence of EDTA when receptor-mediated endocytosis was inhibited either by low temperature (4 degrees C) or by hyperosmolarity at 37 degrees C. The metalloproteinase, NEP 24.11, is unlikely to be the cell-surface peptidase because 125I-ANP is degraded by CPA47 cells at 4 degrees C in the presence of 5 mM EDTA. These data indicate that CPA47 cells can degrade ANP by a novel divalent cation-independent cell-surface proteolytic activity.
Collapse
Affiliation(s)
- S J Frost
- Biomedical Operations and Research Branch, NASA Johnson Space Center, Houston, TX 77058
| | | | | |
Collapse
|
14
|
Robertson BJ, Park RD, Snider MD. Role of vesicular traffic in the transport of surface transferrin receptor to the Golgi complex in cultured human cells. Arch Biochem Biophys 1992; 292:190-8. [PMID: 1727635 DOI: 10.1016/0003-9861(92)90067-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We have previously shown that transferrin receptor (TfR) recycles from the cell surface through the Golgi complex in K562 human leukemia cells. However, little is known about the transport pathway that carries these receptors to the Golgi complex. To learn more about this transport, we studied the effects of treatments that block specific types of vesicular traffic. K562 cells were cultured in test media and the transport of surface TfR to the Golgi complex was assessed by measuring the entry of asialo-TfR into the sialyltransferase compartment of the Golgi complex. Depletion of cellular potassium, which blocks formation of coated vesicles at the cell surface, stimulated asialo-TfR resialylation by 60% over controls, suggesting that coated vesicle formation is not the rate-limiting step in cell surface-to-Golgi transport. Similarly, culture in sodium-free medium, which blocks transport from endosomes to lysosomes, increased asialo-TfR resialylation by 40%, arguing that lysosomes do not lie on the transport pathway. In contrast, incubation of cells in hypertonic medium, which blocks many vesicular transport steps, inhibited TfR resialylation by 40%, confirming the importance of vesicular traffic in transport of asialo-TfR from the cell surface to the Golgi complex. These results are consistent with two possible pathways for cell surface-to-Golgi transport. Receptor could be transported via an endosomal intermediate, with the rate-limiting step occurring at a post-endosomal site. Alternatively, receptor could be transported directly to the Golgi via a pathway that does not involve endosomes.
Collapse
Affiliation(s)
- B J Robertson
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4935
| | | | | |
Collapse
|
15
|
Yannariello-Brown J, McGary CT, Weigel PH. The endocytic hyaluronan receptor in rat liver sinusoidal endothelial cells is Ca(+2)-independent and distinct from a Ca(+2)-dependent hyaluronan binding activity. J Cell Biochem 1992; 48:73-80. [PMID: 1374758 DOI: 10.1002/jcb.240480111] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Isolated and cultured rat liver sinusoidal endothelial cells (LECs) retain the ability to specifically bind 125I-hyaluronan (HA) and internalize it using a coated pit pathway [Biochem J, 257:875-884, 1989]. Here we have determined the effect of Ca+2 on the binding and endocytosis of HA by LECs. 125I-HA binding to intact LECs at 4 degrees C occurred both in the absence (10 mM EGTA) or the presence of physiologic concentrations of Ca+2 (1.8 mM). However, the specific binding of 125I-HA to LECs increased linearly with increasing Ca+2 concentrations. After permeabilization with the nonionic detergent digitonin, the Ca(+2)-independent HA binding activity increased approximately 743%, while the Ca(+2)-dependent binding activity was enhanced only approximately 46%. Therefore, the Ca(+2)-dependent HA binding activity appears not to be intracellular, whereas the Ca(+2)-independent HA receptor is found both inside LECs and on the cell surface. When LECs were allowed to endocytose 125I-HA at 37 degrees C in 10 mM EGTA or in 1.8 mM Ca+2, no differences were seen in the extent or rate of endocytosis. When LECs were allowed to endocytose 125I-HA in the presence of 10 mM Ca+2, the amount of cell-associated radioactivity increased approximately 20-50-fold. However, this additional cell-associated 125I-HA was not sensitive to hyperosmolarity and was removed by washing the cells in 10 mM EGTA at 4 degrees C. Therefore, the Ca(+2)-dependent cell-associated 125I-HA had accumulated on the cell surface and had not been internalized. From these studies we conclude that LECs have at least two types of specific HA binding sites.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- J Yannariello-Brown
- Department of Human Biological Chemistry and Genetics, University of Texas Medical Branch, Galveston 77550
| | | | | |
Collapse
|
16
|
Moss AL, Ward WF. Multiple pathways for ligand internalization in rat hepatocytes. II: Effect of hyperosmolarity and contribution of fluid-phase endocytosis. J Cell Physiol 1991; 149:319-23. [PMID: 1721074 DOI: 10.1002/jcp.1041490220] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In a companion report (Moss and Ward: J. Cell. Physiol 149:313-318, 1991) evidence was presented for multiple pathways for insulin internalization based on differences between the internalization of insulin and that of two other ligands, asialofetuin (Afet) and epidermal growth factor (EGF), in the presence of several perturbations of endocytosis. In the present study we have explored the characteristics of three internalization pathways and the contribution of each to overall insulin uptake. Freshly isolated hepatocytes were incubated with radiolabeled ligands in the presence of hyperosmolar sucrose, treatment that is thought to inhibit the coated pit pathway of endocytosis. Insulin internalization was decreased approximately 39%, but much greater decreases were observed with Afet (86%) and EGF (62%). Competition between uptake of radiolabeled and unlabeled insulin was observed in hyperosmolar-treated cells, suggestive of endocytosis by a receptor-mediated noncoated-pit pathway. Uptake of radiolabeled insulin that persisted in the presence of hyperosmolarity and high concentrations of unlabeled insulin suggested a third uptake pathway: fluid-phase endocytosis. A rate of fluid-phase endocytosis of 7.2 microL/hr/10(6) cells was determined from the uptake of the fluid-phase marker lucifer yellow. At high insulin concentrations (greater than or equal to 250 ng/ml), fluid-phase endocytosis appears to be the predominant pathway for insulin uptake, but at lower insulin concentrations (physiological) the coated pit and noncoated pit pathways are the primary routes for insulin internalization.
Collapse
Affiliation(s)
- A L Moss
- Department of Physiology, University of Texas Helath Science Center, San Antonio 78284-7756
| | | |
Collapse
|
17
|
Docherty PA, Snider MD. Effects of hypertonic and sodium-free medium on transport of a membrane glycoprotein along the secretory pathway in cultured mammalian cells. J Cell Physiol 1991; 146:34-42. [PMID: 1990018 DOI: 10.1002/jcp.1041460106] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Incubation of cultured cells in hypertonic medium and sodium-free medium have been shown to block transport at two different stages along the endocytic pathway. To determine the effects of these treatments on the exocytic pathway, we studied the transport of the membrane glycoprotein of vesicular stomatitis virus (VSV-G) in cells infected with tsO45 mutant virus. This mutant synthesizes a VSV-G that accumulates in the endoplasmic reticulum (ER) when cells are incubated at 39.5 degrees C. In addition, VSV-G accumulates in the post-ER pre-Golgi compartment when cells are incubated at 15 degrees C and in the trans-Golgi network (TGN) when cells are incubated at 18 degrees C. Upon transfer of cells to 32 degrees C in control medium, VSV-G exits each of these compartments and is transported to the cell surface. Incubation in sodium-free medium at 32 degrees C did not block transport from any of these three compartments. In contrast, incubation in hypertonic medium blocked export from the ER, transport from the pre-Golgi compartment to the Golgi complex, and transport from the TGN to the cell surface. Our results, in combination with previous studies, suggest that hypertonic medium blocks at least five distinct transport steps; the three exocytic steps described here, endocytosis from the cell surface, and transport of cell surface proteins into the Golgi complex. This raises the possibility that vesicular transport in different parts of the cell shares common elements that are inhibited by this treatment.
Collapse
Affiliation(s)
- P A Docherty
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | | |
Collapse
|
18
|
McAbee DD, Lear MC, Weigel PH. Total cellular activity and distribution of a subpopulation of galactosyl receptors in isolated rat hepatocytes are differentially affected by microtubule drugs, monensin, low temperature, and chloroquine. J Cell Biochem 1991; 45:59-68. [PMID: 1848563 DOI: 10.1002/jcb.240450113] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We studied the effects of low temperature (20-37 degrees C), monensin, chloroquine, and microtubule drugs on the cellular distribution and activity of galactosyl (Gal) receptors in isolated rat hepatocytes. After equilibration at 37 degrees C, hepatocytes were incubated at 37 degrees C, 31 degrees C, 25 degrees C, or 20 degrees C or treated with or without inhibitors at 37 degrees C in the absence of ligand. The cells were then assayed at 4 degrees C for 125I-asialo-orosomucoid binding, to measure receptor activity, or 125I-anti-Gal receptor IgG binding, to measure receptor protein. Surface or total (surface and intracellular) Gal receptor activity and protein were measured on intact or digitonin-permeabilized cells, respectively. These inhibitors fell into two categories. Type I inhibitors (sub-37 degrees C temperatures or colchicine) induced receptor redistribution but not inactivation. Treated cells lost up to 40% of surface Gal receptor activity and protein. Lost surface receptors were recovered intracellularly with no loss of receptor activity. Type II inhibitors (monensin or chloroquine) induced receptor inactivation but not redistribution. Treated cells lost 50-65% of their surface Gal receptor activity but only less than or equal to 15% of their surface receptor protein. These cells lost up to 60% of total cellular Gal receptor activity with no loss of total receptor protein. Of the total inactive Gal receptors, up to 50% and 75%, respectively, were present intracellularly in monensin- and chloroquine-treated cells. Loss of ligand binding to permeable treated cells was not due to changes in receptor affinity. A third category, Type III inhibitors (metabolic energy poisons that deplete ATP) induce both Gal receptor redistribution and inactivation (Biochemistry 27:2061, 1988). We conclude that only one of the two previously characterized subpopulations of Gal receptors on hepatocytes, termed State 2 receptors (J Biol Chem 265:629, 1990), recycles constitutively. The activity and distribution of State 2 but not State 1 Gal receptors are differentially affected by these specific drugs or treatments.
Collapse
Affiliation(s)
- D D McAbee
- Department of Human Biological Chemistry and Genetics, University of Texas Medical Branch, Galveston 77550
| | | | | |
Collapse
|
19
|
Ward DM, Kaplan J. The rate of internalization of different receptor-ligand complexes in alveolar macrophages is receptor-specific. Biochem J 1990; 270:369-74. [PMID: 1698058 PMCID: PMC1131731 DOI: 10.1042/bj2700369] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
To probe the mechanisms of endocytosis in alveolar macrophages, we examined the internalization rates of three different receptors. Initial rates of internalization for mannosylated BSA, diferric transferrin and alpha-macroglobulin-proteinase complexes were all different. Although the absolute rates of internalization varied depending on the cell preparation, transferrin was internalized at 10-20% and alpha-macroglobulin-proteinase complex at 40-60% of the rate of manosylated-BSA. Incubation of cells with transferrin did not affect the rate of internalization of mannosylated BSA or alpha-macroglobulin-proteinase complexes, and the rates of internalization were independent of receptor occupancy. These different internalization rates could not be ascribed to different rates of diacytosis. Altering the distribution of unoccupied surface receptors by either trypsin treatment of cells at 0 degree C or exposure to hyperosmotic solutions resulted in the absolute internalization rates being affected by the experimental condition, but the hierarchy in receptor internalization rates was maintained. The fact that a variety of conditions affect receptor internalization rates to the same degree implies the existence of co-ordinate regulation at a single rate-limiting step. Based on these results, we suggest that differences in internalization rate reflect the ability of ligand-receptor complexes to be captured by coated pits.
Collapse
Affiliation(s)
- D M Ward
- Department of Pathology, University of Utah Health Science Center, Salt Lake City 84132
| | | |
Collapse
|
20
|
McAbee DD, Clarke BL, Oka JA, Weigel PH. The surface activity of the same subpopulation of galactosyl receptors on isolated rat hepatocytes is modulated by colchicine, monensin, ATP depletion, and chloroquine. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)40096-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
21
|
Oka JA, Christensen MD, Weigel PH. Hyperosmolarity inhibits galactosyl receptor-mediated but not fluid phase endocytosis in isolated rat hepatocytes. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(18)80168-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
22
|
McAbee DD, Oka JA, Weigel PH. Loss of surface galactosyl receptor activity on isolated rat hepatocytes induced by monensin or chloroquine requires receptor internalization via a clathrin coated pit pathway. Biochem Biophys Res Commun 1989; 161:261-6. [PMID: 2567166 DOI: 10.1016/0006-291x(89)91589-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We studied the effect of hyperosmotic inhibition of the clathrin coated pit cycle on the monensin- and chloroquine-dependent loss of surface galactosyl (Gal) receptor activity on isolated rat hepatocytes. Cells treated for 60 min without ligand at 37 degrees C with 25 microM monensin or 300 microM chloroquine in normal medium (osmolality congruent to 275 mmol/kg) bound 40-60% less 125I-asialo-orosomucoid (ASOR) at 4 degrees C than untreated cells. Cells exposed to monensin or chloroquine retained progressively more surface Gal receptor activity, however, when the osmolality of the medium was increased above 400 mmol/kg (using sucrose as osmolite) 10 min prior to and during drug treatment. Cells pretreated for 10 min with hyperosmolal media (600 mmol/kg) alone internalized less than or equal to 10% of surface-bound 125I-ASOR. Thus, the ligand-independent loss of surface Gal receptor activity on monensin- and chloroquine-treated hepatocytes requires internalization of constitutively recycling receptors via a coated pit pathway.
Collapse
Affiliation(s)
- D D McAbee
- Department of Human Biological Chemistry and Genetics, University of Texas Medical Branch, Galveston 77550
| | | | | |
Collapse
|
23
|
Oka JA, Weigel PH. The pathways for fluid phase and receptor mediated endocytosis in rat hepatocytes are different but thermodynamically equivalent. Biochem Biophys Res Commun 1989; 159:488-94. [PMID: 2930524 DOI: 10.1016/0006-291x(89)90019-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In isolated rat hepatocytes fluid phase endocytosis, determined by the uptake of the fluorescent dye lucifer yellow (LY), and receptor mediated endocytosis, determined using a ligand for the asialoglycoprotein receptor (asialo-orosomucoid; ASOR), are different pathways based on their different sensitivities to hyperosmolarity induced by sucrose (Oka and Weigel, J. Cell. Biol. 105, 311a, 1987). LY uptake was unaffected by 0.2 M sucrose at all temperatures tested between 12 degrees and 37 degrees C whereas the uptake of 125I-ASOR was completely inhibited at any temperature. Since the two probes are taken up by different pathways it was possible to determine independently the activation energies (Ea) for the fluid phase versus the receptor mediated coated pit endocytic process. The Ea was 26.4 +/- 3.5 and 25.8 +/- 1.9 kcal/mole for, respectively, receptor mediated and fluid phase endocytosis. These values are not significantly different, and we conclude that the fluid phase and receptor mediated pathways are thermodynamically equivalent even though they are independent.
Collapse
Affiliation(s)
- J A Oka
- Department of Human Biological Chemistry and Genetics, University of Texas Medical Branch, Galveston 77550
| | | |
Collapse
|
24
|
McGary CT, Raja RH, Weigel PH. Endocytosis of hyaluronic acid by rat liver endothelial cells. Evidence for receptor recycling. Biochem J 1989; 257:875-84. [PMID: 2930491 PMCID: PMC1135669 DOI: 10.1042/bj2570875] [Citation(s) in RCA: 111] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Hyaluronic acid (HA) is cleared from the blood by liver endothelial cells through receptor-mediated endocytosis [Eriksson, Fraser, Laurent, Pertoft & Smedsrod (1983) Exp. Cell Res. 144, 223-238]. We have measured the capacity of cultured rat liver endothelial cells to endocytose and degrade 125I-HA (Mr approximately 44,000) at 37 degrees C. Endocytosis was linear for 3 h and then reached a plateau. The rate of endocytosis was concentration-dependent and reached a maximum of 250 molecules/s per cell. Endocytosis of 125I-HA was inhibited more than 92% by a 150-fold excess of non-radiolabelled HA. HA, chondroitin sulphate and heparin effectively competed for endocytosis of 125I-HA, whereas glucuronic acid, N-acetylglucosamine, DNA, RNA, polygalacturonic acid and dextran did not compete. In the absence of cycloheximide, endothelial cells processed 13 times more 125I-HA in 6 h than their total (cell-surface and intracellular) specific HA-binding capacity. This result was not due to degradation and rapid replacement of receptors, because, even in the presence of cycloheximide, these cells processed 6 times more HA than their total receptor content in 6 h. Also, in the presence of cycloheximide, no decrease in 125I-HA-binding capacity was seen in cells processing or not processing HA for 6 h, indicating that receptors are not degraded after the endocytosis of HA. During endocytosis of HA at 37 degrees C, at least 65% of the intracellular HA receptors became occupied with HA within 30 min. This indicates that the intracellular HA receptors (75% of the total) function during continuous endocytosis. Hyperosmolarity inhibits endocytosis and receptor recycling in the asialoglycoprotein and low-density-lipoprotein receptor systems by disrupting the coated-pit pathway [Heuser & Anderson (1987) J. Cell Biol. 105, 230a; Oka & Weigel (1988) J. Cell. Biochem. 36, 169-183]. Hyperosmolarity inhibited 125I-HA endocytosis in liver endothelial cells by more than 90%, suggesting use of a coated-pit pathway by this HA receptor. We conclude that liver endothelial cell HA receptors are recycled during the continuous endocytosis and processing of HA.
Collapse
Affiliation(s)
- C T McGary
- Department of Human Biological Chemistry and Genetics, University of Texas Medical Branch, Galveston 77550
| | | | | |
Collapse
|