1
|
Lim S. A Review of the Bacterial Phosphoproteomes of Beneficial Microbes. Microorganisms 2023; 11:microorganisms11040931. [PMID: 37110354 PMCID: PMC10145908 DOI: 10.3390/microorganisms11040931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/27/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
The number and variety of protein post-translational modifications (PTMs) found and characterized in bacteria over the past ten years have increased dramatically. Compared to eukaryotic proteins, most post-translational protein changes in bacteria affect relatively few proteins because the majority of modified proteins exhibit substoichiometric modification levels, which makes structural and functional analyses challenging. In addition, the number of modified enzymes in bacterial species differs widely, and degrees of proteome modification depend on environmental conditions. Nevertheless, evidence suggests that protein PTMs play essential roles in various cellular processes, including nitrogen metabolism, protein synthesis and turnover, the cell cycle, dormancy, spore germination, sporulation, persistence, and virulence. Additional investigations on protein post-translational changes will undoubtedly close knowledge gaps in bacterial physiology and create new means of treating infectious diseases. Here, we describe the role of the post-translation phosphorylation of major bacterial proteins and review the progress of research on phosphorylated proteins depending on bacterial species.
Collapse
Affiliation(s)
- Sooa Lim
- Department of Pharmaceutical Engineering, Hoseo University, Asan-si 31499, Republic of Korea
| |
Collapse
|
2
|
Kang D, Ham HI, Lee SH, Cho YJ, Kim YR, Yoon CK, Seok YJ. Functional dissection of the phosphotransferase system provides insight into the prevalence of Faecalibacterium prausnitzii in the host intestinal environment. Environ Microbiol 2021; 23:4726-4740. [PMID: 34296500 DOI: 10.1111/1462-2920.15681] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/20/2021] [Accepted: 07/19/2021] [Indexed: 01/09/2023]
Abstract
Faecalibacterium prausnitzii is a dominant member of healthy human colon microbiota, regarded as a beneficial gut bacterium due to its ability to produce anti-inflammatory substances. However, little is known about how F. prausnitzii utilizes the nutrients present in the human gut, influencing its prevalence in the host intestinal environment. The phosphoenolpyruvate (PEP):carbohydrate phosphotransferase system (PTS) is a widely distributed and highly efficient carbohydrate transport system found in most bacterial species that catalyses the simultaneous phosphorylation and import of cognate carbohydrates; its components play physiological roles through interaction with other regulatory proteins. Here, we performed a systematic analysis of the 16 genes encoding putative PTS components (2 enzyme I, 2 HPr, and 12 enzyme II components) in F. prausnitzii A2-165. We identified the general PTS components responsible for the PEP-dependent phosphotransfer reaction and the sugar-specific PTS components involved in the transport of two carbohydrates, N-acetylglucosamine and fructose, among five enzyme II complexes. We suggest that the dissection of the functional PTS in F. prausnitzii may help to understand how this species outcompetes other bacterial species in the human intestine.
Collapse
Affiliation(s)
- Deborah Kang
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyeong-In Ham
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seung-Hwan Lee
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yong-Joon Cho
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yeon-Ran Kim
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Chang-Kyu Yoon
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yeong-Jae Seok
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
3
|
Robertsson C, Svensäter G, Blum Z, Wickström C. Intracellular Ser/Thr/Tyr phosphoproteome of the oral commensal Streptococcus gordonii DL1. BMC Microbiol 2020; 20:280. [PMID: 32928109 PMCID: PMC7488673 DOI: 10.1186/s12866-020-01944-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/11/2020] [Indexed: 12/28/2022] Open
Abstract
Background To respond and adapt to environmental challenges, prokaryotes regulate cellular processes rapidly and reversibly through protein phosphorylation and dephosphorylation. This study investigates the intracellular proteome and Ser/Thr/Tyr phosphoproteome of the oral commensal Streptococcus gordonii. Intracellular proteins from planktonic cells of S. gordonii DL1 were extracted and subjected to 2D-gel electrophoresis. Proteins in general were visualized using Coomassie Brilliant Blue and T-Rex staining. Phosphorylated proteins were visualized with Pro-Q Diamond Phosphoprotein Gel Stain. Proteins were identified by LC-MS/MS and sequence analysis. Results In total, sixty-one intracellular proteins were identified in S. gordonii DL1, many of which occurred at multiple isoelectric points. Nineteen of these proteins were present as one or more Ser/Thr/Tyr phosphorylated form. The identified phosphoproteins turned out to be involved in a variety of cellular processes. Conclusion Nineteen phosphoproteins involved in various cellular functions were identified in S. gordonii. This is the first time the global intracellular Ser/Thr/Tyr phosphorylation profile has been analysed in an oral streptococcus. Comparison with phosphoproteomes of other species from previous studies showed many similarities. Proteins that are consistently found in a phosphorylated state across several species and growth conditions may represent a core phosphoproteome profile shared by many bacteria.
Collapse
Affiliation(s)
- Carolina Robertsson
- Department of Oral Biology and Pathology, Faculty of Odontology, Malmö University, 20506, Malmö, Sweden.
| | - Gunnel Svensäter
- Department of Oral Biology and Pathology, Faculty of Odontology, Malmö University, 20506, Malmö, Sweden
| | - Zoltan Blum
- Department of Biomedical Science, Malmö University, 20506, Malmö, Sweden
| | - Claes Wickström
- Department of Oral Biology and Pathology, Faculty of Odontology, Malmö University, 20506, Malmö, Sweden
| |
Collapse
|
4
|
Pleiotropic Regulation of Virulence Genes in Streptococcus mutans by the Conserved Small Protein SprV. J Bacteriol 2017; 199:JB.00847-16. [PMID: 28167518 DOI: 10.1128/jb.00847-16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 01/30/2017] [Indexed: 12/27/2022] Open
Abstract
Streptococcus mutans, an oral pathogen associated with dental caries, colonizes tooth surfaces as polymicrobial biofilms known as dental plaque. S. mutans expresses several virulence factors that allow the organism to tolerate environmental fluctuations and compete with other microorganisms. We recently identified a small hypothetical protein (90 amino acids) essential for the normal growth of the bacterium. Inactivation of the gene, SMU.2137, encoding this protein caused a significant growth defect and loss of various virulence-associated functions. An S. mutans strain lacking this gene was more sensitive to acid, temperature, osmotic, oxidative, and DNA damage-inducing stresses. In addition, we observed an altered protein profile and defects in biofilm formation, bacteriocin production, and natural competence development, possibly due to the fitness defect associated with SMU.2137 deletion. Transcriptome sequencing revealed that nearly 20% of the S. mutans genes were differentially expressed upon SMU.2137 deletion, thereby suggesting a pleiotropic effect. Therefore, we have renamed this hitherto uncharacterized gene as sprV (streptococcal pleiotropic regulator of virulence). The transcript levels of several relevant genes in the sprV mutant corroborated the phenotypes observed upon sprV deletion. Owing to its highly conserved nature, inactivation of the sprV ortholog in Streptococcus gordonii also resulted in poor growth and defective UV tolerance and competence development as in the case of S. mutans Our experiments suggest that SprV is functionally distinct from its homologs identified by structure and sequence homology. Nonetheless, our current work is aimed at understanding the importance of SprV in the S. mutans biology.IMPORTANCEStreptococcus mutans employs several virulence factors and stress resistance mechanisms to colonize tooth surfaces and cause dental caries. Bacterial pathogenesis is generally controlled by regulators of fitness that are critical for successful disease establishment. Sometimes these regulators, which are potential targets for antimicrobials, are lost in the genomic context due to the lack of annotated homologs. This work outlines the regulatory impact of a small, highly conserved hypothetical protein, SprV, encoded by S. mutans We show that SprV affects the transcript levels of various virulence factors required for normal growth, biofilm formation, stress tolerance, genetic competence, and bacteriocin production.
Collapse
|
5
|
Global dynamics of Escherichia coli phosphoproteome in central carbon metabolism under changing culture conditions. J Proteomics 2015; 126:24-33. [DOI: 10.1016/j.jprot.2015.05.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 05/13/2015] [Accepted: 05/20/2015] [Indexed: 12/25/2022]
|
6
|
Yan J, Zou W, Fang J, Huang X, Gao F, He Z, Zhang K, Zhao N. Eukaryote-like Ser/Thr protein kinase PrkA modulates sporulation via regulating the transcriptional factor σ(K) in Bacillus subtilis. Front Microbiol 2015; 6:382. [PMID: 25983726 PMCID: PMC4415436 DOI: 10.3389/fmicb.2015.00382] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 04/14/2015] [Indexed: 12/31/2022] Open
Abstract
Protein kinase A (PrkA), also known as AMP-activated protein kinase, functions as a serine/threonine protein kinase (STPK), has been shown to be involved in a variety of important biologic processes, including pathogenesis of many important diseases in mammals. However, the biological functions of PrkA are less known in prokaryote cells. Here, we explored the function of PrkA as well as its underlying molecular mechanisms using the model bacterium Bacillus subtilis168. When PrkA is inhibited by 9-β-D-arabinofuranosyladenine (ara-A) in the wild type strain or deleted in the ΔprkA mutant strain, we observed sporulation defects in B. subtilis 168, suggesting that PrkA functions as a sporulation-related protein. Transcriptional analysis using the lacZ reporter gene demonstrated that deletion of prkA significantly reduced the expression of the transcriptional factor σ(K) and its downstream genes. Complementation of sigK gene in prkA knockout mutant partially rescued the phenotype of ΔprkA, further supporting the hypothesis that the decreased σ(K) expression should be one of the reasons for the sporulation defect resulting from prkA disruption. Finally, our data confirmed that Hpr (ScoC) negatively controlled the expression of transcriptional factor σ(K), and thus PrkA accelerated sporulation and the expression of σ(K) by suppression of Hpr (ScoC). Taken together, our study discovered a novel function of the eukaryotic-like STPK PrkA in spore development as well as its underlying molecular mechanism in B. subtilis.
Collapse
Affiliation(s)
- Jinyuan Yan
- Laboratory for Conservation and Utilization of Bio-Resources, and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University Kunming, China
| | - Wei Zou
- Laboratory for Conservation and Utilization of Bio-Resources, and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University Kunming, China
| | - Juan Fang
- Laboratory for Conservation and Utilization of Bio-Resources, and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University Kunming, China
| | - Xiaowei Huang
- Laboratory for Conservation and Utilization of Bio-Resources, and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University Kunming, China
| | - Feng Gao
- Laboratory for Conservation and Utilization of Bio-Resources, and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University Kunming, China
| | - Zeying He
- Laboratory for Conservation and Utilization of Bio-Resources, and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University Kunming, China
| | - Keqin Zhang
- Laboratory for Conservation and Utilization of Bio-Resources, and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University Kunming, China
| | - Ninghui Zhao
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical College Kunming, China
| |
Collapse
|
7
|
Napper S, Prasad L, Delbaere LTJ. Structural investigation of a phosphorylation-catalyzed, isoaspartate-free, protein succinimide: crystallographic structure of post-succinimide His15Asp histidine-containing protein. Biochemistry 2008; 47:9486-96. [PMID: 18702519 PMCID: PMC2732578 DOI: 10.1021/bi800847a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Aspartates and asparagines can spontaneously cyclize with neighboring main-chain amides to form succinimides. These succinimides hydrolyze to a mixture of isoaspartate and aspartate products. Phosphorylation of aspartates is a common mechanism of protein regulation and increases the propensity for succinimide formation. Although typically regarded as a form of protein damage, we hypothesize succinimides could represent an effective mechanism of phosphoaspartate autophosphatase activity, provided hydrolysis is limited to aspartate products. We previously reported the serendipitous creation of a protein, His15Asp histidine-containing protein (HPr), which undergoes phosphorylation-catalyzed formation of a succinimide whose hydrolysis is seemingly exclusive for aspartate formation. Here, through the high-resolution structure of postsuccinimide His15Asp HPr, we confirm the absence of isoaspartate residues and propose mechanisms for phosphorylation-catalyzed succinimide formation and its directed hydrolysis to aspartate. His15Asp HPr represents the first characterized protein example of an isoaspartate-free succinimide and lends credence to the hypothesis that intramolecular cyclization could represent a physiological mechanism of autophosphatase activity. Furthermore, this indicates that current strategies for succinimide evaluation, based on isoaspartate detection, underestimate the frequencies of these reactions. This is considerably significant for evaluation of protein stability and integrity.
Collapse
Affiliation(s)
- Scott Napper
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E3, Canada.
| | | | | |
Collapse
|
8
|
Casabon I, Couture M, Vaillancourt K, Vadeboncoeur C. Synthesis of HPr(Ser-P)(His-P) by enzyme I of the phosphoenolpyruvate: sugar phosphotransferase system of Streptococcus salivarius. Biochemistry 2006; 45:6692-702. [PMID: 16716080 DOI: 10.1021/bi060278p] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
HPr is a protein of the bacterial phosphoenolpyruvate:sugar phosphotransferase transport system (PTS). In Gram-positive bacteria, HPr can be phosphorylated on Ser(46) by HPr(Ser) kinase/phosphorylase (HPrK/P) and on His(15) by enzyme I (EI) of the PTS. In vitro studies have shown that phosphorylation on one residue greatly inhibits the second phosphorylation. However, streptococci contain significant amounts of HPr(Ser-P)(His approximately P) during exponential growth, and recent studies suggest that phosphorylation of HPr(Ser-P) by EI is involved in the recycling of HPr(Ser-P)(His approximately P). We report in this paper a study on the phosphorylation of Streptococcus salivarius HPr, HPr(Ser-P), and HPr(S46D) by EI. Our results indicate that (i) the specificity constant (k(cat)/K(m)) of EI for HPr(Ser-P) at pH 7.9 was approximately 5000-fold smaller than that observed for HPr, (ii) no metabolic intermediates were able to stimulate HPr(Ser-P) phosphorylation, (iii) the rate of HPr phosphorylation decreased at pHs below 6.5, while that of HPr(Ser-P) increased and was almost 10-fold higher at pH 6.1 than at pH 7.9, (iv) HPr(S46D), a mutated HPr alleged to mimic HPr(Ser-P), was also phosphorylated more efficiently under acidic conditions, and, lastly, (v) phosphorylation of Bacillus subtilis HPr(Ser-P) by B. subtilis EI was also stimulated at acidic pH. Our results suggest that the high levels of HPr(Ser-P)(His approximately P) in streptococci result from the combination of two factors, a high physiological concentration of HPr(Ser-P) and stimulation of HPr(Ser-P) phosphorylation by EI at acidic pH, an intracellular condition that occurs in response to the acidification of the external medium during growth of the culture.
Collapse
Affiliation(s)
- Israël Casabon
- Groupe de Recherche en Ecologie Buccale (GREB), Faculté de Médecine Dentaire, and Département de Biochimie et de Microbiologie, Faculté des Sciences et de Génie, Université Laval, Quebec City, Quebec, Canada G1K 7P4
| | | | | | | |
Collapse
|
9
|
Nothaft H, Parche S, Kamionka A, Titgemeyer F. In vivo analysis of HPr reveals a fructose-specific phosphotransferase system that confers high-affinity uptake in Streptomyces coelicolor. J Bacteriol 2003; 185:929-37. [PMID: 12533468 PMCID: PMC142823 DOI: 10.1128/jb.185.3.929-937.2003] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
HPr, the histidine-containing phosphocarrier protein of the bacterial phosphotransferase system (PTS), serves multiple functions in carbohydrate uptake and carbon source regulation in low-G+C-content gram-positive bacteria and in gram-negative bacteria. To assess the role of HPr in the high-G+C-content gram-positive organism Streptomyces coelicolor, the encoding gene, ptsH, was deleted. The ptsH mutant BAP1 was impaired in fructose utilization, while growth on other carbon sources was not affected. Uptake assays revealed that BAP1 could not transport appreciable amounts of fructose, while the wild type showed inducible high-affinity fructose transport with an apparent K(m) of 2 microM. Complementation and reconstitution experiments demonstrated that HPr is indispensable for a fructose-specific PTS activity. Investigation of the putative fruKA gene locus led to identification of the fructose-specific enzyme II permease encoded by the fruA gene. Synthesis of HPr was not specifically enhanced in fructose-grown cells and occurred also in the presence of non-PTS carbon sources. Transcriptional analysis of ptsH revealed two promoters that are carbon source regulated. In contrast to what happens in other bacteria, glucose repression of glycerol kinase was still operative in a ptsH background, which suggests that HPr is not involved in general carbon regulation. However, fructose repression of glycerol kinase was lost in BAP1, indicating that the fructose-PTS is required for transduction of the signal. This study provides the first molecular genetic evidence of a physiological role of the PTS in S. coelicolor.
Collapse
Affiliation(s)
- Harald Nothaft
- Lehrstuhl für Mikrobiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstrasse 5, D-91058 Erlangen, Germany
| | | | | | | |
Collapse
|
10
|
Wen ZT, Burne RA. Analysis of cis- and trans-acting factors involved in regulation of the Streptococcus mutans fructanase gene (fruA). J Bacteriol 2002; 184:126-33. [PMID: 11741852 PMCID: PMC134753 DOI: 10.1128/jb.184.1.126-133.2002] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2001] [Accepted: 09/28/2001] [Indexed: 11/20/2022] Open
Abstract
There are two primary levels of control of the expression of the fructanase gene (fruA) of Streptococcus mutans: induction by levan, inulin, or sucrose and repression in the presence of glucose and other readily metabolized sugars. The goals of this study were to assess the functionality of putative cis-acting regulatory elements and to begin to identify the trans-acting factors involved in induction and catabolite repression of fruA. The fruA promoter and its derivatives generated by deletions and/or site-directed mutagenesis were fused to a promoterless chloramphenicol acetyltransferase (CAT) gene as a reporter, and strains carrying the transcriptional fusions were then analyzed for CAT activities in response to growth on various carbon sources. A dyadic sequence, ATGACA(TC)TGTCAT, located at -72 to -59 relative to the transcription initiation site was shown to be essential for expression of fruA. Inactivation of the genes that encode fructose-specific enzymes II resulted in elevated expression from the fruA promoter, suggesting negative regulation of fruA expression by the fructose phosphotransferase system. Mutagenesis of a terminator-like structure located in the 165-base 5' untranslated region of the fruA mRNA or insertional inactivation of antiterminator genes revealed that antitermination was not a mechanism controlling induction or repression of fruA, although the untranslated leader mRNA may play a role in optimal expression of fructanase. Deletion or mutation of a consensus catabolite response element alleviated glucose repression of fruA, but interestingly, inactivation of the ccpA gene had no discernible effect on catabolite repression of fruA. Accumulating data suggest that expression of fruA is regulated by a mechanism that has several unique features that distinguish it from archetypical polysaccharide catabolic operons of other gram-positive bacteria.
Collapse
Affiliation(s)
- Zezhang T Wen
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida 32610, USA
| | | |
Collapse
|
11
|
Rogers JD, Scannapieco FA. RegG, a CcpA homolog, participates in regulation of amylase-binding protein A gene (abpA) expression in Streptococcus gordonii. J Bacteriol 2001; 183:3521-5. [PMID: 11344161 PMCID: PMC99651 DOI: 10.1128/jb.183.11.3521-3525.2001] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2000] [Accepted: 01/12/2001] [Indexed: 11/20/2022] Open
Abstract
The amylase-binding protein A (AbpA) of Streptococcus gordonii was found to be undetectable in supernatants of mid-log-phase cultures containing >1% glucose but abundant in supernatants of cultures made with brain heart infusion (BHI), which contains 0.2% glucose. A 10-fold decrease in the level of abpA mRNA in S. gordonii cells cultured in BHI was noted after the addition of glucose to 1%. Analysis of the abpA sequence revealed a potential catabolite responsive element CRE 153 bp downstream of the putative translational start site. A catabolite control protein A gene (ccpA) homolog from S. gordonii, designated regG, was cloned. A regG mutant strain demonstrated moderately less repression of abpA transcription in the presence of 1% glucose. Diauxic growth with glucose and lactose was not affected in the RegG mutant compared to the wild-type parental strain. These results suggest that while RegG plays a role in abpA expression, other mechanisms of catabolite repression are present.
Collapse
Affiliation(s)
- J D Rogers
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, Buffalo, NY 14214, USA
| | | |
Collapse
|
12
|
Rechinger KB, Siegumfeldt H, Svendsen I, Jakobsen M. "Early" protein synthesis of Lactobacillus delbrueckii ssp. bulgaricus in milk revealed by [35S] methionine labeling and two-dimensional gel electrophoresis. Electrophoresis 2000; 21:2660-9. [PMID: 10949143 DOI: 10.1002/1522-2683(20000701)21:13<2660::aid-elps2660>3.0.co;2-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The proteomes of exponentially growing and stationary cells of Lactobacillus delbrueckii ssp. bulgaricus grown in rich medium (MRS) were separated by two-dimensional polyacrylamide gel electrophoresis (2-DE) and quantified after Coomassie staining. Stationary cells grown in MRS were inoculated in reconstituted skim milk, and "early" protein synthesis during the first 30 min of fermentation in milk was monitored by [35S]methionine labeling and 2-DE. In contrast to exponentially growing or stationary cells, the predominant "early" proteins were small (< 15 kDa) and of low pI (< 5.3). Quantification of the proteome of the "early" lag phase based on 47 "spots" revealed that only three "early" proteins accounted for more than 80% of the total label. They were identified as pI 4.7 and 4.9 isoforms of the heat-stable phosphoryl carrier protein (HPr) with 45.2 and 9.4% of total label, respectively, and an unknown protein called EPr1 ("early" protein 1) with 26.6% of total label. Although an N-terminal sequence of 19 amino acids was obtained, no homologs to EPr1 could be found. De novo synthesis of the 10 and 60 kDa heat shock proteins (GroES and GroEL) was considerably lower (0.04 and 0.9% of total label, respectively), indicating only low levels of stress. Synthesis of triosephosphate isomerase (Tpi) as marker for glycolytic enzymes reached only 0.08% of total label. Our results demonstrate that inoculation in milk, resulting in a change from glucose to lactose as carbon source, imposes only little need for synthesis of stress or glycolytic enzymes, as sufficient proteins are present in the stationary, MRS-grown cells. The high level of expression of the pI 4.7 isoform of HPr suggests a regulatory function of the presumed Ser-46 phosphorylated form of HPr.
Collapse
Affiliation(s)
- K B Rechinger
- Department of Dairy and Food Science, The Royal Veterinary and Agricultural University, Frederiksberg, Denmark.
| | | | | | | |
Collapse
|
13
|
Weaver CA, Chen YYM, Burne RA. Inactivation of the ptsI gene encoding enzyme I of the sugar phosphotransferase system of Streptococcus salivarius: effects on growth and urease expression. MICROBIOLOGY (READING, ENGLAND) 2000; 146 ( Pt 5):1179-1185. [PMID: 10832646 DOI: 10.1099/00221287-146-5-1179] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The urease genes of Streptococcus salivarius 57.1 are tightly repressed in cells growing at neutral pH. When cells are cultivated at acidic pH values, the urease genes become derepressed and transcription is enhanced when cells are growing under carbohydrate-excess conditions. Previously, the authors proposed that the bacterial sugar:phosphotransferase system (PTS) modulated the DNA-binding activity by phosphorylation of the urease repressor when carbohydrate was limiting. The purpose of this study was to assess whether enzyme I (EI) of the PTS could be involved in modulating urease expression in response to carbohydrate availability. An EI-deficient strain (ptsI18-3) of S. salivarius 57.1 was constructed by insertional inactivation of the ptsI gene. The mutant had no measurable PTS activity and lacked EI, as assessed by Western analysis. The mutant grew as well as the wild-type strain on the non-PTS sugar lactose, and grew better than the parent when another non-PTS sugar, galactose, was the sole carbohydrate. The mutant was able to grow with glucose as the sole carbohydrate, but displayed a 24 h lag time and had a generation time some threefold longer than strain 57.1. The mean OD600 attained after 48 h by ptsI18-3 supplied with fructose was 0.16, with no additional growth observed even after 3 d. Urease expression in the wild-type and mutant strains was assessed in continuous chemostat culture. Repression of urease at neutral pH was seen in both strains under all conditions tested. Growth of wild-type cells on limiting concentrations of lactose resulted in very low levels of urease expression compared with growth on PTS sugars. In contrast, under similar conditions, urease expression in ptsI18-3 was restored to levels seen in the parent growing on PTS sugars. Growth under conditions of lactose excess resulted in further derepression of urease, but ptsI18-3 expressed about threefold higher urease activity than 57.1. The results support a role for EI in urease regulation, but also indicate that additional factors may be important in regulating urease gene expression.
Collapse
Affiliation(s)
- Cheryl A Weaver
- Department of Microbiology and Immunology and Center for Oral Biology, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, USA1
| | - Yi-Ywan M Chen
- Department of Microbiology and Immunology and Center for Oral Biology, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, USA1
| | - Robert A Burne
- Department of Microbiology and Immunology and Center for Oral Biology, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, USA1
| |
Collapse
|
14
|
Huynh PL, Jankovic I, Schnell NF, Brückner R. Characterization of an HPr kinase mutant of Staphylococcus xylosus. J Bacteriol 2000; 182:1895-902. [PMID: 10714994 PMCID: PMC101872 DOI: 10.1128/jb.182.7.1895-1902.2000] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/1999] [Accepted: 12/29/1999] [Indexed: 11/20/2022] Open
Abstract
The Staphylococcus xylosus gene hprK, encoding HPr kinase (HPrK), has been isolated from a genomic library. The HPrK enzyme, purified as a His(6) fusion protein, phosphorylated HPr, the phosphocarrier protein of the bacterial phosphotransferase system, at a serine residue in an ATP-dependent manner, and it also catalyzed the reverse reaction. Therefore, the enzyme constitutes a bifunctional HPr kinase/phosphatase. Insertional inactivation of the gene in the genome of S. xylosus resulted in the concomitant loss of both HPr kinase and His serine-phosphorylated-HPr phosphatase activities in cell extracts, strongly indicating that the HPrK enzyme is also responsible for both reactions in vivo. HPrK deficiency had a profound pleiotropic effect on the physiology of S. xylosus. The hprK mutant strain showed a severe growth defect in complex medium upon addition of glucose. Glucose uptake in glucose-grown cells was strongly enhanced compared with the wild type. Carbon catabolite repression of three tested enzyme activities by glucose, sucrose, and fructose was abolished. These results clearly demonstrate the prominent role of HPr kinase in global control to adjust catabolic capacities of S. xylosus according to the availability of preferred carbon sources.
Collapse
Affiliation(s)
- P L Huynh
- Mikrobielle Genetik, Universität Tübingen, D-72076 Tübingen, Germany
| | | | | | | |
Collapse
|
15
|
Yebra MJ, Veyrat A, Santos MA, Pérez-Martínez G. Genetics of L-sorbose transport and metabolism in Lactobacillus casei. J Bacteriol 2000; 182:155-63. [PMID: 10613875 PMCID: PMC94252 DOI: 10.1128/jb.182.1.155-163.2000] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genes encoding L-sorbose metabolism of Lactobacillus casei ATCC 393 have been identified on a 6.8-kb chromosomal DNA fragment. Sequence analysis revealed seven complete genes and a partial open reading frame transcribed as two units. The deduced amino acid sequences of the first transcriptional unit (sorRE) showed high similarity to the transcriptional regulator and the L-sorbose-1-phosphate reductase of the sorbose (sor) operon from Klebsiella pneumoniae. The other genes are transcribed as one unit (sorFABCDG) in opposite direction to sorRE. The deduced peptide sequence of sorF showed homology with the D-sorbitol-6-phosphate dehydrogenase encoded in the sor operon from K. pneumoniae and sorABCD to components of the mannose phosphotransferase system (PTS) family but especially to domains EIIA, EIIB, EIIC and EIID of the phosphoenolpyruvate-dependent L-sorbose PTS from K. pneumoniae. Finally, the deduced amino acid sequence of a truncated gene (sorG) located downstream of sorD presented high similarity with ketose-1,6-bisphosphate aldolases. Results of studies on enzyme activities and transcriptional analysis revealed that the two gene clusters, sorRE and sorFABCDG, are induced by L-sorbose and subject to catabolite repression by D-glucose. Data indicating that the catabolite repression is mediated by components of the PTS elements and by CcpA, are presented. Results of sugar uptake assays in L. casei wild-type and sorBC mutant strains indicated that L-sorbose is taken up by L-sorbose-specific enzyme II and that L. casei contains an inducible D-fructose-specific PTS. Results of growth analysis of those strains and a man sorBC double mutant suggested that L-sorbose is probably also transported by the D-mannose PTS. We also present evidence, from studies on a sorR mutant, suggesting that the sorR gene encodes a positive regulator of the two sor operons. Sequence alignment of SorR, SorC (K. pneumoniae), and DeoR (Bacillus subtilis) revealed that they might constitute a new group of transcriptional regulators.
Collapse
Affiliation(s)
- M J Yebra
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos, CSIC, 46100 Burjassot, Spain
| | | | | | | |
Collapse
|
16
|
Parche S, Schmid R, Titgemeyer F. The phosphotransferase system (PTS) of Streptomyces coelicolor identification and biochemical analysis of a histidine phosphocarrier protein HPr encoded by the gene ptsH. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 265:308-17. [PMID: 10491187 DOI: 10.1046/j.1432-1327.1999.00727.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
HPr, the histidine-containing phosphocarrier protein of the bacterial phosphotransferase system (PTS) controls sugar uptake and carbon utilization in low-GC Gram-positive bacteria and in Gram-negative bacteria. We have purified HPr from Streptomyces coelicolor cell extracts. The N-terminal sequence matched the product of an S. coelicolor orf, designated ptsH, sequenced as part of the S. coelicolor genome sequencing project. The ptsH gene appears to form a monocistronic operon. Determination of the evolutionary relationship revealed that S. coelicolor HPr is equally distant to all known HPr and HPr-like proteins. The presumptive phosphorylation site around histidine 15 is perfectly conserved while a second possible phosphorylation site at serine 47 is not well-conserved. HPr was overproduced in Escherichia coli in its native form and as a histidine-tagged fusion protein. Histidine-tagged HPr was purified to homogeneity. HPr was phosphorylated by its own enzyme I (EI) and heterologously phosphorylated by EI of Bacillus subtilis and Staphylococcus aureus, respectively. This phosphoenolpyruvate-dependent phosphorylation was absent in an HPr mutant in which histidine 15 was replaced by alanine. Reconstitution of the fructose-specific PTS demonstrated that HPr could efficiently phosphorylate enzyme IIFructose. HPr-P could also phosphorylate enzyme IIGlucose of B. subtilis, enzyme IILactose of S. aureus, and IIAMannitol of E. coli. ATP-dependent phosphorylation was detected with HPr kinase/phosphatase of B. subtilis. These results present the first identification of a gene of the PTS complement of S. coelicolor, providing the basis to elucidate the role(s) of HPr and the PTS in this class of bacteria.
Collapse
Affiliation(s)
- S Parche
- Lehrstuhl für Mikrobiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | | |
Collapse
|
17
|
Abstract
Signal transduction in microorganisms and plants is often mediated by His-Asp phosphorelay systems. Two conserved families of proteins are centrally involved: histidine protein kinases and phospho-aspartyl response regulators. The kinases generally function in association with sensory elements that regulate their activities in response to environmental signals. A sequence analysis with 348 histidine kinase domains reveals that this family consists of distinct subgroups. A comparative sequence analysis with 298 available receiver domain sequences of cognate response regulators demonstrates a significant correlation between kinase and regulator subfamilies. These findings suggest that different subclasses of His-Asp phosphorelay systems have evolved independently of one another.
Collapse
Affiliation(s)
- T W Grebe
- Department of Molecular Biology, Princeton University, NJ 08544, USA
| | | |
Collapse
|
18
|
Banerjee-Bhatnagar N. Inorganic phosphate regulates CryIVA protoxin expression in Bacillus thuringiensis israelensis. Biochem Biophys Res Commun 1999; 262:359-64. [PMID: 10462480 DOI: 10.1006/bbrc.1999.1094] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The role of nutritional factors during CryIVA protoxin expression in Bacillus thuringiensis israelensis (Bti) has been investigated. Inorganic phosphate (Pi) was found to stimulate 135 kD protoxin synthesis by Bti cells. There was a corresponding increase in the cryIVA specific mRNA in the presence of Pi. Inorganic phosphate inhibited HPr kinase but activated HPr phosphatase, the two enzymes responsible for regulating the concentration of phosphorylated HPr in the cell. Addition of protein phosphatase inhibitors NaF and calyculin A during resuspension resulted in the inhibition of toxin synthesis by Bti cells. Calyculin A inhibited HPr phosphatase activity in the in vitro assay also. The concentration of phosphorylated HPr was upregulated when the cells were resuspended in the presence of calyculin A, while the levels of the same were lowered in the presence of Pi, as determined by Western blotting the respective cells. The efficiency of sporulation of Bti was not affected when Pi was added alone or along with the phosphatase inhibitor calyculin A.
Collapse
Affiliation(s)
- N Banerjee-Bhatnagar
- International Center For Genetic Engineering and Biotechnology, New Delhi, 110067, India.
| |
Collapse
|
19
|
Turinsky AJ, Grundy FJ, Kim JH, Chambliss GH, Henkin TM. Transcriptional activation of the Bacillus subtilis ackA gene requires sequences upstream of the promoter. J Bacteriol 1998; 180:5961-7. [PMID: 9811655 PMCID: PMC107671 DOI: 10.1128/jb.180.22.5961-5967.1998] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcriptional activation of the Bacillus subtilis ackA gene, encoding acetate kinase, was previously shown to require catabolite control protein A (CcpA) and sequences upstream of the ackA promoter. CcpA, which is responsible for catabolite repression of a number of secondary carbon source utilization genes in B. subtilis and other gram-positive bacteria, recognizes a cis-acting consensus sequence, designated cre (catabolite response element), generally located within or downstream of the promoter of the repressed gene. Two sites resembling this sequence are centered at positions -116.5 and -56.5 of the ackA promoter and have been termed cre1 and cre2, respectively. Synthesis of acetate kinase, which is involved in the conversion of acetyl coenzyme A to acetate, is induced when cells are grown in the presence of an easily metabolized carbon source such as glucose. In this study, cre2, the site closer to the promoter, and the region upstream of cre2 were shown to be indispensable for CcpA-dependent transcriptional activation of ackA, whereas cre1 was not required. In addition, insertion of 5 bp between cre2 and the promoter disrupted activation, while 10 bp was tolerated, suggesting face-of-the-helix dependence of the position of cre2 and/or upstream sequences. DNase footprinting experiments demonstrated binding of CcpA in vitro to cre2 but not cre1, consistent with the genetic data. Activation of ackA transcription was blocked in a ptsH1/crh double mutant, suggesting involvement of this pathway in CcpA-mediated transcriptional activation.
Collapse
Affiliation(s)
- A J Turinsky
- Department of Biochemistry and Molecular Biology, Albany Medical College, Albany, New York 12208, USA
| | | | | | | | | |
Collapse
|
20
|
Ozegowski JH, Günther E, Vettermann S, Müller PJ, Wollweber L. Influence of the phosphorylation state on the biological activity of a low-molecular mitogen from group A streptococci. ZENTRALBLATT FUR BAKTERIOLOGIE : INTERNATIONAL JOURNAL OF MEDICAL MICROBIOLOGY 1998; 288:13-21. [PMID: 9728401 DOI: 10.1016/s0934-8840(98)80092-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A low molecular weight mitogen (LMP) from Streptococcus pyogenes strain NY 5 was successively purified by adsorption on phenylsepharose, chromatography on Resource S and Superdex G 30 and finally by affinity chromatography on antiphosphothreonine agarose. The N-terminal protein sequence of the mitogen was determined. The occurrence of phosphoamino acids was investigated by immunoassay using monoclonal antibodies. The LMP is a threonine-phosphorylated protein different of HPR protein of PTS-system, its mitogenic activity was lost after treatment with streptococcal protein phosphatase or alkaline phosphatase. The inactivated LMP was activated by phosphorylation with phosphokinase and ATP. The active LMP was also inactivated in streptococcal cultures secreting acid protein phosphatase during the phase of phosphate limitation.
Collapse
Affiliation(s)
- J H Ozegowski
- Institut für Experimentelle Mikrobiologie, Friedrich-Schiller-Universität Jena (FSU), Germany
| | | | | | | | | |
Collapse
|
21
|
Martin-Verstraete I, Charrier V, Stülke J, Galinier A, Erni B, Rapoport G, Deutscher J. Antagonistic effects of dual PTS-catalysed phosphorylation on the Bacillus subtilis transcriptional activator LevR. Mol Microbiol 1998; 28:293-303. [PMID: 9622354 DOI: 10.1046/j.1365-2958.1998.00781.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
LevR, which controls the expression of the levoperon of Bacillus subtilis, is a regulatory protein containing an N-terminal domain similar to the NifA/NtrC transcriptional activator family and a C-terminal domain similar to the regulatory part of bacterial anti-terminators, such as BgIG and LicT. Here, we demonstrate that the activity of LevR is regulated by two phosphoenolpyruvate (PEP)-dependent phosphorylation reactions catalysed by the phosphotransferase system (PTS), a transport system for sugars, polyols and other sugar derivatives. The two general components of the PTS, enzyme I and HPr, and the two soluble, sugar-specific proteins of the lev-PTS, LevD and LevE, form a signal transduction chain allowing the PEP-dependent phosphorylation of LevR, presumably at His-869. This phosphorylation seems to inhibit LevR activity and probably regulates the induction of the lev operon. Mutants in which His-869 of LevR has been replaced with a non-phosphorylatable alanine residue exhibited constitutive expression from the lev promoter, as do levD or levE mutants. In contrast, PEP-dependent phosphorylation of LevR in the presence of only the general components of the PTS, enzyme I and HPr, regulates LevR activity positively. This phosphorylation most probably occurs at His-585. Mutants in which His-585 has been replaced with an alanine had lost stimulation of LevR activity and PEP-dependent phosphorylation by enzyme I and HPr. This second phosphorylation of LevR at His-585 is presumed to play a role in carbon catabolite repression.
Collapse
Affiliation(s)
- I Martin-Verstraete
- Unité de Biochimie Microbienne, Institut Pasteur, URA 1300 du CNRS, Paris, France.
| | | | | | | | | | | | | |
Collapse
|
22
|
Reizer J, Hoischen C, Titgemeyer F, Rivolta C, Rabus R, Stülke J, Karamata D, Saier MH, Hillen W. A novel protein kinase that controls carbon catabolite repression in bacteria. Mol Microbiol 1998; 27:1157-69. [PMID: 9570401 DOI: 10.1046/j.1365-2958.1998.00747.x] [Citation(s) in RCA: 146] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
HPr(Ser) kinase is the sensor in a multicomponent phosphorelay system that controls catabolite repression, sugar transport and carbon metabolism in gram-positive bacteria. Unlike most other protein kinases, it recognizes the tertiary structure in its target protein, HPr, a phosphocarrier protein of the bacterial phosphotransferase system and a transcriptional cofactor controlling the phenomenon of catabolite repression. We have identified the gene (ptsK) encoding this serine/threonine protein kinase and characterized the purified protein product. Orthologues of PtsK have been identified only in bacteria. These proteins constitute a novel family unrelated to other previously characterized protein phosphorylating enzymes. The Bacillus subtilis kinase is shown to be allosterically activated by metabolites such as fructose 1,6-bisphosphate and inhibited by inorganic phosphate. In contrast to wild-type B. subtilis, the ptsK mutant is insensitive to transcriptional regulation by catabolite repression. The reported results advance our understanding of phosphorylation-dependent carbon control mechanisms in Gram-positive bacteria.
Collapse
Affiliation(s)
- J Reizer
- Department of Biology, University of California at San Diego, La Jolla 92093-0116, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Microorganisms have developed three different systems for catalyzing protein phosphorylation and using this reversible modificaiton to regulate their cellular activities. The first 'classical' system utilizes nucleoside-triphosphates as phosphoryl donors and leads to the modification of protein substrates at serine/threonine or tyrosine residues. The second system, called 'two-component system', requires first a sensor kinase which autophosphorylates at a histidine residue at the expense of adenosine-triphosphate, then a response regulator which is modified in turn at an aspartate residue and thereafter induces a metabolic change within the cell. The third system, called 'PTS system', makes use of phosphoenol pyruvate to generate a phosphoryl group which is passed down a chain of several proteins and finally transferred to a sugar. There is increasing evidence that, contrary to an early concept, these systems and the corresponding enzymes (protein kinases and phosphoprotein phosphatases) share a number of structural and functional similarities with the phosphorylation-dephosphorylation machineries found in eukaryotes. Therefore one can expect that microorganisms will serve, once again, as a basic model for exploring and understanding a key regulatory mechanism, reversible protein phosphorylation, which concerns all organisms.
Collapse
Affiliation(s)
- A J Cozzone
- Institut de Biologie et Chimie des Protéines, CNRS, Lyon, France
| |
Collapse
|
24
|
Seok YJ, Sondej M, Badawi P, Lewis MS, Briggs MC, Jaffe H, Peterkofsky A. High affinity binding and allosteric regulation of Escherichia coli glycogen phosphorylase by the histidine phosphocarrier protein, HPr. J Biol Chem 1997; 272:26511-21. [PMID: 9334229 DOI: 10.1074/jbc.272.42.26511] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The histidine phosphocarrier protein (HPr) is an essential element in sugar transport by the bacterial phosphoenolpyruvate:sugar phosphotransferase system. Ligand fishing, using surface plasmon resonance, was used to show the binding of HPr to a nonphosphotransferase protein in extracts of Escherichia coli; the protein was subsequently identified as glycogen phosphorylase (GP). The high affinity (association constant approximately 10(8) M-1), species-specific interaction was also demonstrated in electrophoretic mobility shift experiments by polyacrylamide gel electrophoresis. Equilibrium ultracentrifugation analysis indicates that HPr allosterically regulates the oligomeric state of glycogen phosphorylase. HPr binding increases GP activity to 250% of the level in control assays. Kinetic analysis of coupled enzyme assays shows that the binding of HPr to GP causes a decrease in the Km for glycogen and an increase in the Vmax for phosphate, indicating a mixed type activation. The stimulatory effect of E. coli HPr on E. coli GP activity is species-specific, and the unphosphorylated form of HPr activates GP more than does the phosphorylated form. Replacement of specific amino acids in HPr results in reduced GP activation; HPr residues Arg-17, Lys-24, Lys-27, Lys-40, Ser-46, Gln-51, and Lys-72 were established to be important. This novel mechanism for the regulation of GP provides the first evidence directly linking E. coli HPr to the regulation of carbohydrate metabolism.
Collapse
Affiliation(s)
- Y J Seok
- NHLBI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Zhu PP, Nosworthy N, Ginsburg A, Miyata M, Seok YJ, Peterkofsky A. Expression, purification, and characterization of enzyme IIA(glc) of the phosphoenolpyruvate:sugar phosphotransferase system of Mycoplasma capricolum. Biochemistry 1997; 36:6947-53. [PMID: 9188690 DOI: 10.1021/bi963090m] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The gene encoding enzyme IIA(glc) (EIIA) of the phosphoenolpyruvate:sugar phosphotransferase system of Mycoplasma capricolum was cloned into a regulated expression vector. The purified protein product of the overexpressed gene was characterized as an active phosphoacceptor from HPr with a higher pI than previously described EIIAs. M. capricolum EIIA was unreactive with antibodies directed against the corresponding proteins from either Gram-positive or Gram-negative bacteria. Enzyme IIA(glc) behaved as a homogeneous, monomeric species of 16,700 Mr in analytical ultracentrifugation. The circular dichroism far-UV spectrum of EIIA reflects a low alpha-helical content and predominantly beta-sheet structural content: temperature-induced changes in ellipticity at 205 nm showed that the protein undergoes reversible, two-state thermal unfolding with Tm = 70.0 +/- 0.3 degrees C and a van't Hoff deltaH of 90 kcal/mol. Enzyme I (64,600 Mr) from M. capricolum exhibited a monomer-dimer-tetramer association at 4 and 20 degrees C with dimerization constants of log K(A) = 5.6 and 5.1 [M(-1)], respectively, in sedimentation equilibrium experiments. A new vector, capable of introducing an N-terminal His tag on a protein, was developed in order to generate highly purified heat-stable protein (HPr). No significant interaction of EIIA with HPr was detected by gel-filtration chromatography, intrinsic tryptophanyl residue fluorescence changes, titration calorimetry, biomolecular interaction, or sedimentation equilibrium studies. While Escherichia coli EIIA inhibits Gram-negative glycerol kinase activity, the M. capricolum EIIA has no effect on the homologous glycerol kinase. The probable regulator of sugar transport systems, HPr(Ser) kinase, was demonstrated in extracts of M. capricolum and Mycoplasma genitalium. Gene mapping studies demonstrated that, in contrast to the clustered arrangement of genes encoding HPr and enzyme I in E. coli, these genes are located diametrically opposite in the M. capricolum chromosome.
Collapse
Affiliation(s)
- P P Zhu
- Laboratory of Biochemical Genetics, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
26
|
Coregulation of beta-galactoside uptake and hydrolysis by the hyperthermophilic bacterium Thermotoga neapolitana. Appl Environ Microbiol 1997; 63:969-72. [PMID: 9285771 PMCID: PMC168389 DOI: 10.1128/aem.63.3.969-972.1997] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Regulation of the beta-galactoside transport system in response to growth substrates in the extremely thermophilic anaerobic bacterium Thermotoga neapolitana was studied with the nonmetabolizable analog methyl-beta-D-thiogalactopyranoside (TMG) as the transport substrate. T. neapolitana cells grown on galactose or lactose accumulated TMG against a concentration gradient in an intracellular free sugar pool that was exchangeable with external galactose or lactose and showed induced levels of beta-galactosidase. Cells grown on glucose, maltose, or galactose plus glucose showed no capacity to accumulate TMG, though these cells carried out active transport of the nonmetabolizable glucose analog 2-deoxy-D-glucose. Glucose neither inhibited TMG uptake nor caused efflux of preaccumulated TMG; rather, glucose promoted TMG uptake by supplying metabolic energy. These data show that beta-D-galactosides are taken up by T. neapolitana via an active transport system that can be induced by galactose or lactose and repressed by glucose but which is not inhibited by glucose. Thus, the phenomenon of catabolite repression is present in T. neapolitana with respect to systems catalyzing both the transport and hydrolysis of beta-D-galactosides, but inducer exclusion and inducer expulsion, mechanisms that regulate permease activity, are not present. Regulation is manifest at the level of synthesis of the beta-galactoside transport system but not in the activity of the system.
Collapse
|
27
|
Napper S, Anderson JW, Georges F, Quail JW, Delbaere LT, Waygood EB. Mutation of serine-46 to aspartate in the histidine-containing protein of Escherichia coli mimics the inactivation by phosphorylation of serine-46 in HPrs from gram-positive bacteria. Biochemistry 1996; 35:11260-7. [PMID: 8784179 DOI: 10.1021/bi9603480] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Histidine-containing protein (HPr) is a phosphocarrier protein of the bacterial phosphoenolpyruvate:sugar phosphotransferase system. HPr is phosphorylated at the active site residue, His15, by phosphoenolpyruvate-dependent enzyme I in the first enzyme reaction in the process of phosphoryl transfer to sugar. In many Gram-positive bacterial species HPr may also be phosphorylated at Ser46 by an ATP-dependent protein kinase but not in the Gram-negative Escherichia coli and Salmonella typhimurium. One effect of the phosphorylation at Ser46 is to make HPr a poor acceptor for phosphorylation at His15. In Bacillus subtilis HPr, the mutation Ser46Asp mimics the effects of phosphorylation. A series of mutations were made at Ser46 in E. coli HPr: Ala, Arg, Asn, Asp, Glu, and Gly. The two acidic replacements mimic the effects of phosphorylation of Ser46 in HPrs from Gram-positive bacteria. In particular, when mutated to Asp46, the His 15 phosphoacceptor activity (enzyme I Km/Kcat) decreases by about 2000-fold (enzyme I Km, 4 mM HPr; Kcat, approximately 30%). The alanine and glycine mutations had near-wild-type properties, and the asparagine and arginine mutations yielded small changes to the Km values. The crystallographic tertiary structure of Ser46Asp HPr has been determined at 1.5 A resolution, and several changes have been observed which appear to be the effect of the mutation. There is a tightening of helix B, which is demonstrated by a consistent shortening of hydrogen bond lengths throughout the helix as compared to the wild-type structure. There is a repositioning of the Gly54 residue to adopt a 3(10) helical pattern which is not present in the wild-type HPr. In addition, the higher resolution of the mutant structure allows for a more definitive placement of the carbonyl of Pro11. The consequence of this change is that there is no torsion angle strain at residue 16. This result suggests that there is no active site torsion angle strain in wild-type E. coli HPr. The lack of substantial change at the active center of E. coli HPr Ser46Asp HPr suggests that the effect of the Ser46 phosphorylation in HPrs from Gram-positive bacteria is due to an electrostatic interference with enzyme I binding.
Collapse
Affiliation(s)
- S Napper
- Department of Biochemistry, University of Saskatchewan, Saskatoon, Canada
| | | | | | | | | | | |
Collapse
|
28
|
Schöck F, Dahl MK. Expression of the tre operon of Bacillus subtilis 168 is regulated by the repressor TreR. J Bacteriol 1996; 178:4576-81. [PMID: 8755887 PMCID: PMC178226 DOI: 10.1128/jb.178.15.4576-4581.1996] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The tre locus from Bacillus subtilis containing the genes treP, treA, and treR has been analyzed for its regulation. We demonstrate that at least treP and treA form an operon whose expression is regulated at the transcriptional level. TreR activity has been investigated in in vivo and in vitro studies. An insertional inactivation of treR led to a constitutive expression of treP and treA. Upstream of treP we identified a 248-bp DNA fragment containing a potential sigmaA-dependent promoter and two palindromes reflecting potential tre operators which led to complex formation with TreR-containing protein extracts in DNA retardation experiments. This complex formation is abolished in the presence of trehalose-6-phosphate, which probably acts as an inducer. Therefore, we assume that treR encodes the specific Tre repressor involved in regulation of the expression of the tre operon.
Collapse
Affiliation(s)
- F Schöck
- Lehrstuhl für Mikrobiologie, Institut fur Mikrobiologie, Biochemie undGenetik der Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | | |
Collapse
|
29
|
Russell JB, Bond DR, Cook GM. The fructose diphosphate/phosphate regulation of carbohydrate metabolism in low G + C gram-positive anaerobes. Res Microbiol 1996; 147:528-35. [PMID: 9084766 DOI: 10.1016/0923-2508(96)84008-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- J B Russell
- Agricultural Research Service, USDA, Ithaca, New York, USA
| | | | | |
Collapse
|
30
|
Küster E, Luesink EJ, de Vos WM, Hillen W. Immunological crossreactivity to the catabolite control protein CcpA Bacillus megaterium is found in many gram-positive bacteria. FEMS Microbiol Lett 1996; 139:109-15. [PMID: 8674978 DOI: 10.1111/j.1574-6968.1996.tb08188.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The catabolite control protein CcpA from Bacillus megaterium was overproduced as a fusion protein to a 6xhis affinity tag and purified to homogeneity. Polyclonal antibodies of high affinity and specificity were raised against the purified protein. The serum did not crossreact with purified Lac repressor despite the fact that CcpA and LacI belong to the same protein family. Using this antiserum we identified proteins that share antigenic determinants with CcpA in many Gram-positive bacteria, including bacilli, staphylococci, lactic acid bacteria, and some actinomycetes.
Collapse
Affiliation(s)
- E Küster
- Lehrstuhl für Mikrobiologie, Friedrich-Alexander-Universität Erlagen-Nürnberg, Germany
| | | | | | | |
Collapse
|
31
|
Dubreuil JD, Jacques M, Brochu D, Frenette M, Vadeboncoeur C. Surface location of HPr, a phosphocarrier of the phosphoenolpyruvate: sugar phosphotransferase system in Streptococcus suis. MICROBIOLOGY (READING, ENGLAND) 1996; 142 ( Pt 4):837-843. [PMID: 8936310 DOI: 10.1099/00221287-142-4-837] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
HPr is a low-molecular-mass phosphocarrier protein of the bacterial phosphoenolpyruvate (PEP): sugar phosphotransferase system (PTS) found in the cytoplasm or associated with the inner surface of the cytoplasmic membrane. Treatment of Streptococcus suis cells with a Sorvall Omnimixer, a technique used to extract cell surface components, resulted in the extraction of a major protein with a molecular mass of 9 kDa. Several lines of evidence suggested that this protein was HPr: (i) the S. suis protein showed homology over the first 35 N-terminal amino acid residues with the HPrs of Streptococcus salivarius and Streptococcus mutans, including the signature sequence for the site of PEP-dependent phosphorylation; (ii) it cross-reacted with the S. salivarius anti-HPr antibody preparation; (iii) it could be phosphorylated by enzyme I at the expense of PEP, and by a membrane-associated kinase at the expense of ATP; and (iv) it possessed phosphocarrier activity when used as a source of HPr in an in vitro PTS assay. The data suggested that a portion of the cellular HPr is associated with the external cell surface in S. suis, a result that was confirmed by immunogold electron microscopy. The cellular HPr of S. suis consisted of two forms that could be distinguished by the presence or the absence of the N-terminal methionine. Amino acid sequence analysis indicated that the cell-surface-associated HPr of S. suis lacked the N-terminal methionine residue.
Collapse
Affiliation(s)
- J D Dubreuil
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, PO Box 5000, Saint Hyacinthe, Québec J2S 7C6, Canada
| | - M Jacques
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, PO Box 5000, Saint Hyacinthe, Québec J2S 7C6, Canada
| | - D Brochu
- Groupe de Recherche en Ecologie Buccale (GREB), Department of Biochemistry (Sciences) and Faculty of Dentistry, Université Laval, Québec G1K 7P4, Canada
| | - M Frenette
- Groupe de Recherche en Ecologie Buccale (GREB), Department of Biochemistry (Sciences) and Faculty of Dentistry, Université Laval, Québec G1K 7P4, Canada
| | - C Vadeboncoeur
- Groupe de Recherche en Ecologie Buccale (GREB), Department of Biochemistry (Sciences) and Faculty of Dentistry, Université Laval, Québec G1K 7P4, Canada
| |
Collapse
|
32
|
Fischer C, Geourjon C, Bourson C, Deutscher J. Cloning and characterization of the Bacillus subtilis prkA gene encoding a novel serine protein kinase. Gene 1996; 168:55-60. [PMID: 8626065 DOI: 10.1016/0378-1119(95)00758-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We have cloned and sequenced a 3574-bp Bacillus subtilis (Bs) DNA fragment located between the nrdA and citB genes at about 169 degrees on the chromosome. An Escherichia coli strain, LBG1605, carrying a mutated ptsH gene (encoding HPr (His-containing protein) of the bacterial phosphotransferase system (PTS)) and complemented for PTS activity with the ptsH of Staphylococcus carnosus, exhibited reduced mannitol fermentation activity when transformed with a plasmid bearing this 3574-bp Bs fragment. This fragment contained an incomplete and two complete open reading frames (ORFs). The product of the first complete ORF, a protein composed of 235 amino acids (aa) (25038 Da), was found to be responsible for the observed reduced mannitol fermentation. The 3' part of this 705-bp second ORF and the 428-bp incomplete first ORF encode aa sequences exhibiting almost 40% sequence identify. However, the function of these two proteins remains unknown. The third ORF, the 1893-bp prkA gene, encodes a protein (PrkA) of 72889 Da. PrkA possesses the A-motif of nucleotide-binding proteins and exhibits distant homology to eukaryotic protein kinases. Several of the essential aa in the loops known to form the active site of cyclic adenosine 3',5'-monophosphate (cAMP)-dependent protein kinase appeared to be conserved in PrkA. After expression of prkA and purification of PrkA, we could demonstrate that PrkA can indeed phosphorylate a Bs 60-kDa protein at a Ser residue.
Collapse
Affiliation(s)
- C Fischer
- Institut de Biologie et Chimie des Protéines, CNRS, Lyon, France
| | | | | | | |
Collapse
|
33
|
Saier MH, Chauvaux S, Cook GM, Deutscher J, Paulsen IT, Reizer J, Ye JJ. Catabolite repression and inducer control in Gram-positive bacteria. MICROBIOLOGY (READING, ENGLAND) 1996; 142 ( Pt 2):217-230. [PMID: 8932696 DOI: 10.1099/13500872-142-2-217] [Citation(s) in RCA: 173] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Results currently available clearly indicate that the metabolite-activated protein kinase-mediated phosphorylation of Ser-46 in HPr plays a key role in catabolite repression and the control of inducer levels in low-GC Gram-positive bacteria. This protein kinase is not found in enteric bacteria such as E. coli and Salmonella typhimurium where an entirely different PTS-mediated regulatory mechanism is responsible for catabolite repression and inducer concentration control. In Table 2 these two mechanistically dissimilar but functionally related processes are compared (Saier et al., 1995b). In Gram-negative enteric bacteria, an external sugar is sensed by the sugar-recognition constituent of an Enzyme II complex of the PTS (IIC), and a dephosphorylating signal is transmitted via the Enzyme IIB/HPr proteins to the central regulatory protein, IIAGlc. Targets regulated include (1) permeases specific for lactose, maltose, melibiose and raffinose, (2) catabolic enzymes such as glycerol kinase that generate cytoplasmic inducers, and (3) the cAMP biosynthetic enzyme, adenylate cyclase that mediates catabolite repression (Saier, 1989, 1993). In low-GC Gram-positive bacteria, cytoplasmic phosphorylated sugar metabolites are sensed by the HPr kinase which is allostericlaly activated. HPr becomes phosphorylated on Ser-46, and this phosphorylated derivative regulates the activities of its target proteins. These targets include (1) the PTS, (2) non-PTS permeases (both of which are inhibited) and (3) a cytoplasmic sugar-P phosphatase which is activated to reduce cytoplasmic inducer levels. Other important targets of HPr(ser-P) action are (4) the CcpA protein and probably (5) the CepB transcription factor. These two proteins together are believed to determine the intensity of catabolite repression. Their relative importance depends on physiological conditions. Both proteins may respond to the cytoplasmic concentration of HPr(ser-P) and appropriate metabolites. CepA possibly binds sugar metabolites such as FBP as well as HPr(ser-P). Because HPr(his-P, ser-P) does not bind to CepA, the regulatory cascade is also sensitive to the external PTS sugar concentration. Mutational analyses (unpublished results) suggest that CepA may bind to a site that includes His-15. Interestingly, both the CepA protein in the Gram-positive bacterium, B. subtilis, and glycerol kinase in the Gram-negative bacterium, E. coli, sense both a PTS protein and a cytoplasmic metabolic intermediate. The same may be true of target permeases and enzymes in both types of organisms, but this possibility has not yet been tested. The parallels between the Gram-negative and Gram-positive bacterial regulatory systems are superficial at the mechanistic level but fundamental at the functional level. Thus, the PTS participates in regulation in both cases, and phosphorylation of its protein constituents plays key roles. However, the stimuli sensed, the transmission mechanisms, the central PTS regulatory proteins that effect allosteric regulation, and some of the target proteins are completely different. It seems clear that these two transmission mechanisms evolved independently. They provide a prime example of functional convergence.
Collapse
Affiliation(s)
- Milton H Saier
- Department of Biology, University of California at San Diego, La Jolla, CA 92093-0116, USA
| | - Sylvie Chauvaux
- Department of Biology, University of California at San Diego, La Jolla, CA 92093-0116, USA
| | - Gregory M Cook
- Department of Biology, University of California at San Diego, La Jolla, CA 92093-0116, USA
| | - Josef Deutscher
- Department of Biology, University of California at San Diego, La Jolla, CA 92093-0116, USA
| | - Ian T Paulsen
- Department of Biology, University of California at San Diego, La Jolla, CA 92093-0116, USA
| | - Jonathan Reizer
- Department of Biology, University of California at San Diego, La Jolla, CA 92093-0116, USA
| | - Jing-Jing Ye
- Department of Biology, University of California at San Diego, La Jolla, CA 92093-0116, USA
| |
Collapse
|
34
|
Martin-Verstraete I, Stülke J, Klier A, Rapoport G. Two different mechanisms mediate catabolite repression of the Bacillus subtilis levanase operon. J Bacteriol 1995; 177:6919-27. [PMID: 7592486 PMCID: PMC177561 DOI: 10.1128/jb.177.23.6919-6927.1995] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
There are two levels of control of the expression of the levanase operon in Bacillus subtilis: induction by fructose, which involves a positive regulator, LevR, and the fructose phosphotransferase system encoded by this operon (lev-PTS), and a global regulation, catabolite repression. The LevR activator interacts with its target, the upstream activating sequence (UAS), to stimulate the transcription of the E sigma L complex bound at the "-12, -24" promoter. Levanase operon expression in the presence of glucose was tested in strains carrying a ccpA gene disruption or a ptsH1 mutation in which Ser-46 of HPr is replaced by Ala. In a levR+ inducible genetic background, the expression of the levanase operon was partially resistant to catabolite repression in both mutants, indicating that the CcpA repressor and the HPr-SerP protein are involved in the glucose control of this operon. In addition, a cis-acting catabolite-responsive element (CRE) of the levanase operon was identified and investigated by site-directed mutagenesis. The CRE sequence TGAAAACGCTT(a)ACA is located between positions -50 and -36 from the transcriptional start site, between the UAS and the -12, -24 promoter. However, in a background constitutive for levanase, neither HPr, CcpA, nor CRE is involved in glucose repression, suggesting the existence of a different pathway of glucose regulation. Using truncated LevR proteins, we showed that this CcpA-independent pathway required the presence of the domain of LevR (amino acids 411 to 689) homologous to the BglG family of bacterial antiterminators.
Collapse
Affiliation(s)
- I Martin-Verstraete
- Unité de Biochimie Microbienne, Institut Pasteur, URA 1300 du Centre National de la Recherche Scientifique, Paris, France
| | | | | | | |
Collapse
|
35
|
Wagner E, Marcandier S, Egeter O, Deutscher J, Götz F, Brückner R. Glucose kinase-dependent catabolite repression in Staphylococcus xylosus. J Bacteriol 1995; 177:6144-52. [PMID: 7592379 PMCID: PMC177454 DOI: 10.1128/jb.177.21.6144-6152.1995] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
By transposon Tn917 mutagenesis, 16 mutants of Staphylococcus xylosus were isolated that showed higher levels of beta-galactosidase activity in the presence of glucose than the wild-type strain. The transposons were found to reside in three adjacent locations in the genome of S. xylosus. The nucleotide sequence of the chromosomal fragment affected by the Tn917 insertions yielded an open reading frame encoding a protein with a size of 328 amino acids with a high level of similarity to glucose kinase from Streptomyces coelicolor. Weaker similarity was also found to bacterial fructokinases and xylose repressors of gram-positive bacteria. The gene was designated glkA. Immediately downstream of glkA, two open reading frames were present whose deduced gene products showed no obvious similarity to known proteins. Measurements of catabolic enzyme activities in the mutant strains grown in the presence or absence of sugars established the pleiotropic nature of the mutations. Besides beta-galactosidase activity, which had been used to detect the mutants, six other tested enzymes were partially relieved from repression by glucose. Reduction of fructose-mediated catabolite repression was observed for some of the enzyme activities. Glucose transport and ATP-dependent phosphorylation of HPr, the phosphocarrier of the phosphoenolpyruvate:carbohydrate phosphotransferase system involved in catabolite repression in gram-positive bacteria, were not affected. The cloned glkA gene fully restored catabolite repression in the mutant strains in trans. Loss of GlkA function is thus responsible for the partial relief from catabolite repression. Glucose kinase activity in the mutants reached about 75% of the wild-type level, indicating the presence of another enzyme in S. xylosus. However, the cloned gene complemented an Escherichia coli strain in glucose kinase. Therefore, the glkA gene encodes a glucose kinase that participates in catabolite repression in S. xylosus.
Collapse
Affiliation(s)
- E Wagner
- Mikrobielle Genetik, Universität Tübingen, Germany
| | | | | | | | | | | |
Collapse
|
36
|
Cvitkovitch DG, Boyd DA, Hamilton IR. Regulation of sugar transport via the multiple sugar metabolism operon of Streptococcus mutans by the phosphoenolpyruvate phosphotransferase system. J Bacteriol 1995; 177:5704-6. [PMID: 7559362 PMCID: PMC177384 DOI: 10.1128/jb.177.19.5704-5706.1995] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
In this report, we provide evidence that the transport of sugars in Streptococcus mutans via the multiple sugar metabolism system is regulated by the phosphoenolpyruvate phosphotransferase system. A ptsI-defective mutant (DC10), when grown on the multiple sugar metabolism system substrate raffinose, exhibited reduced growth, transport, and glycolytic activity with raffinose relative to the parent strain BM71. Inhibition of [3H]raffinose uptake was also observed in both BM71 and DC10 with increasing concentrations of glucose and the glucose analogs alpha-methyl glucoside and 2-deoxyglucose.
Collapse
Affiliation(s)
- D G Cvitkovitch
- Department of Oral Biology, Faculty of Dentistry, University of Manitoba, Winnipeg, Canada
| | | | | |
Collapse
|
37
|
Affiliation(s)
- C Vadeboncoeur
- Département de Biochimie, Faculté des Sciences et de Génie, Université Laval, Québec, Canada
| |
Collapse
|
38
|
Ramseier TM, Reizer J, Küster E, Hillen W, Saier MH. In vitro binding of the CcpA protein of Bacillus megaterium to cis-acting catabolite responsive elements (CREs) of gram-positive bacteria. FEMS Microbiol Lett 1995; 129:207-13. [PMID: 7607401 DOI: 10.1111/j.1574-6968.1995.tb07581.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Using DNA band migration retardation assays, specific binding of the CcpA protein of Bacillus megaterium to the cis-acting catabolite responsive element (CRE) of the xyl operon of B. subtilis has been demonstrated. Binding of CcpA was specifically inhibited by addition of unlabeled DNA fragments containing CREs of other operons but not by DNA fragments lacking a CRE. Binding was stimulated by high concentrations of phosphate, pyrophosphate, and organic phosphate esters and specifically inhibited by serine phosphorylated HPr and its conformational analogue, S46D HPr. This report therefore documents the specific binding of CcpA to a target CRE and defines its regulation by HPr(ser-P) and phosphorylated metabolites.
Collapse
Affiliation(s)
- T M Ramseier
- Department of Biology, University of California at San Diego, La Jolla 92093-0116, USA
| | | | | | | | | |
Collapse
|
39
|
Thevenot T, Brochu D, Vadeboncoeur C, Hamilton IR. Regulation of ATP-dependent P-(Ser)-HPr formation in Streptococcus mutans and Streptococcus salivarius. J Bacteriol 1995; 177:2751-9. [PMID: 7751285 PMCID: PMC176946 DOI: 10.1128/jb.177.10.2751-2759.1995] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Sugar transport via the phosphoenolpyruvate (PEP) phosphotransferase system involves PEP-dependent phosphorylation of the general phosphotransferase system protein, HPr, at histidine 15. However, gram-positive bacteria can also carry out ATP-dependent phosphorylation of HPr at serine 46 by means of (Ser)HPr kinase. In this study, we demonstrate that (Ser)HPr kinase in crude preparations of Streptococcus mutans Ingbritt and Streptococcus salivarius ATCC 25975 is membrane associated, with pH optima of 7.0 and 7.5, respectively. The latter organism possessed 7- to 27-fold-higher activity than S. mutans NCTC 10449, GS-5, and Ingbritt strains. The enzyme in S. salivarius was activated by fructose-1,6-bisphosphate (FBP) twofold with 0.05 mM ATP, but this intermediate was slightly inhibitory with 1.0 mM ATP at FBP concentrations up to 10 mM. Similar inhibition was observed with the enzyme from S. mutans Ingbritt. A variety of other glycolytic intermediates had no effect on kinase activity under these conditions. The activity and regulation of (Ser)HPr kinase were assessed in vivo by monitoring P-(Ser)-HPr formation in steady-state cells of S. mutans Ingbritt grown in continuous culture with limiting glucose (10 and 50 mM) and with excess glucose (100 and 200 mM). All four forms of HPr [free HPr, P approximately (His)-HPr, P-(Ser)-HPr, and P approximately (His)-P-(Ser)-HPr] could be detected in the cells; however, significant differences in the intracellular levels of the forms were apparent during growth at different glucose concentrations. The total HPr pool increased with increasing concentrations of glucose in the medium, with significant increases in the P-(Ser)-HPr and P approximately HHis)-P-(Ser)-HPr concentrations. For example, while total PEP-dependent phosphorylation [P approximately(His)-HPr plus P approximately (His)-P-(Ser)-HPr] varied only from 21.5 to 52.5 microgram mg of cell protein (-1) in cells grown at the four glucose concentrations, the total ATP-dependent phosphorylation [P-(Ser)-HPr plus P approximately (His)-P-(Ser)-HPr] increased 12-fold from the 10 mM glucose-grown cells (9.1 microgram mg of cell protein (-1) to 106 and 105 microgram mg(-1) in the 100 and 200 mM glucose-grown cultures, respectively. (Ser)HPr kinase activity in membrane preparations of the cells varied little between the 10, 50, and 100 mM glucose-grown cells but increased threefold in the 200 mM glucose-grown cells. The intracellular levels of ATP, glucose-6-phosphate, and FBP increased with external glucose concentration, with the level of FBP being 3.8-fold higher for cells grown with 200 mM glucose than for those grown with 10 mM glucose. However, the variation in the intracellular levels of FBP, particularly between cells grown with 100 and 200 mM glucose, did not correlate with the extent of P-(Ser)-HPr formation, suggesting that the activity of (Ser)HPr kinase is not critically dependent on the availability of intracellular FBP.
Collapse
Affiliation(s)
- T Thevenot
- Department of Oral Biology, University of Manitoba, Winnipeg, Canada
| | | | | | | |
Collapse
|
40
|
Powell BS, Court DL, Inada T, Nakamura Y, Michotey V, Cui X, Reizer A, Saier MH, Reizer J. Novel proteins of the phosphotransferase system encoded within the rpoN operon of Escherichia coli. Enzyme IIANtr affects growth on organic nitrogen and the conditional lethality of an erats mutant. J Biol Chem 1995; 270:4822-39. [PMID: 7876255 DOI: 10.1074/jbc.270.9.4822] [Citation(s) in RCA: 177] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Two rpoN-linked delta Tn10-kan insertions suppress the conditionally lethal erats allele. One truncates rpoN while the second disrupts another gene (ptsN) in the rpoN operon and does not affect classical nitrogen regulation. Neither alter expression of era indicating that suppression is post-translational. Plasmid clones of ptsN prevent suppression by either disruption mutation indicating that this gene is important for lethality caused by erats. rpoN and six neighboring genes were sequenced and compared with sequences in the database. Two of these genes encode proteins homologous to Enzyme IIAFru and HPr of the phosphoenolpyruvate:sugar phosphotransferase system. We designate these proteins IIANtr (ptsN) and NPr (npr). Purified IIANtr and NPr exchange phosphate appropriately with Enzyme I, HPr, and Enzyme IIA proteins of the phosphoenolpyruvate: sugar phosphotransferase system. Several sugars and tricarboxylic acid cycle intermediates inhibited growth of the ptsN disruption mutant on medium containing an amino acid or nucleoside base as a combined source of nitrogen, carbon, and energy. This growth inhibition was relieved by supplying the ptsN gene or ammonium salts but was not aleviated by altering levels of exogenously supplied cAMP. These results support our previous proposal of a novel mechanism linking carbon and nitrogen assimilation and relates IIANtr to the unknown process regulated by the essential GTPase Era.
Collapse
Affiliation(s)
- B S Powell
- Laboratory of Chromosome Biology, NCI-Frederick Cancer Research and Development Center, Maryland 21702-1201
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Pao GM, Saier MH. Response regulators of bacterial signal transduction systems: selective domain shuffling during evolution. J Mol Evol 1995; 40:136-54. [PMID: 7699720 DOI: 10.1007/bf00167109] [Citation(s) in RCA: 112] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Response regulators of bacterial sensory transduction systems generally consist of receiver module domains covalently linked to effector domains. The effector domains include DNA binding and/or catalytic units that are regulated by sensor kinase-catalyzed aspartyl phosphorylation within their receiver modules. Most receiver modules are associated with three distinct families of DNA binding domains, but some are associated with other types of DNA binding domains, with methylated chemotaxis protein (MCP) demethylases, or with sensor kinases. A few exist as independent entities which regulate their target systems by noncovalent interactions. In this study the molecular phylogenies of the receiver modules and effector domains of 49 fully sequenced response regulators and their homologues were determined. The three major, evolutionarily distinct, DNA binding domains found in response regulators were evaluated for their phylogenetic relatedness, and the phylogenetic trees obtained for these domains were compared with those for the receiver modules. Members of one family (family 1) of DNA binding domains are linked to large ATPase domains which usually function cooperatively in the activation of E. coli sigma 54-dependent promoters or their equivalents in other bacteria. Members of a second family (family 2) always function in conjunction with the E. coli sigma 70 or its equivalent in other bacteria. A third family of DNA binding domains (family 3) functions by an uncharacterized mechanism involving more than one sigma factor. These three domain families utilize distinct helix-turn-helix motifs for DNA binding. The phylogenetic tree of the receiver modules revealed three major and several minor clusters of these domains. The three major receiver module clusters (clusters 1, 2, and 3) generally function with the three major families of DNA binding domains (families 1, 2, and 3, respectively) to comprise three classes of response regulators (classes 1, 2, and 3), although several exceptions exist. The minor clusters of receiver modules were usually, but not always, associated with other types of effector domains. Finally, several receiver modules did not fit into a cluster. It was concluded that receiver modules usually diverged from common ancestral protein domains together with the corresponding effector domains, although domain shuffling, due to intragenic splicing and fusion, must have occurred during the evolution of some of these proteins. Multiple sequence alignments of the 49 receiver modules and their various types of effector domains, together with other homologous domains, allowed definition of regions of striking sequence similarity and degrees of conservation of specific residues. Sequence data were correlated with structure/function when such information was available.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- G M Pao
- Department of Biology, University of California at San Diego, La Jolla 92093-0116
| | | |
Collapse
|
42
|
Hueck CJ, Hillen W. Catabolite repression in Bacillus subtilis: a global regulatory mechanism for the gram-positive bacteria? Mol Microbiol 1995; 15:395-401. [PMID: 7540244 DOI: 10.1111/j.1365-2958.1995.tb02252.x] [Citation(s) in RCA: 227] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Three components involved in catabolite repression (CR) of gene expression in Bacillus have been identified. The cis-acting catabolite responsive element (CRE), which is present in many genes encoding carbon catabolic enzymes in various species of the Gram-positive bacteria, mediates CR of several genes in Bacillus subtilis, Bacillus megaterium, and Staphylococcus xylosus. CR of most genes regulated via CRE is also affected by the trans-acting factors CcpA and HPr. Similarities between CcpA and Lac and Gal repressors suggest binding of CcpA to CRE. HPr, a component of the phosphoenolpyruvate:sugar phosphotransferase system, undergoes regulatory phosphorylation at a serine residue by a fructose-1,6-diphosphate-activated kinase. A mutant of HPr, which is not phosphorylatable at this position because of an exchange of serine to alanine, lacks CR of several catabolic activities. This mutant phenotype is similar to the one exhibited by a ccpA mutant. Direct protein-protein interaction between CcpA and HPr(Ser-P) was recently demonstrated and constitutes a link between metabolic activity and CR.
Collapse
Affiliation(s)
- C J Hueck
- Lehrstuhl für Mikrobiologie, Friedrich-Alexander Universität Erlangen-Nürnberg, Germany
| | | |
Collapse
|
43
|
Ye JJ, Saier MH. Cooperative binding of lactose and the phosphorylated phosphocarrier protein HPr(Ser-P) to the lactose/H+ symport permease of Lactobacillus brevis. Proc Natl Acad Sci U S A 1995; 92:417-21. [PMID: 7831302 PMCID: PMC42751 DOI: 10.1073/pnas.92.2.417] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Lactobacillus brevis accumulates lactose and nonmetabolizable lactose analogues via sugar/H+ symport, but addition of glucose to the extracellular medium results in rapid efflux of the free sugar from the cells due to the uncoupling of sugar transport from proton transport. By using vesicles of L. brevis cells, we recently showed that these regulatory/effects could be attributed to the metabolite-activated ATP-dependent protein kinase-catalyzed phosphorylation of serine-46 in the phosphocarrier protein HPr [HPr(Ser-P)] of the phosphotransferase system and that a mutant form of HPr with the serine-46-->aspartate replacement ([S46D]HPr) is apparently locked in the seryl phosphorylated conformation. We here demonstrate that [S46D]HPr binds directly to inside-out membrane vesicles of L. brevis that contain the lactose permease. Sugar substrates of the permease markedly and specifically stimulate binding of [S46D]HPr to the membranes while certain transport inhibitors such as N-ethylmaleimide block binding. The pH dependency for binding follows that for transport. Wild-type HPr and the [S46A]HPr mutant protein did not appreciably compete with [S46D]HPr for binding to the permease. These results provide evidence for the direct interaction of HPr(Ser-P) with an allosteric site on the lactose/proton symporter of L. brevis for the purpose of regulating sugar accumulation in response to the metabolic needs of the cell.
Collapse
Affiliation(s)
- J J Ye
- Department of Biology, University of California at San Diego, La Jolla 92093-0116
| | | |
Collapse
|
44
|
Abstract
While all characterized eukaryotic protein kinases that phosphorylate hydroxy aminoacyl residues in proteins recognize primary structure, certain bacterial protein kinases are proving to recognize tertiary structure. It is proposed that these latter enzymes evolved independently of the superfamily of the former protein kinases and that their modes of target protein recognition and action are entirely different.
Collapse
Affiliation(s)
- M H Saier
- Department of Biology, University of California, San Diego, La Jolla 92093-0116, USA
| |
Collapse
|
45
|
Abstract
In 1964, Kundig, Ghosh and Roseman reported the discovery of the phosphoenolpyruvate:sugar phosphotransferase system (PTS). Thirty years later, we find that the PTS functions not only as a sugar-phosphorylating system, but also as a complex protein kinase system that regulates a wide variety of metabolic processes and controls the expression of numerous genes. As a result of recent operon- and genome-sequencing projects, novel PTS protein-encoding genes have been discovered, most of which have yet to be functionally defined. Some of them appear to be involved in cellular processes distinct from those recognized previously. Fundamental aspects of past and current PTS research are briefly reviewed, and recent advances are integrated into conceptual pictures that provide guides for future research.
Collapse
Affiliation(s)
- M H Saier
- Department of Biology, University of California at San Diego, La Jolla 92093-0116
| | | |
Collapse
|
46
|
Affiliation(s)
- M H Saier
- Department of Biology, University of California at San Diego, La Jolla 92093-0116
| |
Collapse
|
47
|
Hindle Z, Smith CP. Substrate induction and catabolite repression of the Streptomyces coelicolor glycerol operon are mediated through the GylR protein. Mol Microbiol 1994; 12:737-45. [PMID: 8052126 DOI: 10.1111/j.1365-2958.1994.tb01061.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The pathway for glycerol catabolism in Streptomyces coelicolor is determined by the gylCABX operon, which is transcribed from two closely spaced glycerol-inducible, glucose-repressible promoters. Glucose (or catabolite) repression of gyl is known to be exerted by a general catabolite repression system in which the soluble glucose kinase plays a central role. The gylR gene is contained in a separate glycerol-inducible, weakly glucose-repressible transcription unit immediately upstream from the gyl operon. The role of gylR in the regulation of gyl transcription was assessed by introducing specific null mutations into the chromosomal gylR gene. Direct quantification of gyl transcripts from the gylR null mutants grown on different carbon sources demonstrated that GylR is the repressor of the gylCABX operon and also revealed that GylR functions as a negative autoregulator. Moreover, the transcriptional analysis revealed that the gylR null mutants were relieved of glucose repression of both gylCABX and gylR. We conclude that both substrate induction and catabolite repression of gyl are mediated through the GylR protein. This is the first direct evidence that catabolite repression in Streptomyces is not exerted at the transcriptional level by a general 'catabolite repressor protein'. Models for catabolite repression are discussed.
Collapse
Affiliation(s)
- Z Hindle
- Department of Biochemistry and Applied Molecular Biology, UMIST, Manchester, UK
| | | |
Collapse
|
48
|
Abstract
The regulatory region of the Bacillus subtilis glucitol dehydrogenase (gutB) gene was divided into three subregions: a promoter, an upstream positive regulatory region, and a downstream negative regulatory region. Data from primer extension, deletion, and site-directed mutagenesis analyses were consistent with two possible models for the gutB promoter. It is either a sigma A-type promoter with an unusually short spacer region (15 bp) or a special sigma A promoter which requires only the hexameric -10 sequence for its function. Sequence carrying just the promoter region (from -48 to +6) failed to direct transcription in vivo. An upstream regulatory sequence was essential for glucitol induction. When this sequence was inserted in a high-copy-number plasmid, an effect characteristic of titration of a transcriptional activator was seen. Downstream from the promoter, there is an imperfect, AT-rich inverted repeat sequence. Deletion of this element did not lead to constitutive expression of gutB. However, the induced gutB expression level was enhanced three- to fourfold.
Collapse
Affiliation(s)
- R Ye
- Department of Biological Sciences, University of Calgary, Alberta, Canada
| | | |
Collapse
|
49
|
Abstract
Streptococcus mutans possesses several extracellular sucrose-metabolizing enzymes which have been implicated as important virulence factors in dental caries. This study was initiated to investigate the genetic regulation of one of these enzymes, the extracellular fructosyltransferase (Ftf). Fusions were constructed with the region upstream of the S. mutans GS5 Ftf gene (ftf) and a promoterless chloramphenicol acetyltransferase (CAT) gene. The fusions were integrated at a remote site in the chromosome, and transcriptional activity in response to the addition of various carbohydrates to the growth medium was measured. A significant increase in CAT activity was observed when glucose-grown cells were shifted to sucrose-containing medium. Sucrose-induced expression was repressed immediately upon addition of phosphoenolpyruvate phosphotransferase system sugars to the growth media. Deletion analysis of the ftf upstream region revealed that an inverted repeat structure was involved in the control of ftf expression in response to carbohydrate. However, the control of the level of ftf transcription appeared to involve a region distinct from that mediating carbohydrate regulation. CAT gene fusions also were constructed with the ftf upstream region from S. mutans V403, a fructan-hyperproducing strain which synthesizes increased levels of Ftf. Sequence analysis of the upstream ftf region in this strain revealed several nucleotide sequence changes which were associated with high-level ftf expression. Comparison of the GS5 and V403 ftf expression patterns suggested the presence of a trans-acting factor(s) involved in modulation of ftf expression in response to carbohydrate. This factor(s) was either absent or altered in V403, resulting in the inability of this organism to respond to the presence of carbohydrate. The sequences of the ftf regions from three additional fructan-hyperproducing strains were determined and compared with that of V403. Only one strain displayed nucleotide changes similar to those of V403. Two additional strains did not have these changes, suggesting that several mechanisms for up-regulation of ftf expression exist.
Collapse
Affiliation(s)
- D L Kiska
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond 23298-0678
| | | |
Collapse
|
50
|
Ye J, Reizer J, Cui X, Saier M. Inhibition of the phosphoenolpyruvate:lactose phosphotransferase system and activation of a cytoplasmic sugar-phosphate phosphatase in Lactococcus lactis by ATP-dependent metabolite-activated phosphorylation of serine 46 in the phosphocarrier protein HPr. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)32649-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|