1
|
Sahu PN, Sen A. Preventing Cancer by Inhibiting Ornithine Decarboxylase: A Comparative Perspective on Synthetic vs. Natural Drugs. Chem Biodivers 2024; 21:e202302067. [PMID: 38404009 DOI: 10.1002/cbdv.202302067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/22/2024] [Accepted: 02/24/2024] [Indexed: 02/27/2024]
Abstract
This perspective delves into the investigation of synthetic and naturally occurring inhibitors, their patterns of inhibition, and the effectiveness of newly utilized natural compounds as inhibitors targeting the Ornithine decarboxylase enzyme. This enzyme is known to target the MYC oncogene, thereby establishing a connection between polyamine metabolism and oncogenesis in both normal and cancerous cells. ODC activation and heightened polyamine activity are associated with tumor development in numerous cancers and fluctuations in ODC protein levels exert a profound influence on cellular activity for inhibition or suppressing tumor cells. This perspective outlines efforts to develop novel drugs, evaluate natural compounds, and identify promising inhibitors to address gaps in cancer prevention, highlighting the potential of newly designed synthetic moieties and natural flavonoids as alternatives. It also discusses natural compounds with potential as enhanced inhibitors.
Collapse
Affiliation(s)
- Preeti Nanda Sahu
- Department of Chemistry, (CMDD Lab) GITAM (Deemed to be), University, Rushikonda, Visakhapatnam, 530045, India
| | - Anik Sen
- Department of Chemistry, (CMDD Lab) GITAM (Deemed to be), University, Rushikonda, Visakhapatnam, 530045, India
| |
Collapse
|
2
|
Polyamine Metabolism as a Therapeutic Target inHedgehog-Driven Basal Cell Carcinomaand Medulloblastoma. Cells 2019; 8:cells8020150. [PMID: 30754726 PMCID: PMC6406590 DOI: 10.3390/cells8020150] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/06/2019] [Accepted: 02/08/2019] [Indexed: 02/06/2023] Open
Abstract
Hedgehog (Hh) signaling is a critical developmental regulator and its aberrant activation,due to somatic or germline mutations of genes encoding pathway components, causes Basal CellCarcinoma (BCC) and medulloblastoma (MB). A growing effort has been devoted at theidentification of druggable vulnerabilities of the Hedgehog signaling, leading to the identificationof various compounds with variable efficacy and/or safety. Emerging evidence shows that anaberrant polyamine metabolism is a hallmark of Hh-dependent tumors and that itspharmacological inhibition elicits relevant therapeutic effects in clinical or preclinical models ofBCC and MB. We discuss here the current knowledge of polyamine metabolism, its role in cancerand the available targeting strategies. We review the literature about the connection betweenpolyamines and the Hedgehog signaling, and the potential therapeutic benefit of targetingpolyamine metabolism in two malignancies where Hh pathways play a well-established role: BCCand MB.
Collapse
|
3
|
Del Rio B, Redruello B, Linares DM, Ladero V, Ruas-Madiedo P, Fernandez M, Martin MC, Alvarez MA. The biogenic amines putrescine and cadaverine show in vitro cytotoxicity at concentrations that can be found in foods. Sci Rep 2019; 9:120. [PMID: 30644398 PMCID: PMC6333923 DOI: 10.1038/s41598-018-36239-w] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 11/15/2018] [Indexed: 12/11/2022] Open
Abstract
Putrescine and cadaverine are among the most common biogenic amines (BA) in foods, but it is advisable that their accumulation be avoided. Present knowledge about their toxicity is, however, limited; further research is needed if qualitative and quantitative risk assessments for foods are to be conducted. The present work describes a real-time analysis of the cytotoxicity of putrescine and cadaverine on intestinal cell cultures. Both BA were cytotoxic at concentrations found in BA-rich foods, although the cytotoxicity threshold for cadaverine was twice that of putrescine. Their mode of cytotoxic action was similar, with both BA causing cell necrosis; they did not induce apoptosis. The present results may help in establishing legal limits for both putrescine and cadaverine in food.
Collapse
Affiliation(s)
- Beatriz Del Rio
- Dairy Research Institute, IPLA-CSIC, Paseo Rio Linares s/n, 33300, Villaviciosa, Spain.
| | - Begoña Redruello
- Dairy Research Institute, IPLA-CSIC, Paseo Rio Linares s/n, 33300, Villaviciosa, Spain
| | - Daniel M Linares
- Dairy Research Institute, IPLA-CSIC, Paseo Rio Linares s/n, 33300, Villaviciosa, Spain
| | - Victor Ladero
- Dairy Research Institute, IPLA-CSIC, Paseo Rio Linares s/n, 33300, Villaviciosa, Spain
| | - Patricia Ruas-Madiedo
- Dairy Research Institute, IPLA-CSIC, Paseo Rio Linares s/n, 33300, Villaviciosa, Spain
| | - Maria Fernandez
- Dairy Research Institute, IPLA-CSIC, Paseo Rio Linares s/n, 33300, Villaviciosa, Spain
| | - M Cruz Martin
- Dairy Research Institute, IPLA-CSIC, Paseo Rio Linares s/n, 33300, Villaviciosa, Spain
| | - Miguel A Alvarez
- Dairy Research Institute, IPLA-CSIC, Paseo Rio Linares s/n, 33300, Villaviciosa, Spain
| |
Collapse
|
4
|
Weicht RR, Schultz CR, Geerts D, Uhl KL, Bachmann AS. Polyamine Biosynthetic Pathway as a Drug Target for Osteosarcoma Therapy. Med Sci (Basel) 2018; 6:E65. [PMID: 30115881 PMCID: PMC6165283 DOI: 10.3390/medsci6030065] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 08/09/2018] [Accepted: 08/13/2018] [Indexed: 12/13/2022] Open
Abstract
Osteosarcoma (OS) is the most common bone tumor in children. Polyamines (PAs) are ubiquitous cations involved in many cell processes including tumor development, invasion and metastasis. In other pediatric cancer models, inhibition of the PA biosynthesis pathway with ornithine decarboxylase (ODC) inhibitor alpha-difluoromethylornithine (DFMO) results in decreased cell proliferation and differentiation. In OS, the PA pathway has not been evaluated. DFMO is an attractive, orally administered drug, is well tolerated, can be given for prolonged periods, and is already used in pediatric patients. Three OS cell lines were used to study the cellular effects of PA inhibition with DFMO: MG-63, U-2 OS and Saos-2. Effects on proliferation were analyzed by cell count, flow cytometry-based cell cycle analysis and RealTime-Glo™ MT Cell Viability assays. Intracellular PA levels were measured with high-performance liquid chromatography (HPLC). Western blot analysis was used to evaluate cell differentiation. DFMO exposure resulted in significantly decreased cell proliferation in all cell lines. After treatment, intracellular spermidine levels were drastically decreased. Cell cycle arrest at G₂/M was observed in U-2 OS and Saos-2. Cell differentiation was most prominent in MG-63 and U-2 OS as determined by increases in the terminal differentiation markers osteopontin and collagen 1a1. Cell proliferation continued to be suppressed for several days after removal of DFMO. Based on our findings, DFMO is a promising new adjunct to current osteosarcoma therapy in patients at high risk of relapse, such as those with poor necrosis at resection or those with metastatic or recurrent osteosarcoma. It is a well-tolerated oral drug that is currently in phase II clinical trials in pediatric neuroblastoma patients as a maintenance therapy. The same type of regimen may also improve outcomes in osteosarcoma patients in whom there have been essentially no medical advances in the last 30 years.
Collapse
Affiliation(s)
- Rebecca R. Weicht
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, 400 Monroe Avenue, NW, Grand Rapids, MI 49503, USA; (R.R.W.); (C.R.S.); (K.L.U.)
- Helen DeVos Children’s Hospital, Department of Pediatric Hematology Oncology, Grand Rapids, MI 49503, USA
| | - Chad R. Schultz
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, 400 Monroe Avenue, NW, Grand Rapids, MI 49503, USA; (R.R.W.); (C.R.S.); (K.L.U.)
| | - Dirk Geerts
- Department of Medical Biology, Amsterdam University Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| | - Katie L. Uhl
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, 400 Monroe Avenue, NW, Grand Rapids, MI 49503, USA; (R.R.W.); (C.R.S.); (K.L.U.)
| | - André S. Bachmann
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, 400 Monroe Avenue, NW, Grand Rapids, MI 49503, USA; (R.R.W.); (C.R.S.); (K.L.U.)
- Helen DeVos Children’s Hospital, Department of Pediatric Hematology Oncology, Grand Rapids, MI 49503, USA
| |
Collapse
|
5
|
Bae DH, Lane DJR, Jansson PJ, Richardson DR. The old and new biochemistry of polyamines. Biochim Biophys Acta Gen Subj 2018; 1862:2053-2068. [PMID: 29890242 DOI: 10.1016/j.bbagen.2018.06.004] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 06/02/2018] [Accepted: 06/04/2018] [Indexed: 10/14/2022]
Abstract
Polyamines are ubiquitous positively charged amines found in all organisms. These molecules play a crucial role in many biological functions including cell growth, gene regulation and differentiation. The three major polyamines produced in all mammalian cells are putrescine, spermidine and spermine. The intracellular levels of these polyamines depend on the interplay of the biosynthetic and catabolic enzymes of the polyamine and methionine salvage pathway, as well as the involvement of polyamine transporters. Polyamine levels are observed to be high in cancer cells, which contributes to malignant transformation, cell proliferation and poor patient prognosis. Considering the critical roles of polyamines in cancer cell proliferation, numerous anti-polyaminergic compounds have been developed as anti-tumor agents, which seek to suppress polyamine levels by specifically inhibiting polyamine biosynthesis, activating polyamine catabolism, or blocking polyamine transporters. However, in terms of the development of effective anti-cancer therapeutics targeting the polyamine system, these efforts have unfortunately resulted in little success. Recently, several studies using the iron chelators, O-trensox and ICL670A (Deferasirox), have demonstrated a decline in both iron and polyamine levels. Since iron levels are also high in cancer cells, and like polyamines, are required for proliferation, these latter findings suggest a biochemically integrated link between iron and polyamine metabolism.
Collapse
Affiliation(s)
- Dong-Hun Bae
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, The Medical Foundation Building (K25), University of Sydney, Sydney, New South Wales 2006, Australia
| | - Darius J R Lane
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, Kenneth Myer Building, The University of Melbourne, Parkville, Victoria 3052, Australia.
| | - Patric J Jansson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, The Medical Foundation Building (K25), University of Sydney, Sydney, New South Wales 2006, Australia
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, The Medical Foundation Building (K25), University of Sydney, Sydney, New South Wales 2006, Australia; Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan.
| |
Collapse
|
6
|
Lane DJR, Bae DH, Siafakas AR, Suryo Rahmanto Y, Al-Akra L, Jansson PJ, Casero RA, Richardson DR. Coupling of the polyamine and iron metabolism pathways in the regulation of proliferation: Mechanistic links to alterations in key polyamine biosynthetic and catabolic enzymes. Biochim Biophys Acta Mol Basis Dis 2018; 1864:2793-2813. [PMID: 29777905 DOI: 10.1016/j.bbadis.2018.05.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/09/2018] [Accepted: 05/12/2018] [Indexed: 12/21/2022]
Abstract
Many biological processes result from the coupling of metabolic pathways. Considering this, proliferation depends on adequate iron and polyamines, and although iron-depletion impairs proliferation, the metabolic link between iron and polyamine metabolism has never been thoroughly investigated. This is important to decipher, as many disease states demonstrate co-dysregulation of iron and polyamine metabolism. Herein, for the first time, we demonstrate that cellular iron levels robustly regulate 13 polyamine pathway proteins. Seven of these were regulated in a conserved manner by iron-depletion across different cell-types, with four proteins being down-regulated (i.e., acireductone dioxygenase 1 [ADI1], methionine adenosyltransferase 2α [MAT2α], Antizyme and polyamine oxidase [PAOX]) and three proteins being up-regulated (i.e., S-adenosyl methionine decarboxylase [AMD1], Antizyme inhibitor 1 [AZIN1] and spermidine/spermine-N1-acetyltransferase 1 [SAT1]). Depletion of iron also markedly decreased polyamine pools (i.e., spermidine and/or spermine, but not putrescine). Accordingly, iron-depletion also decreased S-adenosylmethionine that is essential for spermidine/spermine biosynthesis. Iron-depletion additionally reduced 3H-spermidine uptake in direct agreement with the lowered levels of the polyamine importer, SLC22A16. Regarding mechanism, the "reprogramming" of polyamine metabolism by iron-depletion is consistent with the down-regulation of ADI1 and MAT2α, and the up-regulation of SAT1. Moreover, changes in ADI1 (biosynthetic) and SAT1 (catabolic) partially depended on the iron-regulated changes in c-Myc and/or p53. The ability of iron chelators to inhibit proliferation was rescuable by putrescine and spermidine, and under some conditions by spermine. Collectively, iron and polyamine metabolism are intimately coupled, which has significant ramifications for understanding the integrated role of iron and polyamine metabolism in proliferation.
Collapse
Affiliation(s)
- Darius J R Lane
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, Kenneth Myer Building, The University of Melbourne, Parkville, Victoria 3052, Australia.
| | - Dong-Hun Bae
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Aritee R Siafakas
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Yohan Suryo Rahmanto
- Department of Pathology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, MD 21205, USA
| | - Lina Al-Akra
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Patric J Jansson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Robert A Casero
- Johns Hopkins University School of Medicine and The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21231, USA
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia; Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan.
| |
Collapse
|
7
|
Rossi G, Cerquetella M, Scarpona S, Pengo G, Fettucciari K, Bassotti G, Jergens AE, Suchodolski JS. Effects of probiotic bacteria on mucosal polyamines levels in dogs with IBD and colonic polyps: a preliminary study. Benef Microbes 2017; 9:247-255. [PMID: 29022381 DOI: 10.3920/bm2017.0024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Spermine (SPM) and its precursor putrescine (PUT), regulated by ornithine decarboxylase (ODC) and diamino-oxidase (DAO), are polyamines required for cell growth and proliferation. Only a few studies have investigated the anti-inflammatory and tumour inhibitory properties of probiotics on mucosal polyamine levels. We investigated the effects of a high concentration multistrain probiotic for human use on colonic polyamine biosynthesis in dogs. Histological sections (inflammatory bowel disease, n=10; polyposis, n=5) were assessed after receiving 112 to 225×109 lyophilised bacteria daily for 60 days at baseline (T0) and 30 days after treatment end (T90). Histology scores, expression of PUT, SPM, ODC and DAO, and a clinical activity index (CIBDAI) were compared at T0 and T90. In polyps, cellular proliferation (Ki-67 expression), and apoptosis (caspase-3 protein expression) were also evaluated. After treatment, in inflammatory bowel disease significant decreases were observed for CIBDAI (P=0.006) and histology scores (P<0.001); PUT, SPM and ODC expression increased (P<0.01). In polyps, a significant decrease in polyamine levels, ODC activity, and Ki-67, and a significant increase in caspase-3 positivity and DAO expression (P=0.005) was noted. Our results suggest potential anti-proliferative and anti-inflammatory effects of the probiotic mixture in polyps and inflammation, associated with reduced mucosal infiltration and up-regulation of PUT, SPM, and ODC levels.
Collapse
Affiliation(s)
- G Rossi
- 1 School of Biosciences and Veterinary Medicine, University of Camerino, Via Circonvallazione 93/95, 62024 Macerata (MC), Italy
| | - M Cerquetella
- 1 School of Biosciences and Veterinary Medicine, University of Camerino, Via Circonvallazione 93/95, 62024 Macerata (MC), Italy
| | - S Scarpona
- 1 School of Biosciences and Veterinary Medicine, University of Camerino, Via Circonvallazione 93/95, 62024 Macerata (MC), Italy
| | - G Pengo
- 2 Clinic 'St. Antonio', Strada Statale 415, km 38,50, 26020 Madignano (CR), Italy
| | - K Fettucciari
- 3 Department of Experimental Medicine, University of Perugia School of Medicine, Piazzale Lucio Severi 1-8, 06123 Perugia, Italy
| | - G Bassotti
- 4 Gastroenterology and Hepatology Section, Department of Medicine, University of Perugia School of Medicine, Santa Maria della Misericordia Hospital, Piazzale Menghini 1, 06156 San Sisto, Italy
| | - A E Jergens
- 5 College of Veterinary Medicine, Iowa State University, 1800 Christensen Dr., Ames, IA 50010, USA
| | - J S Suchodolski
- 6 Gastrointestinal Laboratory, Texas A&M University, 4474 TAMU, College Station, TX 77843, USA
| |
Collapse
|
8
|
Targeting polyamine metabolism for cancer therapy and prevention. Biochem J 2017; 473:2937-53. [PMID: 27679855 DOI: 10.1042/bcj20160383] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 06/10/2016] [Indexed: 12/22/2022]
Abstract
The chemically simple, biologically complex eukaryotic polyamines, spermidine and spermine, are positively charged alkylamines involved in many crucial cellular processes. Along with their diamine precursor putrescine, their normally high intracellular concentrations require fine attenuation by multiple regulatory mechanisms to keep these essential molecules within strict physiologic ranges. Since the metabolism of and requirement for polyamines are frequently dysregulated in neoplastic disease, the metabolic pathway and functions of polyamines provide rational drug targets; however, these targets have been difficult to exploit for chemotherapy. It is the goal of this article to review the latest findings in the field that demonstrate the potential utility of targeting the metabolism and function of polyamines as strategies for both chemotherapy and, possibly more importantly, chemoprevention.
Collapse
|
9
|
Nilam M, Gribbon P, Reinshagen J, Cordts K, Schwedhelm E, Nau WM, Hennig A. A Label-Free Continuous Fluorescence-Based Assay for Monitoring Ornithine Decarboxylase Activity with a Synthetic Putrescine Receptor. SLAS DISCOVERY 2017; 22:906-914. [PMID: 28346093 DOI: 10.1177/2472555216689288] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Polyamines play an important role in cell growth, differentiation, and cancer development, and the biosynthetic pathway of polyamines is established as a drug target for the treatment of parasitic diseases, neoplasia, and cancer chemoprevention. The key enzyme in polyamine biosynthesis is ornithine decarboxylase (ODC). We report herein an analytical method for the continuous fluorescence monitoring of ODC activity based on the supramolecular receptor cucurbit[6]uril (CB6) and the fluorescent dye trans-4-[4-(dimethylamino)styryl]-1-methylpyridinium iodide (DSMI). CB6 has a significantly higher binding constant to the ODC product putrescine (>107 M-1) than to the substrate L-ornithine (340 M-1). This enables real-time monitoring of the enzymatic reaction through a continuous fluorescence change caused by dye displacement from the macrocycle by the formed product, which allowed a straightforward determination of enzyme kinetic parameters ( kcat = 0.12 s-1 and KM = 24 µM) and inhibition constants of the two ODC inhibitors α-difluoromethylornithine (DFMO) and epigallocatechin gallate (EGCG). The potential for high-throughput screening (HTS) was demonstrated by excellent Z' factors (>0.9) in a microplate reader format, and the sensitivity of the assay is comparable to or better than most established complementary methods, which invariably have the disadvantage of not being compatible with direct implementation and upscaling to HTS format in the drug discovery process.
Collapse
Affiliation(s)
- Mohamed Nilam
- 1 Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany
| | | | | | - Kathrin Cordts
- 3 Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- 4 German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Edzard Schwedhelm
- 3 Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- 4 German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Werner M Nau
- 1 Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany
| | - Andreas Hennig
- 1 Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany
| |
Collapse
|
10
|
Benkerroum N. Biogenic Amines in Dairy Products: Origin, Incidence, and Control Means. Compr Rev Food Sci Food Saf 2016; 15:801-826. [PMID: 33401839 DOI: 10.1111/1541-4337.12212] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 04/23/2016] [Accepted: 04/27/2016] [Indexed: 12/15/2022]
Abstract
Biogenic amines (BAs) are toxic compounds produced by a number of microorganisms (bacteria, yeasts, and molds) as a result of the metabolism of some amino acid, usually decarboxylation reactions. BA-producing microorganisms are not necessarily pathogenic, such as lactic acid bacteria, which are, on the contrary, among the most beneficial microbiota to human beings and some of which even have probiotic properties. However, the incidence of BAs in dairy products and their possible implication in serious dairy-borne intoxications has long been overlooked. Consequently, the implementation of control measures to limit such an incidence has not been considered among the priorities of the food safety authorities. Nonetheless, there is a growing concern with regard to the presence of BAs in dairy products, because their toxicological status as toxins that may have serious acute and/or chronic adverse health effects is becoming increasingly evident and well-documented. The main BAs associated with dairy products are reviewed herein from the perspective of their incidence in these food products, and to draw the attention of readers to the shortage in data to perform pertinent risk assessment, which is considered to be a key action to provide efficient control means and to help decision makers issue appropriate legislative and regulatory measures.
Collapse
Affiliation(s)
- Noreddine Benkerroum
- Inst. Agronomique et Vétérinaire Hassan II, Dépt. des Sciences Alimentaires et Nutritionnelles, BP 6202, Instituts, 10101-Rabat, Morocco
| |
Collapse
|
11
|
Structural basis of Ornithine Decarboxylase inactivation and accelerated degradation by polyamine sensor Antizyme1. Sci Rep 2015; 5:14738. [PMID: 26443277 PMCID: PMC4595762 DOI: 10.1038/srep14738] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 09/07/2015] [Indexed: 11/18/2022] Open
Abstract
Ornithine decarboxylase (ODC) catalyzes the first and rate-limiting step of polyamine biosynthesis in humans. Polyamines are essential for cell proliferation and are implicated in cellular processes, ranging from DNA replication to apoptosis. Excessive accumulation of polyamines has a cytotoxic effect on cells and elevated level of ODC activity is associated with cancer development. To maintain normal cellular proliferation, regulation of polyamine synthesis is imposed by Antizyme1 (AZ1). The expression of AZ1 is induced by a ribosomal frameshifting mechanism in response to increased intracellular polyamines. AZ1 regulates polyamine homeostasis by inactivating ODC activity and enhancing its degradation. Here, we report the structure of human ODC in complex with N-terminally truncated AZ1 (cAZ1). The structure shows cAZ1 binding to ODC, which occludes the binding of a second molecule of ODC to form the active homodimer. Consequently, the substrate binding site is disrupted and ODC is inactivated. Structural comparison shows that the binding of cAZ1 to ODC causes a global conformational change of ODC and renders its C-terminal region flexible, therefore exposing this region for degradation by the 26S proteasome. Our structure provides the molecular basis for the inactivation of ODC by AZ1 and sheds light on how AZ1 promotes its degradation.
Collapse
|
12
|
Nowotarski SL, Feith DJ, Shantz LM. Skin Carcinogenesis Studies Using Mouse Models with Altered Polyamines. CANCER GROWTH AND METASTASIS 2015; 8:17-27. [PMID: 26380554 PMCID: PMC4558889 DOI: 10.4137/cgm.s21219] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 06/30/2015] [Accepted: 07/01/2015] [Indexed: 12/16/2022]
Abstract
Nonmelanoma skin cancer (NMSC) is a major health concern worldwide. With increasing numbers in high-risk groups such as organ transplant recipients and patients taking photosensitizing medications, the incidence of NMSC continues to rise. Mouse models of NMSC allow us to better understand the molecular signaling cascades involved in skin tumor development in order to identify novel therapeutic strategies. Here we review the models designed to determine the role of the polyamines in NMSC development and maintenance. Elevated polyamines are absolutely required for tumor growth, and dysregulation of their biosynthetic and catabolic enzymes has been observed in NMSC. Studies using mice with genetic alterations in epidermal polyamines suggest that they play key roles in tumor promotion and epithelial cell survival pathways, and recent clinical trials indicate that pharmacological inhibitors of polyamine metabolism show promise in individuals at high risk for NMSC.
Collapse
Affiliation(s)
- Shannon L Nowotarski
- Department of Biochemistry, The Pennsylvania State University Berks College, Reading, PA, USA
| | - David J Feith
- University of Virginia Cancer Center and Department of Medicine, Hematology and Oncology, University of Virginia, Charlottesville, VA, USA
| | - Lisa M Shantz
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| |
Collapse
|
13
|
Venugopal R, Mahesh V, Ekambaram G, Aadithya A, Sakthisekaran D. Protective role of Solanum trilobatum (Solanaeace) against benzo(a)pyrene-induced lung carcinogenesis in Swiss albino mice. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.bionut.2014.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
14
|
Wunderlichová L, Buňková L, Koutný M, Jančová P, Buňka F. Formation, Degradation, and Detoxification of Putrescine by Foodborne Bacteria: A Review. Compr Rev Food Sci Food Saf 2014. [DOI: 10.1111/1541-4337.12099] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Leona Wunderlichová
- Dept. of Environmental Protection Engineering; Faculty of Technology; Tomas Bata Univ. in Zlín; nám. T. G. Masaryka 275 76272 Zlín Czech Republic
| | - Leona Buňková
- Dept. of Environmental Protection Engineering; Faculty of Technology; Tomas Bata Univ. in Zlín; nám. T. G. Masaryka 275 76272 Zlín Czech Republic
| | - Marek Koutný
- Dept. of Environmental Protection Engineering; Faculty of Technology; Tomas Bata Univ. in Zlín; nám. T. G. Masaryka 275 76272 Zlín Czech Republic
| | - Petra Jančová
- Dept. of Environmental Protection Engineering; Faculty of Technology; Tomas Bata Univ. in Zlín; nám. T. G. Masaryka 275 76272 Zlín Czech Republic
| | - František Buňka
- Dept. of Food Technology; Faculty of Technology; Tomas Bata Univ. in Zlín; nám. T. G. Masaryka 275 76272 Zlín Czech Republic
| |
Collapse
|
15
|
Medina-Enríquez MM, Alcántara-Farfán V, Aguilar-Faisal L, Trujillo-Ferrara JG, Rodríguez-Páez L, Vargas-Ramírez AL. N-ω-chloroacetyl-l-ornithine, a new competitive inhibitor of ornithine decarboxylase, induces selective growth inhibition and cytotoxicity on human cancer cells versus normal cells. J Enzyme Inhib Med Chem 2014; 30:345-53. [PMID: 24939101 DOI: 10.3109/14756366.2014.926342] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Many cancer cells have high expression of ornithine decarboxylase (ODC) and there is a concerted effort to seek new inhibitors of this enzyme. The aim of the study was to initially characterize the inhibition properties, then to evaluate the cytotoxicity/antiproliferative cell based activity of N-ω-chloroacetyl-l-ornithine (NCAO) on three human cancer cell lines. Results showed NCAO to be a reversible competitive ODC inhibitor (Ki = 59 µM) with cytotoxic and antiproliferative effects, which were concentration- and time-dependent. The EC50,72h of NCAO was 15.8, 17.5 and 10.1 µM for HeLa, MCF-7 and HepG2 cells, respectively. NCAO at 500 µM completely inhibited growth of all cancer cells at 48 h treatment, with almost no effect on normal cells. Putrescine reversed NCAO effects on MCF-7 and HeLa cells, indicating that this antiproliferative activity is due to ODC inhibition.
Collapse
Affiliation(s)
- Miriam Marlene Medina-Enríquez
- Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Prol. Carpio y Plan de Ayala , México, D.F.
| | | | | | | | | | | |
Collapse
|
16
|
Sehrawat A, Sharma S, Sultana S. Preventive effect of tannic acid on 2-acetylaminofluorene induced antioxidant level, tumor promotion and hepatotoxicity: a chemopreventive study. Redox Rep 2013; 11:85-95. [PMID: 16686999 DOI: 10.1179/135100006x101066] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Tannic acid, present in almost every food derived from plants, has been widely investigated as a chemopreventive agent because, apart from its use as a food additive, pharmacological studies have demonstrated its many health-promoting properties. In this study, we show the modulatory effect of tannic acid on 2-acetylaminofluorene (2-AAF)-mediated hepatic oxidative stress and cell proliferation in rats. 2-AAF (50 mg/kg body weight) caused reduction in hepatic glutathione content and the activities of hepatic anti-oxidant enzymes and phase-II metabolizing enzymes with an enhancement of xanthine oxidase activity, lipid peroxidation and hydrogen peroxide content. 2-AAF treatment also induced serum oxaloacetate and pyruvate transaminase, lactate dehydrogenase and gamma-glutamyl transpeptidase. Treatment of rats orally with tannic acid (125 and 250 mg/kg body weight) resulted in significant recovery of hepatic glutathione content, antioxidant and phase-II metabolizing enzymes. Also, significant decreases in lipid peroxidation, xanthine oxidase, hydrogen peroxide generation and liver damage marker enzymes were observed. The antiproliferative efficacy of the tannic acid was also evaluated. The promotion parameters induced (ornithine decarboxylase activity and DNA synthesis) by 2-AAF administration in the diet with partial hepatectomy (PH) were also significantly suppressed, dose dependently, by tannic acid. Hence, we propose that tannic acid might suppress the promotion stage via inhibition of oxidative stress and polyamine biosynthetic pathway.
Collapse
Affiliation(s)
- Anuradha Sehrawat
- Section of Chemoprevention and Nutrition Toxicology, Department of Medical Elementology and Toxicology, Faculty of Science, Jamia Hamdard, Hamdard University, New Delhi, India
| | | | | |
Collapse
|
17
|
Interaction of human Dopa decarboxylase with L-Dopa: spectroscopic and kinetic studies as a function of pH. BIOMED RESEARCH INTERNATIONAL 2013; 2013:161456. [PMID: 23781496 PMCID: PMC3677616 DOI: 10.1155/2013/161456] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 05/08/2013] [Indexed: 01/03/2023]
Abstract
Human Dopa decarboxylase (hDDC), a pyridoxal 5′-phosphate (PLP) enzyme, displays maxima at 420 and 335 nm and emits fluorescence at 384 and 504 nm upon excitation at 335 nm and at 504 nm when excited at 420 nm. Absorbance and fluorescence titrations of hDDC-bound coenzyme identify a single pKspec of ~7.2. This pKspec could not represent the ionization of a functional group on the Schiff base but that of an enzymic residue governing the equilibrium between the low- and the high-pH forms of the internal aldimine. During the reaction of hDDC with L-Dopa, monitored by stopped-flow spectrophotometry, a 420 nm band attributed to the 4′-N-protonated external aldimine first appears, and its decrease parallels the emergence of a 390 nm peak, assigned to the 4′-N-unprotonated external aldimine. The pH profile of the spectral change at 390 nm displays a pK of 6.4, a value similar to that (~6.3) observed in both kcat and kcat/Km profiles. This suggests that this pK represents the ESH+ → ES catalytic step. The assignment of the pKs of 7.9 and 8.3 observed on the basic side of kcat and the PLP binding affinity profiles, respectively, is also analyzed and discussed.
Collapse
|
18
|
Vanrell MC, Cueto JA, Barclay JJ, Carrillo C, Colombo MI, Gottlieb RA, Romano PS. Polyamine depletion inhibits the autophagic response modulating Trypanosoma cruzi infectivity. Autophagy 2013; 9:1080-93. [PMID: 23697944 DOI: 10.4161/auto.24709] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Autophagy is a cell process that in normal conditions serves to recycle cytoplasmic components and aged or damaged organelles. The autophagic pathway has been implicated in many physiological and pathological situations, even during the course of infection by intracellular pathogens. Many compounds are currently used to positively or negatively modulate the autophagic response. Recently it was demonstrated that the polyamine spermidine is a physiological inducer of autophagy in eukaryotic cells. We have previously shown that the etiological agent of Chagas disease, the protozoan parasite Trypanosoma cruzi, interacts with autophagic compartments during host cell invasion and that preactivation of autophagy significantly increases host cell colonization by this parasite. In the present report we have analyzed the effect of polyamine depletion on the autophagic response of the host cell and on T. cruzi infectivity. Our data showed that depleting intracellular polyamines by inhibiting the biosynthetic enzyme ornithine decarboxylase with difluoromethylornithine (DFMO) suppressed the induction of autophagy in response to starvation or rapamycin treatment in two cell lines. This effect was associated with a decrease in the levels of LC3 and ATG5, two proteins required for autophagosome formation. As a consequence of inhibiting host cell autophagy, DFMO impaired T. cruzi colonization, indicating that polyamines and autophagy facilitate parasite infection. Thus, our results point to DFMO as a novel autophagy inhibitor. While other autophagy inhibitors such as wortmannin and 3-methyladenine are nonspecific and potentially toxic, DFMO is an FDA-approved drug that may have value in limiting autophagy and the spread of the infection in Chagas disease and possibly other pathological settings.
Collapse
Affiliation(s)
- María C Vanrell
- Laboratorio de Biología Celular y Molecular; Instituto de Histología y Embriología (IHEM); Universidad Nacional de Cuyo; CONICET; Mendoza, Argentina
| | | | | | | | | | | | | |
Collapse
|
19
|
Glycine consumption and mitochondrial serine hydroxymethyltransferase in cancer cells: The heme connection. Med Hypotheses 2013; 80:633-6. [DOI: 10.1016/j.mehy.2013.02.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 02/01/2013] [Accepted: 02/07/2013] [Indexed: 11/17/2022]
|
20
|
Panwar B, Gupta S, Raghava GPS. Prediction of vitamin interacting residues in a vitamin binding protein using evolutionary information. BMC Bioinformatics 2013; 14:44. [PMID: 23387468 PMCID: PMC3577447 DOI: 10.1186/1471-2105-14-44] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 01/31/2013] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The vitamins are important cofactors in various enzymatic-reactions. In past, many inhibitors have been designed against vitamin binding pockets in order to inhibit vitamin-protein interactions. Thus, it is important to identify vitamin interacting residues in a protein. It is possible to detect vitamin-binding pockets on a protein, if its tertiary structure is known. Unfortunately tertiary structures of limited proteins are available. Therefore, it is important to develop in-silico models for predicting vitamin interacting residues in protein from its primary structure. RESULTS In this study, first we compared protein-interacting residues of vitamins with other ligands using Two Sample Logo (TSL). It was observed that ATP, GTP, NAD, FAD and mannose preferred {G,R,K,S,H}, {G,K,T,S,D,N}, {T,G,Y}, {G,Y,W} and {Y,D,W,N,E} residues respectively, whereas vitamins preferred {Y,F,S,W,T,G,H} residues for the interaction with proteins. Furthermore, compositional information of preferred and non-preferred residues along with patterns-specificity was also observed within different vitamin-classes. Vitamins A, B and B6 preferred {F,I,W,Y,L,V}, {S,Y,G,T,H,W,N,E} and {S,T,G,H,Y,N} interacting residues respectively. It suggested that protein-binding patterns of vitamins are different from other ligands, and motivated us to develop separate predictor for vitamins and their sub-classes. The four different prediction modules, (i) vitamin interacting residues (VIRs), (ii) vitamin-A interacting residues (VAIRs), (iii) vitamin-B interacting residues (VBIRs) and (iv) pyridoxal-5-phosphate (vitamin B6) interacting residues (PLPIRs) have been developed. We applied various classifiers of SVM, BayesNet, NaiveBayes, ComplementNaiveBayes, NaiveBayesMultinomial, RandomForest and IBk etc., as machine learning techniques, using binary and Position-Specific Scoring Matrix (PSSM) features of protein sequences. Finally, we selected best performing SVM modules and obtained highest MCC of 0.53, 0.48, 0.61, 0.81 for VIRs, VAIRs, VBIRs, PLPIRs respectively, using PSSM-based evolutionary information. All the modules developed in this study have been trained and tested on non-redundant datasets and evaluated using five-fold cross-validation technique. The performances were also evaluated on the balanced and different independent datasets. CONCLUSIONS This study demonstrates that it is possible to predict VIRs, VAIRs, VBIRs and PLPIRs from evolutionary information of protein sequence. In order to provide service to the scientific community, we have developed web-server and standalone software VitaPred (http://crdd.osdd.net/raghava/vitapred/).
Collapse
Affiliation(s)
- Bharat Panwar
- Bioinformatics Centre, Institute of Microbial Technology (CSIR), Chandigarh, India
| | | | | |
Collapse
|
21
|
Rehman MU, Tahir M, Khan AQ, Khan R, Lateef A, Oday-O-Hamiza, Qamar W, Ali F, Sultana S. Chrysin suppresses renal carcinogenesis via amelioration of hyperproliferation, oxidative stress and inflammation: plausible role of NF-κB. Toxicol Lett 2012. [PMID: 23194824 DOI: 10.1016/j.toxlet.2012.11.013] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Flavonoid family is a rich source of polyphenolic compounds and hence possess strong antioxidant and anti inflammatory properties. The aim of this study was to determine the efficacy of chrysin; a bio-active flavonoid as an anticancer agent. Renal cancer was initiated by single intraperitoneal (i.p.) injection of N-nitrosodiethylamine (DEN 200 mg/kg BW body weight) and promoted by twice weekly administration of ferric nitrilotriacetate (Fe-NTA) 9 mg Fe/kg BW for 16 wk. In the present study, we report the chemopreventive effects of chrysin against (Fe-NTA) induced renal oxidative stress, inflammation, hyperproliferative response, and two-stage renal carcinogenesis. To ascertain the molecular mechanism implicated in the antitumor promoting activity of chrysin, its effect was investigated on markers of tumor promotion and inflammation: ornithine decarboxylase (ODC) activity, proliferating cell nuclear antigen (PCNA), inducible nitric oxide synthase (iNOS) and cyclo-oxygenase-2 (COX-2) expression, and on levels of proinflammatory cytokines interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and prostaglandin E(2) (PGE(2)). Pretreatment of animals with chrysin at both doses (20 and 40 mg/kg body weight) markedly inhibited all. Further, Fe-NTA enhances renal lipid peroxidation, with concomitant reduction in reduced glutathione content (GSH), antioxidant enzymes, and phase II metabolizing enzymes. It induces serum toxicity markers, viz., blood urea nitrogen (BUN), creatinine and lactate dehydrogenase (LDH). Prophylactic treatment of animals with chrysin before the administration of Fe-NTA was effective in modulating oxidative and renal injury markers and resulted in the diminution of Fe-NTA mediated injury. These results suggest chrysin as an effective chemopreventive agent having the capability to obstruct DEN initiated and Fe-NTA promoted renal cancer in the rat model.
Collapse
Affiliation(s)
- Muneeb U Rehman
- Section of Molecular Carcinogenesis and Chemoprevention, Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), Hamdard Nagar, New Delhi 110062, India
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Roncador A, Oppici E, Montioli R, Maset F, Cellini B. TAT-Mediated Delivery of Human Alanine:Glyoxylate Aminotransferase in a Cellular Model of Primary Hyperoxaluria Type I. Int J Pept Res Ther 2012. [DOI: 10.1007/s10989-012-9333-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
23
|
Husain Khan T, Sultana S. Effect ofAegle marmeloson DEN initiated and 2-AAF promoted hepatocarcinogenesis: a chemopreventive study. Toxicol Mech Methods 2011; 21:453-62. [DOI: 10.3109/15376516.2011.564677] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
24
|
Wilson MC, Gulder TAM, Mahmud T, Moore BS. Shared biosynthesis of the saliniketals and rifamycins in Salinispora arenicola is controlled by the sare1259-encoded cytochrome P450. J Am Chem Soc 2011; 132:12757-65. [PMID: 20726561 DOI: 10.1021/ja105891a] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Saliniketals A and B are unusual polyketides from the marine actinomycete Salinispora arenicola that inhibit ornithine decarboxylase induction. The structural similarities between the saliniketals and the ansa chain of the potent rifamycin antibiotics, which co-occur in the fermentation broth, suggest a common origin between the two compound classes. Using PCR-directed mutagenesis, chemical complementation studies, and stable isotope feeding experiments, we showed that the saliniketals are byproducts of the rifamycin biosynthetic pathway diverging at the stage of 34a-deoxyrifamycin W. Our results suggest that a single enzyme, the cytochrome P450 monooxygenase encoded by sare1259, catalyzes multiple oxidative rearrangement reactions on 34a-deoxyrifamyin W to yield both the saliniketal and rifamycin structural classes.
Collapse
Affiliation(s)
- Micheal C Wilson
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, California 92093-0204, USA
| | | | | | | |
Collapse
|
25
|
Müller IB, Wu F, Bergmann B, Knöckel J, Walter RD, Gehring H, Wrenger C. Poisoning pyridoxal 5-phosphate-dependent enzymes: a new strategy to target the malaria parasite Plasmodium falciparum. PLoS One 2009; 4:e4406. [PMID: 19197387 PMCID: PMC2634962 DOI: 10.1371/journal.pone.0004406] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Accepted: 12/12/2008] [Indexed: 11/18/2022] Open
Abstract
The human malaria parasite Plasmodium falciparum is able to synthesize de novo pyridoxal 5-phosphate (PLP), a crucial cofactor, during erythrocytic schizogony. However, the parasite possesses additionally a pyridoxine/pyridoxal kinase (PdxK) to activate B6 vitamers salvaged from the host. We describe a strategy whereby synthetic pyridoxyl-amino acid adducts are channelled into the parasite. Trapped upon phosphorylation by the plasmodial PdxK, these compounds block PLP-dependent enzymes and thus impair the growth of P. falciparum. The novel compound PT3, a cyclic pyridoxyl-tryptophan methyl ester, inhibited the proliferation of Plasmodium very efficiently (IC(50)-value of 14 microM) without harming human cells. The non-cyclic pyridoxyl-tryptophan methyl ester PT5 and the pyridoxyl-histidine methyl ester PHME were at least one order of magnitude less effective or completely ineffective in the case of the latter. Modeling in silico indicates that the phosphorylated forms of PT3 and PT5 fit well into the PLP-binding site of plasmodial ornithine decarboxylase (PfODC), the key enzyme of polyamine synthesis, consistent with the ability to abolish ODC activity in vitro. Furthermore, the antiplasmodial effect of PT3 is directly linked to the capability of Plasmodium to trap this pyridoxyl analog, as shown by an increased sensitivity of parasites overexpressing PfPdxK in their cytosol, as visualized by GFP fluorescence.
Collapse
Affiliation(s)
- Ingrid B Müller
- Department of Biochemistry, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
26
|
Rahman S, Sultana S. Glycyrrhizin exhibits potential chemopreventive activity on 12-O-tetradecanoyl phorbol-13-acetate-induced cutaneous oxidative stress and tumor promotion in swiss albino mice. J Enzyme Inhib Med Chem 2008; 22:363-9. [PMID: 17674818 DOI: 10.1080/14756360601074094] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Glycyrrhizin and its aglycone, glycyrrhetic acid has been found useful for various therapeutic purposes. Glycyrrhizin has been shown to possess many physiological functions like anti-inflammatory activity, detoxification and inhibition of carcinogenic promoters. 12-O-Tetradecanoyl phorbol-13-acetate (TPA), a well-known phorbal ester is known for its tumor promotion activity. The induction of inflammation in skin mediated by TPA is believed to be governed by cyclooxygenase (COX), lipoxygenase and ornithine decarboxylase (ODC). These markers of inflammatory responses are important for skin tumor promotion. In our present study, we studied the chemopreventive effect of glycyrrhizin on TPA (20 nmol/0.2 mL acetone/animal, topically)-induced oxidative stress and hyperproliferation markers in skin. TPA enhanced lipid peroxidation with reduction in the level of catalase, glutathione, glutathione peroxidase, glutathione reductase and glutathione-s-transferase. TPA treatment also enhanced ODC activity and [3H] thymidine incorporation into cutaneous DNA. Prophylactic treatment of mice with glycyrrhizin (2.0 & 4.0 mg/0.2 mL acetone/animal, topically) resulted in a significant decrease in cutaneous microsomal lipid peroxidation (P < 0.001) and recovery of cutaneous glutathione content (P < 0.001) and its dependent enzymes. A significant inhibition in ODC activity and DNA synthesis (P < 0.001) was also observed. Thus, the results demonstrate that pretreatment with glycyrrhizin is protective against TPA-induced oxidative stress and tumor promotion in Swiss albino mice.
Collapse
Affiliation(s)
- Sahar Rahman
- Section of Chemoprevention and Nutrition Toxicology, Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), Hamdard Nagar, New Delhi 110062, India
| | | |
Collapse
|
27
|
Li W, Liu X, Wang W, Sun H, Hu Y, Lei H, Liu G, Gao Y. Effects of antisense RNA targeting of ODC and AdoMetDC on the synthesis of polyamine synthesis and cell growth in prostate cancer cells using a prostatic androgen-dependent promoter in adenovirus. Prostate 2008; 68:1354-61. [PMID: 18548481 DOI: 10.1002/pros.20800] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
PURPOSE This study was designed to investigate the use of a prostatic androgen-dependent promoter to mediate antisense targeting of ornithine decarboxylase (ODC) and S-adenosylmethionine decarboxylase (AdoMetDC) and its effects on the synthesis of polyamine. We also examined the potential of this construct for prostate cancer therapy. METHODS pADxsi-PSES-AdoMetDC-ODC-PolyA AV was constructed and used to infect various cancer cell lines, including LNCaP, HT-29, H1299, HepG2. The effects of pADxsi-PSES-AdoMetDC-ODC-PolyA AV on the expression of ODC and AdoMetDC, in addition to the cell cycle, apoptosis and p21 levels, were analyzed through Western blotting and cytometry. A Matrigel invasion assay was used to analyze the effects of the recombinant virus on tumor cell invasion. The effect on polyamine content was also determined, and the relationship between inhibition of cellular ODC and AdoMetDC and decreases in polyamine were also investigated using a polyamine recovery assay. RESULTS Treatment with pADxsi-PSES-AdoMetDC-ODC-PolyA at an MOI of 90 significantly inhibited the proliferation of LNCaP cells, which could not be recovered through the addition of exogenous putrescine. The expression of ODC and AdoMetDC was also reduced, as was the polyamine content. The G1 phase of LNCaP cells was delayed, but no increase in apoptosis was detected. The down-regulation of ODC and AdoMetDC led to increased p21 expression. CONCLUSIONS The pADxsi-PSES-AdoMetDC-ODC-PolyA AV specifically inhibited the expression of ODC and AdoMetDC and the synthesis of polyamine, while it induced p21 expression, resulting in cell growth arrest in the G1 phase in prostate cancer cells but not in other cells.
Collapse
Affiliation(s)
- Wei Li
- Institute of Biochemistry and Molecular Biology, School of Medicine, Shandong University, Jinan, Shandong, China
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Park JH, Lee CK, Hwang YS, Park KK, Chung WY. Hemin inhibits cyclooxygenase-2 expression through nuclear factor-kappa B activation and ornithine decarboxylase expression in 12-O-tetradecanoylphorbol-13-acetate-treated mouse skin. Mutat Res 2008; 642:68-73. [PMID: 18534633 DOI: 10.1016/j.mrfmmm.2008.04.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2008] [Revised: 04/06/2008] [Accepted: 04/16/2008] [Indexed: 05/26/2023]
Abstract
Inflammation induced by various stimuli has been found to be associated with increased risk for most types of human cancer. Inflammation facilitates the initiation of normal cells, as well as the growth of initiated cells and their progression to malignancy through production of proinflammatory cytokines and diverse reactive oxygen/nitrogen species. These also activate the signaling molecules that are involved in inflammation and carcinogenesis. Our previous studies have demonstrated that hemin inhibited 7,12-dimethylbenz[a]anthracene (DMBA)-induced bacterial mutagenesis and oxidative DNA damage, reduced the level of DNA-DMBA adduct and 12-O-tetradecanoylphorobl-13-acetate (TPA)-induced tumor formation in DMBA-initiated ICR mouse skin, and inhibited myeloperoxidase and ornithine decarboxylase (ODC) activity and H(2)O(2) formation in TPA-treated mouse skin. In the present study, to further elucidate the molecular mechanisms underlying the chemopreventive activity of hemin, its effect on the expression of ODC and cyclooxygenase (COX)-2, and the activation of nuclear factor-kappa B (NF-kappaB) and mitogen-activated protein kinases (MAPKs) regulating these proteins were explored in mouse skin with TPA-induced inflammation. Topically applied hemin inhibited ear edema and epidermal thickness in mice treated with TPA. Pretreatment with hemin reduced the expression of ODC and COX-2, and also reduced NF-kappaB activation in TPA-stimulated mouse skin. In addition, hemin suppressed the TPA-induced activation of extracellular signal-regulated protein kinase (ERK) and p38 MAPK in a dose-dependent manner. Taken together, hemin inhibited TPA-induced COX-2 expression by altering NF-kappaB signaling pathway via ERK and p38 MAPK, as well as TPA-induced ODC expression in mouse skin. Thereby, hemin may be an attractive candidate for a chemopreventive agent.
Collapse
Affiliation(s)
- Jae Hee Park
- Department of Oral Biology, Yonsei University College of Dentistry, 134 Shinchon-Dong, Seodaemoon-Ku, Seoul, Republic of Korea
| | | | | | | | | |
Collapse
|
29
|
Odenlund M, Holmqvist B, Baldetorp B, Hellstrand P, Nilsson BO. Polyamine synthesis inhibition induces S phase cell cycle arrest in vascular smooth muscle cells. Amino Acids 2008; 36:273-82. [PMID: 18368465 DOI: 10.1007/s00726-008-0060-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2008] [Accepted: 03/06/2008] [Indexed: 10/22/2022]
Abstract
Polyamines are important for cell growth and proliferation and they are formed from arginine and ornithine via arginase and ornithine decarboxylase (ODC). Arginine may alternatively be metabolised to NO via NO synthase. Here we study if vascular smooth muscle cell proliferation can be reversed by polyamine synthesis inhibitors and investigate their mechanism of action. Cell proliferation was assessed in cultured vascular smooth muscle A7r5 cells and in endothelium-denuded rat arterial rings by measuring [3H]-thymidine incorporation and by cell counting. Cell cycle phase distribution was determined by flow cytometry and polyamines by HPLC. Protein expression was determined by Western blotting. The ODC inhibitor DFMO (1-10 mM) reduced polyamine concentration and attenuated proliferation in A7r5 cells and rat tail artery. DFMO accumulated cells in S phase of the cell cycle and reduced cyclin A expression. DFMO had no effect on cell viability and apoptosis as assessed by fluorescence microscopy. Polyamine concentration and cellular proliferation were not affected by the arginase inhibitor NOHA (100-200 microM) and the NO synthase inhibitor L-NAME (100 microM). Lack of effect of NOHA was reflected by absence of arginase expression. Polyamine synthesis inhibition attenuates vascular smooth muscle cell proliferation by reducing DNA synthesis and accumulation of cells in S phase, and may be a useful approach to prevent vascular smooth muscle cell proliferation in cardiovascular diseases.
Collapse
Affiliation(s)
- M Odenlund
- Department of Experimental Medical Science, Division of Vascular and Airway Research, Unit of Vascular Physiology, Lund University, BMC D12, 221 84 Lund, Sweden
| | | | | | | | | |
Collapse
|
30
|
Ueda A, Araie M, Kubota S. Polyamine depletion induces G1 and S phase arrest in human retinoblastoma Y79 cells. Cancer Cell Int 2008; 8:2. [PMID: 18208615 PMCID: PMC2259317 DOI: 10.1186/1475-2867-8-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2007] [Accepted: 01/21/2008] [Indexed: 11/25/2022] Open
Abstract
Background Polyamines and ornithine decarboxylase (ODC) are essential for cell proliferation. DL-α-difluoromethylornithine (DFMO), a synthetic inhibitor of ODC, induces G1 arrest through dephosphorylation of retinoblastoma protein (pRb). The effect of DFMO on cell growth of pRb deficient cells is not known. We examined the effects of DFMO on pRb deficient human retinoblastoma Y79 cell proliferation and its molecular mechanism. Methods Using cultured Y79 cells, the effects of DFMO were studied by using polyamine analysis, western blot, gel shift, FACS and promoter analysis. Results DFMO suppressed the proliferation of Y79 cells, which accumulated in the G1 and S phase. DFMO induced p27/Kip1 protein expression, p107 dephosphorylation and accumulation of p107/E2F-4 complex in Y79 cells. Conclusion These results indicate that p107 dephosphorylation and accumulation of p107/E2F-4 complex is involved in G1 and S phase arrest of DFMO treated Y79 cells.
Collapse
Affiliation(s)
- Akiko Ueda
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan.
| | | | | |
Collapse
|
31
|
Muscari C, Bonafé F, Carboni M, Govoni M, Stanic I, Gamberini C, Ricci F, Tazzari PL, Caldarera CM, Guarnieri C. Difluoromethylornithine stimulates early cardiac commitment of mesenchymal stem cells in a model of mixed culture with cardiomyocytes. J Cell Biochem 2008; 103:1046-52. [DOI: 10.1002/jcb.21683] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
32
|
Chu DZJ, Gibson G, David D, Yen Y. The surgeon's role in cancer prevention. The model in colorectal carcinoma. Ann Surg Oncol 2007; 14:3054-69. [PMID: 17710500 DOI: 10.1245/s10434-007-9485-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2006] [Accepted: 05/22/2007] [Indexed: 01/16/2023]
Abstract
Cancer Prevention is an emerging field, capturing the old traditional concept of anticipating the development of a major disease and preventing its full impact by early detection, treatment, or aborting the tumorigenic process by a "molecular vaccine" and alleviating the full impact of the disease. Surgeons are important clinician scientists who can carry this discipline forward and develop its full potential in the clinics and in the community. Advances in molecular biology, genetics, and other technologies have permitted seminal understanding of the carcinogenic pathways and identification of targets and intermediate end points in neoplasia. In this review, we will see that we have the means of preventing significant numbers of colorectal carcinomas (CRC).
Collapse
Affiliation(s)
- David Z J Chu
- Department of Surgery, Facey Medical Group, National Medical Center, San Gabriel, CA, USA.
| | | | | | | |
Collapse
|
33
|
Flamigni F, Stanic' I, Facchini A, Cetrullo S, Tantini B, Borzì RM, Guarnieri C, Caldarera CM. Polyamine biosynthesis as a target to inhibit apoptosis of non-tumoral cells. Amino Acids 2007; 33:197-202. [PMID: 17578652 DOI: 10.1007/s00726-007-0514-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2006] [Accepted: 02/01/2007] [Indexed: 12/18/2022]
Abstract
Growing evidence suggests a role for polyamines in apoptosis, although the relationship appears to be complex. alpha-Difluoromethylornithine (DFMO), a largely used ornithine decarboxylase inhibitor, is cytostatic, hardly cytotoxic and may even increase the resistance of tumour cells to some apoptotic stimuli. This may represent a problem in cancer therapy, where the killing of tumoral cells would be a desired effect, but could be an advantage in other pathological contexts related to an excess of apoptosis, such as cardiovascular diseases, stem cell transplantation, arthritis and infections. In different cellular models, polyamine depletion following treatment with polyamine biosynthesis inhibitors appears to inhibit mitochondrial and death receptor pathways of apoptosis by affecting key proteins. These studies indicate that inhibition of polyamine biosynthesis may prevent or reduce the apoptotic response triggered by a variety of stimuli in non-tumoral cells, such as cardiac cells, stem cells, chondrocytes, macrophages and intestinal epithelial cells.
Collapse
Affiliation(s)
- F Flamigni
- Department of Biochemistry "G. Moruzzi", University of Bologna, Bologna, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Nasizadeh S, Thiman L, Persson L. Sequence elements essential for the rapid turnover of Crithidia fasciculata ornithine decarboxylase. Amino Acids 2007; 34:421-8. [PMID: 17514492 DOI: 10.1007/s00726-007-0552-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Accepted: 03/30/2007] [Indexed: 11/25/2022]
Abstract
Ornithine decarboxylase (ODC) has a very fast turnover in mammalian cells, but is a stable enzyme in T. brucei and other trypanosmatid parasites like Leishmania donovani. However, Crithidia fasciculata, which is a phylogenetically closely related trypanosomatid to L. donovani, has an ODC with a rapid turnover. Interestingly, C. fasciculata ODC, but not L. donovani ODC, is rapidly degraded also in mammalian systems. In order to obtain information on what sequences are important for the rapid degradation of C. fasciculata ODC, we produced a variety of C. fasciculata/L. donovani ODC hybrid proteins and characterized their turnover using two different mammalian expression systems. The results obtained indicate that C. fasciculata ODC contains several sequence elements essential for the rapid turnover of the protein and that these regions are mainly located in the central part of the enzyme.
Collapse
Affiliation(s)
- S Nasizadeh
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | | | | |
Collapse
|
35
|
Nakazawa K, Nemoto T, Hata T, Seyama Y, Nagahara S, Sano A, Itoh H, Nagai Y, Kubota S. Single-injection ornithine decarboxylase-directed antisense therapy using atelocollagen to suppress human cancer growth. Cancer 2007; 109:993-1002. [PMID: 17318877 DOI: 10.1002/cncr.22483] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Substantial evidence supports a direct role of ornithine decarboxylase (ODC) in the development and maintenance of human tumors. Although antisense oligonucleotide therapy targeting various genes are useful for cancer treatment, 1 of the major limitations is the problem of delivery. A novel antisense oligonucleotide delivery method is described that allows prolonged sustainment and release of ODC antisense oligonucleotides in vivo using atelocollagen. METHODS The effect of ODC antisense oligonucleotides in the atelocollagen on cell growth of gastrointestinal cancer (MKN 45 and COLO201) and rhabdomyosarcoma (RD) was studied in vitro using a cell-counting method with a hemocytometer. In vivo, the effect of intratumoral, intramuscular, and intraperitoneal single administration of ODC antisense oligonucleotides in the atelocollagen on tumor growth of MKN45, COLO201, and RD cells was studied. ODC activity and polyamine contents were measured. RESULTS In vitro, ODC antisense oligonucleotides in the atelocollagen remarkably suppressed MKN45, COLO201, and RD cell growth. A single administration of antisense oligonucleotides in the atelocollagen via 3 routes remarkably suppressed the growth of MKN45, COLO201, and RD tumor over a period of 35-42 days. CONCLUSIONS As various human cancers significantly express ODC, the results strongly suggest that this new antisense method may be of considerable value for treatment of human cancers.
Collapse
Affiliation(s)
- Kunihiko Nakazawa
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Siddiqui IA, Afaq F, Adhami VM, Mukhtar H. Prevention of prostate cancer through custom tailoring of chemopreventive regimen. Chem Biol Interact 2007; 171:122-32. [PMID: 17403520 DOI: 10.1016/j.cbi.2007.03.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2006] [Revised: 02/19/2007] [Accepted: 03/02/2007] [Indexed: 01/11/2023]
Abstract
One practical way to control cancer is through chemoprevention, which refers to the administration of synthetic or naturally occurring agents to block, reverse or delay the process of carcinogenesis. For a variety of reasons, the most important of which is human acceptance, for chemopreventive intervention naturally occurring diet-based agents are preferred over synthetic agents. For a long time, the prevailing mantra of cancer chemoprevention has been: "Find effective agents with acceptable or no toxicity and use them in preventing cancer in relatively healthy people or individuals at high risk for developing cancer". In pursuing this goal many naturally occurring phytochemicals capable of affording protection against carcinogenesis in preclinical settings in experimental animals have been described. However, clinical trials of single agents have yielded disappointing results. Since carcinogenesis is a multistage phenomenon in which many normal cellular pathways become aberrant, it is unlikely that one agent could prove effective in preventing cancer. This review underscores the need to build an armamentarium of naturally occurring chemopreventive substances that could prevent or slow down the development and progression of prostate cancer. Thus, the new effective approach for cancer prevention "building a customized mechanism-based chemoprevention cocktail of naturally occurring substances" is advocated.
Collapse
Affiliation(s)
- Imtiaz A Siddiqui
- Department of Dermatology, University of Wisconsin, Madison, WI 53706, United States
| | | | | | | |
Collapse
|
37
|
Petros LM, Graminski GF, Robinson S, Burns MR, Kisiel N, Gesteland RF, Atkins JF, Kramer DL, Howard MT, Weeks RS. Polyamine Analogs with Xylene Rings Induce Antizyme Frameshifting, Reduce ODC Activity, and Deplete Cellular Polyamines. ACTA ACUST UNITED AC 2006; 140:657-66. [PMID: 16998202 DOI: 10.1093/jb/mvj193] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Numerous studies have correlated elevated polyamine levels with abnormal or rapid cell growth. One therapeutic strategy to treat diseases with increased cellular proliferation rates, most obviously cancer, has been to identify compounds which lower cellular polyamine levels. An ideal target for this strategy is the protein antizyme-a negative regulator of polyamine biosynthesis and import, and a positive regulator of polyamine export. In this study, we have optimized two tissue-culture assays in 96-well format, to allow the rapid screening of a 750-member polyamine analog library for compounds which induce antizyme frameshifting and fail to substitute for the natural polyamines in growth. Five analogs (MQTPA1-5) containing xylene (1,4-dimethyl benzene) were found to be equal to or better than spermidine at stimulating antizyme frameshifting and were inefficient at rescuing cell growth following polyamine depletion. These compounds were further characterized for effects on natural polyamine levels and enzymes involved in polyamine metabolism. Finally, direct measurements of antizyme induction in cells treated with two of the lead compounds revealed an 8- to 15-fold increase in antizyme protein over untreated cells. The impact of the xylene moiety and the distance between the positively charged amino groups on antizyme frameshifting and cell growth are discussed.
Collapse
Affiliation(s)
- Lorin M Petros
- Department of Human Genetics, University of Utah, 15 N 2030 E, Rm 7410, Salt Lake City, UT 84112-5330, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Sehrawat A, Sultana S. Evaluation of possible mechanisms of protective role of Tamarix gallica against DEN initiated and 2-AAF promoted hepatocarcinogenesis in male Wistar rats. Life Sci 2006; 79:1456-65. [PMID: 16698044 DOI: 10.1016/j.lfs.2006.04.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2006] [Revised: 03/23/2006] [Accepted: 04/15/2006] [Indexed: 11/28/2022]
Abstract
We have previously reported that Tamarix gallica caused a marked inhibition of thioacetamide-induced hepatotoxicity, oxidative damage and early tumor promotion related events in the liver. These results strongly indicates that T. gallica may have chemopreventive potential. Therefore, in the present study, we examined the inhibitory effects of T. gallica methanolic extract on diethylnitrosamine (DEN) initiated and 2-acetyl aminofluorene (2-AAF) promoted liver carcinogenesis in male Wistar rats. Interestingly, it was found that T. gallica (25 and 50 mg/kg body wt.) resulted in a marked reduction of the incidence of liver tumors. The study was further histologically confirmed. Furthermore to understand the underlying mechanisms of chemopreventive action by T. gallica we evaluated the levels activities of hepatic antioxidant defense enzymes, ornithine decarboxylase activity and hepatic DNA synthesis as a marker for tumor promotion since direct correlation between these marker parameters and carcinogenicity have been well documented. Treatment of male Wistar rats for five consecutive days with 2-AAF i.p. induced significant hepatic toxicity, oxidative stress and hyperproliferation. Pretreatment of T. gallica extract (25 and 50 mg/kg body wt.) prevented oxidative stress by restoring the levels of antioxidant enzymes and also prevented toxicity at both the doses. The promotion parameters induced (ornithine decarboxylase activity and DNA synthesis) by 2-AAF administration in diet with partial hepatectomy (PH) were also significantly suppressed dose-dependently by T. gallica. Therefore, we can conclude that ultimately the protection against liver carcinogenesis by T. gallica methanolic extract might be mediated by multiple actions, which include restoration of cellular antioxidant enzymes, detoxifying enzymes, ODC activity and DNA synthesis.
Collapse
Affiliation(s)
- Anuradha Sehrawat
- Section of Chemoprevention and Nutrition Toxicology, Department of Medical Elementology and Toxicology, Faculty of Science, Jamia Hamdard (Hamdard University), New Delhi 110 062, India
| | | |
Collapse
|
39
|
Sehrawat A, Sultana S. Tamarix gallica ameliorates thioacetamide-induced hepatic oxidative stress and hyperproliferative response in Wistar rats. J Enzyme Inhib Med Chem 2006; 21:215-23. [PMID: 16789436 DOI: 10.1080/14756360500480673] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Tamarix gallica, a hepatic stimulant and tonic, was examined for its ability to inhibit thioacetamide (TAA)-induced hepatic oxidative stress, toxicity and early tumor promotion response in male Wistar rats. TAA (6.6 mmol/kg body wt. i.p) enhanced lipid peroxidation, hydrogen peroxide content, glutathione S-transferase and xanthine oxidase with reduction in the activities of hepatic antioxidant enzymes viz., glutathione peroxidase, superoxide dismutase and caused depletion in the level of hepatic glutathione content. A marked increase in liver damage markers was also observed. TAA treatment also enhanced tumor promotion markers, ornithine decarboxylase (ODC) activity and [3H] thymidine incorporation into hepatic DNA. Pretreatment of rats orally with Tamarix gallica extract (25 and 50 mg/kg body weight) prevented TAA-promoted oxidative stress and toxicity. Prophylaxis with Tamarix gallica significantly reduced the susceptibility of the hepatic microsomal membrane for iron-ascorbate induced lipid peroxidation, H2O2 content, glutathione S-transferase and xanthine oxidase activities. There was also reversal of the elevated levels of liver marker parameters and tumor promotion markers. Our data suggests that Tamarix gallica is a potent chemopreventive agent and may suppress TAA-mediated hepatic oxidative stress, toxicity, and tumor promotion response in rats.
Collapse
Affiliation(s)
- Anuradha Sehrawat
- Section of Chemoprevention and Nutrition Toxicology, Department of Medical Elementology and Toxicology, Faculty of Science, Jamia Hamdard (Hamdard University), New Delhi110 062, India
| | | |
Collapse
|
40
|
Frossard ML, Seabra SH, DaMatta RA, de Souza W, de Mello FG, Machado Motta MC. An endosymbiont positively modulates ornithine decarboxylase in host trypanosomatids. Biochem Biophys Res Commun 2006; 343:443-9. [PMID: 16546131 DOI: 10.1016/j.bbrc.2006.02.168] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2006] [Accepted: 02/27/2006] [Indexed: 11/15/2022]
Abstract
Some trypanosomatids, such as Crithidia deanei, are endosymbiont-containing species. Aposymbiotic strains are obtained after antibiotic treatment, revealing interesting aspects of this symbiotic association. Ornithine decarboxylase (ODC) promotes polyamine biosynthesis and contributes to cell proliferation. Here, we show that ODC activity is higher in endosymbiont-bearing trypanosomatids than in aposymbiotic cells, but isolated endosymbionts did not display this enzyme activity. Intriguingly, expressed levels of ODC were similar in both strains, suggesting that ODC is positively modulated in endosymbiont-bearing cells. When the aposymbiotic strain was grown in conditioned medium, obtained after cultivation of the endosymbiont-bearing strain, cellular proliferation as well as ODC activity and localization were similar to that observed in the endosymbiont-containing trypanosomatids. Furthermore, dialyzed-heated medium and trypsin treatment reduced ODC activity of the aposymbiont strain. Taken together, these data indicate that the endosymbiont can enhance the protozoan ODC activity by providing factors of protein nature, which increase the host polyamine metabolism.
Collapse
Affiliation(s)
- Mariana Lins Frossard
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, 21941-590 Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | |
Collapse
|
41
|
Keren-Paz A, Bercovich Z, Porat Z, Erez O, Brener O, Kahana C. Overexpression of antizyme-inhibitor in NIH3T3 fibroblasts provides growth advantage through neutralization of antizyme functions. Oncogene 2006; 25:5163-72. [PMID: 16568078 DOI: 10.1038/sj.onc.1209521] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Antizyme inhibitor (AzI) is a homolog of ornithine decarboxylase (ODC), a key enzyme of polyamine synthesis. Antizyme inhibitor retains no enzymatic activity, but exhibits high affinity to antizyme (Az), a negative regulator of polyamine homeostasis. As polyamines are involved in maintaining cellular proliferation, and since AzI may negate Az functions, we have investigated the role of AzI in regulating cell growth. We show here that overexpression of AzI in NIH3T3 cells increased growth rate, enabled growth in low serum, and permitted anchorage-independent growth in soft agar, while reduction of AzI levels by AzI siRNA reduced cellular proliferation. Moreover, AzI overproducing cells gave rise to tumors when injected into nude mice. AzI overexpression resulted in elevation of ODC activity and of polyamine uptake. These effects of AzI are a result of its ability to neutralize Az, as overexpression of an AzI mutant with reduced Az binding failed to alter cellular polyamine metabolism and growth properties. We also demonstrate upregulation of AzI in Ras transformed cells, suggesting its relevance to some naturally occurring transformations. Finally, increased uptake activity rendered AzI overproducing and Ras-transformed cells more sensitive to toxic polyamine analogs. Our results therefore imply that AzI has a central and meaningful role in modulation of polyamine homeostasis, and in regulating cellular proliferation and transformation properties.
Collapse
Affiliation(s)
- A Keren-Paz
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | | | |
Collapse
|
42
|
Stanic I, Facchini A, Borzì RM, Vitellozzi R, Stefanelli C, Goldring MB, Guarnieri C, Facchini A, Flamigni F. Polyamine depletion inhibits apoptosis following blocking of survival pathways in human chondrocytes stimulated by tumor necrosis factor-alpha. J Cell Physiol 2006; 206:138-46. [PMID: 15965903 DOI: 10.1002/jcp.20446] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Chondrocyte apoptosis can be an important contributor to cartilage degeneration, thereby making it a potential therapeutic target in articular diseases. To search for new approaches to limit chondrocytic cell death, we investigated the requirement of polyamines for apoptosis favored by tumor necrosis factor-alpha (TNF), using specific polyamine biosynthesis inhibitors in human chondrocytes. The combined treatment of C-28/I2 chondrocytes with TNF and cycloheximide (CHX) resulted in a prompt effector caspase activation and internucleosomal DNA fragmentation. Pre-treatment of chondrocytes with alpha-difluoromethylornithine (DFMO), an ornithine decarboxylase (ODC) inhibitor, markedly reduced putrescine and spermidine content as well as the caspase-3 activation and DNA fragmentation induced by TNF and CHX. DFMO treatment also inhibited the increase in effector caspase activity provoked by TNF plus MG132, a proteasome inhibitor. DFMO decreased caspase-8 activity and procaspase-8 content, an apical caspase essential for TNF-induced apoptosis. Although DFMO increased the amount of active, phosphorylated Akt, inhibitors of the Akt pathway failed to restore the TNF-induced increase in caspase activity blunted by DFMO. DFMO also reduced the increase in caspase activity induced by staurosporine, but in this case Akt inhibition prevented the DFMO effect. Pre-treatment with CGP 48664, an S-adenosylmethionine decarboxylase (SAMDC) inhibitor markedly reduced spermidine and spermine levels, and provoked effects similar to those caused by DFMO. Finally DFMO was effective even in primary osteoarthritis (OA) chondrocyte cultures. These results suggest that the intracellular depletion of polyamines in chondrocytes can inhibit both the death receptor pathway by reducing the level of procaspase-8, and the apoptotic mitochondrial pathway by activating Akt.
Collapse
Affiliation(s)
- Ivana Stanic
- Dipartimento di Biochimica G. Moruzzi, University of Bologna, Bologna, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Vanisree AJ, Shyamaladevi CS. The effect of N-acetylcysteine in combination with vitamin C on the activity of ornithine decarboxylase of lung carcinoma cells--In vitro. Life Sci 2006; 79:654-9. [PMID: 16574159 DOI: 10.1016/j.lfs.2006.02.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2005] [Revised: 12/24/2005] [Accepted: 02/10/2006] [Indexed: 10/24/2022]
Abstract
Ornithine decarboxylase (ODC) is a marker of lung cancer and is a key enzyme in the synthesis of polyamines, which are necessary for the promotion of the growth of malignant cells. This study assesses the dose-dependent effect of N-acetylcysteine (NAC), a chemopreventive agent, in combination with vitamin C (VC) on the activity of ODC in lung carcinoma cell line, NCI-H82. The cells were subjected to supplementation of NAC and VC both individually and in combination at different dosages for 24 h as well as 48 h. The cells were incubated with radiolabeled L-ornithine (14C) after the supplementation of NAC and VC individually as well as in combination. A microprocedure was carried out to estimate the activity of ODC in cells after 24 and 48 h of incubation. The activity which was found to be elevated in control cells was decreased significantly on drug supplementation in dose-dependent fashion. The content of nucleic acids also exhibited similar result and [3H]-thymidine incorporation was also affected by the supplementation.
Collapse
Affiliation(s)
- A J Vanisree
- Department of Biochemistry, University of Madras, Guindy Campus, Chennai-600025, Tamilnadu, India.
| | | |
Collapse
|
44
|
Crowell JA. The chemopreventive agent development research program in the Division of Cancer Prevention of the US National Cancer Institute: an overview. Eur J Cancer 2005; 41:1889-910. [PMID: 16005206 DOI: 10.1016/j.ejca.2005.04.016] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2005] [Accepted: 04/25/2005] [Indexed: 02/06/2023]
Abstract
Chemoprevention is an innovative area of cancer research that focuses on the development of pharmacological, biological, and nutritional interventions to prevent, reverse, or delay carcinogenesis. Over the past two decades the Division of Cancer Prevention of the US National Cancer Institute has organized a research and development program to provide resources and infrastructure to the research community for the clinical evaluation of potential cancer preventive agents. This program now encompasses preclinical agent and molecular target identification, in vitro and in vivo screening, efficacy and intermediate endpoint testing, pharmacology and toxicology assessments, and finally chemical synthesis and manufacturing leading to Investigational New Drug applications and clinical studies. In this review, examples of agents currently in development, preclinical testing models, and phase 1 and 2 clinical studies are described. Continued commitment to cancer prevention will significantly reduce the economic and medical burden of cancer.
Collapse
Affiliation(s)
- James A Crowell
- Division of Cancer Prevention, National Cancer Institute, DHHS, Bethesda, MD 20892, USA
| |
Collapse
|
45
|
FACCHINI ANNALISA, BORZÌ ROSAMARIA, MARCU KENNETHB, STEFANELLI CLAUDIO, OLIVOTTO ELEONORA, GOLDRING MARYB, FACCHINI ANDREA, FLAMIGNI FLAVIO. Polyamine depletion inhibits NF-kappaB binding to DNA and interleukin-8 production in human chondrocytes stimulated by tumor necrosis factor-alpha. J Cell Physiol 2005; 204:956-63. [PMID: 15828019 PMCID: PMC1226412 DOI: 10.1002/jcp.20368] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The activation of the NF-kappaB pathway by pro-inflammatory cytokines, such as tumor necrosis factor-alpha (TNFalpha), can be an important contributor for the re-programming of chondrocyte gene expression, thereby making it a therapeutic target in articular diseases. To search for new approaches to limit cartilage damage, we investigated the requirement of polyamines for NF-kappaB activation by TNFalpha in human C-28/I2 chondrocytes, using alpha-difluoromethylornithine (DFMO), a specific polyamine biosynthesis inhibitor. The NF-kappaB pathway was dissected by using pharmacological inhibitors or by expressing a transdominant IkappaBalpha super repressor. Treatment of C-28/I2 chondrocytes with TNFalpha resulted in a rapid enhancement of nuclear localization and DNA binding activity of the p65 NF-kappaB subunit. TNFalpha also increased the level and extracellular release of interleukin-8 (IL-8), a CXC chemokine that can have a role in arthritis, in an NF-kappaB-dependent manner. Pre-treatment of chondrocytes with DFMO, while causing polyamine depletion, significantly reduced NF-kappaB DNA binding activity. Moreover, DFMO also decreased IL-8 production without affecting cellular viability. Restoration of polyamine levels by the co-addition of putrescine circumvented the inhibitory effects of DFMO. Our results show that the intracellular depletion of polyamines inhibits the response of chondrocytes to TNFalpha by interfering with the DNA binding activity of NF-kappaB. This suggests that a pharmacological and/or genetic approach to deplete the polyamine pool in chondrocytes may represent a useful way to reduce NF-kappaB activation by inflammatory cytokines in arthritis without provoking chondrocyte apoptosis.
Collapse
Affiliation(s)
- ANNALISA FACCHINI
- Dipartimento di Biochimica “G. Moruzzi”, University of Bologna, Bologna, Italy
| | - ROSA MARIA BORZÌ
- Laboratorio di Immunologia e Genetica, Istituto di Ricerca Codivilla Putti, I.O.R., Bologna, Italy
| | - KENNETH B. MARCU
- Department of Biochemistry and Cell Biology, SUNY @ Stony Brook, Stony Brook, NY, USA
- CRBA Laboratory, S. Orsola University Hospital, University of Bologna, Bologna, Italy
| | - CLAUDIO STEFANELLI
- Dipartimento di Biochimica “G. Moruzzi”, University of Bologna, Bologna, Italy
| | - ELEONORA OLIVOTTO
- Laboratorio di Immunologia e Genetica, Istituto di Ricerca Codivilla Putti, I.O.R., Bologna, Italy
| | - MARY B. GOLDRING
- Beth Israel Deaconess Medical Center, Harvard Institutes of Medicine, Boston, MA, USA
| | - ANDREA FACCHINI
- Laboratorio di Immunologia e Genetica, Istituto di Ricerca Codivilla Putti, I.O.R., Bologna, Italy
- Dipartimento di Medicina interna e Gastroenterologia, University of Bologna, Bologna, Italy
| | - FLAVIO FLAMIGNI
- Dipartimento di Biochimica “G. Moruzzi”, University of Bologna, Bologna, Italy
- Correspondence to: Flavio Flamigni, Dipartimento di Biochimica “G. Moruzzi”, University of Bologna, Via Irnerio 48, 40126 - Bologna, Italy. Tel.: +39-051-2091216; fax: +39-051-2091224. E-mail:
| |
Collapse
|
46
|
Sharma RA, Browning MJ. Mechanisms of the self/non-self-survey in the defense against cancer: Potential for chemoprevention? Crit Rev Oncol Hematol 2005; 56:5-22. [PMID: 15978831 DOI: 10.1016/j.critrevonc.2004.12.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2004] [Revised: 12/21/2004] [Accepted: 12/21/2004] [Indexed: 01/04/2023] Open
Abstract
When compared to a reference population, several large epidemiological studies with long-term follow-up have reported a three- to five-fold increased risk of neoplasia amongst patients who have received organ transplants, with an incidence curve that rises in a linear fashion with time. The relationship between the immune system and cancer is complex. The ability to discriminate "self" from "non-self" is one of the central roles of the immune system. Since tumors arise from transformation of host cells, it is not surprising that some aspects of tumor immunity resemble autoimmunity. The immune response to tumors shares aspects of both self- and non-self-immune recognition. What accounts for the apparent failure of immunity? In this review article, we address the role of the self/non-self-survey in the immune response to tumors, we describe mechanisms of immune surveillance against tumor cells, and we discuss models of ignorance, tolerance and tumor evasion of the immune response. The overall aim of the article is to demonstrate the scope for prevention of cancer in individuals at increased risk of developing malignancy due to immune compromise. Interventional strategies may involve the use of pro-differentiation agents such as retinoids, modifiers of polyamine biosynthesis or inhibitors of cyclooxygenase isozymes.
Collapse
Affiliation(s)
- Ricky A Sharma
- Radiotherapy Department, Royal Marsden Hospital NHS Trust, Downs Road, Sutton SM2 5PT, UK.
| | | |
Collapse
|
47
|
Nasizadeh S, Myhre L, Thiman L, Alm K, Oredsson S, Persson L. Importance of polyamines in cell cycle kinetics as studied in a transgenic system. Exp Cell Res 2005; 308:254-64. [PMID: 15923003 DOI: 10.1016/j.yexcr.2005.04.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2005] [Revised: 04/22/2005] [Accepted: 04/26/2005] [Indexed: 11/19/2022]
Abstract
Polyamines are organic cations, which are considered essential for normal cell cycle progression. This view is based on results from numerous studies using a variety of enzyme inhibitors or polyamine analogues interfering with either the metabolism or the physiological functions of the polyamines. However, the presence of non-specific effects may be hard to rule out in such studies. In the present study, we have for the first time used a transgenic cell system to analyze the importance of polyamines in cell growth. We have earlier shown that expression of trypanosomal ODC in an ODC-deficient variant of CHO cells (C55.7) supported growth of these otherwise polyamine auxotrophic cells. However, one of the transgenic cell lines grew much slower than the others. As shown in the present study, the level of ODC activity was much lower in these cells, and that was reflected in a reduction of cellular polyamine levels. Analysis of cell cycle kinetics revealed that reduction of growth was correlated to prolongation of the G1, S, and G2+M phases in the cells. Providing exogenous putrescine to the cells resulted in a normalization of polyamine levels as well as cell cycle kinetics indicating a causal relationship.
Collapse
Affiliation(s)
- Sima Nasizadeh
- Department of Physiological Sciences, Lund University, BMC F-13, S-221 84 Lund, Sweden
| | | | | | | | | | | |
Collapse
|
48
|
Mayeur C, Veuillet G, Michaud M, Raul F, Blottière HM, Blachier F. Effects of agmatine accumulation in human colon carcinoma cells on polyamine metabolism, DNA synthesis and the cell cycle. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1745:111-23. [PMID: 16085059 DOI: 10.1016/j.bbamcr.2004.12.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2004] [Revised: 12/17/2004] [Accepted: 12/20/2004] [Indexed: 10/26/2022]
Abstract
Putrescine, spermidine and spermine are low molecular polycations that play important roles in cell growth and cell cycle progression of normal and malignant cells. Agmatine (1-amino-4-guanidobutane), another polyamine formed through arginine decarboxylation, has been reported to act as an antiproliferative agent in several non-intestinal mammalian cell models. Using the human colon adenocarcinoma HT-29 Glc(-/+) cell line, we demonstrate that agmatine, which markedly accumulated inside the cells without being metabolised, exerted a strong cytostatic effect with an IC50 close to 2 mM. Agmatine decreased the rate of L-ornithine decarboxylation and induced a 70% down-regulation of ornithine decarboxylase (ODC) expression. Agmatine caused a marked decrease in putrescine and spermidine cell contents, an increase in the N1-acetylspermidine level without altering the spermine pool. We show that agmatine induced the accumulation of cells in the S and G2/M phases, reduced the rate of DNA synthesis and decreased cyclin A and B1 expression. We conclude that the anti-metabolic action of agmatine on HT-29 cells is mediated by a reduction in polyamine biosynthesis and induction in polyamine degradation. The decrease in intracellular polyamine contents, the reduced rate of DNA synthesis and the cell accumulation in the S phase are discussed from a causal perspective.
Collapse
Affiliation(s)
- Camille Mayeur
- Unité de Nutrition et Sécurité alimentaire, Institut National de la Recherche Agronomique, 78350 Jouy-en-Josas, France.
| | | | | | | | | | | |
Collapse
|
49
|
Mitchell JLA, Simkus CL, Thane TK, Tokarz P, Bonar MM, Frydman B, Valasinas AL, Reddy VK, Marton LJ. Antizyme induction mediates feedback limitation of the incorporation of specific polyamine analogues in tissue culture. Biochem J 2005; 384:271-9. [PMID: 15315476 PMCID: PMC1134110 DOI: 10.1042/bj20040972] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Spermidine, spermine and putrescine are essential for mammalian cell growth, and there has been a pervasive effort to synthesize analogues of these polyamines that will disrupt their function and serve as tools to inhibit cell proliferation. Recently, we demonstrated that a number of such polyamine analogues are also capable of inducing the regulatory protein AZ (antizyme). In the present study the incorporation of a few sample analogues [mimics of bis(ethyl)spermine] was shown to be significantly limited by a decrease in the V(max) for the polyamine transport system in response to analogue-induced AZ. This creates an unusual circumstance in which compounds that are being designed for therapeutic use actually inhibit their own incorporation into targeted cells. To explore the impact of this feedback system, cultures of rat hepatoma HTC cells were pre-treated to exhibit either low or high polyamine uptake activity and then exposed to polyamine analogues. As predicted, regardless of initial uptake activity, all cultures eventually achieved the same steady-state levels of the cellular analogue and AZ. Importantly, analogue-induced AZ levels remained elevated with respect to controls even after the native polyamines were reduced by more than 70%. To model the insufficient AZ expression found in certain tumours, GS-CHO (GS Chinese-hamster ovary) cells were transfected to express high levels of exogenic AZI (AZ inhibitor). As anticipated, this clone incorporated significantly higher levels of the polyamine analogues examined. This study reveals a potential limitation in the use of polyamine-based compounds as therapeutics, and strategies are presented to either circumvent or exploit this elegant transport feedback system.
Collapse
Affiliation(s)
- John L A Mitchell
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Wallon UM, O'Brien TG. Polyamines modulate carcinogen-induced mutagenesis in vivo. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2005; 45:62-69. [PMID: 15611981 DOI: 10.1002/em.20086] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Elevated polyamine levels as a consequence of targeted overexpression of ornithine decarboxylase (ODC) to murine skin enhance susceptibility to tumorigenesis in this tissue. A possible mechanism for the enhanced susceptibility phenotype is an increased sensitivity of tissues with elevated polyamine levels to the mutagenic action of carcinogens. To test this hypothesis, a transgenic mouse model containing the Big Blue transgene and also expressing a K6/ODC transgene was developed. Incorporation of the K6/ODC transgene into the Big Blue model did not affect the spontaneous lacI mutant frequency in either skin or epidermis of the double-transgenic mice. After skin treatment with single doses of either 7,12-dimethylbenz[a]anthracene or N-methyl-N'-nitro-N-nitrosoguanidine, however, the mutant frequency was significantly increased in the skin of double-transgenic Big Blue;K6/ODC mice compared to Big Blue controls. The increases in mutant frequency were clearly due to ODC transgene activity, since treatment of mice with the ODC inhibitor, alpha-difluoromethylornithine, completely abolished the difference in mutant frequencies between double-transgenic and Big Blue mice. These results demonstrate that intracellular polyamine levels modulate mutation induction following carcinogen exposure.
Collapse
Affiliation(s)
- U Margaretha Wallon
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania 19096, USA.
| | | |
Collapse
|