1
|
Almirón A, Lorenz V, Varayoud J, Durando M, Milesi MM. Perinatal Exposure to Glyphosate or a Commercial Formulation Alters Uterine Mechanistic Pathways Associated with Implantation Failure in Rats. TOXICS 2024; 12:590. [PMID: 39195693 PMCID: PMC11358895 DOI: 10.3390/toxics12080590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/07/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024]
Abstract
Perinatal exposure to a glyphosate-based herbicide (GBH) or its active ingredient, glyphosate (Gly), has been demonstrated to increase implantation failure in rats. This study investigates potential mechanisms of action, analyzing uterine preparation towards the receptive state. Pregnant Wistar rats (F0) were treated orally with GBH or Gly (3.8 and 3.9 mg Gly/kg/day, respectively) from gestational day (GD) 9 until weaning. Adult F1 females became pregnant and uterine samples were collected on GD5 (preimplantation period). Histomorphological uterine parameters were assessed. Immunohistochemistry was applied to evaluate cell proliferation and protein expression of estrogen receptors (ERα and ERβ), cell cycle regulators (PTEN, cyclin G1, p27, and IGF1R-α), and the Wnt5a/β-catenin/FOXA2/Lif pathway. Both GBH and Gly females showed increased stromal proliferation, associated with a high expression of ERs. Dysregulation of PTEN and cyclin G1 was also observed in the Gly group. Reduced gland number was observed in both groups, along with decreased expression of Wnt5a/β-catenin/FOXA2/Lif pathway in the glandular epithelium. Overall, GBH and Gly perinatal exposure disrupted intrinsic uterine pathways involved in endometrial proliferation and glandular function, providing a plausible mechanism for glyphosate-induced implantation failure by compromising uterine receptivity. Similar effects between GBH and Gly suggest the active principle mainly drives the adverse outcomes.
Collapse
Affiliation(s)
- Ailín Almirón
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe S3000, Argentina; (A.A.)
- Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe S3000, Argentina
| | - Virginia Lorenz
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe S3000, Argentina; (A.A.)
- Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe S3000, Argentina
| | - Jorgelina Varayoud
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe S3000, Argentina; (A.A.)
- Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe S3000, Argentina
| | - Milena Durando
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe S3000, Argentina; (A.A.)
- Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe S3000, Argentina
| | - María Mercedes Milesi
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe S3000, Argentina; (A.A.)
- Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe S3000, Argentina
| |
Collapse
|
2
|
Liu YJ, Miao HB, Lin S, Chen Z. Current Progress in Treating Systemic Lupus Erythematosus Using Exosomes/MicroRNAs. Cell Transplant 2023; 32:9636897221148775. [PMID: 36661068 PMCID: PMC9903023 DOI: 10.1177/09636897221148775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic systemic autoimmune disease associated with impaired organ functions that can seriously affect the daily life of patients. Recent SLE therapies frequently elicit adverse reactions and side effects in patients, and clinical heterogeneity is considerable. Mesenchymal stromal cells (MSCs) have anti-inflammatory, tissue repair, and immunomodulatory properties. Their ability to treat autoimmune diseases largely depends on secreted extracellular vesicles, especially exosomes. The effects of exosomes and microRNAs (miRNAs) on SLE have recently attracted interest. This review summarizes the applications of MSCs derived from bone marrow, adipocyte tissue, umbilical cord, synovial membrane, and gingival tissue, as well as exosomes to treating SLE and the key roles of miRNAs. The efficacy of MSCs infusion in SLE patients with impaired autologous MSCs are reviewed, and the potential of exosomes and their contents as drug delivery vectors for treating SLE and other autoimmune diseases in the future are briefly described.
Collapse
Affiliation(s)
- Yi-jing Liu
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Hai-bing Miao
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Shu Lin
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China,Group of Neuroendocrinology, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Zhen Chen
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China,Zhen Chen, Department of Rheumatology and Immunology, The Second Affiliated Hospital of Fujian Medical University, 34 Zhongshan Road, Quanzhou 362000, Fujian, P.R. China.
| |
Collapse
|
3
|
CRISPR/Cas9-engineered mesenchymal stromal/stem cells and their extracellular vesicles: A new approach to overcoming cell therapy limitations. Biomed Pharmacother 2022; 156:113943. [DOI: 10.1016/j.biopha.2022.113943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 11/11/2022] Open
|
4
|
Mesenchymal stem cells and connective tissue diseases: From bench to bedside. J Transl Int Med 2022. [PMID: 37533846 PMCID: PMC10393058 DOI: 10.2478/jtim-2022-0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Abstract
The pathogenesis of connective tissue diseases (CTDs), represented by systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), systemic sclerosis (SSc), primary Sjögren’s syndrome (pSS), and idiopathic inflammatory myopathies (IIM), includes various immune cells involved in both innate and adaptive immunity. The mesenchymal stem cells (MSCs) are unique due to their regulatory effect on immunity. This makes them a promising therapeutic approach for patients with immune-mediated disorders such as CTD. The safety and clinical efficacy of MSC treatment in CTD have been tested in a growing number of preclinical and clinical studies. Administration of MSCs has consistently shown benefits with both symptomatic and histologic improvement in CTD animal models. MSC therapies in severe and drug-resistant CTD patients have shown promise in a number of the pilot studies, cohort studies, and randomized controlled trials in SLE, RA, and SSc, but some problems still need to be resolved in the transition from the bench to the bedside. The relevant studies in pSS and IIM are still in their infancy, but have displayed encouraging outcomes. Considerable efficacy variations have been observed in terms of the route of delivery, time of MSC injection, origin of the MSCs and dosage. Furthermore, the optimization of conventional drugs combined with MSC therapies and the applications of novel cell engineering approaches requires additional research. In this review, we summarize the current evidence about the immunoregulatory mechanism of MSCs, as well as the preclinical and clinical studies of MSC-based therapy for the treatment of CTDs.
Collapse
|
5
|
Li J, Luo M, Li B, Lou Y, Zhu Y, Bai X, Sun B, Lu X, Luo P. Immunomodulatory Activity of Mesenchymal Stem Cells in Lupus Nephritis: Advances and Applications. Front Immunol 2022; 13:843192. [PMID: 35359961 PMCID: PMC8960601 DOI: 10.3389/fimmu.2022.843192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 02/17/2022] [Indexed: 12/29/2022] Open
Abstract
Lupus nephritis (LN) is a significant cause of various acute and chronic renal diseases, which can eventually lead to end-stage renal disease. The pathogenic mechanisms of LN are characterized by abnormal activation of the immune responses, increased cytokine production, and dysregulation of inflammatory signaling pathways. LN treatment is an important issue in the prevention and treatment of systemic lupus erythematosus. Mesenchymal stem cells (MSCs) have the advantages of immunomodulation, anti-inflammation, and anti-proliferation. These unique properties make MSCs a strong candidate for cell therapy of autoimmune diseases. MSCs can suppress the proliferation of innate and adaptive immune cells, such as natural killer cells (NKs), dendritic cells (DCs), T cells, and B cells. Furthermore, MSCs suppress the functions of various immune cells, such as the cytotoxicity of T cells and NKs, maturation and antibody secretion of B cells, maturation and antigen presentation of DCs, and inhibition of cytokine secretion, such as interleukins (ILs), tumor necrosis factor (TNF), and interferons (IFNs) by a variety of immune cells. MSCs can exert immunomodulatory effects in LN through these immune functions to suppress autoimmunity, improve renal pathology, and restore kidney function in lupus mice and LN patients. Herein, we review the role of immune cells and cytokines in the pathogenesis of LN and the mechanisms involved, as well as the progress of research on the immunomodulatory role of MSCs in LN.
Collapse
Affiliation(s)
- Jicui Li
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, China
| | - Manyu Luo
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, China
| | - Bing Li
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, China
| | - Yan Lou
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, China
| | - Yuexin Zhu
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, China
| | - Xue Bai
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, China
| | - Baichao Sun
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, China
| | - Xuehong Lu
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, China
| | - Ping Luo
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
6
|
Singh B, Maiti GP, Zhou X, Fazel-Najafabadi M, Bae SC, Sun C, Terao C, Okada Y, Chua KH, Kochi Y, Guthridge JM, Zhang H, Weirauch M, James JA, Harley JB, Varshney GK, Looger LL, Nath SK. Lupus Susceptibility Region Containing CDKN1B rs34330 Mechanistically Influences Expression and Function of Multiple Target Genes, Also Linked to Proliferation and Apoptosis. Arthritis Rheumatol 2021; 73:2303-2313. [PMID: 33982894 PMCID: PMC8589926 DOI: 10.1002/art.41799] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 05/04/2021] [Indexed: 11/10/2022]
Abstract
OBJECTIVE In a recent genome-wide association study, a significant genetic association between rs34330 of CDKN1B and risk of systemic lupus erythematosus (SLE) in Han Chinese was identified. This study was undertaken to validate the reported association and elucidate the biochemical mechanisms underlying the effect of the variant. METHODS We performed an allelic association analysis in patients with SLE, followed by a meta-analysis assessing genome-wide association data across 11 independent cohorts (n = 28,872). In silico bioinformatics analysis and experimental validation in SLE-relevant cell lines were applied to determine the functional consequences of rs34330. RESULTS We replicated a genetic association between SLE and rs34330 (meta-analysis P = 5.29 × 10-22 , odds ratio 0.84 [95% confidence interval 0.81-0.87]). Follow-up bioinformatics and expression quantitative trait locus analysis suggested that rs34330 is located in active chromatin and potentially regulates several target genes. Using luciferase and chromatin immunoprecipitation-real-time quantitative polymerase chain reaction, we demonstrated substantial allele-specific promoter and enhancer activity, and allele-specific binding of 3 histone marks (H3K27ac, H3K4me3, and H3K4me1), RNA polymerase II (Pol II), CCCTC-binding factor, and a critical immune transcription factor (interferon regulatory factor 1 [IRF-1]). Chromosome conformation capture revealed long-range chromatin interactions between rs34330 and the promoters of neighboring genes APOLD1 and DDX47, and effects on CDKN1B and the other target genes were directly validated by clustered regularly interspaced short palindromic repeat (CRISPR)-based genome editing. Finally, CRISPR/dead CRISPR-associated protein 9-based epigenetic activation/silencing confirmed these results. Gene-edited cell lines also showed higher levels of proliferation and apoptosis. CONCLUSION Collectively, these findings suggest a mechanism whereby the rs34330 risk allele (C) influences the presence of histone marks, RNA Pol II, and IRF-1 transcription factor to regulate expression of several target genes linked to proliferation and apoptosis. This process could potentially underlie the association of rs34330 with SLE.
Collapse
Affiliation(s)
- Bhupinder Singh
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Guru P. Maiti
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Xujie Zhou
- Renal Division, Peking University First Hospital, Peking University, Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
| | - Mehdi Fazel-Najafabadi
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Sang-Cheol Bae
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Republic of Korea
| | - Celi Sun
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Chikashi Terao
- Laboratory for Statistical and Translational Genetics, Center for Integrative Medical Sciences, RIKEN Yokohama Institute, Yokohama, Kanagawa, Japan
- Department of Applied Genetics, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Yukinori Okada
- Department of Statistical Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Kek Heng Chua
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Yuta Kochi
- Department of Genomic Function and Diversity, Medical Research Institute, Tokyo Medical and Dental University Laboratory for Autoimmune Diseases, Center for Integrative Medical Sciences, RIKEN Yokohama Institute, Yokohama, Kanagawa, Japan
| | - Joel M. Guthridge
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Hong Zhang
- Renal Division, Peking University First Hospital, Peking University, Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
| | - Matthew Weirauch
- Center for Autoimmune Genomics and Etiology (CAGE), Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, and the US Department of Veterans Affairs Medical Center, Cincinnati, OH, USA
| | - Judith A. James
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - John B. Harley
- Center for Autoimmune Genomics and Etiology (CAGE), Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, and the US Department of Veterans Affairs Medical Center, Cincinnati, OH, USA
| | - Gaurav K. Varshney
- Genes and Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Loren L. Looger
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA, USA
| | - Swapan K. Nath
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| |
Collapse
|
7
|
El-Jawhari JJ, Ganguly P, Jones E, Giannoudis PV. Bone Marrow Multipotent Mesenchymal Stromal Cells as Autologous Therapy for Osteonecrosis: Effects of Age and Underlying Causes. Bioengineering (Basel) 2021; 8:69. [PMID: 34067727 PMCID: PMC8156020 DOI: 10.3390/bioengineering8050069] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 04/29/2021] [Accepted: 05/13/2021] [Indexed: 12/21/2022] Open
Abstract
Bone marrow (BM) is a reliable source of multipotent mesenchymal stromal cells (MSCs), which have been successfully used for treating osteonecrosis. Considering the functional advantages of BM-MSCs as bone and cartilage reparatory cells and supporting angiogenesis, several donor-related factors are also essential to consider when autologous BM-MSCs are used for such regenerative therapies. Aging is one of several factors contributing to the donor-related variability and found to be associated with a reduction of BM-MSC numbers. However, even within the same age group, other factors affecting MSC quantity and function remain incompletely understood. For patients with osteonecrosis, several underlying factors have been linked to the decrease of the proliferation of BM-MSCs as well as the impairment of their differentiation, migration, angiogenesis-support and immunoregulatory functions. This review discusses the quality and quantity of BM-MSCs in relation to the etiological conditions of osteonecrosis such as sickle cell disease, Gaucher disease, alcohol, corticosteroids, Systemic Lupus Erythematosus, diabetes, chronic renal disease and chemotherapy. A clear understanding of the regenerative potential of BM-MSCs is essential to optimize the cellular therapy of osteonecrosis and other bone damage conditions.
Collapse
Affiliation(s)
- Jehan J El-Jawhari
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
- Clinical Pathology Department, Mansoura University, Mansoura 35516, Egypt
| | - Payal Ganguly
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, School of Medicine, University of Leeds, Leeds LS2 9JT, UK; (P.G.); (E.J.); (P.V.G.)
| | - Elena Jones
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, School of Medicine, University of Leeds, Leeds LS2 9JT, UK; (P.G.); (E.J.); (P.V.G.)
| | - Peter V Giannoudis
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, School of Medicine, University of Leeds, Leeds LS2 9JT, UK; (P.G.); (E.J.); (P.V.G.)
- Academic Department of Trauma and Orthopedic, School of Medicine, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
8
|
El-Jawhari JJ, El-Sherbiny Y, McGonagle D, Jones E. Multipotent Mesenchymal Stromal Cells in Rheumatoid Arthritis and Systemic Lupus Erythematosus; From a Leading Role in Pathogenesis to Potential Therapeutic Saviors? Front Immunol 2021; 12:643170. [PMID: 33732263 PMCID: PMC7959804 DOI: 10.3389/fimmu.2021.643170] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 01/29/2021] [Indexed: 12/15/2022] Open
Abstract
The pathogenesis of the autoimmune rheumatological diseases including rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE) is complex with the involvement of several immune cell populations spanning both innate and adaptive immunity including different T-lymphocyte subsets and monocyte/macrophage lineage cells. Despite therapeutic advances in RA and SLE, some patients have persistent and stubbornly refractory disease. Herein, we discuss stromal cells' dual role, including multipotent mesenchymal stromal cells (MSCs) also used to be known as mesenchymal stem cells as potential protagonists in RA and SLE pathology and as potential therapeutic vehicles. Joint MSCs from different niches may exhibit prominent pro-inflammatory effects in experimental RA models directly contributing to cartilage damage. These stromal cells may also be key regulators of the immune system in SLE. Despite these pro-inflammatory roles, MSCs may be immunomodulatory and have potential therapeutic value to modulate immune responses favorably in these autoimmune conditions. In this review, the complex role and interactions between MSCs and the haematopoietically derived immune cells in RA and SLE are discussed. The harnessing of MSC immunomodulatory effects by contact-dependent and independent mechanisms, including MSC secretome and extracellular vesicles, is discussed in relation to RA and SLE considering the stromal immune microenvironment in the diseased joints. Data from translational studies employing MSC infusion therapy against inflammation in other settings are contextualized relative to the rheumatological setting. Although safety and proof of concept studies exist in RA and SLE supporting experimental and laboratory data, robust phase 3 clinical trial data in therapy-resistant RA and SLE is still lacking.
Collapse
Affiliation(s)
- Jehan J El-Jawhari
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom.,Department of Clinical Pathology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Yasser El-Sherbiny
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom.,Department of Clinical Pathology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Dennis McGonagle
- Faculty of Medicine and Health, Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom.,The National Institute for Health Research Leeds Biomedical Research Centre, Chapel Allerton Hospital, Leeds, United Kingdom
| | - Elena Jones
- Faculty of Medicine and Health, Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom.,The National Institute for Health Research Leeds Biomedical Research Centre, Chapel Allerton Hospital, Leeds, United Kingdom
| |
Collapse
|
9
|
Li W, Chen W, Sun L. An Update for Mesenchymal Stem Cell Therapy in Lupus Nephritis. KIDNEY DISEASES 2021; 7:79-89. [PMID: 33824866 DOI: 10.1159/000513741] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 12/10/2020] [Indexed: 12/13/2022]
Abstract
Background Lupus nephritis (LN) is the most severe organ manifestations of systemic lupus erythematosus (SLE). Although increased knowledge of the disease pathogenesis has improved treatment options, outcomes have plateaued as current immunosuppressive therapies have failed to prevent disease relapse in more than half of treated patients. Thus, there is still an urgent need for novel therapy. Mesenchymal stem cells (MSCs) possess a potently immunosuppressive regulation on immune responses, and intravenous transplantation of MSCs ameliorates disease symptoms and has emerged as a potential beneficial therapy for LN. The objective of this review is to discuss the defective functions of MSCs in LN patients and the application of MSCs in the treatment of both LN animal models and patients. Summary Bone marrow MSCs from SLE patients exhibit impaired capabilities of migration, differentiation, and immune regulation and display senescent phenotype. Allogeneic MSCs suppress autoimmunity and restore renal function in mouse models and patients with LN by inducing regulatory immune cells and suppressing Th1, Th17, T follicular helper cell, and B-cell responses. In addition, MSCs can home to the kidney and integrate into tubular cells and differentiate into mesangial cells. Key Messages The efficacy of MSCs in the LN treatment remains to be confirmed, and future advances from stem cell science can be expected to pinpoint significant MSC subpopulations, as well as specific mechanisms of action, leading the way to the use of more potent stimulated or primed pretreated MSCs to treat LN.
Collapse
Affiliation(s)
- Wenchao Li
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Weiwei Chen
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Lingyun Sun
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
10
|
Chen P, Chen Z, Mitchell C, Gao J, Chen L, Wang A, Leys T, Landao-Bassonga E, Zheng Q, Wang T, Zheng M. Intramuscular injection of Botox causes tendon atrophy by induction of senescence of tendon-derived stem cells. Stem Cell Res Ther 2021; 12:38. [PMID: 33413592 PMCID: PMC7791643 DOI: 10.1186/s13287-020-02084-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/07/2020] [Indexed: 01/04/2023] Open
Abstract
Background Botulinum toxin (Botox) injection is in widespread clinical use for the treatment of muscle spasms and tendinopathy but the mechanism of action is poorly understood. Hypothesis We hypothesised that the reduction of patellar-tendon mechanical-loading following intra-muscular injection of Botox results in tendon atrophy that is at least in part mediated by the induction of senescence of tendon-derived stem cells (TDSCs). Study design Controlled laboratory study Methods A total of 36 mice were randomly divided into 2 groups (18 Botox-injected and 18 vehicle-only control). Mice were injected into the right vastus lateralis of quadriceps muscles either with Botox (to induce mechanical stress deprivation of the patellar tendon) or with normal saline as a control. At 2 weeks post-injection, animals were euthanized prior to tissues being harvested for either evaluation of tendon morphology or in vitro studies. TDSCs were isolated by cell-sorting prior to determination of viability, differentiation capacity or the presence of senescence markers, as well as assessing their response to mechanical loading in a bioreactor. Finally, to examine the mechanism of tendon atrophy in vitro, the PTEN/AKT-mediated cell senescence pathway was evaluated in TDSCs from both groups. Results Two weeks after Botox injection, patellar tendons displayed several atrophic features including tissue volume reduction, collagen fibre misalignment and increased degradation. A colony formation assay revealed a significantly reduced number of colony forming units of TDSCs in the Botox-injected group compared to controls. Multipotent differentiation capacities of TDSCs were also diminished after Botox injection. To examine if mechanically deprived TDSC are capable of forming tendon tissue, we used an isolated bioreactor system to culture tendon constructs using TDSC. These results showed that TDSCs from the Botox-treated group failed to restore tenogenic differentiation after appropriate mechanical loading. Examination of the signalling pathway revealed that injection of Botox into quadriceps muscles causes PTEN/AKT-mediated cell senescence of TDSCs. Conclusion Intramuscular injection of Botox interferes with tendon homeostasis by inducing tendon atrophy and senescence of TDSCs. Botox injection may have long-term adverse consequences for the treatment of tendinopathy. Clinical relevance Intramuscular Botox injection for tendinopathy or tendon injury could result in adverse effects in human tendons and evaluation of its long-term efficacy is warranted.
Collapse
Affiliation(s)
- Peilin Chen
- Center for Orthopaedic Translational Research, Medical School, University of Western Australia, Nedlands, Australia
| | - Ziming Chen
- Center for Orthopaedic Translational Research, Medical School, University of Western Australia, Nedlands, Australia
| | - Christopher Mitchell
- Center for Orthopaedic Translational Research, Medical School, University of Western Australia, Nedlands, Australia
| | - Junjie Gao
- Perron Institute for Neurological and Translational Science, Perth, Western Australia, Australia
| | - Lianzhi Chen
- Center for Orthopaedic Translational Research, Medical School, University of Western Australia, Nedlands, Australia
| | - Allan Wang
- Center for Orthopaedic Translational Research, Medical School, University of Western Australia, Nedlands, Australia.,Medical School, University of Notre Dame, Fremantle, Western Australia, Australia
| | - Toby Leys
- Department of Orthopaedics, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
| | - Euphemie Landao-Bassonga
- Center for Orthopaedic Translational Research, Medical School, University of Western Australia, Nedlands, Australia.,Perron Institute for Neurological and Translational Science, Perth, Western Australia, Australia
| | - Qiujian Zheng
- Division of Orthopaedic Surgery, Department of Surgery, Guangdong General Hospital, Guangdong Academy of Medical Science, Guangzhou, Guangdong, China.
| | - Tao Wang
- Center for Orthopaedic Translational Research, Medical School, University of Western Australia, Nedlands, Australia. .,Division of Orthopaedic Surgery, Department of Surgery, Guangdong General Hospital, Guangdong Academy of Medical Science, Guangzhou, Guangdong, China.
| | - Minghao Zheng
- Center for Orthopaedic Translational Research, Medical School, University of Western Australia, Nedlands, Australia. .,Perron Institute for Neurological and Translational Science, Perth, Western Australia, Australia.
| |
Collapse
|
11
|
Lee HY, Hong IS. Metabolic Regulation and Related Molecular Mechanisms in Various Stem Cell Functions. Curr Stem Cell Res Ther 2020; 15:531-546. [PMID: 32394844 DOI: 10.2174/1574888x15666200512105347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 02/11/2020] [Accepted: 03/02/2020] [Indexed: 02/07/2023]
Abstract
Recent studies on the mechanisms that link metabolic changes with stem cell fate have deepened our understanding of how specific metabolic pathways can regulate various stem cell functions during the development of an organism. Although it was originally thought to be merely a consequence of the specific cell state, metabolism is currently known to play a critical role in regulating the self-renewal capacity, differentiation potential, and quiescence of stem cells. Many studies in recent years have revealed that metabolic pathways regulate various stem cell behaviors (e.g., selfrenewal, migration, and differentiation) by modulating energy production through glycolysis or oxidative phosphorylation and by regulating the generation of metabolites, which can modulate multiple signaling pathways. Therefore, a more comprehensive understanding of stem cell metabolism could allow us to establish optimal culture conditions and differentiation methods that would increase stem cell expansion and function for cell-based therapies. However, little is known about how metabolic pathways regulate various stem cell functions. In this context, we review the current advances in metabolic research that have revealed functional roles for mitochondrial oxidative phosphorylation, anaerobic glycolysis, and oxidative stress during the self-renewal, differentiation and aging of various adult stem cell types. These approaches could provide novel strategies for the development of metabolic or pharmacological therapies to promote the regenerative potential of stem cells and subsequently promote their therapeutic utility.
Collapse
Affiliation(s)
- Hwa-Yong Lee
- Department of Biomedical Science, Jungwon University, 85 Goesan-eup, Munmu-ro, Goesan-gun, Chungcheongbuk-do 367-700, Korea
| | - In-Sun Hong
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Korea
| |
Collapse
|
12
|
Chu DT, Phuong TNT, Tien NLB, Tran DK, Thanh VV, Quang TL, Truong DT, Pham VH, Ngoc VTN, Chu-Dinh T, Kushekhar K. An Update on the Progress of Isolation, Culture, Storage, and Clinical Application of Human Bone Marrow Mesenchymal Stem/Stromal Cells. Int J Mol Sci 2020; 21:E708. [PMID: 31973182 PMCID: PMC7037097 DOI: 10.3390/ijms21030708] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/10/2020] [Accepted: 01/14/2020] [Indexed: 12/13/2022] Open
Abstract
Bone marrow mesenchymal stem/stromal cells (BMSCs), which are known as multipotent cells, are widely used in the treatment of various diseases via their self-renewable, differentiation, and immunomodulatory properties. In-vitro and in-vivo studies have supported the understanding mechanisms, safety, and efficacy of BMSCs therapy in clinical applications. The number of clinical trials in phase I/II is accelerating; however, they are limited in the size of subjects, regulations, and standards for the preparation and transportation and administration of BMSCs, leading to inconsistency in the input and outcome of the therapy. Based on the International Society for Cellular Therapy guidelines, the characterization, isolation, cultivation, differentiation, and applications can be optimized and standardized, which are compliant with good manufacturing practice requirements to produce clinical-grade preparation of BMSCs. This review highlights and updates on the progress of production, as well as provides further challenges in the studies of BMSCs, for the approval of BMSCs widely in clinical application.
Collapse
Affiliation(s)
- Dinh-Toi Chu
- Faculty of Biology, Hanoi National University of Education, Hanoi 100000, Vietnam
- School of Odonto Stomatology, Hanoi Medical University, Hanoi 100000, Vietnam;
| | - Thuy Nguyen Thi Phuong
- Department of Animal Science, College of Agriculture and Life Science, Chonnam National University, Gwangju 61186, Korea
| | - Nguyen Le Bao Tien
- Institute of Orthopaedics and Trauma Surgery, Viet Duc Hospital, Hanoi 100000, Vietnam; (N.L.B.T.); (V.V.T.)
| | - Dang Khoa Tran
- Department of Anatomy, University of Medicine Pham Ngoc Thach, Ho Chi Minh City 700000, Vietnam;
| | - Vo Van Thanh
- Institute of Orthopaedics and Trauma Surgery, Viet Duc Hospital, Hanoi 100000, Vietnam; (N.L.B.T.); (V.V.T.)
- Department of Surgery, Hanoi Medical University, Hanoi 100000, Vietnam
| | - Thuy Luu Quang
- Center for Anesthesia and Surgical Intensive Care, Viet Duc Hospital, Hanoi 100000, Vietnam;
| | | | - Van Huy Pham
- AI Lab, Faculty of Information Technology, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam
| | - Vo Truong Nhu Ngoc
- School of Odonto Stomatology, Hanoi Medical University, Hanoi 100000, Vietnam;
| | - Thien Chu-Dinh
- Institute for Research and Development, Duy Tan University, Danang 550000, Vietnam
| | - Kushi Kushekhar
- Institute of Cancer Research, Oslo University Hospital, 0310 Oslo, Norway;
| |
Collapse
|
13
|
Zhang Y, Zheng Y, Zhu G. MiR-203a-3p targets PTEN to promote hepatocyte proliferation by regulating PI3K/Akt pathway in BRL-3A cells. Biosci Biotechnol Biochem 2019; 84:725-733. [PMID: 31814541 DOI: 10.1080/09168451.2019.1694860] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
This study was designed to investigate the role of miR-203a-3p in hepatocyte proliferation. Data analysis showed that up-regulation of miR-203a-3p increased the cell viability and cell proliferation, and inhibited apoptosis. Further experiments demonstrated that PTEN was a target gene of miR-203a-3p, and miR-203a-3p targeted PTEN to regulate the above functions. Overexpression of PTEN partially reversed the inhibition of PTEN and the activation of p-Akt/Akt induced by miR-203a-3p mimic. Our study revealed that miR-203a-3p might activate PI3K/Akt signaling pathway by inhibiting PTEN expression, thereby promoting cell proliferation.
Collapse
Affiliation(s)
- Yingzi Zhang
- Department of Pancreatic Vascular Surgery, Jingmen First People's Hospital, Jingmen City, China
| | - Yunping Zheng
- Department of Traumatic Hand and Foot Surgery, Jingmen First People's Hospital, Jingmen City, China
| | - Guanmei Zhu
- Department of Urology, Jingmen First People's Hospital, Jingmen City, China
| |
Collapse
|
14
|
Cheng RJ, Xiong AJ, Li YH, Pan SY, Zhang QP, Zhao Y, Liu Y, Marion TN. Mesenchymal Stem Cells: Allogeneic MSC May Be Immunosuppressive but Autologous MSC Are Dysfunctional in Lupus Patients. Front Cell Dev Biol 2019; 7:285. [PMID: 31799252 PMCID: PMC6874144 DOI: 10.3389/fcell.2019.00285] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 11/04/2019] [Indexed: 02/05/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have a potently immunosuppressive capacity in both innate and adaptive immune responses. Consequently, MSCs transplantation has emerged as a potential beneficial therapy for autoimmune diseases even though the mechanisms underlying the immunomodulatory activity of MSCs is incompletely understood. Transplanted MSCs from healthy individuals with no known history of autoimmune disease are immunosuppressive in systemic lupus erythematosus (SLE) patients and can ameliorate SLE disease symptoms in those same patients. In contrast, autologous MSCs from SLE patients are not immunosuppressive and do not ameliorate disease symptoms. Recent studies have shown that MSCs from SLE patients are dysfunctional in both proliferation and immunoregulation and phenotypically senescent. The senescent phenotype has been attributed to multiple genes and signaling pathways. In this review, we focus on the possible mechanisms for the defective phenotype and function of MSCs from SLE patients and summarize recent research on MSCs in autoimmune diseases.
Collapse
Affiliation(s)
- Rui-Juan Cheng
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - An-Ji Xiong
- Department of Rheumatology and Immunology, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong, China
| | - Yan-Hong Li
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Shu-Yue Pan
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Qiu-Ping Zhang
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Zhao
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Tony N Marion
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China.,Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
15
|
Yao L, Yu F, Xu Y, Wang Y, Zuo Y, Wang C, Ye L. DNA damage response manages cell cycle restriction of senile multipotent mesenchymal stromal cells. Mol Biol Rep 2019; 47:809-818. [PMID: 31664596 DOI: 10.1007/s11033-019-05150-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 10/18/2019] [Indexed: 02/05/2023]
Abstract
Multipotent mesenchymal stromal cells (MMSCs) are promising to treat a variety of traumatic and degenerative diseases. However, in vitro-passage aging induces cell cycle arrest and a series of genetic and biological changes, which greatly limits ex vivo cell number expansion and further clinical application of MMSCs. In most cases, DNA damage and DNA damage response (DDR) act as the main cause and executor of cellular senescence respectively. Mechanistically, DNA damage signals induce cell cycle arrest and DNA damage repair via DDR. If the DNA damage is indelible, MMSCs would entry into a permanent cell cycle arrest. It should be noted that apart from DDR signaling, certain proliferation or metabolism pathways are also occupied in DNA damage related cell cycle arrest. New findings of these aspects will also be summarized in this study. In summary, we aim to provide a comprehensive review of DDR associated cell cycle regulation and other major molecular signaling in the senescence of MMSCs. Above knowledge could contribute to improve the limited capacity of in vitro expansion of MMSCs, and then promote their clinical applications.
Collapse
Affiliation(s)
- Lin Yao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fanyuan Yu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yining Xu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yitian Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yanqin Zuo
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chenglin Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ling Ye
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China. .,Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
16
|
Wen Z, Jiang R, Huang Y, Wen Z, Rui D, Liao X, Ling Z. Inhibition of lung cancer cells and Ras/Raf/MEK/ERK signal transduction by ectonucleoside triphosphate phosphohydrolase-7 (ENTPD7). Respir Res 2019; 20:194. [PMID: 31443651 PMCID: PMC6708200 DOI: 10.1186/s12931-019-1165-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 08/13/2019] [Indexed: 12/11/2022] Open
Abstract
Background The aim of this study was to investigate the effects and mechanisms of ectonucleoside triphosphate phosphohydrolase-7 (ENTPD7) on lung cancer cells. Methods The expression characteristics of ENTPD7 and its effect on the survival of lung cancer patients were analyzed by referring to The Cancer Genome Atlas (TCGA). Streptavidin-peroxidase (SP) staining was performed to detect the ENTPD7 protein in tumor tissues and adjacent tissues. Plasmid transfection technology was also applied to silence ENTPD7 gene. Crystal violet staining and flow cytometry were performed to determine cell proliferation and apoptosis. Tumor-bearing nude mice model was established to investigate the effect of sh-ENTPD7 on tumors. Results The results showed that patients with low levels of ENTPD7 had higher survival rates. ENTPD7 was up-regulated in lung cancer tissues and cells. Down-regulation of the expression of ENTPD7 inhibited proliferation but promoted apoptosis of lung cancer cell. Silencing ENTPD7 also inhibited the expression levels of Ras and Raf proteins and the phosphorylation of mitogen-activated protein kinase (MEK) and extracellular signal-regulated kinase (ERK). Tumor-bearing nude mice experiments showed that silencing ENTPD7 had an inhibitory effect on lung cancer cells. Conclusions ENTPD7 was overexpressed in lung cancer cells. Down-regulating ENTPD7 could inhibit lung cancer cell proliferation and promote apoptosis via inhibiting the Ras/Raf/MEK/ERK pathway.
Collapse
Affiliation(s)
- Zhongwei Wen
- Department of Respiratory and Critical Care Medicine, the Fourth Affiliated Hospital of Guangxi Medical University, No. 1 Liushi Road, Liuzhou, 545005, Guangxi Province, China
| | - Rongfang Jiang
- Department of Respiratory and Critical Care Medicine, the Fourth Affiliated Hospital of Guangxi Medical University, No. 1 Liushi Road, Liuzhou, 545005, Guangxi Province, China
| | - Ying Huang
- Department of Respiratory and Critical Care Medicine, the Fourth Affiliated Hospital of Guangxi Medical University, No. 1 Liushi Road, Liuzhou, 545005, Guangxi Province, China
| | - Zhineng Wen
- Department of Respiratory and Critical Care Medicine, the Fourth Affiliated Hospital of Guangxi Medical University, No. 1 Liushi Road, Liuzhou, 545005, Guangxi Province, China
| | - Dong Rui
- Department of Respiratory and Critical Care Medicine, the Fourth Affiliated Hospital of Guangxi Medical University, No. 1 Liushi Road, Liuzhou, 545005, Guangxi Province, China
| | - Xiaoxiao Liao
- Department of Respiratory and Critical Care Medicine, the Fourth Affiliated Hospital of Guangxi Medical University, No. 1 Liushi Road, Liuzhou, 545005, Guangxi Province, China
| | - Zhougui Ling
- Department of Respiratory and Critical Care Medicine, the Fourth Affiliated Hospital of Guangxi Medical University, No. 1 Liushi Road, Liuzhou, 545005, Guangxi Province, China.
| |
Collapse
|
17
|
Molecular and Cellular Bases of Immunosenescence, Inflammation, and Cardiovascular Complications Mimicking "Inflammaging" in Patients with Systemic Lupus Erythematosus. Int J Mol Sci 2019; 20:ijms20163878. [PMID: 31395799 PMCID: PMC6721773 DOI: 10.3390/ijms20163878] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/04/2019] [Accepted: 08/05/2019] [Indexed: 12/19/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is an archetype of systemic autoimmune disease, characterized by the presence of diverse autoantibodies and chronic inflammation. There are multiple factors involved in lupus pathogenesis, including genetic/epigenetic predisposition, sexual hormone imbalance, environmental stimulants, mental/psychological stresses, and undefined events. Recently, many authors noted that "inflammaging", consisting of immunosenescence and inflammation, is a common feature in aging people and patients with SLE. It is conceivable that chronic oxidative stresses originating from mitochondrial dysfunction, defective bioenergetics, abnormal immunometabolism, and premature telomere erosion may accelerate immune cell senescence in patients with SLE. The mitochondrial dysfunctions in SLE have been extensively investigated in recent years. The molecular basis of normoglycemic metabolic syndrome has been found to be relevant to the production of advanced glycosylated and nitrosative end products. Besides, immunosenescence, autoimmunity, endothelial cell damage, and decreased tissue regeneration could be the results of premature telomere erosion in patients with SLE. Herein, the molecular and cellular bases of inflammaging and cardiovascular complications in SLE patients will be extensively reviewed from the aspects of mitochondrial dysfunctions, abnormal bioenergetics/immunometabolism, and telomere/telomerase disequilibrium.
Collapse
|
18
|
Tirosh I, Spielman S, Barel O, Ram R, Stauber T, Paret G, Rubinsthein M, Pessach IM, Gerstein M, Anikster Y, Shukrun R, Dagan A, Adler K, Pode-Shakked B, Volkov A, Perelman M, Greenberger S, Somech R, Lahav E, Majmundar AJ, Padeh S, Hildebrandt F, Vivante A. Whole exome sequencing in childhood-onset lupus frequently detects single gene etiologies. Pediatr Rheumatol Online J 2019; 17:52. [PMID: 31362757 PMCID: PMC6668194 DOI: 10.1186/s12969-019-0349-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 07/08/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Systemic lupus erythematosus (SLE) comprise a diverse range of clinical manifestations. To date, more than 30 single gene causes of lupus/lupus like syndromes in humans have been identified. In the clinical setting, identifying the underlying molecular diagnosis is challenging due to phenotypic and genetic heterogeneity. METHODS We employed whole exome sequencing (WES) in patients presenting with childhood-onset lupus with severe and/or atypical presentations to identify cases that are explained by a single-gene (monogenic) cause. RESULTS From January 2015 to June 2018 15 new cases of childhood-onset SLE were diagnosed in Edmond and Lily Safra Children's Hospital. By WES we identified causative mutations in four subjects in five different genes: C1QC, SLC7A7, MAN2B1, PTEN and STAT1. No molecular diagnoses were established on clinical grounds prior to genetic testing. CONCLUSIONS We identified a significant fraction of monogenic SLE etiologies using WES and confirm the genetic locus heterogeneity in childhood-onset lupus. These results highlight the importance of establishing a genetic diagnosis for children with severe or atypical lupus by providing accurate and early etiology-based diagnoses and improving subsequent clinical management.
Collapse
Affiliation(s)
- Irit Tirosh
- 0000 0001 2107 2845grid.413795.dDepartment of Pediatrics B, Edmond and Lily Safra Children’s Hospital, Sackler Faculty of Medicine, Sheba Medical Center, Tel-Hashomer, 5265601 Ramat Gan, Israel ,0000 0001 2107 2845grid.413795.dRheumatology Unit, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Tel-Hashomer, Israel ,0000 0004 1937 0546grid.12136.37Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Shiri Spielman
- 0000 0001 2107 2845grid.413795.dRheumatology Unit, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Tel-Hashomer, Israel ,0000 0004 1937 0546grid.12136.37Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Ortal Barel
- 0000 0001 2107 2845grid.413795.dThe Genomic Unit, Sheba Cancer Research Center, Sheba Medical Center, Tel Hashomer, Israel
| | - Reut Ram
- 0000 0001 2107 2845grid.413795.dDepartment of Pediatrics B, Edmond and Lily Safra Children’s Hospital, Sackler Faculty of Medicine, Sheba Medical Center, Tel-Hashomer, 5265601 Ramat Gan, Israel
| | - Tali Stauber
- 0000 0001 2107 2845grid.413795.dDepartment of Pediatrics A Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Tel-Hashomer, Israel ,0000 0004 1937 0546grid.12136.37Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Gideon Paret
- 0000 0001 2107 2845grid.413795.dIntensive care unit, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Tel-Hashomer, Israel ,0000 0004 1937 0546grid.12136.37Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Marina Rubinsthein
- 0000 0001 2107 2845grid.413795.dIntensive care unit, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Tel-Hashomer, Israel ,0000 0004 1937 0546grid.12136.37Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Itai M. Pessach
- 0000 0001 2107 2845grid.413795.dIntensive care unit, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Tel-Hashomer, Israel ,0000 0004 1937 0546grid.12136.37Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Maya Gerstein
- 0000 0001 2107 2845grid.413795.dDepartment of Pediatrics B, Edmond and Lily Safra Children’s Hospital, Sackler Faculty of Medicine, Sheba Medical Center, Tel-Hashomer, 5265601 Ramat Gan, Israel ,0000 0004 1937 0546grid.12136.37Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Yair Anikster
- 0000 0001 2107 2845grid.413795.dMetabolic Disease Unit, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Tel-Hashomer, Israel ,0000 0004 1937 0546grid.12136.37Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Rachel Shukrun
- 0000 0001 2107 2845grid.413795.dDepartment of Pediatrics B, Edmond and Lily Safra Children’s Hospital, Sackler Faculty of Medicine, Sheba Medical Center, Tel-Hashomer, 5265601 Ramat Gan, Israel ,0000 0004 1937 0546grid.12136.37Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Adi Dagan
- 0000 0001 2107 2845grid.413795.dDepartment of Pediatrics B, Edmond and Lily Safra Children’s Hospital, Sackler Faculty of Medicine, Sheba Medical Center, Tel-Hashomer, 5265601 Ramat Gan, Israel ,0000 0004 1937 0546grid.12136.37Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Katerina Adler
- 0000 0001 2107 2845grid.413795.dThe Genomic Unit, Sheba Cancer Research Center, Sheba Medical Center, Tel Hashomer, Israel
| | - Ben Pode-Shakked
- 0000 0001 2107 2845grid.413795.dDepartment of Pediatrics B, Edmond and Lily Safra Children’s Hospital, Sackler Faculty of Medicine, Sheba Medical Center, Tel-Hashomer, 5265601 Ramat Gan, Israel ,0000 0001 2107 2845grid.413795.dMetabolic Disease Unit, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Tel-Hashomer, Israel ,0000 0004 1937 0546grid.12136.37Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Alexander Volkov
- 0000 0001 2107 2845grid.413795.dPathology Department, Sheba Medical Center, Tel-Hashomer, Israel ,0000 0004 1937 0546grid.12136.37Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Marina Perelman
- 0000 0001 2107 2845grid.413795.dPathology Department, Sheba Medical Center, Tel-Hashomer, Israel ,0000 0004 1937 0546grid.12136.37Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Shoshana Greenberger
- 0000 0001 2107 2845grid.413795.dDepartment of Dermatology, Sheba Medical Center, Tel-Hashomer, Israel ,0000 0004 1937 0546grid.12136.37Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Raz Somech
- 0000 0001 2107 2845grid.413795.dDepartment of Pediatrics A Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Tel-Hashomer, Israel ,0000 0004 1937 0546grid.12136.37Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Einat Lahav
- 0000 0001 2107 2845grid.413795.dDepartment of Pediatrics A Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Tel-Hashomer, Israel ,0000 0004 1937 0546grid.12136.37Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel ,0000 0001 2107 2845grid.413795.dNephrology Unit, Edmond and Lily Safra Children’s Hospital, Sackler Faculty of Medicine, Sheba Medical Center, Tel Hashomer, 5265601 Ramat Gan, Israel
| | - Amar J. Majmundar
- 000000041936754Xgrid.38142.3cDivision of Nephrology, Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA USA
| | - Shai Padeh
- 0000 0001 2107 2845grid.413795.dDepartment of Pediatrics B, Edmond and Lily Safra Children’s Hospital, Sackler Faculty of Medicine, Sheba Medical Center, Tel-Hashomer, 5265601 Ramat Gan, Israel ,0000 0004 1937 0546grid.12136.37Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Friedhelm Hildebrandt
- 000000041936754Xgrid.38142.3cDivision of Nephrology, Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA USA
| | - Asaf Vivante
- Department of Pediatrics B, Edmond and Lily Safra Children's Hospital, Sackler Faculty of Medicine, Sheba Medical Center, Tel-Hashomer, 5265601, Ramat Gan, Israel. .,Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel. .,Nephrology Unit, Edmond and Lily Safra Children's Hospital, Sackler Faculty of Medicine, Sheba Medical Center, Tel Hashomer, 5265601, Ramat Gan, Israel.
| |
Collapse
|
19
|
Wang Y, Chen S, Yan Z, Pei M. A prospect of cell immortalization combined with matrix microenvironmental optimization strategy for tissue engineering and regeneration. Cell Biosci 2019; 9:7. [PMID: 30627420 PMCID: PMC6321683 DOI: 10.1186/s13578-018-0264-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 12/21/2018] [Indexed: 12/20/2022] Open
Abstract
Cellular senescence is a major hurdle for primary cell-based tissue engineering and regenerative medicine. Telomere erosion, oxidative stress, the expression of oncogenes and the loss of tumor suppressor genes all may account for the cellular senescence process with the involvement of various signaling pathways. To establish immortalized cell lines for research and clinical use, strategies have been applied including internal genomic or external matrix microenvironment modification. Considering the potential risks of malignant transformation and tumorigenesis of genetic manipulation, environmental modification methods, especially the decellularized cell-deposited extracellular matrix (dECM)-based preconditioning strategy, appear to be promising for tissue engineering-aimed cell immortalization. Due to few review articles focusing on this topic, this review provides a summary of cell senescence and immortalization and discusses advantages and limitations of tissue engineering and regeneration with the use of immortalized cells as well as a potential rejuvenation strategy through combination with the dECM approach.
Collapse
Affiliation(s)
- Yiming Wang
- 1Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, PO Box 9196, 64 Medical Center Drive, Morgantown, WV 26506-9196 USA.,2Department of Orthopaedics, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai, 200032 China
| | - Song Chen
- 3Department of Orthopaedics, Chengdu Military General Hospital, Chengdu, 610083 Sichuan China
| | - Zuoqin Yan
- 2Department of Orthopaedics, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai, 200032 China
| | - Ming Pei
- 1Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, PO Box 9196, 64 Medical Center Drive, Morgantown, WV 26506-9196 USA.,4WVU Cancer Institute, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506 USA
| |
Collapse
|
20
|
Zhang J, Meng Y, Wu H, Wu Y, Yang B, Wang L. Association between PPP2CA polymorphisms and clinical features in southwest Chinese systemic lupus erythematosus patients. Medicine (Baltimore) 2018; 97:e11451. [PMID: 29979448 PMCID: PMC6076051 DOI: 10.1097/md.0000000000011451] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Increasing evidence supports the involvement of a catalytic subunit (PP2Ac) of protein phosphatase 2A (PP2A) in the mechanisms of systemic lupus erythematosus (SLE). This study was conducted to explore the association single nucleotide polymorphisms (SNPs) of PPP2CA with SLE susceptibility, serum cytokines levels, and clinical features in a Chinese Han population. A case-control association study was carried out in 1509 Chinese Han subjects (730 SLE patients and 779 healthy individuals). Genotyping for genetic variants of PPP2CA (rs10491322 and rs7704116) was performed using a polymerase chain reaction-high resolution melting (PCR-HRM) assay. In the cohort of SLE patients, we observed that rs10491322 and rs7704116 were positively increased SLE susceptibility (OR = 1.61, 95% CI = 1.13-2.31, P = .009; OR = 1.59, 95% CI = 1.17-2.15, P = .003, respectively). Interestingly, the AG genotype of rs10491322 carriers presented higher IL-6 (P < .001) and IL-17 (P < .001) than those with AA genotype carriers. Specifically, carriage of the rs10491322 G* allele led to a higher prevalence of arthritis in SLE patients (P = .01). This study demonstrated an association of PPP2CA (rs10491322 and rs7704116) with SLE susceptibility in a Chinese Han population. Furthermore, the minor allele of PPP2CA rs10491322 as a risk factor was correlated with immunologic disorders for SLE.
Collapse
|
21
|
Zheng H, Huang Q, Huang S, Yang X, Zhu T, Wang W, Wang H, He S, Ji L, Wang Y, Qi X, Liu Z, Lu L. Senescence Inducer Shikonin ROS-Dependently Suppressed Lung Cancer Progression. Front Pharmacol 2018; 9:519. [PMID: 29875661 PMCID: PMC5974149 DOI: 10.3389/fphar.2018.00519] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 04/30/2018] [Indexed: 01/03/2023] Open
Abstract
Lung adenocarcinoma (LAC), predominant subclassfication of lung cancer, leads high incidence and mortality annually worldwide. During the premalignant transition from lung adenomas to LAC, cellular senescence is regard as a critical physiological barrier against tumor progression. Nevertheless, the role of senescence in tumorigenesis is controversial and few senescence inducers are extensively determined. In this study, we used two classical cell lines A549 and H1299 and two NSCLC xenograft models on Balb/c-nude mice to reveal the pro-senescence effects of shikonin and the corresponding underlying mechanism in LAC. Shikonin, a pure compound isolated from the herbal medicine Lithospermum erythrorhizon, remarkably stimulated cellular senescence including increased SAHF formation, enlarged cellular morphology, and induced SA-β-Gal positive staining. Further mechanism study revealed that the pro-senescence effect of shikonin was dependent on the increased intercellular ROS generation, which subsequently triggered DNA damage-p53/p21waf axis without activating oncogenes such as Ras and MEK-1. Meanwhile, Kdm2b, an H3K36me2-specific demethylase effectively suppressed ROS generation, was also notably suppressed by shikonin treatment. Moreover, shikonin at 10 mg/kg significantly inhibited tumor weights by 55.84% and 50.98% in A549 and H1299 xenograft model, respectively (P < 0.05) through activating cellular senescence. Our study suggested that shikonin, a ROS-dependent senescence inducer, could serve as a promising agent for further lung cancer treatment.
Collapse
Affiliation(s)
- Hongming Zheng
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qiuju Huang
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Suchao Huang
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xia Yang
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ting Zhu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wensheng Wang
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Haojia Wang
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shugui He
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Liyan Ji
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ying Wang
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoxiao Qi
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhongqiu Liu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China.,State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau
| | - Linlin Lu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China.,State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau
| |
Collapse
|
22
|
Fathollahi A, Gabalou NB, Aslani S. Mesenchymal stem cell transplantation in systemic lupus erythematous, a mesenchymal stem cell disorder. Lupus 2018; 27:1053-1064. [PMID: 29631514 DOI: 10.1177/0961203318768889] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune and inflammatory disorder with involvement of several organs and systems such as the kidney, lung, brain and the hematopoietic system. As the most prevailing organ manifestation, lupus nephritis is the major cause of mortality and morbidity in SLE patients. The most classically and widely administered immunosuppressive medications, namely corticosteroids and cyclophosphamide, have eventuated in a remarkable amelioration in disease complications over the last few years and reduced the progression to end-stage multiorgan failure. Mesenchymal stem cells (MSCs) are considered as non-hematopoietic and multipotential progenitor cells, which are able to differentiate into multiple cell lineages such as chondrocytes, osteoblasts, myoblasts, endothelial cells, adipocytes, neuron-like cells, hepatocytes and cardiomyocytes. MSCs from SLE patients have demonstrated defects such as aberrant cytokine production. Moreover, impaired phenotype, growth and immunomodulatory functions of MSCs from patients with SLE in comparison to healthy controls have been reported. Therefore, it is hypothesized that SLE is potentially an MSC-mediated disease and, as a result, allogeneic rather than autologous MSC transplantation can be argued to be a potentially advantageous therapy for patients with SLE. On the other hand, the MSC senescence phenomenon may meet the current therapeutic approaches with challenges and demand more attention. Here, we discuss MSC transplantations to date in animal models and humans and focus on the MSC senescence complications in SLE patients.
Collapse
Affiliation(s)
- A Fathollahi
- 1 Department of Medical Immunology, School of Medicine, 48486 Shahid Beheshti University of Medical Sciences , Tehran, Iran
| | - N B Gabalou
- 2 Department of Genetics, 441802 Islamic Azad University, Ahar Branch , Ahar, Iran
| | - S Aslani
- 3 Department of Immunology and Biology, School of Medicine, 48439 Tehran University of Medical Sciences , Tehran, Iran
| |
Collapse
|
23
|
Wu S, Wang J, Li F. Dysregulation of PTEN caused by the underexpression of microRNA‑130b is associated with the severity of lupus nephritis. Mol Med Rep 2018; 17:7966-7972. [PMID: 29620214 DOI: 10.3892/mmr.2018.8839] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 08/31/2017] [Indexed: 11/05/2022] Open
Abstract
There are several reports in the literature regarding microRNA (miR)‑130b. It has been reported that miR‑130b is involved in several diseases. The present study aimed to understand the association between the levels of miR‑130b and lupus nephritis in patients. A total of 61 blood samples were collected and the expression level of miR‑130b was determined. The online miRNA database was then searched using the 'seed sequence' located within the 3'‑untranslated region of the target gene. Linear analysis and a luciferase assay were performed to understand the regulatory association between miR‑130b and phosphatase and tensin homolog (PTEN). In addition, reverse transcription‑polymerase chain reaction and western blot analyses were performed to examine the mRNA and protein expression levels of PTEN among individuals with lupus nephritis (n=28) and those without lupus nephritis (n=31), and in mesangial cells treated with scramble control, miR‑130b mimics, PTEN small interfering (si)RNA and miR‑130b inhibitors. In addition mesangial cells were treated with scramble control, miR‑130b mimics, PTEN siRNA and miR‑130b inhibitors to investigate the affect of miR‑130b and PTEN on the viability and apoptosis of mesangial cells. The results demonstrated that miR‑130b was downregulated in the hormone‑resistant group of lupus nephritis patients. PTEN was a virtual target of miR‑130b. There was a negative regulatory association between miR‑130b and PTEN. The mRNA and protein expression levels of PTEN were increased in the hormone‑resistant group. miR‑130b decreased the expression of PTEN. miR‑130b negatively interfered with the viability of mesangial cells and PTEN positively interfered with the viability of mesangial cells. miR‑130b accelerated apoptosis and PTEN inhibited apoptosis. Taken together, the results showed that miR‑130b was upregulated in the lupus nephritis group. PTEN was a virtual target of miR‑130b, and there was a negative regulatory association between miR‑130b and PTEN. miR‑130b and PTEN interfered with the viability and apoptosis of the mesangial cells.
Collapse
Affiliation(s)
- Shupeng Wu
- Department of Rheumatism and Immunology, Tai'an Central Hospital, Tai'an, Shandong 271000, P.R. China
| | - Jing Wang
- Department of Geriatric Diseases, Tai'an Central Hospital, Tai'an, Shandong 271000, P.R. China
| | - Fang Li
- Department of Rheumatism and Immunology, Tai'an Central Hospital, Tai'an, Shandong 271000, P.R. China
| |
Collapse
|
24
|
Shen Y, Zhang J, Yu T, Qi C. Generation of PTEN knockout bone marrow mesenchymal stem cell lines by CRISPR/Cas9-mediated genome editing. Cytotechnology 2018; 70:783-791. [PMID: 29387984 DOI: 10.1007/s10616-017-0183-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 12/15/2017] [Indexed: 12/15/2022] Open
Abstract
The tumor suppressor PTEN is involved in the regulation of cell proliferation, lineage determination, motility, adhesion and apoptosis. Loss of PTEN in the bone mesenchymal stem cells (BMSCs) was shown to change their function in the repair tissue. So far, the CRISPR/Cas9 system has been proven extremely simple and flexible. Using this system to manipulate PTEN gene editing could produce the PTEN-Knocking-out (PTEN-KO) strain. We knocked out PTEN in MSCs and validated the expression by PCR and Western blot. To clarify the changes in proliferation, CCK-8 assay was applied. In support, living cell proportion was assessed by Trypan blue staining. For osteogenic and adipogenic induction, cells were cultured in different media for 2 weeks. Oil red staining and alizarin red staining were performed for assessment of osteogenic or adipogenic differentiation. The expression of Id4, Runx2, ALP and PPARγ was examined by qPCR and immunocytochemistry staining. The PTEN-KO strain was identified by sequencing. The PTEN-KO cells had an increased cell viability and higher survival compared with the wild type. However, decreased expression of Runx2 and PPARγ was found in the PTEN loss strain after induction, and consistently decreased osteogenic or adipogenic differentiation was observed by alizarin and oil red staining. Together, PTEN-KO strain showed an increased proliferation capability but decreased multi-directional differentiation potential. When BMSCs serve as seed cells for tissue engineering, the PTEN gene may be used as an indicator.
Collapse
Affiliation(s)
- Youliang Shen
- Department of Orthopaedics, Jiao Zhou Central Hospital of Qingdao City, Qingdao, 266300, China
| | - Jingjing Zhang
- Department of Orthopaedics, Jiao Zhou Central Hospital of Qingdao City, Qingdao, 266300, China
| | - Tengbo Yu
- Orthopaedic Center, The Affiliated Hospital of Qingdao University, Qingdao, 266300, China
| | - Chao Qi
- Orthopaedic Center, The Affiliated Hospital of Qingdao University, Qingdao, 266300, China.
| |
Collapse
|
25
|
Feng Z, Hanson RW, Berger NA, Trubitsyn A. Reprogramming of energy metabolism as a driver of aging. Oncotarget 2017; 7:15410-20. [PMID: 26919253 PMCID: PMC4941250 DOI: 10.18632/oncotarget.7645] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 02/11/2016] [Indexed: 12/15/2022] Open
Abstract
Aging is characterized by progressive loss of cellular function and integrity. It has been thought to be driven by stochastic molecular damage. However, genetic and environmental maneuvers enhancing mitochondrial function or inhibiting glycolysis extend lifespan and promote healthy aging in many species. In post-fertile Caenorhabditis elegans, a progressive decline in phosphoenolpyruvate carboxykinase with age, and a reciprocal increase in pyruvate kinase shunt energy metabolism from oxidative metabolism to anaerobic glycolysis. This reduces the efficiency and total of energy generation. As a result, energy-dependent physical activity and other cellular functions decrease due to unmatched energy demand and supply. In return, decrease in physical activity accelerates this metabolic shift, forming a vicious cycle. This metabolic event is a determinant of aging, and is retarded by caloric restriction to counteract aging. In this review, we summarize these and other evidence supporting the idea that metabolic reprogramming is a driver of aging. We also suggest strategies to test this hypothesis
Collapse
Affiliation(s)
- Zhaoyang Feng
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Richard W Hanson
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.,Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Nathan A Berger
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.,Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.,Department of Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Alexander Trubitsyn
- Institute of Biology and Soil Sciences of Far Eastern Brach of Russian Academy of Science, Vladivostok, Russia
| |
Collapse
|
26
|
Wu H, Dai X, Li H, Lv C. WITHDRAWN: Effect of minocycline on vascular proliferation after corneal alkaline burn:A mechanism study. Cancer Biomark 2017:CBM170517. [PMID: 29103026 DOI: 10.3233/cbm-170517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ahead of Print article withdrawn by publisher.
Collapse
Affiliation(s)
- Haijun Wu
- Department of Ophthalmology, Heze Municipal Hospital, Heze 274000, Shandong, China
| | - Xin Dai
- Shandong Heze Medical College, Heze 274000, Shandong, China
| | - Hui Li
- Department of Ophthalmology, Heze Municipal Hospital, Heze 274000, Shandong, China
| | - Chunying Lv
- Department of Ophthalmology, Heze Municipal Hospital, Heze 274000, Shandong, China
| |
Collapse
|
27
|
Ji J, Wu Y, Meng Y, Zhang L, Feng G, Xia Y, Xue W, Zhao S, Gu Z, Shao X. JAK-STAT signaling mediates the senescence of bone marrow-mesenchymal stem cells from systemic lupus erythematosus patients. Acta Biochim Biophys Sin (Shanghai) 2017; 49:208-215. [PMID: 28177455 DOI: 10.1093/abbs/gmw134] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Indexed: 01/22/2023] Open
Abstract
Previous studies have revealed that bone marrow-mesenchymal stem cells (BM-MSCs) from systemic lupus erythematosus (SLE) patients exhibited early signs of senescence, which may participate in the development of SLE. However, the molecular mechanisms about this phenomenon have not been fully elucidated. In the current study, we aimed to investigate whether Janus kinase (JAK)-signaling transducers and activators of transcription (STAT) signaling mediated the senescence of BM-MSCs from SLE patients. Twelve female SLE patients and healthy subjects were enrolled in the study. All BM-MSCs were isolated by density gradient centrifugation. Western blot analysis was used to test the expression of JAK-STAT signaling molecules. We observed the activity of β-gal of cells, the changes of cytoskeletal structure by F-actin staining, and the distribution of cell cycle by flow cytometry. BM-MSCs from SLE patients showed prominent features of senescence, and abnormal activation of JAK-STAT signaling transduction, high level of phosphorylated JAK2, and STAT3. After stimulation of IFN-γ in normal MSCs, JAK-STAT signaling was activated. The cell volume and the number of senescence-associated β-galactosidase (SA-β-gal) positive in SLE BM-MSCs were increased. The organization of cytoskeleton was nearly disordered. The rate of cell proliferation was decreased. AG490, the inhibitor of JAK2, and knockdown of STAT3 in BM-MSCs, could significantly reverse the senescence. In summary, our study indicated that JAK-STAT signaling pathway may play a critical role in the senescence of SLE BM-MSCs.
Collapse
Affiliation(s)
- Juan Ji
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Yeqing Wu
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Yan Meng
- Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai 200000, China
| | - Lijuan Zhang
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Guijuan Feng
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Yunfei Xia
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Wenrong Xue
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Shuyang Zhao
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Zhifeng Gu
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Xiaoyi Shao
- Department of Immunology, Medical College, Nantong University, Nantong 226001, China
| |
Collapse
|
28
|
Bei Y, Song Y, Wang F, Dimitrova-Shumkovska J, Xiang Y, Zhao Y, Liu J, Xiao J, Yang C. miR-382 targeting PTEN-Akt axis promotes liver regeneration. Oncotarget 2016; 7:1584-97. [PMID: 26636539 PMCID: PMC4811482 DOI: 10.18632/oncotarget.6444] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 11/16/2015] [Indexed: 12/26/2022] Open
Abstract
Liver regeneration is a highly orchestrated process which can be regulated by microRNAs (miRNAs, miRs), though the mechanisms are largely unclear. This study was aimed to identify miRNAs responsible for hepatocyte proliferation during liver regeneration. Here we detected a marked elevation of miR-382 in the mouse liver at 48 hrs after partial hepatectomy (PH-48h) using microarray analysis and qRT-PCRs. miR-382 overexpression accelerated the proliferation and the G1 to S phase transition of the cell cycle both in mouse NCTC1469 and human HL7702 normal liver cells, while miR-382 downregulation had inverse effects. Moreover, miR-382 negatively regulated PTEN expression and increased Akt phosphorylation both in vitro and in vivo. Using PTEN siRNA and Akt activator/inhibitor, we further found that PTEN inhibition and Akt phosphorylation were essential for mediating the promotive effect of miR-382 in the proliferation and cell growth of hepatocytes. Collectively, our findings identify miR-382 as a promoter for hepatocyte proliferation and cell growth via targeting PTEN-Akt axis which might be a novel therapeutic target to enhance liver regeneration capability.
Collapse
Affiliation(s)
- Yihua Bei
- Regeneration and Ageing Lab, Experimental Center of Life Sciences, School of Life Science, Shanghai University, Shanghai, China
| | - Yang Song
- Division of Gastroenterology and Hepatology, Digestive Disease Institute, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Fei Wang
- Division of Gastroenterology and Hepatology, Digestive Disease Institute, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jasmina Dimitrova-Shumkovska
- Regeneration and Ageing Lab, Experimental Center of Life Sciences, School of Life Science, Shanghai University, Shanghai, China.,Department of Experimental Biochemistry and Physiology, Faculty of Natural Sciences and Mathematics, University Ss Cyril and Methodius, Skopje, Republic of Macedonia
| | - Yang Xiang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Biochemistry, Nanjing University, Nanjing, China
| | - Yingying Zhao
- Division of Gastroenterology and Hepatology, Digestive Disease Institute, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jingqi Liu
- Division of Gastroenterology and Hepatology, Digestive Disease Institute, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Junjie Xiao
- Regeneration and Ageing Lab, Experimental Center of Life Sciences, School of Life Science, Shanghai University, Shanghai, China.,Shanghai Key Laboratory of Bio-Energy Crops, School of Life Science, Shanghai University, Shanghai, China
| | - Changqing Yang
- Division of Gastroenterology and Hepatology, Digestive Disease Institute, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
29
|
Lv J, Zhu Q, Jia X, Yu N, Li Q. In Vitro and In Vivo Effects of Tumor Suppressor Gene PTEN on Endometriosis: An Experimental Study. Med Sci Monit 2016; 22:3727-3736. [PMID: 27744455 PMCID: PMC5070632 DOI: 10.12659/msm.901091] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Endometriosis can cause dysmenorrhea and infertility. Its pathogenesis has not yet been clarified and its treatment continues to pose enormous challenges. The protein tyrosine phosphatase (PTEN) gene is a tumor suppressor gene. The aim of this study was to investigate the role and significance of PTEN protein in the occurrence, development, and treatment of endometriosis through changes in apoptosis rate, cell cycle, and angiogenesis. MATERIAL AND METHODS PTEN was overexpressed and silenced in lentiviral vectors and inserted into primary endometrial cells. The changes in cell cycle and apoptosis in the different PTEN expression groups were evaluated using flow cytometry. Vessel growth mimicry was observed using 3-dimensional culture. A human-mouse chimeric endometriosis model was constructed using SCID mice. Hematoxylin and eosin staining and immunohistochemistry were used to detect pathological changes in ectopic endometrial tissues and the expression of VEGF protein in a human-mouse chimeric endometriosis mouse model. RESULTS PTEN overexpression significantly increased apoptosis and inhibited the cell cycle compared with the silenced and control groups. Furthermore, cells expressing low PTEN levels were better able to undergo vasculogenic mimicry, and exhibited significantly increased angiogenesis compared to cells overexpressing PTEN. We found that ectopic foci were more easily formed in the endometrial tissue of SCID mice with low PTEN expression, and the VEGF expression in this group was relatively high. CONCLUSIONS PTEN inhibits the occurrence and development of endometriosis by regulating angiogenesis and the apoptosis and cell cycle of endometrial cells; therefore, we propose that the PTEN gene can be used to treat endometriosis.
Collapse
Affiliation(s)
- Juan Lv
- State Key Laboratory of Reproductive Medicine, Department of Gynecology, Nanjing Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Qiaoying Zhu
- State Key Laboratory of Reproductive Medicine, Department of Gynecology, Nanjing Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Xuemei Jia
- State Key Laboratory of Reproductive Medicine, Department of Gynecology, Nanjing Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Ningzhu Yu
- State Key Laboratory of Reproductive Medicine, Department of Gynecology, Nanjing Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Qian Li
- State Key Laboratory of Reproductive Medicine, Department of Gynecology, Nanjing Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| |
Collapse
|
30
|
Banasavadi-Siddegowda YK, Russell L, Frair E, Karkhanis VA, Relation T, Yoo JY, Zhang J, Sif S, Imitola J, Baiocchi R, Kaur B. PRMT5-PTEN molecular pathway regulates senescence and self-renewal of primary glioblastoma neurosphere cells. Oncogene 2016; 36:263-274. [PMID: 27292259 DOI: 10.1038/onc.2016.199] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 04/08/2016] [Accepted: 04/26/2016] [Indexed: 02/06/2023]
Abstract
Glioblastoma (GBM) represents the most common and aggressive histologic subtype among malignant astrocytoma and is associated with poor outcomes because of heterogeneous tumour cell population including mature non-stem-like cell and immature stem-like cells within the tumour. Thus, it is critical to find new target-specific therapeutic modalities. Protein arginine methyltransferase enzyme 5 (PRMT5) regulates many cellular processes through its methylation activity and its overexpression in GBM is associated with more aggressive disease. Previously, we have shown that silencing of PRMT5 expression in differentiated GBM cell lines results in apoptosis and reduced tumour growth in mice. Here, we report the critical role of PRMT5 in GBM differentiated cells (GBMDC) grown in serum and GBM neurospheres (GBMNS) grown as neurospheres in vitro. Our results uncover a very significant role for PRMT5 in GBMNS self-renewal capacity and proliferation. PRMT5 knockdown in GBMDC led to apoptosis, knockdown in GBMNS led to G1 cell cycle arrest through upregulation of p27 and hypophoshorylation of retinoblastoma protein, leading to senescence. Comparison of impact of PRMT5 on cellular signalling by the Human Phospho-Kinase Array and chromatin immunoprecipitation-PCR revealed that unlike GBMDC, PRMT5 regulates PTEN expression and controls Akt and ERk activity in GBMNS. In vivo transient depletion of PRMT5 decreased intracranial tumour size and growth rate in mice implanted with both primary tumour-derived GBMNS and GBMDC. This is the first study to identify PTEN as a potential downstream target of PRMT5 and PRMT5 is vital to support both mature and immature GBM tumour cell populations.
Collapse
Affiliation(s)
- Y K Banasavadi-Siddegowda
- Department of Neurological Surgery, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - L Russell
- Department of Neurological Surgery, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - E Frair
- Department of Neurological Surgery, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - V A Karkhanis
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - T Relation
- Department of Neurological Surgery, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - J Y Yoo
- Department of Neurological Surgery, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - J Zhang
- Department of Biomedical Informatics, Center for Biostatistics, Columbus, OH, USA
| | - S Sif
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - J Imitola
- Laboratory for Neural Stem Cells and Functional Neurogenetics, Division of Neuroimmunology and Multiple Sclerosis, Departments of Neurology and Neuroscience, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - R Baiocchi
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - B Kaur
- Department of Neurological Surgery, College of Medicine, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
31
|
Yuan Y, Hakimi P, Kao C, Kao A, Liu R, Janocha A, Boyd-Tressler A, Hang X, Alhoraibi H, Slater E, Xia K, Cao P, Shue Q, Ching TT, Hsu AL, Erzurum SC, Dubyak GR, Berger NA, Hanson RW, Feng Z. Reciprocal Changes in Phosphoenolpyruvate Carboxykinase and Pyruvate Kinase with Age Are a Determinant of Aging in Caenorhabditis elegans. J Biol Chem 2016; 291:1307-19. [PMID: 26631730 PMCID: PMC4714217 DOI: 10.1074/jbc.m115.691766] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 11/30/2015] [Indexed: 01/01/2023] Open
Abstract
Aging involves progressive loss of cellular function and integrity, presumably caused by accumulated stochastic damage to cells. Alterations in energy metabolism contribute to aging, but how energy metabolism changes with age, how these changes affect aging, and whether they can be modified to modulate aging remain unclear. In locomotory muscle of post-fertile Caenorhabditis elegans, we identified a progressive decrease in cytosolic phosphoenolpyruvate carboxykinase (PEPCK-C), a longevity-associated metabolic enzyme, and a reciprocal increase in glycolytic pyruvate kinase (PK) that were necessary and sufficient to limit lifespan. Decline in PEPCK-C with age also led to loss of cellular function and integrity including muscle activity, and cellular senescence. Genetic and pharmacologic interventions of PEPCK-C, muscle activity, and AMPK signaling demonstrate that declines in PEPCK-C and muscle function with age interacted to limit reproductive life and lifespan via disrupted energy homeostasis. Quantifications of metabolic flux show that reciprocal changes in PEPCK-C and PK with age shunted energy metabolism toward glycolysis, reducing mitochondrial bioenergetics. Last, calorie restriction countered changes in PEPCK-C and PK with age to elicit anti-aging effects via TOR inhibition. Thus, a programmed metabolic event involving PEPCK-C and PK is a determinant of aging that can be modified to modulate aging.
Collapse
Affiliation(s)
| | | | - Clara Kao
- From the Departments of Pharmacology
| | | | - Ruifu Liu
- From the Departments of Pharmacology
| | - Allison Janocha
- the Department of Pathobiology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195
| | | | - Xi Hang
- From the Departments of Pharmacology, the School of Pharmacy, Suzhou Health College, Suzhou, Jiangsu 215009, China, and
| | | | | | - Kevin Xia
- From the Departments of Pharmacology
| | | | | | - Tsui-Ting Ching
- the Departments of Internal Medicine, Division of Geriatric Medicine, and
| | - Ao-Lin Hsu
- the Departments of Internal Medicine, Division of Geriatric Medicine, and Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109
| | - Serpil C Erzurum
- the Department of Pathobiology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195
| | - George R Dubyak
- From the Departments of Pharmacology, Physiology and Biophysics, and
| | - Nathan A Berger
- Departments of Biochemistry and Medicine, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | | | | |
Collapse
|