1
|
Sun YJ, Zhang Q, Cao SJ, Sun XH, Zhang JC, Zhang BY, Shang ZB, Zhao CY, Cao ZY, Zhang QJ, Gao XM, Qiu F, Kang N. Tetrahydrocurcumin targets TRIP13 inhibiting the interaction of TRIP13/USP7/c-FLIP to mediate c-FLIP ubiquitination in triple-negative breast cancer. J Adv Res 2024:S2090-1232(24)00496-X. [PMID: 39505147 DOI: 10.1016/j.jare.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/06/2024] [Accepted: 11/02/2024] [Indexed: 11/08/2024] Open
Abstract
INTRODUCTION Triple-negative breast cancer (TNBC) has a high mortality rate and limited treatment options. Tetrahydrocurcumin (THC), a major metabolite of curcumin, has potential antitumor activities. However, the antitumor effects and mechanism of THC in TNBC remain elusive. OBJECTIVES To investigate the mechanism of THC in combating TNBC by targeting TRIP13 to disrupt the interaction of the TRIP13/USP7/c-FLIP complex and mediate c-FLIP ubiquitination both in vitro and in vivo. METHODS Apoptosis was measured by TUNEL and flow cytometry. Click chemistry-based target fishing, CETSA, DARTS, and SPR were used to identify direct target of THC. Protein interactions was examined using co-immunoprecipitation. The role of USP7 in THC-mediated c-FLIP ubiquitination was evaluated by in vitro deubiquitination assay. Human breast cancer clinical samples were employed to assess the expression of c-FLIP, TRIP13, and USP7. The impact of THC on USP7/TRIP13/c-FLIP was analyzed using co-immunoprecipitation, confocal microscopy, molecular docking and dynamics simulations. RESULTS THC effectively inhibits TNBC cell proliferation and tumor growth in vitro and in vivo without significant toxicity. Mechanistically, THC induces extrinsic apoptosis in TNBC primarily by promoting degradation of c-FLIP, a key negative regulator in the apoptotic pathway. Furthermore, utilizing click chemistry-based target fishing, we identified TRIP13, a component of the highly conserved AAA ATPase family, as a direct target of THC in combating TNBC. Interestingly, contrary to previous drug-target studies, the knockdown of TRIP13 further amplified the antitumor effects of THC. After in-depth investigation, it was revealed that TRIP13 forms a trimeric complex with USP7 and c-FLIP in TNBC cells. THC specifically targets TRIP13 to disrupt the interaction of TRIP13/USP7/c-FLIP, leading to the ubiquitination of c-FLIP, ultimately inducing extrinsic apoptosis. CONCLUSIONS These findings offer new insights into the novel molecular mechanisms of anti-TNBC effects of THC and present a promising targeted therapeutic strategy for TNBC.
Collapse
Affiliation(s)
- Yu-Jie Sun
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Qiang Zhang
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China.
| | - Shi-Jie Cao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Xiao-Hu Sun
- Tianjin Medical University, Cancer Institute & Hospital, Tianjin 300181, PR China
| | - Ji-Chao Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Bing-Yang Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Ze-Bin Shang
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Chong-Yan Zhao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Zhi-Yong Cao
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Qiu-Ju Zhang
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Xiu-Mei Gao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Feng Qiu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China.
| | - Ning Kang
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China.
| |
Collapse
|
2
|
Fan LX, Tao L, Lai YC, Cai SY, Zhao ZY, Yang F, Su RY, Wang Q. Cx32 promotes autophagy and produces resistance to SN‑induced apoptosis via activation of AMPK signalling in cervical cancer. Int J Oncol 2022; 60:10. [PMID: 34970699 DOI: 10.3892/ijo.2021.5300] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 10/01/2021] [Indexed: 11/06/2022] Open
Abstract
The roles of gap junctions (GJs) and its components, connexins, in the autophagy of cervical cancer cells have been rarely investigated. Our previous study demonstrated that connexin 32 (Cx32) exerted an anti‑apoptotic effect on cervical cancer. However, as an important regulator of apoptosis, whether the autophagy is involved in the function of Cx32 on cervical cancer cells is not well defined. The present study aimed to investigate the role of Cx32 on autophagy and apoptosis inhibition in cervical cancer cells. The expression levels of Cx32 and the autophagy‑associated protein LC3‑Ⅱ in paracancerous cervical tissues (n=30) and cervical cancer (n=50) tissues were determined via western blotting. In total, 45 cervical cancer specimens were used to evaluate the clinical relevance of Cx32 and LC3‑Ⅱ. It was found that both Cx32 and LC3‑Ⅱ were upregulated in cervical cancer tissues compared with those in paracancerous cervical tissues. The effect of Cx32 on autophagy was examined by detecting the change of LC3‑Ⅱ using western blotting, transfection with enhanced green fluorescent protein‑LC3 plasmid and transmission electron microscopy analysis. Overexpression of Cx32 significantly enhanced autophagy in HeLa‑Cx32 cells, whereas knockdown of Cx32 suppressed autophagy in C‑33A cells. The flow cytometry results demonstrated that Cx32 inhibited the apoptosis of cervical cancer cells by promoting autophagy. Moreover, Cx32 triggered autophagy via the activation of the AMP‑activated protein kinase (AMPK) signalling, regardless of the presence or absence of GJs. Collectively, it was identified that Cx32 exerted its anti‑apoptotic effect by activating autophagy via the AMPK pathway in cervical cancer, which demonstrates a novel mechanism for Cx32 in human cervical cancer progression.
Collapse
Affiliation(s)
- Li-Xia Fan
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat‑Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Liang Tao
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat‑Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Yong-Chang Lai
- Department of Urology, The Eighth Affiliated Hospital, Sun Yat‑Sen University, Shenzhen, Guangdong 518033, P.R. China
| | - Shao-Yi Cai
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat‑Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Zi-Yu Zhao
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat‑Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Feng Yang
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat‑Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Ri-Ya Su
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat‑Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Qin Wang
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat‑Sen University, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
3
|
Luo W, Sun R, Chen X, Li J, Jiang J, He Y, Shi S, Wen H. ERK Activation-Mediated Autophagy Induction Resists Licochalcone A-Induced Anticancer Activities in Lung Cancer Cells in vitro. Onco Targets Ther 2021; 13:13437-13450. [PMID: 33447049 PMCID: PMC7802906 DOI: 10.2147/ott.s278268] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 12/03/2020] [Indexed: 12/17/2022] Open
Abstract
Introduction The incidence and mortality rates of lung cancer rank top in the different types of cancers in China. Licochalcone A (LA) is a flavonoid extracted from the roots of licorice with antitumor effects in various cancers in vitro and in vivo. However, the role of LA in non-small cell lung cancer (NSCLC) remains largely unclear. Methods The cell viability was measured by MTT assay, Edu staining and colony formation assay. Apoptosis was investigated using Annexin V/PI double-stained assays with flow cytometry. Real-time quantitative RT-PCR was carried out to investigate the expression of mRNA of related proteins. Western blotting was used to investigate the expression of related proteins. Results The results show that LA inhibits the proliferation of NSCLC cells in a dose-dependent manner and induces apoptotic cell death. Moreover, LA significantly suppresses the expression of c-IAP1, c-IAP2, XIAP, Survivin, c-FLIPL and RIP1 without influencing the level of mRNA. Cycloheximide chase assay demonstrates that LA greatly decreases the stability of Survivin, XIAP and RIP1. Mechanistic studies indicate that LA induces cytoprotective autophagy since block of autophagy with CQ greatly enhances LA-induced anticancer activities. Furthermore, LA rapidly induces ERK and p38 activation in a time-dependent manner in both A549 and H460 cells, but suppresses the activities of c-Jun N-terminal kinase (JNK); suppression of ERK not p38 with inhibitor attenuates LA-induced autophagy, while it remarkably enhances LA-induced cytotoxicity in lung cancer cells and further promotes the degradation of apoptosis-related proteins. Discussion The results of this study provide novel insights on the role of apoptosis-related proteins and the MAPKs pathway in the anticancer activities of LA.
Collapse
Affiliation(s)
- Wei Luo
- Department of Respiratory and Critical Care Medicine, The People's Hospital of Leshan, Leshan, Sichuan, People's Republic of China
| | - Ruifen Sun
- Center for Scientific Research, Yunnan University of Chinese Traditional Medicine, Kunming, Yunnan, People's Republic of China
| | - Xin Chen
- College of Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, People's Republic of China
| | - Ju Li
- College of Basic Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, People's Republic of China
| | - Jike Jiang
- College of Basic Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, People's Republic of China
| | - Yuxiao He
- College of Basic Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, People's Republic of China
| | - Shaoqing Shi
- Center for Scientific Research, Yunnan University of Chinese Traditional Medicine, Kunming, Yunnan, People's Republic of China
| | - Heling Wen
- Department of Cardiology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, People's Republic of China
| |
Collapse
|
4
|
Lee SH, Moon HJ, Lee YS, Kang CD, Kim SH. Potentiation of TRAIL‑induced cell death by nonsteroidal anti‑inflammatory drug in human hepatocellular carcinoma cells through the ER stress‑dependent autophagy pathway. Oncol Rep 2020; 44:1136-1148. [PMID: 32705218 PMCID: PMC7388578 DOI: 10.3892/or.2020.7662] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 06/09/2020] [Indexed: 12/14/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most commonly diagnosed primary liver malignancy. The limited success with relapse of the disease in HCC therapy is frequently associated with the acquired resistance to anticancer drugs. To develop a strategy and design for overcoming the resistance of HCC cells to TNF-related apoptosis inducing ligand (TRAIL)-induced cell death, we evaluated the efficacy of a non-steroidal anti-inflammatory drug (NSAID) in combination with TRAIL against TRAIL-resistant HCC cells expressing a high level of CD44. We revealed by MTT and western blotting, respectively, that celecoxib (CCB), an NSAID, and 2,5-dimethyl celecoxib (DMC), a non-cyclooxygenase (COX)-2 inhibitor analog of CCB, were able to sensitize TRAIL-resistant HCC cells to TRAIL, implicating a COX-independent mechanism. CCB dose-dependently enhanced LC3-II and reduced p62 levels through AMPK activation and inhibition of the Akt/mTOR pathway and upregulated expression of ATF4/CHOP, leading to activation of endoplasmic reticulum (ER) stress-dependent autophagy. The TRAIL sensitization capacity of CCB in TRAIL-resistant HCC cells was abrogated by an ER stress inhibitor. In addition, we also revealed by flow cytometry and western blotting, respectively, that accelerated downregulation of TRAIL-mediated c-FLIP expression, DR5 activation and CD44 degradation/downregulation by NSAID resulted in activation of caspases and poly(ADP-ribose) polymerase (PARP), leading to the sensitization of TRAIL-resistant HCC cells to TRAIL and thereby reversal of TRAIL resistance. From these results, we propose that NSAID in combination with TRAIL may improve the antitumor activity of TRAIL in TRAIL-resistant HCC, and this approach may serve as a novel strategy that maximizes the therapeutic efficacy of TRAIL for clinical application.
Collapse
Affiliation(s)
- Su-Hoon Lee
- Department of Biochemistry, Pusan National University School of Medicine, Yangsan, Gyeongsangnam‑do 626‑870, Republic of Korea
| | - Hyun-Jung Moon
- Department of Biochemistry, Pusan National University School of Medicine, Yangsan, Gyeongsangnam‑do 626‑870, Republic of Korea
| | - Young-Shin Lee
- Department of Biochemistry, Pusan National University School of Medicine, Yangsan, Gyeongsangnam‑do 626‑870, Republic of Korea
| | - Chi-Dug Kang
- Department of Biochemistry, Pusan National University School of Medicine, Yangsan, Gyeongsangnam‑do 626‑870, Republic of Korea
| | - Sun-Hee Kim
- Department of Biochemistry, Pusan National University School of Medicine, Yangsan, Gyeongsangnam‑do 626‑870, Republic of Korea
| |
Collapse
|
5
|
Mallampalli RK, Li X, Jang JH, Kaminski T, Hoji A, Coon T, Chandra D, Welty S, Teng Y, Sembrat J, Rojas M, Zhao Y, Lafyatis R, Zou C, Sciurba F, Sundd P, Lan L, Nyunoya T. Cigarette smoke exposure enhances transforming acidic coiled-coil-containing protein 2 turnover and thereby promotes emphysema. JCI Insight 2020; 5:125895. [PMID: 31996486 PMCID: PMC7098723 DOI: 10.1172/jci.insight.125895] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 12/18/2019] [Indexed: 01/09/2023] Open
Abstract
Our integrative genomic and functional analysis identified transforming acidic coiled-coil-containing protein 2 (TACC2) as a chronic obstructive pulmonary disease (COPD) candidate gene. Here, we found that smokers with COPD exhibit a marked decrease in lung TACC2 protein levels relative to smokers without COPD. Single cell RNA sequencing reveals that TACC2 is expressed primarily in lung epithelial cells in normal human lungs. Furthermore, suppression of TACC2 expression impairs the efficiency of homologous recombination repair and augments spontaneous and cigarette smoke extract-induced (CSE-induced) DNA damage and cytotoxicity in immortalized human bronchial epithelial cells. By contrast, enforced expression of TACC2 attenuates the CSE effects. We also found that CSE enhances TACC2 degradation via the ubiquitin-proteasome system mediated by the ubiquitin E3 ligase subunit, F box L7. Furthermore, cellularly expressed TACC2 proteins harboring naturally occurring mutations exhibited altered protein lifespan coupled with modified DNA damage repair and cytotoxic responses. CS triggers emphysematous changes accompanied by accumulated DNA damage, apoptosis of alveolar epithelia, and lung inflammation in Tacc2-/- compared with Tacc2+/+ mice. Our results suggest that CS destabilizes TACC2 protein in lung epithelia by the ubiquitin proteasome system, leading to subsequent DNA damage, cytotoxicity, and emphysema.
Collapse
Affiliation(s)
- Rama K. Mallampalli
- Department of Medicine, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Xiuying Li
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Medical Specialty Service Line, Veterans Affairs Pittsburgh Healthcare System, Pittsburg, Pennsylvania, USA
| | - Jun-Ho Jang
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Tomasz Kaminski
- Vascular Medical Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Aki Hoji
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Tiffany Coon
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Divay Chandra
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Starr Welty
- Department of Microbiology & Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- UMPC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Yaqun Teng
- School of Medicine, Tsinghua University, No. 1 Tsinghua Yuan, Beijing, China
| | - John Sembrat
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Mauricio Rojas
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yutong Zhao
- Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Robert Lafyatis
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Chunbin Zou
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Medical Specialty Service Line, Veterans Affairs Pittsburgh Healthcare System, Pittsburg, Pennsylvania, USA
| | - Frank Sciurba
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Prithu Sundd
- Vascular Medical Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Li Lan
- Department of Radiation Oncology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Toru Nyunoya
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Medical Specialty Service Line, Veterans Affairs Pittsburgh Healthcare System, Pittsburg, Pennsylvania, USA
| |
Collapse
|
6
|
Miller DR, Cramer SD, Thorburn A. The interplay of autophagy and non-apoptotic cell death pathways. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 352:159-187. [PMID: 32334815 DOI: 10.1016/bs.ircmb.2019.12.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Autophagy, the process of macromolecular degradation through the lysosome, has been extensively studied for the past decade or two. Autophagy can regulate cell death, especially apoptosis, through selective degradation of both positive and negative apoptosis regulators. However, multiple other programmed cell death pathways exist. As knowledge of these other types of cell death expand, it has been suggested that they also interact with autophagy. In this review, we discuss the molecular mechanisms that comprise three non-apoptotic forms of cell death (necroptosis, pyroptosis and ferroptosis) focusing on how the autophagy machinery regulates these different cell death mechanisms through (i) its degradative functions, i.e., true autophagy, and (ii) other non-degradative functions of the autophagy machinery such as serving as a signaling scaffold or by participating in other autophagy-independent cellular processes.
Collapse
Affiliation(s)
- Dannah R Miller
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Scott D Cramer
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Andrew Thorburn
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.
| |
Collapse
|
7
|
He Y, Su J, Lan B, Gao Y, Zhao J. Targeting off-target effects: endoplasmic reticulum stress and autophagy as effective strategies to enhance temozolomide treatment. Onco Targets Ther 2019; 12:1857-1865. [PMID: 30881038 PMCID: PMC6413742 DOI: 10.2147/ott.s194770] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and aggressive adult primary central nervous system tumor. Unfortunately, GBM is resistant to the classic chemotherapy drug, temozolomide (TMZ). As well as its classic DNA-targeting effects, the off-target effects of TMZ can have pro-survival or pro-death roles and regulate GBM chemoradiation sensitivity. Endoplasmic reticulum (ER) stress is one of the most common off-target effects. ER stress and its downstream induction of autophagy, apoptosis, and other events have important roles in regulating TMZ sensitivity. Autophagy is an evolutionarily conserved cellular homeostasis mechanism that is closely associated with ER stress-induced apoptosis. Under ER stress, autophagy cannot only remove misfolded/unfolded proteins and damaged organelles and degrade and inhibit apoptosis-related caspase activation to reduce cell damage, but may also promote apoptosis dependent on ER stress intensity. Although some protein interactions between autophagy and apoptosis and common upstream signaling pathways have been found, the underlying regulatory mechanisms are still not fully understood. This review summarizes the possible mechanisms underlying the current known off-target roles of ER stress and downstream autophagy in the regulation of cell fate and evaluates their role in TMZ treatment and their potential as therapeutic targets.
Collapse
Affiliation(s)
- Yichun He
- Department of Neurosurgery, China-Japan Union Hospital, Jilin University, Changchun, Jilin, China,
| | - Jing Su
- Department of Pathophysiology, Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Beiwu Lan
- Department of Neurosurgery, China-Japan Union Hospital, Jilin University, Changchun, Jilin, China,
| | - Yufei Gao
- Department of Neurosurgery, China-Japan Union Hospital, Jilin University, Changchun, Jilin, China,
| | - Jingxia Zhao
- Experimental Teaching Center, School of Nursing, Jilin University, Changchun, Jilin, China,
| |
Collapse
|
8
|
Luo Z, Zhu T, Luo W, Lv Y, Zhang L, Wang C, Li M, Wu W, Shi S. Metformin induces apoptotic cytotoxicity depending on AMPK/PKA/GSK-3β-mediated c-FLIP L degradation in non-small cell lung cancer. Cancer Manag Res 2019; 11:681-689. [PMID: 30666163 PMCID: PMC6331071 DOI: 10.2147/cmar.s178688] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Background Metformin, a first-line antidiabetic drug, has recently been reported with anticancer activities in various cancers; however, the underlying mechanisms remain elusive. The aim of the present study was to investigate the role of cellular FADD-like IL-1β-converting enzyme (FLICE)-inhibitory protein large (c-FLIPL) in metformin-induced anticancer activity in non-small cell lung cancer (NSCLC) in vitro. Materials and methods Cell viability was measured by MTT assay. Quantitative real-time PCR was carried out to detect the level of mRNA of related genes. The expression of related proteins was detected by Western blot. siRNA was used to silence the expression of targeted proteins. Results Metformin significantly suppressed proliferation of both A549 and H460 cells in a dose-dependent manner. Mechanistic studies suggested that metformin killed NSCLC cells by inducing apoptotic cell death. Moreover, metformin greatly inhibited c-FLIPL expression and then promoted its degradation. Furthermore, metformin significantly activated Adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) and its downstream glycogen synthase kinase 3beta (GSK-3β), block the expression of AMPK, and GSK-3β with siRNA partially reversed metformin-induced cytotoxicity and restored the expression of c-FLIPL in lung cancer cells. Metformin also suppressed the activity of AMPK downstream protein kinase A (PKA), PKA activators, both 8-Br-cAMP and forskolin, greatly increased c-FLIPL expression in NSCLC cells. Conclusion This study provided evidence that metformin killed NSCLC cells through AMPK/PKA/GSK-3β axis-mediated c-FLIPL degradation.
Collapse
Affiliation(s)
- Zhuang Luo
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, People's Republic of China,
| | - Tingting Zhu
- Department of Dermatology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, People's Republic of China
| | - Wei Luo
- Department of Respiratory Medicine, The People's Hospital of Leshan, Leshan, Sichuan 640000, People's Republic of China
| | - Yuanyuan Lv
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, People's Republic of China,
| | - Liyan Zhang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, People's Republic of China,
| | - Chu Wang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, People's Republic of China,
| | - Min Li
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, People's Republic of China,
| | - Wenjuan Wu
- Department of Dermatology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, People's Republic of China
| | - Shaoqing Shi
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, People's Republic of China,
| |
Collapse
|
9
|
Abstract
Apo2 ligand (Apo2L)/tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is unique to selectively induce apoptosis in tumor cells while sparing normal cells. Thus there is tremendous interest in Apo2L/TRAIL therapy; however, drug resistance is a serious limitation. Autophagy is a cellular housekeeping process that controls protein and organelle turnover, and is almost consistently activated in response to apoptosis-inducing stimuli, including Apo2L/TRAIL. Unlike apoptosis, autophagy leads to cell death or survival depending on the context. Various molecular mechanisms by which autophagy regulates Apo2L/TRAIL-induced apoptosis have been identified. Further, whether autophagy is completed (intact autophagic flux) or not could determine the fate of cancer cells, either cell survival or death. Thus, targeting autophagy is an attractive strategy to overcome Apo2L/TRAIL resistance. We present the current view of how these regulatory mechanisms of this interplay between autophagy and apoptosis may dictate cancer cell response to Apo2L/TRAIL therapy.
Collapse
Affiliation(s)
- Arishya Sharma
- a Department of Cancer Biology , Lerner Research Institute , Cleveland , OH , USA
| | - Alexandru Almasan
- a Department of Cancer Biology , Lerner Research Institute , Cleveland , OH , USA.,b Department of Radiation Oncology , Taussig Cancer Institute , Cleveland , OH , USA
| |
Collapse
|
10
|
Down‐regulation of intracellular anti‐apoptotic proteins, particularly c‐FLIP by therapeutic agents; the novel view to overcome resistance to TRAIL. J Cell Physiol 2018; 233:6470-6485. [PMID: 29741767 DOI: 10.1002/jcp.26585] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/08/2018] [Indexed: 12/24/2022]
|
11
|
Monma H, Iida Y, Moritani T, Okimoto T, Tanino R, Tajima Y, Harada M. Chloroquine augments TRAIL-induced apoptosis and induces G2/M phase arrest in human pancreatic cancer cells. PLoS One 2018. [PMID: 29513749 PMCID: PMC5841811 DOI: 10.1371/journal.pone.0193990] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Autophagy contributes to the treatment-resistance of many types of cancers, and chloroquine (CQ) inhibits autophagy. The tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) kills cancer cells but is minimally cytotoxic to normal cells. However, because the therapeutic efficacy of TRAIL is limited, it is necessary to augment TRAIL-induced anti-tumor effects. In this study, we explored the anti-tumor effects of a combination of CQ and TRAIL on two human pancreatic cancer cell lines: TRAIL-sensitive MiaPaCa-2 cells and Panc-1 cells that are less sensitive to TRAIL. Although both CQ and TRAIL reduced cancer cell viability in a dose-dependent manner, the combination acted synergistically. CQ increased the expression level of type-II LC3B without decreasing the expression of p62, an autophagic substrate, thus indicating inhibition of autophagy. CQ did not increase the levels of death receptors on cancer cells but reduced the expression of anti-apoptotic proteins. A combination of CQ and TRAIL significantly increased cancer cell apoptosis. CQ induced cell-cycle arrest in the G2/M phase. Also, CQ increased the p21 level but reduced that of cyclin B1. A combination of CQ and TRAIL reduced the colony-forming abilities of cancer cells to extents greater than either material alone. In xenograft models, combination CQ and TRAIL therapy significantly suppressed the growth of subcutaneously established MiaPaCa-2 and Panc-1 cells, compared with the untreated or monotherapy groups. Together, the results indicate that CQ in combination with TRAIL may be useful to treat human pancreatic cancer.
Collapse
Affiliation(s)
- Hiroyuki Monma
- Department of Digestive and General Surgery, Shimane University Faculty of Medicine, Shimane, Japan
- Department of Surgery, Hygo Prefectural Kakogawa Medical Center, Hyogo, Japan
| | - Yuichi Iida
- Department of Immunology, Shimane University Faculty of Medicine, Shimane, Japan
| | - Tamami Moritani
- Department of Immunology, Shimane University Faculty of Medicine, Shimane, Japan
| | - Tamio Okimoto
- Division of Medical Oncology & Respiratory Medicine, Department of Internal Medicine, Shimane University Faculty of Medicine, Shimane, Japan
| | - Ryosuke Tanino
- Division of Medical Oncology & Respiratory Medicine, Department of Internal Medicine, Shimane University Faculty of Medicine, Shimane, Japan
| | - Yoshitsugu Tajima
- Department of Digestive and General Surgery, Shimane University Faculty of Medicine, Shimane, Japan
| | - Mamoru Harada
- Department of Immunology, Shimane University Faculty of Medicine, Shimane, Japan
- * E-mail:
| |
Collapse
|
12
|
Yu X, Ling J, Liu X, Guo S, Lin Y, Liu X, Su L. Cordycepin induces autophagy-mediated c-FLIPL degradation and leads to apoptosis in human non-small cell lung cancer cells. Oncotarget 2018; 8:6691-6699. [PMID: 28035061 PMCID: PMC5351663 DOI: 10.18632/oncotarget.14262] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 12/01/2016] [Indexed: 02/05/2023] Open
Abstract
Cordycepin, a main active composition extracted from Cordyceps militaris, has been reported to exert anti-tumor activity in a broad spectrum of cancer types. However, the function of cordycepin on human non-small cell lung cancer cells is still obscure. Our present work showed that cordycepin inhibited cell growth by inducing apoptosis and autophagy in human NSCLC cells. Further study revealed that cordycepin triggered extrinsic apoptosis associated with down-regulation of c-FLIPL which suppresses the activity of caspase-8. And ectopic expression of c-FLIPL dramatically prevented cordycepin-caused apoptosis. Meanwhile, cordycepin stimulated autophagy through suppressing mTOR signaling pathway in lung cancer cells. When autophagy was blocked by Atg5 siRNA or PI3K inhibitor LY294002, the levels of apoptosis caused by cordycepin were obviously attenuated. In addition, suppression of autophagy could also elevate the level of c-FLIPL which indicated cordycepin-triggered autophagy promoted the degradation of c-FLIPL. Therefore, we conclude that cordycepin induces apoptosis through autophagy-mediated downregulation of c-FLIPL in human NSCLC cells. Taken together, our findings provide a novel prospect on the anti-tumor property of cordycepin, which may further prompt cordycepin to serve as a promising therapeutic approach in NSCLC treatment.
Collapse
Affiliation(s)
- Xinghui Yu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, Shandong University School of Life Sciences, Jinan, China
| | - Jianya Ling
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, Shandong University School of Life Sciences, Jinan, China
| | - Xianfang Liu
- The Department of Otolaryngology Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Sen Guo
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, Shandong University School of Life Sciences, Jinan, China
| | - Yidan Lin
- The Thoracic Surgery Department of West China Hospital, West China Medical School of Sichuan University, Chengdu, China
| | - Xiangguo Liu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, Shandong University School of Life Sciences, Jinan, China
| | - Ling Su
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, Shandong University School of Life Sciences, Jinan, China
| |
Collapse
|
13
|
Nazim UM, Jeong JK, Park SY. Ophiopogonin B sensitizes TRAIL-induced apoptosis through activation of autophagy flux and downregulates cellular FLICE-like inhibitory protein. Oncotarget 2017; 9:4161-4172. [PMID: 29423112 PMCID: PMC5790529 DOI: 10.18632/oncotarget.23647] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 12/15/2017] [Indexed: 02/07/2023] Open
Abstract
Tumor necrosis factor related apoptosis-inducing ligand (TRAIL), a type II transmembrane protein, belongs to the TNF superfamily. Compared to other family members, TRAIL is a promising anti-cancer agent that can selectively induce apoptosis of various types of transformed cells and xenografts, with negligible cytotoxicity against normal tissues. Ophiopogonin B is a bioactive ingredient of Radix Ophiopogon japonicus, which is frequently used in traditional Chinese medicine to treat cancer. In this study, we report that Cellular FLICE (FADD-like IL-1β-converting enzyme)-inhibitory protein (c-FLIP) is the key determinant mediating TRAIL resistance in A549 cells and Ophiopogonin B downregulates c-FLIP and enhances TRAIL-induced apoptosis by activating autophagy flux. In addition, treatment with Ophiopogonin B resulted in a slight increase in the conversion of LC3-I to LC3-II and significantly decreased p62 expression levels in a dose-dependent manner. This indicates that Ophiopogonin B induces autophagy flux activation in human lung cancer cells. Inhibiting autophagy flux by applying a specific inhibitor ATG5 siRNA with Ophiopogonin B mediated enhancement of TRAIL effects. These data demonstrate that downregulation of c-FLIP by Ophiopogonin B enhances TRAIL-induced tumor cell death by activating autophagy flux in TRAIL-resistant A549 cells, and also suggests that Ophiopogonin B combined with TRAIL may be a successful therapeutic strategy for TRAIL-resistant lung cancer cells.
Collapse
Affiliation(s)
- Uddin Md Nazim
- Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Iksan, Jeonbuk 54596, South Korea
| | - Jae-Kyo Jeong
- Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Iksan, Jeonbuk 54596, South Korea
| | - Sang-Youel Park
- Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Iksan, Jeonbuk 54596, South Korea
| |
Collapse
|
14
|
Zhuang C, Zhang W, Sheng C, Zhang W, Xing C, Miao Z. Chalcone: A Privileged Structure in Medicinal Chemistry. Chem Rev 2017; 117:7762-7810. [PMID: 28488435 PMCID: PMC6131713 DOI: 10.1021/acs.chemrev.7b00020] [Citation(s) in RCA: 818] [Impact Index Per Article: 102.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Privileged structures have been widely used as an effective template in medicinal chemistry for drug discovery. Chalcone is a common simple scaffold found in many naturally occurring compounds. Many chalcone derivatives have also been prepared due to their convenient synthesis. These natural products and synthetic compounds have shown numerous interesting biological activities with clinical potentials against various diseases. This review aims to highlight the recent evidence of chalcone as a privileged scaffold in medicinal chemistry. Multiple aspects of chalcone will be summarized herein, including the isolation of novel chalcone derivatives, the development of new synthetic methodologies, the evaluation of their biological properties, and the exploration of the mechanisms of action as well as target identification. This review is expected to be a comprehensive, authoritative, and critical review of the chalcone template to the chemistry community.
Collapse
Affiliation(s)
- Chunlin Zhuang
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Wen Zhang
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Chunquan Sheng
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Wannian Zhang
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
- School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China
| | - Chengguo Xing
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, 1345 Center Drive,
Gainesville, Florida 32610, United States
| | - Zhenyuan Miao
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| |
Collapse
|
15
|
Semaan J, Pinon A, Rioux B, Hassan L, Limami Y, Pouget C, Fagnère C, Sol V, Diab-Assaf M, Simon A, Liagre B. Resistance to 3-HTMC-Induced Apoptosis Through Activation of PI3K/Akt, MEK/ERK, and p38/COX-2/PGE2Pathways in Human HT-29 and HCT116 Colorectal Cancer Cells. J Cell Biochem 2016; 117:2875-2885. [DOI: 10.1002/jcb.25600] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 05/16/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Josiane Semaan
- Laboratory of Chemistry of Natural Substances, Faculty of Pharmacy; University of Limoges; FR 3503 GEIST, EA1069; Limoges France
| | - Aline Pinon
- Laboratory of Chemistry of Natural Substances, Faculty of Pharmacy; University of Limoges; FR 3503 GEIST, EA1069; Limoges France
| | - Benjamin Rioux
- Laboratory of Chemistry of Natural Substances, Faculty of Pharmacy; University of Limoges; FR 3503 GEIST, EA1069; Limoges France
| | - Lama Hassan
- Laboratory of Chemistry of Natural Substances, Faculty of Pharmacy; University of Limoges; FR 3503 GEIST, EA1069; Limoges France
| | - Youness Limami
- Laboratoire National de Référence (LNR); Université Mohammed VI des Sciences de la Santé; Casablanca Royaume du Maroc
| | - Christelle Pouget
- Laboratory of Chemistry of Natural Substances, Faculty of Pharmacy; University of Limoges; FR 3503 GEIST, EA1069; Limoges France
| | - Catherine Fagnère
- Laboratory of Chemistry of Natural Substances, Faculty of Pharmacy; University of Limoges; FR 3503 GEIST, EA1069; Limoges France
| | - Vincent Sol
- Laboratory of Chemistry of Natural Substances, Faculty of Pharmacy; University of Limoges; FR 3503 GEIST, EA1069; Limoges France
| | - Mona Diab-Assaf
- Molecular Tumorigenesis and Anticancer Pharmacology; EDST, Lebanese University; Hadath Lebanon
| | - Alain Simon
- Laboratory of Chemistry of Natural Substances, Faculty of Pharmacy; University of Limoges; FR 3503 GEIST, EA1069; Limoges France
| | - Bertrand Liagre
- Laboratory of Chemistry of Natural Substances, Faculty of Pharmacy; University of Limoges; FR 3503 GEIST, EA1069; Limoges France
| |
Collapse
|