1
|
Feng M, Ahmed KH, Punjabi N, Inman JC. A Contemporary Review of Trachea, Nose, and Ear Cartilage Bioengineering and Additive Manufacturing. Biomimetics (Basel) 2024; 9:327. [PMID: 38921207 PMCID: PMC11202182 DOI: 10.3390/biomimetics9060327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/18/2024] [Accepted: 05/28/2024] [Indexed: 06/27/2024] Open
Abstract
The complex structure, chemical composition, and biomechanical properties of craniofacial cartilaginous structures make them challenging to reconstruct. Autologous grafts have limited tissue availability and can cause significant donor-site morbidity, homologous grafts often require immunosuppression, and alloplastic grafts may have high rates of infection or displacement. Furthermore, all these grafting techniques require a high level of surgical skill to ensure that the reconstruction matches the original structure. Current research indicates that additive manufacturing shows promise in overcoming these limitations. Autologous stem cells have been developed into cartilage when exposed to the appropriate growth factors and culture conditions, such as mechanical stress and oxygen deprivation. Additive manufacturing allows for increased precision when engineering scaffolds for stem cell cultures. Fine control over the porosity and structure of a material ensures adequate cell adhesion and fit between the graft and the defect. Several recent tissue engineering studies have focused on the trachea, nose, and ear, as these structures are often damaged by congenital conditions, trauma, and malignancy. This article reviews the limitations of current reconstructive techniques and the new developments in additive manufacturing for tracheal, nasal, and auricular cartilages.
Collapse
Affiliation(s)
- Max Feng
- Department of Otolaryngology–Head and Neck Surgery, Loma Linda University Medical Center, Loma Linda, CA 92354, USA
| | - Khwaja Hamzah Ahmed
- Department of Otolaryngology–Head and Neck Surgery, Loma Linda University Medical Center, Loma Linda, CA 92354, USA
| | - Nihal Punjabi
- Department of Otolaryngology–Head and Neck Surgery, Loma Linda University Medical Center, Loma Linda, CA 92354, USA
- School of Medicine, Case Western Reserve University, Cleveland, OH 44116, USA
| | - Jared C. Inman
- Department of Otolaryngology–Head and Neck Surgery, Loma Linda University Medical Center, Loma Linda, CA 92354, USA
| |
Collapse
|
2
|
Sompunga P, Rodprasert W, Srisuwatanasagul S, Techangamsuwan S, Jirajessada S, Hanchaina R, Kangsamaksin T, Yodmuang S, Sawangmake C. Preparation of Decellularized Tissue as Dual Cell Carrier Systems: A Step Towards Facilitating Re-epithelization and Cell Encapsulation for Tracheal Reconstruction. Ann Biomed Eng 2024; 52:1222-1239. [PMID: 38353908 DOI: 10.1007/s10439-024-03448-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 01/09/2024] [Indexed: 04/06/2024]
Abstract
Surgical treatment of tracheal diseases, trauma, and congenital stenosis has shown success through tracheal reconstruction coupled with palliative care. However, challenges in surgical-based tracheal repairs have prompted the exploration of alternative approaches for tracheal replacement. Tissue-based treatments, involving the cultivation of patient cells on a network of extracellular matrix (ECM) from donor tissue, hold promise for restoring tracheal structure and function without eliciting an immune reaction. In this study, we utilized decellularized canine tracheas as tissue models to develop two types of cell carriers: a decellularized scaffold and a hydrogel. Our hypothesis posits that both carriers, containing essential biochemical niches provided by ECM components, facilitate cell attachment without inducing cytotoxicity. Canine tracheas underwent vacuum-assisted decellularization (VAD), and the ECM-rich hydrogel was prepared through peptic digestion of the decellularized trachea. The decellularized canine trachea exhibited a significant reduction in DNA content and major histocompatibility complex class II, while preserving crucial ECM components such as collagen, glycosaminoglycan, laminin, and fibronectin. Scanning electron microscope and fluorescent microscope images revealed a fibrous ECM network on the luminal side of the cell-free trachea, supporting epithelial cell attachment. Moreover, the ECM-rich hydrogel exhibited excellent viability for human mesenchymal stem cells encapsulated for 3 days, indicating the potential of cell-laden hydrogel in promoting the development of cartilage rings of the trachea. This study underscores the versatility of the trachea in producing two distinct cell carriers-decellularized scaffold and hydrogel-both containing the native biochemical niche essential for tracheal tissue engineering applications.
Collapse
Affiliation(s)
- Pensuda Sompunga
- Medical Sciences Program, Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
| | - Watchareewan Rodprasert
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Veterinary Stem Cell and Bioengineering Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Sayamon Srisuwatanasagul
- Department of Anatomy, Faculty of Veterinary Science, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
| | - Somporn Techangamsuwan
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
| | - Sirinee Jirajessada
- Biology Program, Faculty of Science, Buriram Rajabhat University, Muang, Buriram, 31000, Thailand
| | - Rattanavinan Hanchaina
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Thaned Kangsamaksin
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Supansa Yodmuang
- Research Affairs, Faculty of Medicine, Chulalongkorn University, Ananda Mahidol Building, 1873 Rama 4 Rd, Pathumwan, Bangkok, 10330, Thailand.
- Center of Excellence in Biomaterial Engineering for Medical and Health, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand.
- Clinical Excellence Center for Advanced Therapy Medicinal Products, King Chulalongkorn Memorial Hospital, Pathumwan, Bangkok, 10330, Thailand.
- Avatar Biotech for Oral Health & Healthy Longevity Research Unit, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand.
| | - Chenphop Sawangmake
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand.
- Veterinary Stem Cell and Bioengineering Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand.
- Department of Pharmacology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
3
|
Jiwangga D, Mahyudin F, Mastutik G, Juliana, Meitavany EN. Current Strategies for Tracheal Decellularization: A Systematic Review. Int J Biomater 2024; 2024:3355239. [PMID: 38352968 PMCID: PMC10864047 DOI: 10.1155/2024/3355239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/15/2023] [Accepted: 01/16/2024] [Indexed: 02/16/2024] Open
Abstract
The process of decellularization is crucial for producing a substitute for the absent tracheal segment, and the choice of agents and methods significantly influences the outcomes. This paper aims to systematically review the efficacy of diverse tracheal decellularization agents and methods using the PRISMA flowchart. Inclusion criteria encompassed experimental studies published between 2018 and 2023, written in English, and detailing outcomes related to histopathological anatomy, DNA quantification, ECM evaluation, and biomechanical characteristics. Exclusion criteria involved studies related to 3D printing, biomaterials, and partial decellularization. A comprehensive search on PubMed, NCBI, and ScienceDirect yielded 17 relevant literatures. The integration of various agents and methods has proven effective in the process of tracheal decellularization, highlighting the distinct advantages and drawbacks associated with each agent and method.
Collapse
Affiliation(s)
- Dhihintia Jiwangga
- Doctoral Program of Medical Science, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Ferdiansyah Mahyudin
- Department of Orthopaedic and Traumatology, Faculty of Medicine, Universitas Airlangga, Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Gondo Mastutik
- Department of Anatomic Pathology, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Juliana
- Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Estya Nadya Meitavany
- School of Biomedical Engineering and Imaging Sciences (BMEIS), King's College London, London, UK
| |
Collapse
|
4
|
Lim J, Bupphathong S, Huang W, Lin CH. Three-Dimensional Bioprinting of Biocompatible Photosensitive Polymers for Tissue Engineering Application. TISSUE ENGINEERING. PART B, REVIEWS 2023; 29:710-722. [PMID: 37335218 DOI: 10.1089/ten.teb.2023.0072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Three-dimensional (3D) bioprinting, or additive manufacturing, is a rapid fabrication technique with the foremost objective of creating biomimetic tissue and organ replacements in hopes of restoring normal tissue function and structure. Generating the engineered organs with an infrastructure that is similar to that of the real organs can be beneficial to simulate the functional organs that work inside our bodies. Photopolymerization-based 3D bioprinting, or photocuring, has emerged as a promising method in engineering biomimetic tissues due to its simplicity, and noninvasive and spatially controllable approach. In this review, we investigated types of 3D printers, mainstream materials, photoinitiators, phototoxicity, and selected tissue engineering applications of 3D photopolymerization bioprinting.
Collapse
Affiliation(s)
- Joshua Lim
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Sasinan Bupphathong
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Wei Huang
- Department of Orthodontics, Rutgers School of Dental Medicine, Newark, New Jersey, USA
| | - Chih-Hsin Lin
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
5
|
Abdul Samat A, Abdul Hamid ZA, Jaafar M, Ong CC, Yahaya BH. Investigation of the In Vitro and In Vivo Biocompatibility of a Three-Dimensional Printed Thermoplastic Polyurethane/Polylactic Acid Blend for the Development of Tracheal Scaffolds. Bioengineering (Basel) 2023; 10:394. [PMID: 37106581 PMCID: PMC10136332 DOI: 10.3390/bioengineering10040394] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/18/2023] [Accepted: 02/02/2023] [Indexed: 04/29/2023] Open
Abstract
Tissue-engineered polymeric implants are preferable because they do not cause a significant inflammatory reaction in the surrounding tissue. Three-dimensional (3D) technology can be used to fabricate a customised scaffold, which is critical for implantation. This study aimed to investigate the biocompatibility of a mixture of thermoplastic polyurethane (TPU) and polylactic acid (PLA) and the effects of their extract in cell cultures and in animal models as potential tracheal replacement materials. The morphology of the 3D-printed scaffolds was investigated using scanning electron microscopy (SEM), while the degradability, pH, and effects of the 3D-printed TPU/PLA scaffolds and their extracts were investigated in cell culture studies. In addition, subcutaneous implantation of 3D-printed scaffold was performed to evaluate the biocompatibility of the scaffold in a rat model at different time points. A histopathological examination was performed to investigate the local inflammatory response and angiogenesis. The in vitro results showed that the composite and its extract were not toxic. Similarly, the pH of the extracts did not inhibit cell proliferation and migration. The analysis of biocompatibility of the scaffolds from the in vivo results suggests that porous TPU/PLA scaffolds may facilitate cell adhesion, migration, and proliferation and promote angiogenesis in host cells. The current results suggest that with 3D printing technology, TPU and PLA could be used as materials to construct scaffolds with suitable properties and provide a solution to the challenges of tracheal transplantation.
Collapse
Affiliation(s)
- Asmak Abdul Samat
- Lung Stem Cell and Gene Therapy Group, Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Sains@Bertam, Kepala Batas 13200, Malaysia
- Department of Fundamental Dental and Medical Sciences, Kulliyyah of Dentistry, International Islamic University Malaysia, Kuantan 25200, Malaysia
| | - Zuratul Ain Abdul Hamid
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Nibong Tebal 14300, Malaysia
| | - Mariatti Jaafar
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Nibong Tebal 14300, Malaysia
| | - Chern Chung Ong
- Fabbxible Technology, 11a Jalan IKS Bukit Tengah, Tmn IKS Bukit Tengah, Bukit Mertajam 14000, Malaysia
| | - Badrul Hisham Yahaya
- Lung Stem Cell and Gene Therapy Group, Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Sains@Bertam, Kepala Batas 13200, Malaysia
| |
Collapse
|
6
|
de Wit RJJ, van Dis DJ, Bertrand ME, Tiemessen D, Siddiqi S, Oosterwijk E, Verhagen AFTM. Scaffold-based tissue engineering: Supercritical carbon dioxide as an alternative method for decellularization and sterilization of dense materials. Acta Biomater 2023; 155:323-332. [PMID: 36423818 DOI: 10.1016/j.actbio.2022.11.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/23/2022]
Abstract
Development of ready-to-use biomaterials and scaffolds is vital for further advancement of scaffold-based tissue engineering in clinical practice. Scaffolds need to mimic 3D ultrastructure, have adequate mechanical strength, are biocompatible, non-immunogenic and need to promote tissue regeneration in vivo. Although decellularization of native tissues seems promising to deliver scaffolds that meet these criteria, adequate decellularization of hard, poorly penetrable and poorly diffusible tissues remains challenging whilst being a very time-consuming process. In this study, a method to decellularize hard, dense tissues using supercritical carbon-dioxide preceded by a freeze/thaw cycle and followed by several washing steps is presented, demonstrating decellularisation efficiency and substantially reduced production/handling time. Additionally, supercritical carbon-dioxide treatment was used as sterilization method, further reducing the time required to produce the final scaffold. Histological evaluation showed that, after fine-tuning of the process, a partially acellular scaffold was obtained, with preservation of glycosaminoglycans and collagen fibers, albeit that the amount of residual dsDNA was still higher then chemically decellularized tissue. Biomechanical properties of the scaffold were similar to the native, non-decellularized tissue. After sterilization with supercritical carbon-dioxide the simulated functional outcome was more similar to native trachea, when compared to sterilization using gamma irradiation. Thus, decellularization and sterilization using supercritical carbon-dioxide with washing steps is an effective method for dense cartilaginous materials, and tuneable to meet different demands in other applications, but further optimization may be required. STATEMENT OF SIGNIFICANCE: Further advancement of the use of tissue engineered tracheal constructs is restricted by the lack of the ideal scaffold. Decellularized trachea is considered a promising scaffold, but the hard, poorly diffusible tissue remains challenging while forming a very time consumable process. Decellularization using supercritical carbon dioxide (scCO2) seems promising, resulting in efficient removal of cellular material while reducing production and handling time. Addition of scCO2 as a sterilization method resulted in further time reduction while improving functional outcome in comparison with traditional sterilization methods. This study presents an promising alternative method for decellularization and sterilization of dense materials, which can be tuned to meet different demands in other applications.
Collapse
Affiliation(s)
- R J J de Wit
- Department of Cardio-Thoracic Surgery, Radboud University Medical Center, Geert Grooteplein 28, GE, Nijmegen 6525, the Netherlands.
| | - D J van Dis
- Department of Urology, Radboud Institute for Molecular Life Science, Radboud University Medical Center, Geert Grooteplein 28, GE, Nijmegen 6525, the Netherlands
| | - M E Bertrand
- HCM Medical, Kerkenbos 10-113, BJ, Nijmegen 6546, The Netherlands
| | - D Tiemessen
- Department of Urology, Radboud Institute for Molecular Life Science, Radboud University Medical Center, Geert Grooteplein 28, GE, Nijmegen 6525, the Netherlands
| | - S Siddiqi
- Department of Cardio-Thoracic Surgery, Radboud University Medical Center, Geert Grooteplein 28, GE, Nijmegen 6525, the Netherlands
| | - E Oosterwijk
- Department of Urology, Radboud Institute for Molecular Life Science, Radboud University Medical Center, Geert Grooteplein 28, GE, Nijmegen 6525, the Netherlands
| | - A F T M Verhagen
- Department of Cardio-Thoracic Surgery, Radboud University Medical Center, Geert Grooteplein 28, GE, Nijmegen 6525, the Netherlands
| |
Collapse
|
7
|
Stocco E, Barbon S, Mammana M, Zambello G, Contran M, Parnigotto PP, Macchi V, Conconi MT, Rea F, De Caro R, Porzionato A. Preclinical and clinical orthotopic transplantation of decellularized/engineered tracheal scaffolds: A systematic literature review. J Tissue Eng 2023; 14:20417314231151826. [PMID: 36874984 PMCID: PMC9974632 DOI: 10.1177/20417314231151826] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 01/04/2023] [Indexed: 03/07/2023] Open
Abstract
Severe tracheal injuries that cannot be managed by mobilization and end-to-end anastomosis represent an unmet clinical need and an urgent challenge to face in surgical practice; within this scenario, decellularized scaffolds (eventually bioengineered) are currently a tempting option among tissue engineered substitutes. The success of a decellularized trachea is expression of a balanced approach in cells removal while preserving the extracellular matrix (ECM) architecture/mechanical properties. Revising the literature, many Authors report about different methods for acellular tracheal ECMs development; however, only few of them verified the devices effectiveness by an orthotopic implant in animal models of disease. To support translational medicine in this field, here we provide a systematic review on studies recurring to decellularized/bioengineered tracheas implantation. After describing the specific methodological aspects, orthotopic implant results are verified. Furtherly, the only three clinical cases of compassionate use of tissue engineered tracheas are reported with a focus on outcomes.
Collapse
Affiliation(s)
- Elena Stocco
- Department of Neurosciences, Section of Human Anatomy, University of Padova, Padova, Italy
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region, Padova, Italy
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling-TES, Onlus, Padova, Italy
| | - Silvia Barbon
- Department of Neurosciences, Section of Human Anatomy, University of Padova, Padova, Italy
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region, Padova, Italy
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling-TES, Onlus, Padova, Italy
| | - Marco Mammana
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region, Padova, Italy
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University Hospital of Padova, Padova, Italy
| | - Giovanni Zambello
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University Hospital of Padova, Padova, Italy
| | - Martina Contran
- Department of Neurosciences, Section of Human Anatomy, University of Padova, Padova, Italy
| | - Pier Paolo Parnigotto
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling-TES, Onlus, Padova, Italy
| | - Veronica Macchi
- Department of Neurosciences, Section of Human Anatomy, University of Padova, Padova, Italy
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region, Padova, Italy
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling-TES, Onlus, Padova, Italy
| | - Maria Teresa Conconi
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling-TES, Onlus, Padova, Italy
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Federico Rea
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region, Padova, Italy
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University Hospital of Padova, Padova, Italy
| | - Raffaele De Caro
- Department of Neurosciences, Section of Human Anatomy, University of Padova, Padova, Italy
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region, Padova, Italy
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling-TES, Onlus, Padova, Italy
| | - Andrea Porzionato
- Department of Neurosciences, Section of Human Anatomy, University of Padova, Padova, Italy
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region, Padova, Italy
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling-TES, Onlus, Padova, Italy
| |
Collapse
|
8
|
Gao E, Wang P, Chen F, Xu Y, Wang Q, Chen H, Jiang G, Zhou G, Li D, Liu Y, Duan L. Skin-derived epithelial lining facilitates orthotopic tracheal transplantation by protecting the tracheal cartilage and inhibiting granulation hyperplasia. BIOMATERIALS ADVANCES 2022; 139:213037. [PMID: 35882125 DOI: 10.1016/j.bioadv.2022.213037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/28/2022] [Accepted: 07/17/2022] [Indexed: 06/15/2023]
Abstract
Long-segment tracheal defects caused by tumours, inflammation or trauma can cause serious damage to the quality of life of patients. Although many novel neotracheas have been constructed, the therapeutic effect of orthotopic transplantation was compromised mainly because of the lack of an epithelial lining in those neotracheas. In this study, we aimed to investigate the therapeutic function of skin-derived epithelial lining for orthotopic tracheal transplantation. Strips of auricular cartilage with fixed interval were interrupted sutured on a silicone tube to mimic the cartilage rings of the native trachea. Neotrachea in the with epithelium group retained the unilateral skin as the epithelial lining in the lumen, whereas the neotrachea in the without epithelium group consisted solely of cartilage strips. After revascularized in the sternohyoid muscle, 2-cm-long tracheal defects were made and were reconstructed using these neotracheas. Our results showed that the skin-derived epithelial lining simultaneously protected the engineered tracheal cartilage and inhibited granulation hyperplasia in the tracheal lumen; further, compared with the without epithelium group, the group with epithelium showed a marked improvement in the tracheal lumen patency and the survival rate of rabbits. Our study provides a critical cue for improvements in the repair of tracheal defects via skin-derived epithelial lining and may significantly advance the clinical translation of tissue-engineered trachea.
Collapse
Affiliation(s)
- Erji Gao
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China; Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pengli Wang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Feifan Chen
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Research Institute of Plastic Surgery, Weifang Medical College, Weifang, China
| | - Yong Xu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China; Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qianyi Wang
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Research Institute of Plastic Surgery, Weifang Medical College, Weifang, China
| | - Hong Chen
- Department of Hand Surgery, Ningbo Sixth Hospital, Ningbo, China
| | - Gening Jiang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Guangdong Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Research Institute of Plastic Surgery, Weifang Medical College, Weifang, China.
| | - Dan Li
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yi Liu
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Dermatology, Chinese Academy of Medical Sciences, Nanjing, China.
| | - Liang Duan
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
9
|
Samat AA, Hamid ZAA, Yahaya BH. Tissue Engineering for Tracheal Replacement: Strategies and Challenges. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022:137-163. [PMID: 35389199 DOI: 10.1007/5584_2022_707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The critical feature in trachea replacement is to provide a hollow cylindrical framework that is laterally stable and longitudinally flexible, facilitating cartilage and epithelial tissue formation. Despite advanced techniques and sources of materials used, most inherent challenges are related to the complexity of its anatomy. Limited blood supply leads to insufficient regenerative capacity for cartilage and epithelium. Natural and synthetic scaffolds, different types of cells, and growth factors are part of tissue engineering approaches with varying outcomes. Pre-vascularization remains one of the crucial factors to expedite the regenerative process in tracheal reconstruction. This review discusses the challenges and strategies used in tracheal tissue engineering, focusing on scaffold implantation in clinical and preclinical studies conducted in recent decades.
Collapse
Affiliation(s)
- Asmak Abdul Samat
- Lung Stem Cell and Gene Therapy Group, Regenerative Medicine Cluster, Advanced Medical and Dental Institute (IPPT), Universiti Sains Malaysia, Penang, Malaysia
- Fundamental Dental and Medical Sciences, Kulliyyah of Dentistry, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
| | - Zuratul Ain Abdul Hamid
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Penang, Malaysia
| | - Badrul Hisham Yahaya
- Lung Stem Cell and Gene Therapy Group, Regenerative Medicine Cluster, Advanced Medical and Dental Institute (IPPT), Universiti Sains Malaysia, Penang, Malaysia.
| |
Collapse
|
10
|
Yuan Z, Ren Y, Shafiq M, Chen Y, Tang H, Li B, El-Newehy M, El-Hamshary H, Morsi Y, Zheng H, Mo X. Converging 3D Printing and Electrospinning: Effect of Poly(l-lactide)/Gelatin Based Short Nanofibers Aerogels on Tracheal Regeneration. Macromol Biosci 2021; 22:e2100342. [PMID: 34706143 DOI: 10.1002/mabi.202100342] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/13/2021] [Indexed: 12/28/2022]
Abstract
Recently, various tissue engineering based strategies have been pursued for the regeneration of tracheal tissues. However, previously developed tracheal scaffolds do not accurately mimic the microstructure and mechanical behavior of the native trachea, which restrict their clinical translation. Here, tracheal scaffolds are fabricated by using 3D printing and short nanofibers (SF) dispersion of poly(l-lactide)/gelatin (0.5-1.5 wt%) to afford tracheal constructs. The results display that the scaffolds containing 1.0 wt % of SF exhibit low density, good water absorption capacity, reasonable degradation rate, and stable mechanical properties, which were comparable to the native trachea. Moreover, the designed scaffolds possess good biocompatibility and promote the growth and infiltration of chondrocytes in vitro. The biocompatibility of tracheal scaffolds is further assessed after subcutaneous implantation in mice for up to 4 and 8 weeks. Histological assessment of tracheal constructs explanted at week 4 shows that scaffolds can maintain their structural integrity and support the formation of neo-vessels. Furthermore, cell-scaffold constructs gradually form cartilage-like tissues, which mature with time. Collectively, these engineered tracheal scaffolds not only possess appropriate mechanical properties to afford a stabilized structure but also a biomimetic extracellular matrix-like structure to accomplish tissue regeneration, which may have broad implications for tracheal regeneration.
Collapse
Affiliation(s)
- Zhengchao Yuan
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, P. R. China
| | - Yijiu Ren
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, P. R. China
| | - Muhammad Shafiq
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, P. R. China
| | - Yujie Chen
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, P. R. China
| | - Hai Tang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, P. R. China
| | - Baojie Li
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, P. R. China
| | - Mohamed El-Newehy
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Hany El-Hamshary
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Yosry Morsi
- Faculty of Engineering and Industrial Sciences, Swinburne University of Technology, Boroondara, VIC, 3122, Australia
| | - Hui Zheng
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, P. R. China
| | - Xiumei Mo
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, P. R. China
| |
Collapse
|
11
|
Rickel AP, Deng X, Engebretson D, Hong Z. Electrospun nanofiber scaffold for vascular tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 129:112373. [PMID: 34579892 DOI: 10.1016/j.msec.2021.112373] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/28/2021] [Accepted: 08/10/2021] [Indexed: 12/16/2022]
Abstract
Due to the prevalence of cardiovascular diseases, there is a large need for small diameter vascular grafts that cannot be fulfilled using autologous vessels. Although medium to large diameter synthetic vessels are in use, no suitable small diameter vascular graft has been developed due to the unique dynamic environment that exists in small vessels. To achieve long term patency, a successful tissue engineered vascular graft would need to closely match the mechanical properties of native tissue, be non-thrombotic and non-immunogenic, and elicit the proper healing response and undergo remodeling to incorporate into the native vasculature. Electrospinning presents a promising approach to the development of a suitable tissue engineered vascular graft. This review provides a comprehensive overview of the different polymers, techniques, and functionalization approaches that have been used to develop an electrospun tissue engineered vascular graft.
Collapse
Affiliation(s)
- Alex P Rickel
- The Department of Biomedical Engineering, The University of South Dakota, Sioux Falls, SD 57107, United States of America
| | - Xiajun Deng
- The Department of Biomedical Engineering, The University of South Dakota, Sioux Falls, SD 57107, United States of America
| | - Daniel Engebretson
- The Department of Biomedical Engineering, The University of South Dakota, Sioux Falls, SD 57107, United States of America
| | - Zhongkui Hong
- The Department of Biomedical Engineering, The University of South Dakota, Sioux Falls, SD 57107, United States of America.
| |
Collapse
|
12
|
Wang Z, Sun F, Lu Y, Zhang B, Zhang G, Shi H. Rapid Preparation Method for Preparing Tracheal Decellularized Scaffolds: Vacuum Assistance and Optimization of DNase I. ACS OMEGA 2021; 6:10637-10644. [PMID: 34056217 PMCID: PMC8153783 DOI: 10.1021/acsomega.0c06247] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
Decellularized scaffolds are an effective way for tracheal tissue engineering to perform alternative treatments. However, clinically used decellularized tracheal scaffolds have a long preparation cycle. The purpose of this study is to improve the efficiency of decellularization by vacuum assistance and optimizing the concentration of DNase I in the decellularization process and to quickly obtain tracheal decellularized scaffolds. The trachea of New Zealand white rabbits was decellularized with 2, 4, 6, and 8 KU/mL DNase I under vacuum. The performance of the decellularized tracheal scaffold was evaluated through histological analysis, immunohistochemical staining, DNA residue, extracellular matrix composition, scanning electron microscopy, mechanical properties, cell compatibility, and in vivo experiments. Histological analysis and immunohistochemical staining showed that compared with the native trachea, the hierarchical structure of the decellularized trachea remained unchanged after decellularization, nonchondrocytes were effectively removed, and the antigenicity of the scaffold was significantly weakened. Deoxyribonucleic acid (DNA) quantitative analysis showed that the amount of residual DNA in the 6-KU group was significantly decreased. Scanning electron microscopy and mechanical tests showed that small gaps appeared in the basement membrane of the 6-KU group, and the mechanical properties decreased. The CCK-8 test results and in vivo experiments showed that the 6-KU group's acellular scaffold had good cell compatibility and new blood vessels were visible on the surface. Taken together, the 6-KU group could quickly prepare rabbit tracheal scaffolds with good decellularization effects in only 2 days, which significantly shortened the preparation cycle reducing the required cost.
Collapse
|
13
|
She Y, Fan Z, Wang L, Li Y, Sun W, Tang H, Zhang L, Wu L, Zheng H, Chen C. 3D Printed Biomimetic PCL Scaffold as Framework Interspersed With Collagen for Long Segment Tracheal Replacement. Front Cell Dev Biol 2021; 9:629796. [PMID: 33553186 PMCID: PMC7859529 DOI: 10.3389/fcell.2021.629796] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/05/2021] [Indexed: 12/16/2022] Open
Abstract
The rapid development of tissue engineering technology has provided new methods for tracheal replacement. However, none of the previously developed biomimetic tracheas exhibit both the anatomy (separated-ring structure) and mechanical behavior (radial rigidity and longitudinal flexibility) mimicking those of native trachea, which greatly restricts their clinical application. Herein, we proposed a biomimetic scaffold with a separated-ring structure: a polycaprolactone (PCL) scaffold with a ring-hollow alternating structure was three-dimensionally printed as a framework, and collagen sponge was embedded in the hollows amid the PCL rings by pouring followed by lyophilization. The biomimetic scaffold exhibited bionic radial rigidity based on compressive tests and longitudinal flexibility based on three-point bending tests. Furthermore, the biomimetic scaffold was recolonized by chondrocytes and developed tracheal cartilage in vitro. In vivo experiments showed substantial deposition of tracheal cartilage and formation of a biomimetic trachea mimicking the native trachea both structurally and mechanically. Finally, a long-segment tracheal replacement experiment in a rabbit model showed that the engineered biomimetic trachea elicited a satisfactory repair outcome. These results highlight the advantage of a biomimetic trachea with a separated-ring structure that mimics the native trachea both structurally and mechanically and demonstrates its promise in repairing long-segment tracheal defects.
Collapse
Affiliation(s)
- Yunlang She
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ziwen Fan
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Long Wang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yinze Li
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Weiyan Sun
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hai Tang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lei Zhang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Liang Wu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hui Zheng
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chang Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
14
|
Boys AJ, Barron SL, Tilev D, Owens RM. Building Scaffolds for Tubular Tissue Engineering. Front Bioeng Biotechnol 2020; 8:589960. [PMID: 33363127 PMCID: PMC7758256 DOI: 10.3389/fbioe.2020.589960] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/04/2020] [Indexed: 12/15/2022] Open
Abstract
Hollow organs and tissue systems drive various functions in the body. Many of these hollow or tubular systems, such as vasculature, the intestines, and the trachea, are common targets for tissue engineering, given their relevance to numerous diseases and body functions. As the field of tissue engineering has developed, numerous benchtop models have been produced as platforms for basic science and drug testing. Production of tubular scaffolds for different tissue engineering applications possesses many commonalities, such as the necessity for producing an intact tubular opening and for formation of semi-permeable epithelia or endothelia. As such, the field has converged on a series of manufacturing techniques for producing these structures. In this review, we discuss some of the most common tissue engineered applications within the context of tubular tissues and the methods by which these structures can be produced. We provide an overview of the general structure and anatomy for these tissue systems along with a series of general design criteria for tubular tissue engineering. We categorize methods for manufacturing tubular scaffolds as follows: casting, electrospinning, rolling, 3D printing, and decellularization. We discuss state-of-the-art models within the context of vascular, intestinal, and tracheal tissue engineering. Finally, we conclude with a discussion of the future for these fields.
Collapse
Affiliation(s)
| | | | | | - Roisin M. Owens
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
15
|
Photocrosslinked natural hydrogel composed of hyaluronic acid and gelatin enhances cartilage regeneration of decellularized trachea matrix. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 120:111628. [PMID: 33545814 DOI: 10.1016/j.msec.2020.111628] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 10/10/2020] [Accepted: 10/12/2020] [Indexed: 12/12/2022]
Abstract
Repair of long segmental trachea defects is always a great challenge in the clinic. The key to solving this problem is to develop an ideal trachea substitute with biological function. Using of a decellularized trachea matrix based on laser micropore technique (LDTM) demonstrated the possibility of preparing ideal trachea substitutes with tubular shape and satisfactory cartilage regeneration for tissue-engineered trachea regeneration. However, as a result of the very low cell adhesion of LDTM, an overly high concentration of seeding cell is required, which greatly restricts its clinical translation. To address this issue, the current study proposed a novel strategy using a photocrosslinked natural hydrogel (PNH) carrier to enhance cell retention efficiency and improve tracheal cartilage regeneration. Our results demonstrated that PNH underwent a rapid liquid-solid phase conversion under ultraviolet light. Moreover, the photo-generated aldehyde groups in PNH could rapidly react with inherent amino groups on LDTM surfaces to form imine bonds, which efficiently immobilized the cell-PNH composite to the surfaces of LDTM and/or maintained the composite in the LDTM micropores. Therefore, PNH significantly enhanced cell-seeding efficiency and achieved both stable cell retention and homogenous cell distribution throughout the LDTM. Moreover, PNH exhibited excellent biocompatibility and low cytotoxicity, and provided a natural three-dimensional biomimetic microenvironment to efficiently promote chondrocyte survival and proliferation, extracellular matrix production, and cartilage regeneration. Most importantly, at a relatively low cell-seeding concentration, homogeneous tubular cartilage was successfully regenerated with an accurate tracheal shape, sufficient mechanical strength, good elasticity, typical lacuna structure, and cartilage-specific extracellular matrix deposition. Our findings establish a versatile and efficient cell-seeding strategy for regeneration of various tissue and provide a satisfactory trachea substitute for repair and functional reconstruction of long segmental tracheal defects.
Collapse
|
16
|
Wang Z, Sun F, Lu Y, Pan S, Yang W, Zhang G, Ma J, Shi H. Rapid preparation of decellularized trachea as a 3D scaffold for organ engineering. Int J Artif Organs 2020; 44:55-64. [PMID: 32448040 DOI: 10.1177/0391398820924041] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE To shorten the preparation time of rabbit decellularized tracheal matrix through a modified detergent-enzymatic method with higher concentration of DNase (50 kU/mL), providing an experimental and theoretical basis for clinical decellularization technology. METHODS The control group was a natural trachea, and the experimental group was a tracheal matrix subjected to two and four decellularization cycles. The performance of each group of samples was evaluated by histology and immunohistochemical staining, scanning electron microscopy, biomechanical property testing, inoculation and cytotoxicity tests, and allograft experiments. RESULTS The results showed that the nuclei of the nonchondral areas of the tracheal stroma were essentially completely removed and MHC-I and MHC-II antigens were removed after two decellularization cycles. Histological staining and scanning electron microscopy showed that the extracellular matrix was retained and the basement membrane was intact. Cell inoculation and proliferation tests confirmed that the acellular tracheal matrix had good biocompatibility, and the proliferation capacity of bone mesenchymal stem cells on the matrix was increased in the experimental group compared with the control group (p < 0.05). Histological staining and CD68 molecular marker analysis after the allograft experiment showed that the inflammatory response of the acellular tracheal matrix was weak and the infiltration of surrounding macrophages was reduced. CONCLUSION A modified detergent-enzymatic method with an increased DNase (50 kU/mL) concentration requires only two cycles (4 days) to obtain a decellularized rabbit tracheal matrix with a short preparation time, good biocompatibility, suitable mechanical properties, and reduced preparation cost.
Collapse
Affiliation(s)
- Zhihao Wang
- Department of Cardiothoracic Surgery, College of Clinical Medicine, Yangzhou University, Yangzhou, China
- The Research Center for Translational Medicine, Yangzhou University, Yangzhou, China
| | - Fei Sun
- Department of Cardiothoracic Surgery, College of Clinical Medicine, Yangzhou University, Yangzhou, China
- The Research Center for Translational Medicine, Yangzhou University, Yangzhou, China
- The Hospital Affiliated to Medical School of Yangzhou University (Taizhou People's Hospital), Taizhou, China
| | - Yi Lu
- Department of Cardiothoracic Surgery, College of Clinical Medicine, Yangzhou University, Yangzhou, China
- The Research Center for Translational Medicine, Yangzhou University, Yangzhou, China
| | - Shu Pan
- Department of Cardiothoracic Surgery, College of Clinical Medicine, Yangzhou University, Yangzhou, China
- The Research Center for Translational Medicine, Yangzhou University, Yangzhou, China
- Department of Thoracic Surgery, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Wenlong Yang
- Department of Cardiothoracic Surgery, College of Clinical Medicine, Yangzhou University, Yangzhou, China
- The Research Center for Translational Medicine, Yangzhou University, Yangzhou, China
| | - Guozhong Zhang
- Department of Cardiothoracic Surgery, College of Clinical Medicine, Yangzhou University, Yangzhou, China
- The Research Center for Translational Medicine, Yangzhou University, Yangzhou, China
| | - Jun Ma
- Department of Cardiothoracic Surgery, College of Clinical Medicine, Yangzhou University, Yangzhou, China
- The Research Center for Translational Medicine, Yangzhou University, Yangzhou, China
| | - Hongcan Shi
- Department of Cardiothoracic Surgery, College of Clinical Medicine, Yangzhou University, Yangzhou, China
- The Research Center for Translational Medicine, Yangzhou University, Yangzhou, China
| |
Collapse
|
17
|
Wu W, Jia S, Chen W, Liu X, Zhang S. Fast degrading elastomer stented fascia remodels into tough and vascularized construct for tracheal regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 101:1-14. [DOI: 10.1016/j.msec.2019.02.108] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 01/27/2019] [Accepted: 02/27/2019] [Indexed: 12/14/2022]
|
18
|
Zhong Y, Yang W, Yin Pan Z, Pan S, Zhang SQ, Hao Wang Z, Gu S, Shi H. In vivo transplantation of stem cells with a genipin linked scaffold for tracheal construction. J Biomater Appl 2019; 34:47-60. [DOI: 10.1177/0885328219839193] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yi Zhong
- Department of Cardiothoracic Surgery, Clinical medical college of Yangzhou University, Yangzhou, China
- Medical College of Yangzhou University, 11 Huaihai Road, Yangzhou, Jiangsu Province, China
- Key Laboratory of Integrative Medicine in Geriatrics Control of Jiangsu Province, Yangzhou University, Yangzhou, China
- Center of Translational Medicine, Yangzhou University, Yangzhou, China
| | - Wenlong Yang
- Department of Cardiothoracic Surgery, Clinical medical college of Yangzhou University, Yangzhou, China
- Medical College of Yangzhou University, 11 Huaihai Road, Yangzhou, Jiangsu Province, China
- Key Laboratory of Integrative Medicine in Geriatrics Control of Jiangsu Province, Yangzhou University, Yangzhou, China
- Center of Translational Medicine, Yangzhou University, Yangzhou, China
| | - Zi Yin Pan
- Department of Cardiothoracic Surgery, Clinical medical college of Yangzhou University, Yangzhou, China
- Medical College of Yangzhou University, 11 Huaihai Road, Yangzhou, Jiangsu Province, China
- Key Laboratory of Integrative Medicine in Geriatrics Control of Jiangsu Province, Yangzhou University, Yangzhou, China
- Center of Translational Medicine, Yangzhou University, Yangzhou, China
| | - Shu Pan
- Department of Cardiothoracic Surgery, Clinical medical college of Yangzhou University, Yangzhou, China
- Key Laboratory of Integrative Medicine in Geriatrics Control of Jiangsu Province, Yangzhou University, Yangzhou, China
- Center of Translational Medicine, Yangzhou University, Yangzhou, China
| | - Si Quan Zhang
- Department of Cardiothoracic Surgery, Clinical medical college of Yangzhou University, Yangzhou, China
- Key Laboratory of Integrative Medicine in Geriatrics Control of Jiangsu Province, Yangzhou University, Yangzhou, China
- Center of Translational Medicine, Yangzhou University, Yangzhou, China
| | - Zhi Hao Wang
- Department of Cardiothoracic Surgery, Clinical medical college of Yangzhou University, Yangzhou, China
- Medical College of Yangzhou University, 11 Huaihai Road, Yangzhou, Jiangsu Province, China
- Key Laboratory of Integrative Medicine in Geriatrics Control of Jiangsu Province, Yangzhou University, Yangzhou, China
- Center of Translational Medicine, Yangzhou University, Yangzhou, China
| | - Sijia Gu
- Medical College of Yangzhou University, 11 Huaihai Road, Yangzhou, Jiangsu Province, China
| | - Hongcan Shi
- Department of Cardiothoracic Surgery, Clinical medical college of Yangzhou University, Yangzhou, China
- Medical College of Yangzhou University, 11 Huaihai Road, Yangzhou, Jiangsu Province, China
- Key Laboratory of Integrative Medicine in Geriatrics Control of Jiangsu Province, Yangzhou University, Yangzhou, China
- Center of Translational Medicine, Yangzhou University, Yangzhou, China
| |
Collapse
|
19
|
Pan S, Zhong Y, Shan Y, Liu X, Xiao Y, Shi H. Selection of the optimum 3D-printed pore and the surface modification techniques for tissue engineering tracheal scaffold in vivo reconstruction. J Biomed Mater Res A 2018; 107:360-370. [PMID: 30485676 DOI: 10.1002/jbm.a.36536] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 07/26/2018] [Accepted: 08/21/2018] [Indexed: 12/18/2022]
Abstract
The influences of pore sizes and surface modifications on biomechanical properties and biocompatibility (BC) of porous tracheal scaffolds (PTSs) fabricated by polycaprolactone (PCL) using 3D printing technology. The porous grafts were surface-modified through hydrolysis, amination, and nanocrystallization treatment. The surface properties of the modified grafts were characterized by energy dispersive spectroscopy (EDS) and scanning electron microscopy (SEM). The materials were cocultured with bone marrow mesenchymal stem cells (BMSCs). The effect of different pore sizes and surface modifications on the cell proliferation behavior was evaluated by the cell counting kit-8 (CCK-8). Compared to native tracheas, the PTS has good biomechanical properties. A pore diameter of 200 μm is the optimum for cell adhesion, and the surface modifications successfully improved the cytotropism of the PTS. Allogeneic implantation confirmed that it largely retains its structural integrity in the host, and the immune rejection reaction of the PTS decreased significantly after the acute phase. Nano-silicon dioxide (NSD)-modified PTS is a promising material for tissue engineering tracheal reconstruction. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 360-370, 2019.
Collapse
Affiliation(s)
- Shu Pan
- Department of Cardiothoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, China.,Department of Cardiothoracic Surgery, Clinical medical college of Yangzhou University, Yangzhou, 225001, China.,Key Laboratory of Integrative Medicine in Geriatrics Control of Jiangsu Province, Yangzhou University, Yangzhou, 225001, China.,Center of Translational Medicine, Yangzhou University, Yangzhou, 225001, China
| | - Yi Zhong
- Key Laboratory of Integrative Medicine in Geriatrics Control of Jiangsu Province, Yangzhou University, Yangzhou, 225001, China.,Center of Translational Medicine, Yangzhou University, Yangzhou, 225001, China
| | - Yibo Shan
- Key Laboratory of Integrative Medicine in Geriatrics Control of Jiangsu Province, Yangzhou University, Yangzhou, 225001, China.,Center of Translational Medicine, Yangzhou University, Yangzhou, 225001, China
| | - Xueying Liu
- Key Laboratory of Integrative Medicine in Geriatrics Control of Jiangsu Province, Yangzhou University, Yangzhou, 225001, China.,Center of Translational Medicine, Yangzhou University, Yangzhou, 225001, China
| | - Yuanfan Xiao
- Key Laboratory of Integrative Medicine in Geriatrics Control of Jiangsu Province, Yangzhou University, Yangzhou, 225001, China.,Center of Translational Medicine, Yangzhou University, Yangzhou, 225001, China
| | - Hongcan Shi
- Department of Cardiothoracic Surgery, Clinical medical college of Yangzhou University, Yangzhou, 225001, China.,Key Laboratory of Integrative Medicine in Geriatrics Control of Jiangsu Province, Yangzhou University, Yangzhou, 225001, China.,Center of Translational Medicine, Yangzhou University, Yangzhou, 225001, China
| |
Collapse
|
20
|
Zhang Y, Xu Y, Liu Y, Yin Z, Huo Y, Jiang G, Yang Y, Wang Z, Li Y, Lu F, Liu Y, Duan L, Zhou G. Porous decellularized trachea scaffold prepared by a laser micropore technique. J Mech Behav Biomed Mater 2018; 90:96-103. [PMID: 30359857 DOI: 10.1016/j.jmbbm.2018.10.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 10/02/2018] [Accepted: 10/02/2018] [Indexed: 11/19/2022]
Abstract
Rapid development of tissue engineering technology provides new methods for tracheal cartilage regeneration. However, the current lack of an ideal scaffold makes engineering of trachea cartilage tissue into a three-dimensional (3-D) tubular structure a great challenge. Although a decellularized trachea matrix (DTM) has become a recognized scaffold for trachea cartilage regeneration, it is difficult for cells to detach from or penetrate the matrix because of its non-porous structure. To tackle these problems, a laser micropore technique (LMT) was applied in the current study to enhance trachea sample porosity, and facilitate decellularizing treatment and cell ingrowth. Furthermore, after optimizing LMT and decellularizing treatment parameters, LMT-treated DTM (LDTM) retained its natural tubular structure with only minor extracellular matrix damage. Moreover, compared with DTM, the current study showed that LDTM significantly improved the adherence rate of cells with perfect cell biocompatibility. Moreover, the optimal implantation cell density for chondrogenesis with LDTM was determined to be 1 × 108 cells/ml. Collectively, the results suggest that the novel LDTM is an ideal scaffold for trachea tissue engineering.
Collapse
Affiliation(s)
- Yongjun Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai, PR China
| | - Yong Xu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Yanqun Liu
- Research Institute of Plastic Surgery, Weifang Medical College, Weifang, Shandong, PR China
| | - Zongqi Yin
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai, PR China
| | - Yingying Huo
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai, PR China
| | - Gening Jiang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Yong Yang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Zongxin Wang
- Research Institute of Plastic Surgery, Weifang Medical College, Weifang, Shandong, PR China
| | - Yaqiang Li
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Fangjia Lu
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA
| | - Yi Liu
- Institute of Dermatology, Chinese Academy of Medical Sciences, Nanjing, PR China.
| | - Liang Duan
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, PR China.
| | - Guangdong Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai, PR China; Research Institute of Plastic Surgery, Weifang Medical College, Weifang, Shandong, PR China.
| |
Collapse
|
21
|
Kong X, Kong C, Wen S, Shi J. The use of heparin, bFGF, and VEGF 145 grafted acellular vascular scaffold in small diameter vascular graft. J Biomed Mater Res B Appl Biomater 2018; 107:672-679. [PMID: 30091526 DOI: 10.1002/jbm.b.34160] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 03/21/2018] [Accepted: 04/29/2018] [Indexed: 11/10/2022]
Abstract
We aim to test the application of heparin, bFGF, and VEGF 145 grafted acellular vascular scaffold in small diameter vascular graft. The amount of bFGF and VEGF 145 were determined by ELISA. Femoral artery transplantation was performed. Mechanical strength of acellular vascular scaffolds was determined. Angiography was performed for blood vessel patency. Factor VIII and α2-actin expression was detected by immunohistochemistry. bFGF and VEGF 145 had stable release at 60 and 70 days in vitro, and the release rate of VEGF 145 was slightly slower than that of bFGF. After transplantation, 9 months of the vascular patency rate was 100% at 1, 3, and 9 months, and, was up to 90% at 18 months, while the patency rate in group with grafted heparin only at 1-month was 60%, at 3-month was 40%, at 9-month was 15%, and at 18-month was 10%. The blood vessels taken after 18 months had no significant difference in the mechanical properties between the transplanted and the natural vessels. Positive expression of factor VIII and α2-actin was observed. The heparinized and bFGF and VEGF 145 grafted allogeneic vascular acellular scaffolds are preliminarily obtained, which show good biocompatibility and patency and are of great importance for small diameter vascular graft. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 00B: 000-000, 2018. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 672-679, 2019.
Collapse
Affiliation(s)
- Xiaoying Kong
- College of Chemistry and Pharmaceutical Science, Qingdao Agricultural University, Qingdao, P.R. China
| | - Chen Kong
- College of Management, Qingdao Agricultural University, Qingdao, P.R. China
| | - Shunsheng Wen
- College of Chemistry and Pharmaceutical Science, Qingdao Agricultural University, Qingdao, P.R. China
| | - Jinsheng Shi
- College of Chemistry and Pharmaceutical Science, Qingdao Agricultural University, Qingdao, P.R. China
| |
Collapse
|
22
|
Abstract
Trachea replacement for nonoperable defects remains an unsolved problem due to complications with stenosis and mechanical insufficiency. While native trachea has anisotropic mechanical properties, the vast majority of engineered constructs focus on uniform cartilaginous-like conduits. These conduits often lack quantitative mechanical analysis at the construct level, which limits analysis of functional outcomes in vivo, as well as comparisons across studies. This review aims to present a clear picture of native tracheal mechanics at the tissue and organ level, as well as loading conditions to establish design criteria for trachea replacements. We further explore the implications of failing to match native properties with regards to implant collapse, stenosis, and infection.
Collapse
Affiliation(s)
- Elizabeth M Boazak
- Department of Biomedical Engineering, The City College of New York, Steinman Hall, 160 Convent Avenue, New York, New York 10031, United States
| | - Debra T Auguste
- Department of Biomedical Engineering, The City College of New York, Steinman Hall, 160 Convent Avenue, New York, New York 10031, United States.,Department of Chemical Engineering, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| |
Collapse
|
23
|
Boazak EM, Benson JM, Auguste DT. R- and Z-Axis Patterned Scaffolds Mimic Tracheal Circumferential Compliance and Longitudinal Extensibility. ACS Biomater Sci Eng 2017; 3:3222-3229. [DOI: 10.1021/acsbiomaterials.7b00641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Elizabeth M. Boazak
- Department of Biomedical
Engineering, The City College of New York, Steinman Hall, 160 Convent Avenue, New York, New York 10031, United States
| | - Jamie M. Benson
- Department of Biomedical
Engineering, The City College of New York, Steinman Hall, 160 Convent Avenue, New York, New York 10031, United States
| | - Debra T. Auguste
- Department of Biomedical
Engineering, The City College of New York, Steinman Hall, 160 Convent Avenue, New York, New York 10031, United States
| |
Collapse
|
24
|
Dennis JE, Bernardi KG, Kean TJ, Liou NE, Meyer TK. Tissue engineering of a composite trachea construct using autologous rabbit chondrocytes. J Tissue Eng Regen Med 2017; 12:e1383-e1391. [PMID: 28719734 DOI: 10.1002/term.2523] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 05/26/2017] [Accepted: 07/11/2017] [Indexed: 11/10/2022]
Abstract
The repair of large tracheal segmental defects remains an unsolved problem. The goal of this study is to apply tissue engineering principles for the fabrication of large segmental trachea replacements. Engineered tracheal replacements composed of autologous cells (neotracheas) were tested in a New Zealand White rabbit model. Neotracheas were formed in the rabbit neck by wrapping a silicone tube with consecutive layers of skin epithelium, platysma muscle, and an engineered cartilage sheet and allowing the construct to mature for 8-12 weeks. In total, 28 rabbits were implanted and the neotracheas assessed for tissue morphology. In 11 cases, neotracheas deemed sufficiently strong were used to repair segmental tracheal defects. Initially, the success rate of producing structurally sound neotracheas was impeded by physical disruption of the cartilage sheets during animal handling, but by the end of the study, 15 of 18 neotracheas (83.3%) were structurally sound. Of the 15 structurally sound neotracheas, 11 were used for segmental reconstruction and were left in place for up to 21 days. Histological examination showed the presence of variable amounts of viable epithelium, a vascularized platysma flap, and a layer of safranin O-positive cartilage along with evidence of endochondral ossification. Rabbits that had undergone segmental reconstruction showed good tracheal integration, had a viable epithelium with vascular support, and the cartilage was sufficiently strong to maintain a lumen when palpated. The results demonstrated that viable, trilayered, scaffold-free neotracheas could be constructed from autologous cells and could be integrated into native trachea to repair a segmental defect.
Collapse
Affiliation(s)
- James E Dennis
- Department of Orthopedic Surgery.,Matrix Biology Program, Benaroya Research Institute, Seattle, WA, USA
| | | | - Thomas J Kean
- Department of Orthopedic Surgery.,Matrix Biology Program, Benaroya Research Institute, Seattle, WA, USA
| | - Nelson E Liou
- Department of Otolaryngology Head and Neck Surgery, Baylor College of Medicine, Houston, TX, USA
| | - Tanya K Meyer
- Department of Otolaryngology Head and Neck Surgery, University of Washington, Seattle, WA, USA
| |
Collapse
|
25
|
Ohno M, Fuchimoto Y, Hsu HC, Higuchi M, Komura M, Yamaoka T, Umezawa A, Enosawa S, Kuroda T. Airway reconstruction using decellularized tracheal allografts in a porcine model. Pediatr Surg Int 2017; 33:1065-1071. [PMID: 28819688 DOI: 10.1007/s00383-017-4138-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/01/2017] [Indexed: 10/19/2022]
Abstract
PURPOSE Tracheal cartilage reconstruction is an essential approach for the treatment of tracheal congenital abnormalities or injury. Here, we evaluated the use of allogeneic decellularized tracheas as novel support scaffolds. METHODS Six weaned pigs (4-week-old domestic males) were transplanted with allogeneic tracheal graft patches (three decellularized and three fresh tracheal scaffolds) onto artificial defects (approximately 15 × 15 mm). After 11 weeks, the tracheas were evaluated by bronchoscopy and histological studies. RESULTS No pigs displayed airway symptoms during the observation period. Tracheal lumen restored by fresh graft patches showed more advanced narrowing than that treated with decellularized grafts by bronchoscopy. Histologically, fresh grafts induced typical cellular rejection; this was decreased with decellularized grafts. In addition, immunohistochemistry demonstrated regenerating foci of recipient cartilage along the adjacent surface of decellularized tracheal grafts. CONCLUSION Decellularized allogeneic tracheal scaffolds could be effective materials for restoring impaired trachea.
Collapse
Affiliation(s)
- Michinobu Ohno
- Division of Surgery, Department of Surgical Specialties, National Center for Child Health and Development, Tokyo, Japan
| | - Yasushi Fuchimoto
- Department of Pediatric Surgery, Graduate School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| | - Huai-Che Hsu
- Division for Advanced Medical Sciences, National Center for Child Health and Development, Tokyo, Japan
| | - Masataka Higuchi
- Division of Pulmonology, Department of Medical Specialties, National Center for Child Health and Development, Tokyo, Japan
| | - Makoto Komura
- Department of Pediatric Surgery, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Tetsuji Yamaoka
- Department of Biomedical Engineering, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
| | - Akihiro Umezawa
- Department of Reproductive Biology, National Center for Child Health and Development, Tokyo, Japan
| | - Shin Enosawa
- Division for Advanced Medical Sciences, National Center for Child Health and Development, Tokyo, Japan
| | - Tatsuo Kuroda
- Department of Pediatric Surgery, Graduate School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| |
Collapse
|
26
|
Xu Y, Li D, Yin Z, He A, Lin M, Jiang G, Song X, Hu X, Liu Y, Wang J, Wang X, Duan L, Zhou G. Tissue-engineered trachea regeneration using decellularized trachea matrix treated with laser micropore technique. Acta Biomater 2017; 58:113-121. [PMID: 28546133 DOI: 10.1016/j.actbio.2017.05.010] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 04/15/2017] [Accepted: 05/04/2017] [Indexed: 01/12/2023]
Abstract
Tissue-engineered trachea provides a promising approach for reconstruction of long segmental tracheal defects. However, a lack of ideal biodegradable scaffolds greatly restricts its clinical translation. Decellularized trachea matrix (DTM) is considered a proper scaffold for trachea cartilage regeneration owing to natural tubular structure, cartilage matrix components, and biodegradability. However, cell residual and low porosity of DTM easily result in immunogenicity and incomplete cartilage regeneration. To address these problems, a laser micropore technique (LMT) was applied in the current study to modify trachea sample porosity to facilitate decellular treatment and cell ingrowth. Decellularization processing demonstrated that cells in LMT treated samples were more easily removed compared with untreated native trachea. Furthermore, after optimizing the protocols of LMT and decellular treatments, the LMT-treated DTM (LDTM) could retain their original tubular shape with only mild extracellular matrix damage. After seeding with chondrocytes and culture in vitro for 8 weeks, the cell-LDTM constructs formed tubular cartilage with relatively homogenous cell distribution in both micropores and bilateral surfaces. In vivo results further confirmed that the constructs could form mature tubular cartilage with increased DNA and cartilage matrix contents, as well as enhanced mechanical strength, compared with native trachea. Collectively, these results indicate that LDTM is an ideal scaffold for tubular cartilage regeneration and, thus, provides a promising strategy for functional reconstruction of trachea cartilage. STATEMENT OF SIGNIFICANCE Lacking ideal biodegradable scaffolds greatly restricts development of tissue-engineered trachea. Decellularized trachea matrix (DTM) is considered a proper scaffold for trachea cartilage regeneration. However, cell residual and low porosity of DTM easily result in immunogenicity and incomplete cartilage regeneration. By laser micropore technique (LMT), the current study efficiently enhanced the porosity and decellularized efficacy of DTM. The LMT-treated DTM basically retained the original tubular shape with mild matrix damage. After chondrocyte seeding followed by in vitro culture and in vivo implantation, the constructs formed mature tubular cartilage with matrix content and mechanical strength similar to native trachea. The current study provides an ideal scaffold and a promising strategy for cartilage regeneration and functional reconstruction of trachea.
Collapse
|
27
|
|
28
|
Abstract
PURPOSE OF REVIEW Tissue engineering is a rapidly expanding field in medicine and involves regeneration and restoration of many organs, including larynx and the airways. Currently, this is not included in routine practice; however, a number of clinical trials in humans are ongoing or starting. This review will cover publications during the past 2 years and the focus is on larynx and trachea. RECENT FINDINGS Recent reports concern the development and investigations of cell therapies, including biological factors such as growth factors which promote healing of damage and increased vascular support of the tissue. A separate section concerns studies of stromal cells and stem cells in tissue engineering. Cell therapies and treatment with biological active factors are often combined with the development of scaffolds to support or reconstruct the soft tissue in the larynx or the cartilages in trachea or larynx. New techniques for scaffold construction, such as 3D printing, are developed. The trend in the recent publications is to combine these methods. SUMMARY Recent advances in tissue engineering of the larynx and trachea include the development of cell therapies or treatment with biological active factors often in combination with scaffolds.
Collapse
|
29
|
Heterogeneity of Scaffold Biomaterials in Tissue Engineering. MATERIALS 2016; 9:ma9050332. [PMID: 28773457 PMCID: PMC5503070 DOI: 10.3390/ma9050332] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 04/23/2016] [Accepted: 04/26/2016] [Indexed: 12/20/2022]
Abstract
Tissue engineering (TE) offers a potential solution for the shortage of transplantable organs and the need for novel methods of tissue repair. Methods of TE have advanced significantly in recent years, but there are challenges to using engineered tissues and organs including but not limited to: biocompatibility, immunogenicity, biodegradation, and toxicity. Analysis of biomaterials used as scaffolds may, however, elucidate how TE can be enhanced. Ideally, biomaterials should closely mimic the characteristics of desired organ, their function and their in vivo environments. A review of biomaterials used in TE highlighted natural polymers, synthetic polymers, and decellularized organs as sources of scaffolding. Studies of discarded organs supported that decellularization offers a remedy to reducing waste of donor organs, but does not yet provide an effective solution to organ demand because it has shown varied success in vivo depending on organ complexity and physiological requirements. Review of polymer-based scaffolds revealed that a composite scaffold formed by copolymerization is more effective than single polymer scaffolds because it allows copolymers to offset disadvantages a single polymer may possess. Selection of biomaterials for use in TE is essential for transplant success. There is not, however, a singular biomaterial that is universally optimal.
Collapse
|