1
|
Taşkan T, Noori F, Kurukahvecioğlu O, Karaman N, Gönenç A. Neurturin gene IVSI-663 polymorphism but not RET variants is associated with increased risk for breast cancer. Lab Med 2024:lmae097. [PMID: 39671698 DOI: 10.1093/labmed/lmae097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2024] Open
Abstract
BACKGROUND Gene polymorphisms of rearranged during transfection (RET) and its ligand neurturin (NRTN) are one of the focus of studies in the investigation of cancer pathogenesis, invasion, and metastasis. In this study, we aimed to examine the possible risk of breast cancer between RET G691S, L769L, S904S, and NRTN IVSI-663 polymorphisms and to evaluate serum NRTN, brain-derived neurotrophic factor (BDNF), matrix metalloproteinase (MMP)-2, MMP-9, and focal adhesion kinase (FAK) levels. METHODS The study consists of 110 breast cancer patients and 110 controls. Polymorphisms were detected by the polymerase chain reaction method from study groups whole blood. RESULTS The NRTN IVSI-663 polymorphism in G allele has been found to be 1.54 fold increased the risk of breast cancer, however AA genotype has been found 0.43 fold decreased the risk of breast cancer (P < .05, P < .05, respectively). Study groups showed a similar profile for RET G691S, L769L, S904S allele frequencies and genotype distributions (P > .05). In the patient group, significant increase in serum NRTN and FAK levels and decrease in MMP-2 and MMP-9 levels were found (P < .05, P < .05, P < .05, P < .05, respectively). DISCUSSION In summary that increased breast cancer risk with the G allele in NRTN gene IVSI-663 polymorphism, as well as the increased serum NRTN and FAK levels, will contribute to the diagnosis, prognosis and determination of new treatment strategies.
Collapse
Affiliation(s)
- Tuba Taşkan
- Afyonkarahisar Health Sciences University, Faculty of Pharmacy, Department of Biochemistry, Afyonkarahisar, Türkiye
| | - Farshad Noori
- Chris O'brien Lifehouse Hospital, General Surgery Outpatient Clinic, Sydney, Australia
| | - Osman Kurukahvecioğlu
- Gazi University, Faculty of Medicine, Department of General Surgery, Ankara, Türkiye
| | - Niyazi Karaman
- Dr. Abdurrahman Yurtaslan Ankara Oncology Training and Research Hospital General Surgery Outpatient Clinic, Ankara, Türkiye
| | - Aymelek Gönenç
- Gazi University, Faculty of Pharmacy, Department of Biochemistry, Ankara, Türkiye
| |
Collapse
|
2
|
Liang D, Tang J, Sun B, He S, Yang D, Ma H, Yun Y, Zhu Y, Wei W, Chen H, Zhao X. Novel CAR-T cells targeting TRKB for the treatment of solid cancer. Apoptosis 2024; 29:2183-2196. [PMID: 38498249 DOI: 10.1007/s10495-024-01936-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2024] [Indexed: 03/20/2024]
Abstract
Chimeric antigen receptor (CAR) T-cell therapy is highly effective for treating blood cancers such as B-cell malignancies, however, its effectiveness as an approach to treat solid tumors remains to be further explored. Here, we focused on the development of CAR-T cell therapies targeting tropomyosin-related kinase receptor B (TRKB), a highly expressed protein that is significantly associated with tumor progression, malignancy, and drug resistance in multiple forms of aggressive solid tumors. To achieve this, we screened brain-derived neurotrophic factor (BDNF) and neurotrophin 4 (NTF4) ligand-based CAR-T cells for their efficiency in targeting the TRKB receptor in the context of solid tumors, particularly hepatocellular carcinoma and pancreatic cancer. We demonstrated that TRKB is overexpressed not only in hepatocellular carcinoma and pancreatic carcinoma cell lines but also in cancer stem-like cells (CSCs). Notably, BDNF-CAR T and NTF4-CAR T cells could not only effectively target and kill TRKB-expressing pan-cancer cell lines in a dose-dependent manner but also effectively kill CSCs. We also performed in vivo studies to show that NTF4-CAR T cells have a better potential to inhibit the tumor growth of hepatocellular carcinoma xenografts in mice, compared with BDNF-CAR T cells. Taken together, our findings suggest that CAR-T targeting TRKB may be a promising approach for developing novel therapies to treat solid cancers.
Collapse
MESH Headings
- Humans
- Animals
- Receptor, trkB/metabolism
- Receptor, trkB/genetics
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/metabolism
- Receptors, Chimeric Antigen/genetics
- Mice
- Cell Line, Tumor
- Immunotherapy, Adoptive/methods
- Brain-Derived Neurotrophic Factor/metabolism
- Brain-Derived Neurotrophic Factor/genetics
- Xenograft Model Antitumor Assays
- Carcinoma, Hepatocellular/therapy
- Carcinoma, Hepatocellular/immunology
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Liver Neoplasms/therapy
- Liver Neoplasms/immunology
- Liver Neoplasms/pathology
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Pancreatic Neoplasms/therapy
- Pancreatic Neoplasms/immunology
- Pancreatic Neoplasms/pathology
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/genetics
- Nerve Growth Factors/metabolism
- Nerve Growth Factors/genetics
- Membrane Glycoproteins/metabolism
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/immunology
- Neoplasms/therapy
- Neoplasms/immunology
- Neoplasms/metabolism
- Neoplasms/pathology
Collapse
Affiliation(s)
- Dandan Liang
- Department of Targeting Therapy & Immunology and Laboratory of Animal Tumor Models, Cancer Center and State Key Laboratory of Respiratory Health and Multimorbidity and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jie Tang
- Department of Targeting Therapy & Immunology and Laboratory of Animal Tumor Models, Cancer Center and State Key Laboratory of Respiratory Health and Multimorbidity and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bin Sun
- Department of Targeting Therapy & Immunology and Laboratory of Animal Tumor Models, Cancer Center and State Key Laboratory of Respiratory Health and Multimorbidity and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shuai He
- Department of Targeting Therapy & Immunology and Laboratory of Animal Tumor Models, Cancer Center and State Key Laboratory of Respiratory Health and Multimorbidity and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Dong Yang
- Department of Targeting Therapy & Immunology and Laboratory of Animal Tumor Models, Cancer Center and State Key Laboratory of Respiratory Health and Multimorbidity and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Haiyan Ma
- Department of Targeting Therapy & Immunology and Laboratory of Animal Tumor Models, Cancer Center and State Key Laboratory of Respiratory Health and Multimorbidity and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuncang Yun
- Department of Targeting Therapy & Immunology and Laboratory of Animal Tumor Models, Cancer Center and State Key Laboratory of Respiratory Health and Multimorbidity and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yongjie Zhu
- Department of Targeting Therapy & Immunology and Laboratory of Animal Tumor Models, Cancer Center and State Key Laboratory of Respiratory Health and Multimorbidity and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wenwen Wei
- Department of Targeting Therapy & Immunology and Laboratory of Animal Tumor Models, Cancer Center and State Key Laboratory of Respiratory Health and Multimorbidity and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Haiyang Chen
- Laboratory of Metabolism and Aging Research, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Xudong Zhao
- Department of Targeting Therapy & Immunology and Laboratory of Animal Tumor Models, Cancer Center and State Key Laboratory of Respiratory Health and Multimorbidity and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
3
|
Li C, Cui Z, Liu Z, Fan H, Lan Y, Luo J, Ruan F, Huang Y, Chu K, Wu Y, Xia D, Zhou J. MiR-204 regulates autophagy and cell viability by targeting BDNF and inhibiting the NTRK2-dependent PI3K/Akt/mTOR pathway in a human granulosa cell line exposed to bisphenol A. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 287:117304. [PMID: 39520743 DOI: 10.1016/j.ecoenv.2024.117304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/29/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Bisphenol A (BPA) is a widespread endocrine disruptor that mimics estrogen. The accumulation of BPA within the human body has been shown to be detrimental to ovarian function. However, few studies have focused on the specific mechanisms by which it causes harm to granulosa cells (GCs), pivotal ovarian cells that are responsible for the growth and function of oocytes. In vitro research was conducted using human GC lines (KGN cells). The cells were exposed to various concentrations of BPA (0.1, 1, 10, or 100 µM) for either 24 or 48 hours. Here, our findings indicate that 100 μM BPA inhibits KGN cell proliferation and promotes cell autophagy through inhibiting the PI3K/Akt/mTOR pathway. Interestingly, these effects could be partly reversed by an NTRK2 activator (LM22b-10). NTRK2 is the receptor for BDNF. Moreover, via the use of bioinformatics tools, miR-204 was predicted to target BDNF. Additionally, our findings confirmed that miR-204 has the ability to directly target BDNF through a luciferase assay. Downregulation of miR-204 abrogated the BPA exposure-mediated effects on proliferation and autophagy. Furthermore, the inhibition of miR-204 significantly reversed the downregulation of PI3K/Akt/mTOR pathway-related molecules. Similarly, we validated miR-204 as a novel miRNA involved in BPA-mediated damage to GC proliferation and autophagy, and our data provide the first in vitro evidence that increasing miR-204 expression and inhibiting the BDNF/NTRK2-mediated PI3K/Akt/mTOR signaling pathway are involved in the BPA-induced toxic effects in KGN cells.
Collapse
Affiliation(s)
- Chunming Li
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Zhenyan Cui
- Department of Toxicology of School of Public Health, Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zekun Liu
- Department of Toxicology of School of Public Health, Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Huiyu Fan
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Yibing Lan
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Jie Luo
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Fei Ruan
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Yizhou Huang
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Ketan Chu
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Yihua Wu
- Department of Toxicology of School of Public Health, Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dajing Xia
- Department of Toxicology of School of Public Health, Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianhong Zhou
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China.
| |
Collapse
|
4
|
Yildirim GE, Yilmaz E. Developing a novel neutralizing monoclonal antibody against TrkB. 3 Biotech 2024; 14:221. [PMID: 39247456 PMCID: PMC11377376 DOI: 10.1007/s13205-024-04063-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/23/2024] [Indexed: 09/10/2024] Open
Abstract
The TrkB receptor, which is highly expressed in various human cancers and considered a pro-oncogene, was targeted to develop neutralizing monoclonal antibodies against its immunoglobulin-like (Ig-like) domains. Recombinant TrkB-IgL peptide, including the Ig-like C2 type 1 (Ig-C2-type 1) and Ig-like C2 type 2 (Ig-C2-type 2) domains, was expressed and purified from E. coli. Mice were immunized with this peptide, and hybridoma clones producing anti-TrkB-IgL antibodies were generated. Among 23 ELISA-positive TrkB-IgL hybridoma clones, four (TrkB-IgL 5.11, 4.11, 4.6, 4.3) showed anti-proliferative effects compared to the control on human breast cancer (MCF-7) and human colon cancer (HCT116) cells, as assessed using the xCELLigence system. Western blot analysis revealed that TrkB-IgL 5.11 and 4.11 significantly suppressed TrkB-mediated signaling pathways compared to the control. Purified TrkB-IgL monoclonal antibodies (mAbs) exhibited anti-proliferative effects compared to both positive and negative controls using the xCELLigence system. The TrkB-IgL 5.11 mAb notably suppressed phosphorylation of TrkB, Akt, and ERK and induced Caspase-3 and Caspase-9 activities in a dose-dependent manner, as determined by Western blotting. Additionally, immunostaining confirmed the localization of these mAbs on the SH-SY5Y cell membrane, which is known for high TrkB expression. In conclusion, the TrkB-IgL 5.11 antibody effectively inhibits cancer cell proliferation and induces apoptosis by suppressing key signaling pathways. These findings demonstrate the potential of this antibody as a therapeutic agent for cancers that overexpress TrkB. Additionally, it is considered a promising candidate for humanization, which would facilitate its application in cancer treatment. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-04063-x.
Collapse
Affiliation(s)
| | - Erkan Yilmaz
- Biotechnology Institute, Ankara University, Ankara, Türkiye
| |
Collapse
|
5
|
Levati L, Tabolacci C, Facchiano A, Facchiano F, Alvino E, Antonini Cappellini GC, Scala E, Bonmassar L, Caporali S, Lacal PM, Bresin A, De Galitiis F, Russo G, D'Atri S. Circulating interleukin-8 and osteopontin are promising biomarkers of clinical outcomes in advanced melanoma patients treated with targeted therapy. J Exp Clin Cancer Res 2024; 43:226. [PMID: 39143551 PMCID: PMC11325673 DOI: 10.1186/s13046-024-03151-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/04/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND Circulating cytokines can represent non-invasive biomarkers to improve prediction of clinical outcomes of cancer patients. Here, plasma levels of IL-8, CCL4, osteopontin, LIF and BDNF were determined at baseline (T0), after 2 months of therapy (T2) and, when feasible, at progression (TP), in 70 melanoma patients treated with BRAF and MEK inhibitors. The association of baseline cytokine levels with clinical response, progression-free survival (PFS) and overall survival (OS) was evaluated. METHODS Cytokine concentrations were measured using the xMAP technology. Their ability to discriminate between responding (Rs) and non-responding (NRs) patients was assessed by Receiver Operating Characteristics analysis. PFS and OS were estimated with the Kaplan-Meier method. The Cox proportional hazard model was used in the univariate and multivariate analyses to estimate crude and adjusted hazard ratios with 95% confidence intervals. RESULTS CCL4 and LIF were undetectable in the majority of samples. The median osteopontin concentration at T0 and T2 was significantly higher in NRs than in Rs. The median T0 and T2 values of IL-8 were also higher in NRs than in Rs, although the statistical significance was not reached. No differences were detected for BDNF. In 39 Rs with matched T0, T2, and TP samples, osteopontin and IL-8 significantly decreased from T0 to T2 and rose again at TP, while BDNF levels remained unchanged. In NRs, none of the cytokines showed a significant decrease at T2. Only osteopontin demonstrated a good ability to discriminate between Rs and NRs. A high IL-8 T0 level was associated with significantly shorter PFS and OS and higher risk of progression and mortality, and remained an independent negative prognostic factor for OS in multivariate analysis. An elevated osteopontin T0 concentration was also significantly associated with worse OS and increased risk of death. Patients with high IL-8 and high osteopontin showed the lowest PFS and OS, and in multivariate analysis this cytokine combination remained independently associated with a three- to six-fold increased risk of mortality. CONCLUSION Circulating IL-8 and osteopontin appear useful biomarkers to refine prognosis evaluation of patients undergoing targeted therapy, and deserve attention as potential targets to improve its clinical efficacy.
Collapse
Affiliation(s)
- Lauretta Levati
- Laboratory of Molecular Oncology, Istituto Dermopatico Dell'Immacolata, IDI-IRCCS, Via Dei Monti Di Creta 104, 00167, Rome, Italy
| | - Claudio Tabolacci
- Department of Oncology and Molecular Medicine, Istituto Superiore Di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
- Present Address: Research Coordination and Support Service, Istituto Superiore Di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Antonio Facchiano
- Laboratory of Molecular Oncology, Istituto Dermopatico Dell'Immacolata, IDI-IRCCS, Via Dei Monti Di Creta 104, 00167, Rome, Italy
| | - Francesco Facchiano
- Department of Oncology and Molecular Medicine, Istituto Superiore Di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Ester Alvino
- Institute of Translational Pharmacology, National Council of Research, Via Fosso del Cavaliere 100, 00133, Rome, Italy
| | - Gian Carlo Antonini Cappellini
- Department of Oncology and Dermatological Oncology, Istituto Dermopatico Dell'Immacolata, IDI-IRCCS, Via Dei Monti Di Creta 104, 00167, Rome, Italy
- Present Address: UOC Oncologia, Interpresidio ASL RM2, Via Dei Monti Tiburtini 387, 00157, Rome, Italy
| | - Enrico Scala
- Clinical and Laboratory Molecular Allergy Unit, Istituto Dermopatico Dell'Immacolata, IDI-IRCCS, Via Dei Monti Di Creta 104, 00167, Rome, Italy
| | - Laura Bonmassar
- Laboratory of Molecular Oncology, Istituto Dermopatico Dell'Immacolata, IDI-IRCCS, Via Dei Monti Di Creta 104, 00167, Rome, Italy
| | - Simona Caporali
- Laboratory of Molecular Oncology, Istituto Dermopatico Dell'Immacolata, IDI-IRCCS, Via Dei Monti Di Creta 104, 00167, Rome, Italy
- Present Address: Regional Transplant Center Lazio (CRTL), San Camillo Hospital, Circonvallazione Gianicolense 87, 00152, Rome, Italy
| | - Pedro Miguel Lacal
- Laboratory of Molecular Oncology, Istituto Dermopatico Dell'Immacolata, IDI-IRCCS, Via Dei Monti Di Creta 104, 00167, Rome, Italy
| | - Antonella Bresin
- Laboratory of Molecular Oncology, Istituto Dermopatico Dell'Immacolata, IDI-IRCCS, Via Dei Monti Di Creta 104, 00167, Rome, Italy
| | - Federica De Galitiis
- Department of Oncology and Dermatological Oncology, Istituto Dermopatico Dell'Immacolata, IDI-IRCCS, Via Dei Monti Di Creta 104, 00167, Rome, Italy
| | - Giandomenico Russo
- Laboratory of Molecular Oncology, Istituto Dermopatico Dell'Immacolata, IDI-IRCCS, Via Dei Monti Di Creta 104, 00167, Rome, Italy
| | - Stefania D'Atri
- Laboratory of Molecular Oncology, Istituto Dermopatico Dell'Immacolata, IDI-IRCCS, Via Dei Monti Di Creta 104, 00167, Rome, Italy.
| |
Collapse
|
6
|
Hussein S, Soliman NA, Dahmy SIE, Khamis T, Sameh R, Mostafa FM. Effectiveness of cannabidiol (CBD) on histopathological changes and gene expression in hepatocellular carcinoma (HCC) model in male rats: the role of Hedgehog (Hh) signaling pathway. Histochem Cell Biol 2024; 161:337-343. [PMID: 38296878 DOI: 10.1007/s00418-023-02262-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2023] [Indexed: 02/02/2024]
Abstract
The third most prevalent malignancy to cause mortality is hepatocellular carcinoma (HCC). The Hedgehog (Hh) signaling pathway is activated by binding to the transmembrane receptor Patched-1 (PTCH-1), which depresses the transmembrane G protein-coupled receptor Smoothened (SMO). This study was performed to examine the preventative and therapeutic effects of cannabidiol in adult rats exposed to diethyl nitrosamine (DENA)-induced HCC.A total of 50 male rats were divided into five groups of 10 rats each. Group I was the control group. Group II received intraperitoneal (IP) injections of DENA for 14 weeks. Group III included rats that received cannabidiol (CBD) orally (3-30 mg/kg) for 2 weeks and DENA injections for 14 weeks. Group IV rats received oral CBD for 2 weeks before 14 weeks of DENA injections. Group V included rats that received CBD orally for 2 weeks after their last injection of DENA. Measurements were made for alanine aminotransferase (ALT), aspartate aminotransferase (AST), gamma glutamyl transferase (GGT), superoxide dismutase (SOD), catalase (CAT), malondialdehyde (MDA), and alpha fetoprotein (AFP). Following total RNA extraction, Smo, Hhip, Ptch-1, and Gli-1 expressions were measured using quantitative real-time polymerase chain reaction (qRT-PCR). A histopathological analysis of liver tissues was performed.The liver enzymes, oxidant-antioxidant state, morphological, and molecular parameters of the adult male rat model of DENA-induced HCC showed a beneficial improvement after CBD administration. In conclusion, by focusing on the Hh signaling system, administration of CBD showed a beneficial improvement in the liver enzymes, oxidant-antioxidant status, morphological, and molecular parameters in the DENA-induced HCC in adult male rats.
Collapse
Affiliation(s)
- Samia Hussein
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Zagazig University, Zagazig, Egypt.
| | - Nabil A Soliman
- Department of Zoology, Faculty of Science, Zagazig University, Sharkia, Egypt
| | - Samih I El Dahmy
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Sharkia, Egypt
| | - Tarek Khamis
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Sharkia, Egypt
| | - Reham Sameh
- Department of Pathology, Faculty of Medicine, Zagazig University, Sharkia, Egypt
| | - Fatma M Mostafa
- Department of Zoology, Faculty of Science, Zagazig University, Sharkia, Egypt
| |
Collapse
|
7
|
Pourzand P, Tabasi F, Fayazbakhsh F, Sarhadi S, Bahari G, Mohammadi M, Jomepour S, Nafeli M, Mosayebi F, Heravi M, Taheri M, Hashemi M, Ghavami S. The Reticulon-4 3-bp Deletion/Insertion Polymorphism Is Associated with Structural mRNA Changes and the Risk of Breast Cancer: A Population-Based Case-Control Study with Bioinformatics Analysis. Life (Basel) 2023; 13:1549. [PMID: 37511924 PMCID: PMC10381770 DOI: 10.3390/life13071549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/08/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Breast cancer (BC) is a complex disease caused by molecular events that disrupt cellular survival and death. Discovering novel biomarkers is still required to better understand and treat BC. The reticulon-4 (RTN4) gene, encoding Nogo proteins, plays a critical role in apoptosis and cancer development, with genetic variations affecting its function. We investigated the rs34917480 in RTN4 and its association with BC risk in an Iranian population sample. We also predicted the rs34917480 effect on RTN4 mRNA structure and explored the RTN4's protein-protein interaction network (PPIN) and related pathways. In this case-control study, 437 women (212 BC and 225 healthy) were recruited. The rs34917480 was genotyped using AS-PCR, mRNA secondary structure was predicted with RNAfold, and PPIN was constructed using the STRING database. Our findings revealed that this variant was associated with a decreased risk of BC in heterozygous (p = 0.012), dominant (p = 0.015), over-dominant (p = 0.017), and allelic (p = 0.035) models. Our prediction model showed that this variant could modify RTN4's mRNA thermodynamics and potentially its translation. RTN4's PPIN also revealed a strong association with apoptosis regulation and key signaling pathways highly implicated in BC. Consequently, our findings, for the first time, demonstrate that rs34917480 could be a protective factor against BC in our cohort, probably via preceding mechanisms.
Collapse
Affiliation(s)
- Pouria Pourzand
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran
| | - Farhad Tabasi
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 1411713116, Iran
| | - Fariba Fayazbakhsh
- School of Medicine, Zahedan University of Medical Science, Zahedan 9816743463, Iran
| | - Shamim Sarhadi
- Faculty of Advanced Medical Sciences, Department of Medical Biotechnology, Tabriz University of Medical Sciences, Tabriz 5166616471, Iran
| | - Gholamreza Bahari
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran
- Children and Adolescent Health Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran
| | - Mohsen Mohammadi
- School of Medicine, Zahedan University of Medical Science, Zahedan 9816743463, Iran
| | - Sahar Jomepour
- Department of Cardiology, Cardiovascular Research Center, School of Medicine, Hormozgan University of Medical Science, Bandar Abbas 7916613885, Iran
| | - Mohammad Nafeli
- School of Medicine, Zahedan University of Medical Science, Zahedan 9816743463, Iran
| | - Fatemeh Mosayebi
- Tehran Heart Center, Tehran University of Medical Science, Tehran 1416634793, Iran
| | - Mehrdad Heravi
- School of Medicine, Zahedan University of Medical Science, Zahedan 9816743463, Iran
| | - Mohsen Taheri
- Genetics of Non-Communicable Disease Research Center, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran
- Department of Genetics, School of Medicine, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran
| | - Mohammad Hashemi
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran
- Genetics of Non-Communicable Disease Research Center, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran
| | - Saeid Ghavami
- Research Institute of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, MB R3E 0V9, Canada
- Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
- Faculty of Medicine in Zabrze, University of Technology in Katowice, 41-800 Zabrze, Poland
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| |
Collapse
|
8
|
Cui Q, Jiang D, Zhang Y, Chen C. The tumor-nerve circuit in breast cancer. Cancer Metastasis Rev 2023; 42:543-574. [PMID: 36997828 PMCID: PMC10349033 DOI: 10.1007/s10555-023-10095-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/16/2023] [Indexed: 04/01/2023]
Abstract
It is well established that innervation is one of the updated hallmarks of cancer and that psychological stress promotes the initiation and progression of cancer. The breast tumor environment includes not only fibroblasts, adipocytes, endothelial cells, and lymphocytes but also neurons, which is increasingly discovered important in breast cancer progression. Peripheral nerves, especially sympathetic, parasympathetic, and sensory nerves, have been reported to play important but different roles in breast cancer. However, their roles in the breast cancer progression and treatment are still controversial. In addition, the brain is one of the favorite sites of breast cancer metastasis. In this review, we first summarize the innervation of breast cancer and its mechanism in regulating cancer growth and metastasis. Next, we summarize the neural-related molecular markers in breast cancer diagnosis and treatment. In addition, we review drugs and emerging technologies used to block the interactions between nerves and breast cancer. Finally, we discuss future research directions in this field. In conclusion, the further research in breast cancer and its interactions with innervated neurons or neurotransmitters is promising in the clinical management of breast cancer.
Collapse
Affiliation(s)
- Qiuxia Cui
- Affiliated Hospital of Guangdong Medical University Science & Technology of China, Zhanjiang, 524000, China
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
| | - Dewei Jiang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
| | - Yuanqi Zhang
- Affiliated Hospital of Guangdong Medical University Science & Technology of China, Zhanjiang, 524000, China.
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China.
- Academy of Biomedical Engineering, Kunming Medical University, Kunming, 650500, China.
- The Third Affiliated Hospital, Kunming Medical University, Kunming, 650118, China.
| |
Collapse
|
9
|
Sun C, Sang S, Tang Y, Niu X, Yoo HS, Zhou P, Liu H, Gong Y, Xu L. Effects of music therapy on anxiety in patients with cancer: study protocol of a randomised controlled trial. BMJ Open 2023; 13:e067360. [PMID: 37247967 DOI: 10.1136/bmjopen-2022-067360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/31/2023] Open
Abstract
INTRODUCTION Although music therapy (MT) has been found to reduce anxiety in patients with cancer and delay tumour progression to some extent, its mechanism of action has not been determined. MT may reduce anxiety by reducing the concentrations of proinflammatory cytokines. The present study was designed to evaluate the effects of MT on anxiety and cytokine levels in patients with cancer. METHODS AND ANALYSIS This randomised, open, single-centre parallel-controlled trial will randomise 60 patients with malignant tumours who meet the inclusion criteria in a 1:1 ratio to either an MT group or a non-MT (NMT) group. Patients in the MT group will receive emotional nursing care and individualised receptive MT for 1 week, whereas patients in the NMT group will receive emotional nursing care alone. Primary outcomes will include scores on the State-Trait Anxiety Inventory, Distress Thermometer and Hamilton Anxiety Scale. Secondary outcomes will include scores on the Quality of Life Questionnaire C30, serum concentrations of the cytokines interleukin (IL)-1β, tumour necrosis factor-α, IL-2R, IL-4, IL-6, IL-8 and IL-10, serum concentrations of the neurotransmitters 5-hydroxytryptamine, dopamine, norepinephrine, adrenocorticotropic hormone and γ-aminobutyric acid, and determination of gut microbiota populations. ETHICS AND DISSEMINATION On 5 August 2020, the study protocol was approved by the Research Ethics Committee of the Yueyang Hospital of Integrated Traditional Chinese and Western Medicine of the Shanghai University of Traditional Chinese Medicine. The findings of this study will be published in peer-reviewed publications and presented at appropriate conferences. TRIAL REGISTRATION NUMBER CTR2000035244.
Collapse
Affiliation(s)
- Chenbing Sun
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shuliu Sang
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yunzhe Tang
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaodie Niu
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hwa-Seung Yoo
- Department of Integrative Oncology, East West Cancer Center, Seoul Korea Medicine Hospital, Seoul, Korea (the Republic of)
| | - Ping Zhou
- Department of Music Education, Shanghai Conservatory of Music, Shanghai, China
| | - Hao Liu
- Department of Music Engineering, Shanghai Conservatory of Music, Shanghai, China
| | - Yabin Gong
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ling Xu
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
10
|
Shahar O, Pereman I, Khamisie H, Ezov N, Danay O, Khattib A, Schweitzer R, Khatib S, Mahajna J. Compounds originating from the edible mushroom Auricularia auricula-judae inhibit tropomyosin receptor kinase B activity. Heliyon 2023; 9:e13756. [PMID: 36895384 PMCID: PMC9988514 DOI: 10.1016/j.heliyon.2023.e13756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/05/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023] Open
Abstract
Tropomyosin receptor kinase B (TrkB) serves as a pivotal factor in various cancers. To identify novel natural compounds with TrkB-inhibiting properties, a screening approach was applied using extracts from a collection of wild and cultivated mushroom fruiting bodies, and Ba/F3 cells that ectopically express TrkB (TPR-TrkB). We selected mushroom extracts that selectively inhibited proliferation of the TPR-TrkB cells. We then evaluated the ability of exogenous interleukin 3 to rescue growth inhibition by the selected TrkB-positive extracts. An ethyl acetate extract of Auricularia auricula-judae actively inhibited auto-phosphorylation of TrkB. LC-MS/MS analysis of this extract revealed substances that might be responsible for the observed activity. This screening approach demonstrates, for the first time, that extracts originating from the mushroom A. auricula-judae exhibit TrkB-inhibition properties that might hold therapeutic potential for TrkB-positive cancers.
Collapse
Affiliation(s)
- Orr Shahar
- Department of Nutrition and Natural Products, Migal - Galilee Research Institute, Kiryat Shmona, Israel.,Department of Biotechnology, Tel Hai College, Kiryat Shmona, Israel
| | - Idan Pereman
- Department of Nutrition and Natural Products, Migal - Galilee Research Institute, Kiryat Shmona, Israel.,Department of Biotechnology, Tel Hai College, Kiryat Shmona, Israel
| | - Hazem Khamisie
- Department of Nutrition and Natural Products, Migal - Galilee Research Institute, Kiryat Shmona, Israel
| | - Nirit Ezov
- Department of Nutrition and Natural Products, Migal - Galilee Research Institute, Kiryat Shmona, Israel
| | - Ofer Danay
- Department of Nutrition and Natural Products, Migal - Galilee Research Institute, Kiryat Shmona, Israel.,Department of Biotechnology, Tel Hai College, Kiryat Shmona, Israel
| | - Ali Khattib
- Department of Nutrition and Natural Products, Migal - Galilee Research Institute, Kiryat Shmona, Israel
| | - Ron Schweitzer
- Department of Nutrition and Natural Products, Migal - Galilee Research Institute, Kiryat Shmona, Israel.,Analytical Laboratory, Tel Hai College, Kiryat Shmona, Israel
| | - Soliman Khatib
- Department of Nutrition and Natural Products, Migal - Galilee Research Institute, Kiryat Shmona, Israel.,Analytical Laboratory, Tel Hai College, Kiryat Shmona, Israel
| | - Jamal Mahajna
- Department of Nutrition and Natural Products, Migal - Galilee Research Institute, Kiryat Shmona, Israel.,Department of Biotechnology, Tel Hai College, Kiryat Shmona, Israel
| |
Collapse
|
11
|
Sun J, Li X, Yin J, Chen X, Zhu Z, Wu R, Yu E, Mao Z. Long non coding RNA COX10-DT promotes the progression of breast cancer via the COX10-DT/miR-206/BDNF axis. Biochem Biophys Res Commun 2023; 639:46-53. [PMID: 36463760 DOI: 10.1016/j.bbrc.2022.11.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022]
Abstract
Long noncoding RNAs (lncRNAs) are emerging as critical regulators in the biological development of breast cancer. In this study, we aimed to determine the roles and mechanisms of the lncRNA COX10 divergent transcript (COX10-DT) in breast cancer progression. The relative expression level of COX10-DT was calculated in matched breast cancer tissues and adjacent normal tissues using quantitative real-time PCR. Gain-of-function and loss-of-function approaches further revealed the functions and mechanisms of COX10-DT in breast cancer cells. Clinically, we found that the lncRNA COX10-DT was commonly overexpressed in breast cancer tissues compared to paired peritumoural tissues. Functionally, the lncRNA COX10-DT might promote the proliferation and migration of breast cancer cells. Mechanistically, the lncRNA COX10-DT did not play a role by regulating the expression of its divergent gene COX10 but acted as a competitive endogenous RNA (ceRNA) by directly sponging miR-206, which further regulated the expression of brain-derived neurotrophic factor (BDNF). Taken together, our results proved that the lncRNA COX10-DT could function via the COX10-DT/miR-206/BDNF axis, thereby promoting the development of breast cancer. These findings indicated that the lncRNA COX10-DT might be a potential biomarker and therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Jie Sun
- Department of Breast Surgery of the First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, 215006, China
| | - Xiaohua Li
- Department of Breast Surgery of Wuzhong People's Hospital, Suzhou, 215218, China
| | - Jun Yin
- Department of General Surgery of the First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, 215006, China
| | - Xin Chen
- Department of General Surgery of the First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, 215006, China
| | - Zheng Zhu
- Department of General Surgery of the First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, 215006, China
| | - Runda Wu
- Department of General Surgery of the First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, 215006, China
| | - EnQiao Yu
- Department of Breast Surgery of the First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, 215006, China.
| | - Zhongqi Mao
- Department of General Surgery of the First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, 215006, China.
| |
Collapse
|
12
|
Wang L, Liu X. An oxidative stress-related signature for predicting the prognosis of liver cancer. Front Genet 2023; 13:975211. [PMID: 36685933 PMCID: PMC9845401 DOI: 10.3389/fgene.2022.975211] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 12/12/2022] [Indexed: 01/05/2023] Open
Abstract
Introduction: This study aimed to screen for oxidative stress-related genes (OSRGs) and build an oxidative stress-related signature to predict the prognosis of liver cancer. Methods: OSRGs with a protein domain correlation score ≥ 6 were downloaded from the GeneCards database and intersected with The Cancer Genome Atlas (TCGA) data for subsequent analyses. Differential immune cells (DICs) and immune and stromal scores between the normal and tumor samples were determined, followed by unsupervised hierarchical cluster analysis. Immune-related OSRGs were identified using weighted gene co-expression network analysis. An OSRG-related risk signature was then built, and the GSE14520 dataset was used for validation. A nomogram evaluation model was used to predict prognosis. Results: Nine DICs were determined between the normal and tumor groups, and three subtypes were obtained: clusters 1, 2, and 3. Cluster 1 had the best prognosis among the clusters. One hundred thirty-eight immune-related OSRGs were identified, and seven prognosis-related OSRGs were used to build the OSRG score prognostic model. Patients in the high OSRG score group had a poorer prognosis than those in the low OSRG score group. Six immune cell infiltration and enrichment scores of the 16 immune gene sets showed significant differences between the high and low OSRG score groups. Moreover, a nomogram was constructed based on the prognostic signature and clinicopathological features and had a robust predictive performance and high accuracy. Conclusion: The OSRG-related risk signature and the prognostic nomogram accurately predicted patient survival.
Collapse
|
13
|
Łuczkowska K, Kulig P, Baumert B, Machaliński B. Brain-derived neurotrophic factor: focus on the pathogenesis of multiple myeloma and the development of treatment-induced peripheral neuropathy. Leuk Lymphoma 2022; 63:3044-3051. [PMID: 35999712 DOI: 10.1080/10428194.2022.2113535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
For many years, intensive research has been carried out on the in-depth understanding of the pathogenesis of multiple myeloma (MM). Nevertheless, the multifactorial nature of the disease, the development of drug resistance, and the side effects of therapy, make it difficult to effectively treat patients. One of the many factors involved in the pathogenesis of MM is brain-derived neurotrophic factor (BDNF). This factor is widely described as a neuroregenerative and neuroprotective agent, but it also regulates non-neuronal cell functions, such as proliferation, apoptosis, and viability. Therefore, BDNF appears to be a good therapeutic target in MM. On the other hand, its decreased concentration during treatment closely correlates with the development of peripheral neuropathy (PN). BDNF dualism requires a detailed understanding of its action on individual molecular mechanisms. Perhaps the optimization of the BDNF level will contribute to the improvement of MM treatment and the reduction of chemotherapy side effects.
Collapse
Affiliation(s)
- Karolina Łuczkowska
- Department of General Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Piotr Kulig
- Department of General Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Bartłomiej Baumert
- Department of Bone Marrow Transplantation, Pomeranian Medical University, Szczecin, Poland
| | - Bogusław Machaliński
- Department of General Pathology, Pomeranian Medical University, Szczecin, Poland.,Department of Bone Marrow Transplantation, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
14
|
El-Helkan B, Emam M, Mohanad M, Fathy S, Zekri AR, Ahmed OS. Long non-coding RNAs as novel prognostic biomarkers for breast cancer in Egyptian women. Sci Rep 2022; 12:19498. [PMID: 36376369 PMCID: PMC9663553 DOI: 10.1038/s41598-022-23938-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Breast cancer (BC), the most common type of malignant tumor, is the leading cause of death, having the highest incidence rate among women. The lack of early diagnostic tools is one of the clinical obstacles for BC treatment. The current study was designed to evaluate a panel of long non-coding RNAs (lncRNAs) BC040587, HOTAIR, MALAT1, CCAT1, CCAT2, PVT1, UCA1, SPRY4-IT1, PANDAR, and AK058003-and two mRNAs (SNCG, BDNF) as novel prognostic biomarkers for BC. This study was ethically approved by the Institutional Review Board of the National Cancer Institute, Cairo University. Our study included 75 women recently diagnosed with BC and 25 healthy women as normal controls. Patients were divided into three groups: 24 with benign breast diseases, 28 with metastatic breast cancer (MBC, stage IV), and 23 with non-metastatic breast cancer (NMBC, stage III). LncRNA and mRNA expression levels were measured in patient plasma using quantitative real-time PCR. We found that 10 lncRNAs (BCO40587, HOTAIR, PVT1, CCAT2, PANDAR, CCAT1, UCA1, SPRY4-IT1, AK058003, and MALAT1) and both mRNAs demonstrated at least a 2-fold change in expression with a more than 95% probability of significance. BCO40587 and SNCG were significantly up-regulated in MBC and NMBC patients (3.2- and 4-fold, respectively) compared with normal controls. The expression of UCA1 was repressed by 1.78-fold in MBC and NMBC patients compared with those with benign diseases. SPRY4-IT1 was down-regulated by 1.45-fold in MBC patients compared with NMBC and benign disease patients. Up-regulation of lncRNAs plays an important role in BC development. SNCG and BCO40587 may be potential prognostic markers for BC.The organization number is IORG0003381 (IRB No: IRB00004025).
Collapse
Affiliation(s)
- Basma El-Helkan
- grid.7269.a0000 0004 0621 1570Department of Biochemistry, Faculty of Science-Ain Shams University, Cairo, Egypt
| | - Manal Emam
- grid.7269.a0000 0004 0621 1570Department of Biochemistry, Faculty of Science-Ain Shams University, Cairo, Egypt
| | - Marwa Mohanad
- grid.440875.a0000 0004 1765 2064College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, 6th of October ,Giza, Egypt
| | - Shadia Fathy
- grid.7269.a0000 0004 0621 1570Department of Biochemistry, Faculty of Science-Ain Shams University, Cairo, Egypt
| | - Abdel Rahman Zekri
- grid.7776.10000 0004 0639 9286Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Ola S. Ahmed
- grid.7776.10000 0004 0639 9286Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| |
Collapse
|
15
|
Hu J, Chen W, Shen L, Chen Z, Huang J. Crosstalk between the peripheral nervous system and breast cancer influences tumor progression. Biochim Biophys Acta Rev Cancer 2022; 1877:188828. [PMID: 36283598 DOI: 10.1016/j.bbcan.2022.188828] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 11/18/2022]
Abstract
Recent studies have shown that peripheral nerves play an important role in the progression of breast cancer. Breast cancer cells (BCCs) promote local peripheral nerve growth and branching by secreting neuroactive molecules, including neurotrophins and axon guidance molecules (AGMs). Sympathetic nerves promote breast cancer progression, while parasympathetic and sensory nerves mainly have anti-tumor effects in the progression of breast cancer. Specifically, peripheral nerves can influence the progression of breast cancer by secreting neurotransmitters not only directly binding to the corresponding receptors of BCCs, but also indirectly acting on immune cells to modulate anti-tumor immunity. In this review, we summarize the crosstalk between breast cancer and peripheral nerves and the roles of important neuroactive molecules in the progression of breast cancer. In addition, we summarize indicators, including nerve fiber density and perineural invasion (PNI), that may help determine the prognosis of breast cancer based on current research results, as well as potential therapeutic approaches, such as β-blockers and retroviral-mediated genetic neuroengineering techniques, that may enhance the prognosis of breast cancer. In addition, we propose suggestions for future research priorities based on a current lack of knowledge in this area.
Collapse
Affiliation(s)
- Jianming Hu
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Wuzhen Chen
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Lesang Shen
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Zhigang Chen
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China..
| | - Jian Huang
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China..
| |
Collapse
|
16
|
Abstract
PURPOSE Brain-derived neurotrophic factor (BDNF) belongs to the family of neurotrophic factors that can potentially increase cancer cell growth, survival, proliferation, anoikis, and migration by tyrosine kinase receptors TrkB and the p75NTR death receptor. The activation of BDNF/TrkB pathways leads to several downstream signaling pathways, including PI3K/Akt, Jak/STAT, PLCγ, Ras-Raf-MEK-ERK, NF-kB, and transactivation of EGFR. The current review aimed to provide an overview of the role of BDNF and its signaling in cancer. METHODS We searched a major medical database, PubMed, to identify eligible studies for a narrative synthesis. RESULTS Pathological examinations demonstrate BDNF overexpression in human cancer, notably involving the prostate, lung, breast, and underlying tissues, associated with a higher death rate and poor prognosis. Therefore, measurement of BDNF, either for identifying the disease or predicting response to therapy, can be helpful in cancer patients. Expression profiling studies have recognized the role of microRNAs (miR) in modulating BDNF/TrkB pathways, such as miR-101, miR-107, miR-134, miR-147, miR-191, miR-200a/c, miR-204, miR-206, miR-210, miR-214, miR-382, miR-496, miR-497, miR-744, and miR-10a-5p, providing a potential biological mechanism by which targeted therapies may correlate with decreased BDNF expression in cancers. Clinical studies investigating the use of agents targeting BDNF receptors and related signaling pathways and interfering with the related oncogenic effect, including Entrectinib, Larotrectinib, Cabozantinib, Repotrectinib, Lestaurtinib, and Selitrectinib, are in progress. CONCLUSION The aberrant signaling of BDNF is implicated in various cancers. Well-designed clinical trials are needed to clarify the BDNF role in cancer progression and target it as a therapeutic method.
Collapse
|
17
|
Ju H, Yang Z. H19 silencing decreases kainic acid-induced hippocampus neuron injury via activating the PI3K/AKT pathway via the H19/miR-206 axis. Exp Brain Res 2022; 240:2109-2120. [PMID: 35781830 DOI: 10.1007/s00221-022-06392-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 05/23/2022] [Indexed: 11/29/2022]
Abstract
Temporal lobe epilepsy (TLE) is the most common type of intractable epilepsy and is refractory to medications. However, the role and mechanism of H19 in regulating TLE remains largely undefined. Expression of H19 and miR-206 was detected using real-time quantitative PCR (RT-qPCR). Cell apoptosis, autophagy and inflammatory response were determined by flow cytometry, western blotting and enzyme-linked immunosorbent assay (ELISA). The interaction between H19 and miR-206 was predicted on the miRcode database and confirmed by luciferase reporter assay, RNA immunoprecipitation (RIP) and RNA pull-down. H19 was upregulated and miR-206 was downregulated in the rat hippocampus neurons after kainic acid (KA) treatment. Functionally, both H19 knockdown and miR-206 overexpression weakened KA-induced apoptosis, autophagy, inflammatory response, and oxidative stress in hippocampus neurons. Mechanically, the phosphatidylinositol 3-kinase (PI3K)/AKT signaling pathway was activated by H19 knockdown and miR-206 was confirmed to be targeted and negatively regulated by H19. Moreover, downregulation of miR-206 could counteract the effects of H19 knockdown in KA-induced hippocampus neurons. Knockdown of H19 suppressed hippocampus neuronal apoptosis, autophagy and inflammatory response presumably through directly upregulating miR-206 and activating the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Haichao Ju
- Department of Pediatrics, Weihai Central Hospital, No. 3, West Mishandong Road, Wendeng District, Weihai, 264400, Shandong, China
| | - Zhimin Yang
- Department of Pediatrics, Weihai Central Hospital, No. 3, West Mishandong Road, Wendeng District, Weihai, 264400, Shandong, China.
| |
Collapse
|
18
|
Hu D, Li Z, Zheng B, Lin X, Pan Y, Gong P, Zhuo W, Hu Y, Chen C, Chen L, Zhou J, Wang L. Cancer-associated fibroblasts in breast cancer: Challenges and opportunities. Cancer Commun (Lond) 2022; 42:401-434. [PMID: 35481621 PMCID: PMC9118050 DOI: 10.1002/cac2.12291] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/06/2022] [Accepted: 04/07/2022] [Indexed: 12/13/2022] Open
Abstract
The tumor microenvironment is proposed to contribute substantially to the progression of cancers, including breast cancer. Cancer-associated fibroblasts (CAFs) are the most abundant components of the tumor microenvironment. Studies have revealed that CAFs in breast cancer originate from several types of cells and promote breast cancer malignancy by secreting factors, generating exosomes, releasing nutrients, reshaping the extracellular matrix, and suppressing the function of immune cells. CAFs are also becoming therapeutic targets for breast cancer due to their specific distribution in tumors and their unique biomarkers. Agents interrupting the effect of CAFs on surrounding cells have been developed and applied in clinical trials. Here, we reviewed studies examining the heterogeneity of CAFs in breast cancer and expression patterns of CAF markers in different subtypes of breast cancer. We hope that summarizing CAF-related studies from a historical perspective will help to accelerate the development of CAF-targeted therapeutic strategies for breast cancer.
Collapse
Affiliation(s)
- Dengdi Hu
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, Zhejiang, 315300, P. R. China
| | - Zhaoqing Li
- Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), Hangzhou, Zhejiang, 310016, P. R. China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, 310016, P. R. China
| | - Bin Zheng
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, Zhejiang, 315300, P. R. China
| | - Xixi Lin
- Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), Hangzhou, Zhejiang, 310016, P. R. China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, 310016, P. R. China
| | - Yuehong Pan
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, Zhejiang, 315300, P. R. China
| | - Peirong Gong
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, Zhejiang, 315300, P. R. China
| | - Wenying Zhuo
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, Zhejiang, 315300, P. R. China.,Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), Hangzhou, Zhejiang, 310016, P. R. China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, 310016, P. R. China
| | - Yujie Hu
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, Zhejiang, 315300, P. R. China
| | - Cong Chen
- Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), Hangzhou, Zhejiang, 310016, P. R. China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, 310016, P. R. China
| | - Lini Chen
- Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), Hangzhou, Zhejiang, 310016, P. R. China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, 310016, P. R. China
| | - Jichun Zhou
- Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), Hangzhou, Zhejiang, 310016, P. R. China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, 310016, P. R. China
| | - Linbo Wang
- Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), Hangzhou, Zhejiang, 310016, P. R. China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, 310016, P. R. China
| |
Collapse
|
19
|
2q35-rs13387042 variant and the risk of breast cancer: a case-control study. Mol Biol Rep 2022; 49:3549-3557. [PMID: 35445312 DOI: 10.1007/s11033-022-07195-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 01/25/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Breast Cancer is the most frequent neoplasm diagnosed among women worldwide. Genetic background and lifestyle/environment play a significant role in the disease etiology. According to Genome-wide association studies, some single-nucleotide polymorphisms such as 2q35-rs13387042-(G/A) have been introduced to be associated with breast cancer risk and features. In this study, we aimed to evaluate the association between this variant and the risk of breast cancer in a cohort of Iranian women. METHODS Demographics and clinical information were collected by interview and using patients' medical records, respectively. DNA was extracted from 506 blood samples, including 184 patients and 322 controls, and genotyping was performed using allele specific-PCR. SPSS v16 was used for statistical analysis. RESULT Statistically significant association was observed between AA genotype and disease risk in all patients [padj = 0.048; ORadj = 2.13, 95% CI (1.01-4.50)] and also ER-positive breast cancers [padj = 0.015; ORadj = 2.12, 95% CI (1.16-3.88)]. There was no association between rs13387042 and histopathological characteristics of the disease. Furthermore, overall survival was not statistically associated with genotype and allelic models even after adjustment for stage and receptor status (p > 0.05). CONCLUSION There is a statistically significant association between 2q35-rs13387042 and breast cancer risk. rs13387042-AA genotype might be a risk-conferring factor for breast cancer development in the Iranian population. However, further consideration is suggested to confirm its role in risk assessment and probable association with other genetic markers.
Collapse
|
20
|
Wicik Z, Czajka P, Eyileten C, Fitas A, Wolska M, Jakubik D, von Lewinski D, Sourij H, Siller-Matula JM, Postula M. The role of miRNAs in regulation of platelet activity and related diseases - a bioinformatic analysis. Platelets 2022; 33:1052-1064. [DOI: 10.1080/09537104.2022.2042233] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Zofia Wicik
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology Cept, Warsaw, Poland
| | - Pamela Czajka
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology Cept, Warsaw, Poland
| | - Ceren Eyileten
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology Cept, Warsaw, Poland
| | - Alex Fitas
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology Cept, Warsaw, Poland
| | - Marta Wolska
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology Cept, Warsaw, Poland
- Doctoral School of Medical University of Warsaw, Poland
| | - Daniel Jakubik
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology Cept, Warsaw, Poland
| | - Dirk von Lewinski
- Department of Internal Medicine, Division of Cardiology, Medical University of Graz, Graz, Austria
| | - Harald Sourij
- Division of Endocrinology and Diabetology, Interdisciplinary Metabolic Medicine Trials Unit, Medical University of Graz, Graz, Austria
| | - Jolanta M. Siller-Matula
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology Cept, Warsaw, Poland
- Department of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Marek Postula
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology Cept, Warsaw, Poland
| |
Collapse
|
21
|
Liu Y, Zhang Z, Gao X, Ma Q, Yu Z, Huang S. Rab8A promotes breast cancer progression by increasing surface expression of Tropomyosin-related kinase B. Cancer Lett 2022; 535:215629. [PMID: 35278612 DOI: 10.1016/j.canlet.2022.215629] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 03/02/2022] [Accepted: 03/07/2022] [Indexed: 11/17/2022]
Abstract
Ras-related protein in brain (Rab) proteins are dysregulated in cancer cells and affect the proliferation and metastasis of cancer cells, thereby reducing the survival rate of cancer patients. Brain-derived neurotrophic factor (BDNF) and its receptor Tropomyosin-related kinase B (TrkB) play an important role in the occurrence and development of tumors. In this research, we investigate the interaction of Rab8A and TrkB in regulating the progression of breast cancer. Rab8A is upregulated in breast cancer tissues. The knockdown of Rab8A inhibits the proliferation, migration, and invasion of breast cancer cells through inhibiting TrkB. Moreover, the phosphorylation of AKT and ERK1/2 is suppressed by Rab8A knockdown. Rab8A interacts with TrkB, as revealed by co-immunoprecipitation assay to promote the surface expression of TrkB. However, Rab8A induced no significant changes in TrkB internalization. Functionally, BDNF promotes the expression of Rab8A through inhibiting Rab8A degradation. The TrkB inhibitor K252a blocks cell proliferation, migration and invasion as well as the activation of the AKT and ERK1/2 signaling pathway, which is induced by Rab8A in breast cancer cells. Our results reveal that Rab8A is upregulated by BDNF, and that Rab8A increases the surface expression of TrkB to promote the growth of breast cancer through the activation of the AKT and ERK1/2 signaling pathway. These results suggest that inhibiting Rab8A level could inhibit the progression of breast cancer.
Collapse
Affiliation(s)
- Yansong Liu
- Department of Breast Disease, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Zhonghua Zhang
- Department of Breast Disease, Dongping County Hospital, Taian, Shandong, China
| | - Xuefeng Gao
- Department of Breast and Thyroid Surgery, Yinan People's Hospital, Linyi, Shandong, China
| | - Qinghua Ma
- Department of Breast Disease, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Zhiyong Yu
- Department of Breast Disease, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| | - Shuhong Huang
- Institute of Basic Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
| |
Collapse
|
22
|
Stravodimou A, Voutsadakis IA. Neurotrophic receptor tyrosine kinase family members in secretory and non-secretory breast carcinomas. World J Clin Oncol 2022; 13:135-146. [PMID: 35316931 PMCID: PMC8894271 DOI: 10.5306/wjco.v13.i2.135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/11/2021] [Accepted: 01/14/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Breast cancer is the most common female cancer and a major cause of morbidity and mortality. Progress in breast cancer therapeutics has been attained with the introduction of targeted therapies for specific sub-sets. However, other subsets lack targeted interventions and thus there is persisting need for identification and characterization of molecular targets in order to advance breast cancer therapeutics.
AIM To analyze the role of lesions in neurotrophic receptor tyrosine kinase (NTRK) genes in breast cancers.
METHODS Analysis of publicly available genomic breast cancer datasets was performed for identification and characterization of cases with fusions and other molecular abnormalities involving NTRK1, NTRK2 and NTRK3 genes.
RESULTS NTRK fusions are present in a small number of breast cancers at the extensive GENIE project data set which contains more than 10000 breast cancers. These cases are not identified as secretory in the database, suggesting that the histologic characterization is not always evident. In the breast cancer The Cancer Genome Atlas (TCGA) cohort the more common molecular lesion in NTRK genes is amplification of NTRK1 observed in 7.9% of breast cancers.
CONCLUSION Neurotrophin receptors molecular lesions other than fusions are observed more often than fusions. However, currently available NTRK inhibitors are effective mainly for fusion lesions. Amplifications of NTRK1, being more frequent in breast cancers, could be a viable therapeutic target if inhibitors efficacious for them become available.
Collapse
Affiliation(s)
| | - Ioannis A Voutsadakis
- Department of Medical Oncology, Sault Area Hospital, Sault Ste Marie P6B0A8, Ontario, Canada
| |
Collapse
|
23
|
Najafi S, Esmaeili S, Zhaleh H, Rahmati Y. The role of IDH1 mutation on gene expression in glioblastoma. INFORMATICS IN MEDICINE UNLOCKED 2022. [DOI: 10.1016/j.imu.2021.100812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
24
|
Agonistic analog of growth hormone-releasing hormone promotes neurofunctional recovery and neural regeneration in ischemic stroke. Proc Natl Acad Sci U S A 2021; 118:2109600118. [PMID: 34782465 DOI: 10.1073/pnas.2109600118] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2021] [Indexed: 12/13/2022] Open
Abstract
Ischemic stroke can induce neurogenesis. However, most stroke-generated newborn neurons cannot survive. It has been shown that MR-409, a potent synthetic agonistic analog of growth hormone-releasing hormone (GHRH), can protect against some life-threatening pathological conditions by promoting cell proliferation and survival. The present study shows that long-term treatment with MR-409 (5 or 10 μg/mouse/d) by subcutaneous (s.c.) injection significantly reduces the mortality, ischemic insult, and hippocampal atrophy, and improves neurological functional recovery in mice operated on for transient middle cerebral artery occlusion (tMCAO). Besides, MR-409 can stimulate endogenous neurogenesis and improve the tMCAO-induced loss of neuroplasticity. MR-409 also enhances the proliferation and inhibits apoptosis of neural stem cells treated with oxygen and glucose deprivation-reperfusion. The neuroprotective effects of MR-409 are closely related to the activation of AKT/CREB and BDNF/TrkB pathways. In conclusion, the present study demonstrates that GHRH agonist MR-409 has remarkable neuroprotective effects through enhancing endogenous neurogenesis in cerebral ischemic mice.
Collapse
|
25
|
Gutierrez A, Demond H, Brebi P, Ili CG. Novel Methylation Biomarkers for Colorectal Cancer Prognosis. Biomolecules 2021; 11:1722. [PMID: 34827720 PMCID: PMC8615818 DOI: 10.3390/biom11111722] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/03/2021] [Accepted: 11/09/2021] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) comprises the third most common cancer worldwide and the second regarding number of deaths. In order to make a correct and early diagnosis to predict metastasis formation, biomarkers are an important tool. Although there are multiple signaling pathways associated with cancer progression, the most recognized are the MAPK pathway, p53 pathway, and TGF-β pathway. These pathways regulate many important functions in the cell, such as cell cycle regulation, proliferation, differentiation, and metastasis formation, among others. Changes in expression in genes belonging to these pathways are drivers of carcinogenesis. Often these expression changes are caused by mutations; however, epigenetic changes, such as DNA methylation, are increasingly acknowledged to play a role in the deregulation of oncogenic genes. This makes DNA methylation changes an interesting biomarkers in cancer. Among the newly identified biomarkers for CRC metastasis INHBB, SMOC2, BDNF, and TBRG4 are included, all of which are highly deregulated by methylation and closely associated with metastasis. The identification of such biomarkers in metastasis of CRC may allow a better treatment and early identification of cancer formation in order to perform better diagnostics and improve the life expectancy.
Collapse
Affiliation(s)
| | | | - Priscilla Brebi
- Millennium Institute on Immunology and Immunotherapy, Laboratory of Integrative Biology (LIBi), Centro de Excelencia en Medicina Traslacional (CEMT), Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4810296, Chile; (A.G.); (H.D.)
| | - Carmen Gloria Ili
- Millennium Institute on Immunology and Immunotherapy, Laboratory of Integrative Biology (LIBi), Centro de Excelencia en Medicina Traslacional (CEMT), Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4810296, Chile; (A.G.); (H.D.)
| |
Collapse
|
26
|
Corrêa S, Lopes FP, Panis C, Basili T, Binato R, Abdelhay E. miRNome Profiling Reveals Shared Features in Breast Cancer Subtypes and Highlights miRNAs That Potentially Regulate MYB and EZH2 Expression. Front Oncol 2021; 11:710919. [PMID: 34646766 PMCID: PMC8502886 DOI: 10.3389/fonc.2021.710919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/30/2021] [Indexed: 01/03/2023] Open
Abstract
Breast cancer (BC) has been extensively studied, as it is one of the more commonly diagnosed cancer types worldwide. The study of miRNAs has increased what is known about the complexity of pathways and signaling and has identified potential biomarkers and therapeutic targets. Thus, miRNome profiling could provide important information regarding the molecular mechanisms involved in BC. On average, more than 430 miRNAs were identified as differentially expressed between BC cell lines and normal breast HMEC cells. From these, 110 miRNAs were common to BC subtypes. The miRNome enrichment analysis and interaction maps highlighted epigenetic-related pathways shared by all BC cell lines and revealed potential miRNA targets. Quantitative evaluation of BC patient samples and GETx/TCGA-BRCA datasets confirmed MYB and EZH2 as potential targets from BC miRNome. Moreover, overall survival was impacted by EZH2 expression. The expression of 15 miRNAs, selected according to aggressiveness of BC subtypes, was confirmed in TCGA-BRCA dataset. Of these miRNAs, miRNA-mRNA interaction prediction revealed 7 novel or underexplored miRNAs in BC: miR-1271-5p, miR-130a-5p, and miR-134 as MYB regulators and miR-138-5p, miR-455-3p, miR-487a, and miR-487b as EZH2 regulators. Herein, we report a novel molecular miRNA signature for BC and identify potential miRNA/mRNAs involved in disease subtypes.
Collapse
Affiliation(s)
- Stephany Corrêa
- Centro de Transplante de Medula Óssea (CEMO), Instituto Nacional de Câncer (INCA), Rio de Janeiro, Brazil
| | - Francisco P Lopes
- Grupo de Biologia do Desenvolvimento e Sistemas Dinâmicos, Universidade Federal do Rio de Janeiro (UFRJ), Duque de Caxias, Brazil
| | - Carolina Panis
- Laboratório de Biologia de Tumores, Universidade Estadual do Oeste do Paraná (UNIOESTE), Francisco Beltrão, Brazil
| | - Thais Basili
- Centro de Transplante de Medula Óssea (CEMO), Instituto Nacional de Câncer (INCA), Rio de Janeiro, Brazil.,Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Renata Binato
- Centro de Transplante de Medula Óssea (CEMO), Instituto Nacional de Câncer (INCA), Rio de Janeiro, Brazil
| | - Eliana Abdelhay
- Centro de Transplante de Medula Óssea (CEMO), Instituto Nacional de Câncer (INCA), Rio de Janeiro, Brazil
| |
Collapse
|
27
|
Guzel T, Mech K, Iwanowska M, Wroński M, Słodkowski M. Brain derived neurotrophic factor declines after complete curative resection in gastrointestinal cancer. PeerJ 2021; 9:e11718. [PMID: 34395067 PMCID: PMC8327966 DOI: 10.7717/peerj.11718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 06/13/2021] [Indexed: 11/20/2022] Open
Abstract
Background Brain derived neurotrophic factor (BDNF) is a neurotrophin involved in neural and metabolic diseases, but it is also one of the crucial factors in cancer development and metastases. In the current study, we investigated serum BDNF concentrations in patients that underwent surgical treatment for colorectal cancer or pancreatic cancer. Methods Serum BDNF concentrations were measured with standard enzyme-linked immunosorbent assays, before and on the third day after the operation, in 50 consecutive patients with colorectal cancer and 25 patients with pancreatic cancer (tumours in the head of pancreas). We compared pre- and postoperative BDNF levels, according to the subsequent TNM stage, histologic stage, lymph node involvement, neuro- or angio-invasion, and resection range. Results In the pancreatic cancer group, BDNF concentrations fell significantly postoperatively (p = 0.011). In patients that underwent resections, BDNF concentrations fell (p = 0.0098), but not in patients that did not undergo resections (i.e., laparotomy alone). There were significant pre- and postoperative differences in BDNF levels among patients with (p = 0.021) and without (p = 0.034) distant metastases. Significant reductions in BDNF were observed postoperatively in patients with small tumours (i.e., below the median size; p = 0.023), in patients with negative angio- or lymphatic invasion (p = 0.028, p = 0.011, respectively), and in patients with lymph node ratios above 0.17 (p = 0.043). In the colon cancer group, the serum BDNF concentrations significantly fell postoperatively in the entire group (p = 0.0076) and in subgroups of patients with or without resections (p = 0.034, p = 0.0179, respectively). Significant before-after differences were found in subgroups with angioinvasions (p = 0.050) and in those without neuroinvasions (p = 0.049). Considering the TNM stages, the postoperative BDNF concentration fell in groups with (p = 0.0218) and without (p = 0.034) distant metastases and in patients with tumours below the median size (p = 0.018). Conclusion Our results suggested that BDNF might play an important role in gastrointestinal cancer development. BDNF levels were correlated with tumour volume, and with neuro-, angio- and lymphatic invasions. In pancreatic cancer, BDNF concentrations varied according to the surgical procedure and they fell significantly after tumour resections. Thus, BDNF may serve as a potential marker of complete resections in underdiagnosed patients. However, this hypothesis requires further investigation. In contrast, no differences according to the procedure was made in patients with colon cancer.
Collapse
Affiliation(s)
- Tomasz Guzel
- Department of General, Gastroenterology and Oncologic Surgery, Medical University of Warsaw, Warsaw, Poland
| | - Katarzyna Mech
- Department of General, Gastroenterology and Oncologic Surgery, Medical University of Warsaw, Warsaw, Poland
| | - Marzena Iwanowska
- Department of Laboratory Diagnostics, Medical University of Warsaw, Warsaw, Poland
| | - Marek Wroński
- Department of General, Gastroenterology and Oncologic Surgery, Medical University of Warsaw, Warsaw, Poland
| | - Maciej Słodkowski
- Department of General, Gastroenterology and Oncologic Surgery, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
28
|
Lin CW, Zheng T, Grande G, Nanna AR, Rader C, Lerner RA. A new immunochemical strategy for triple-negative breast cancer therapy. Sci Rep 2021; 11:14875. [PMID: 34290315 PMCID: PMC8295383 DOI: 10.1038/s41598-021-94230-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 07/05/2021] [Indexed: 01/17/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a highly diverse group of malignant neoplasms which tend to have poor outcomes, and the development of new targets and strategies to treat these cancers is sorely needed. Antibody-drug conjugate (ADC) therapy has been shown to be a promising targeted therapy for treating many cancers, but has only rarely been tried in patients with TNBC. A major reason the efficacy of ADC therapy in the setting of TNBC has not been more fully investigated is the lack of appropriate target molecules. In this work we were able to identify an effective TNBC target for use in immunotherapy. We were guided by our previous observation that in some breast cancer patients the protein tropomyosin receptor kinase B cell surface protein (TrkB) had become immunogenic, suggesting that it was somehow sufficiently chemically different enough (presumably by mutation) to escaped immune tolerance. We postulated that this difference might well offer a means for selective targeting by antibodies. We engineered site-specific ADCs using a dual variable domain (DVD) format which combines anti-TrkB antibody with the h38C2 catalytic antibody. This format enables rapid, one-step, and homogeneous conjugation of β-lactam-derivatized drugs. Following conjugation to β-lactam-derivatized monomethyl auristatin F, the TrkB-targeting DVD-ADCs showed potency against multiple breast cancer cell lines, including TNBC cell lines. In addition, our isolation of antibody that specifically recognized the breast cancer-associated mutant form of TrkB, but not the wild type TrkB, indicates the possibility of further refining the selectivity of anti-TrkB DVD-ADCs, which should enhance their therapeutic index. These results confirmed our supposition that TrkB is a potential target for immunotherapy for TNBC, as well as for other cancers with mutated cell surface proteins.
Collapse
Affiliation(s)
- Chih-Wei Lin
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Tianqing Zheng
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Geramie Grande
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Alex R Nanna
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Christoph Rader
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Richard A Lerner
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, 92037, USA.
| |
Collapse
|
29
|
The Interplay between the Immune and the Endocannabinoid Systems in Cancer. Cells 2021; 10:cells10061282. [PMID: 34064197 PMCID: PMC8224348 DOI: 10.3390/cells10061282] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/11/2022] Open
Abstract
The therapeutic potential of Cannabis sativa has been recognized since ancient times. Phytocannabinoids, endocannabinoids and synthetic cannabinoids activate two major G protein-coupled receptors, subtype 1 and 2 (CB1 and CB2). Cannabinoids (CBs) modulate several aspects of cancer cells, such as apoptosis, autophagy, proliferation, migration, epithelial-to-mesenchymal transition and stemness. Moreover, agonists of CB1 and CB2 receptors inhibit angiogenesis and lymphangiogenesis in vitro and in vivo. Low-grade inflammation is a hallmark of cancer in the tumor microenvironment (TME), which contains a plethora of innate and adaptive immune cells. These cells play a central role in tumor initiation and growth and the formation of metastasis. CB2 and, to a lesser extent, CB1 receptors are expressed on a variety of immune cells present in TME (e.g., T cells, macrophages, mast cells, neutrophils, NK cells, dendritic cells, monocytes, eosinophils). The activation of CB receptors modulates a variety of biological effects on cells of the adaptive and innate immune system. The expression of CB2 and CB1 on different subsets of immune cells in TME and hence in tumor development is incompletely characterized. The recent characterization of the human cannabinoid receptor CB2-Gi signaling complex will likely aid to design potent and specific CB2/CB1 ligands with therapeutic potential in cancer.
Collapse
|
30
|
Karagyaur M, Rostovtseva A, Dzhauari S, Kozlov E, Lebedeva L, Klimovich P, Balabanyan V, Semina E, Sysoeva V, Shidlovskii Y, Popov V, Stambolsky D. Biodistribution and Safety Studies of a Bicistronic Plasmid for Nerve Repair. Tissue Eng Part C Methods 2021; 27:391-400. [PMID: 34015967 DOI: 10.1089/ten.tec.2021.0033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Gene therapy is one of the promising approaches for regenerative medicine. Local and long-term expression of essential growth factors allows to achieve the desired therapeutic effect. However, some aspects of prolonged usage of genetic constructs encoding growth factors, such as toxicity, mutagenicity, genotoxicity, and ability to disseminate from the injection site and mediate ectopic expression of therapeutic proteins, are poorly investigated. These aspects of gene therapy drugs' usage became the subject of this study. To study plasmid biodistribution, toxicity, mutagenicity, and genotoxicity, we used previously described bicistronic genetic construct encoding human brain-derived neurotrophic factor (hBDNF) and human urokinase plasminogen activator (huPA) for nerve repair. Biodistribution studies were conducted in mice: a course of intramuscular plasmid injections was followed by the study of the content of the plasmid (real-time polymerase chain reaction) and recombinant proteins (enzyme-linked immunosorbent assay) in murine organs and tissues. The study of the plasmid chronic toxicity was carried out on rats with registration of their weight dynamics, neurological status, emotional state, and blood test parameters. The mutagenicity of the plasmid was studied in an in vivo DNA comet test in mice. Plasmid genotoxicity was investigated in the model of somatic recombination in Drosophila females. We have shown that plasmids can disseminate from the injection site, but do not mediate ectopic expression of growth factors upon repeated intramuscular injections. The studied plasmid also does not reveal toxic, mutagenic, or genotoxic effects. During the toxicological study on rats, we have shown that daily injections of this genetic construct, despite its ability to disseminate from the injection site, do not affect the physical, cognitive, and emotional state of experimental animals. We have demonstrated the safety of the bicistronic plasmid, encoding hBDNF and huPA, upon its repeated administration. The properties of genetic constructs strongly depend on their sequence and delivery approach, which requires conducting of their safety studies in each specific case. Impact statement Gene therapy is one of the promising approaches for regenerative medicine. Local and long-term expression of essential growth factors allows to achieve the desired therapeutic effect. However, some aspects of prolonged usage of genetic constructs encoding growth factors, such as toxicity, mutagenicity, genotoxicity, and ability to disseminate from the injection site and mediate ectopic expression of therapeutic proteins, are poorly investigated. These aspects of gene therapy became the subject of this study. To our knowledge, this is a unique study that provides a thorough safety investigation of a bicistronic plasmid after its readministration.
Collapse
Affiliation(s)
- Maxim Karagyaur
- Institute for Regenerative Medicine, Lomonosov Moscow State University, Moscow, Russia.,Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | | | - Stalik Dzhauari
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Eugene Kozlov
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Lyubov Lebedeva
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Polina Klimovich
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Vadim Balabanyan
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Ekaterina Semina
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia.,Molecular Endocrinology Lab, Institute of Experimental Cardiology, National Cardiology Research Center Ministry of Health of the Russian Federation, Moscow, Russia
| | - Veronika Sysoeva
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Yulii Shidlovskii
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia.,Department of Biology and General Genetics, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Vladimir Popov
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Dmitry Stambolsky
- Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
31
|
MicroRNA-204 plays a role as a tumor suppressor in Newcastle disease virus-induced oncolysis in lung cancer A549 cells. Oncol Lett 2021; 21:482. [PMID: 33968198 PMCID: PMC8100940 DOI: 10.3892/ol.2021.12743] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 03/26/2021] [Indexed: 12/28/2022] Open
Abstract
Tumor development and progression are closely associated with various microRNAs (miRNAs/miRs). We have previously shown that Newcastle disease virus (NDV) strain 7793 induces oncolysis in lung cancer. However, how NDV exerts its oncolytic effect on lung cancer remains to be investigated. The present study assessed the role of miR-204 in the NDV-induced oncolysis of lung cancer A549 cells by oncolysis induction in vitro. miR-204 was significantly upregulated in NDV-treated A549 cells. Overexpression or inhibition of miR-204 was significantly associated with NDV-induced oncolysis in A549 cells. Caspase-3 and Bax, major regulators of the apoptosis pathway, were regulated by miR-204, and the association between caspase-3-related apoptosis and miR-204 was identified in NDV-mediated oncolysis. These data demonstrated that miR-204 as a tumor suppressor played a role in NDV-induced oncolysis in lung cancer cells. The present study demonstrates the potential of strategies using miRs to improve oncolytic NDV potency, and highlights miR-204 as a tumor suppressor in NDV-induced oncolysis of lung cancer cells.
Collapse
|
32
|
Recent advances in peptide-targeted micelleplexes: Current developments and future perspectives. Int J Pharm 2021; 597:120362. [PMID: 33556489 DOI: 10.1016/j.ijpharm.2021.120362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/27/2021] [Accepted: 02/03/2021] [Indexed: 12/11/2022]
Abstract
The decoding of the human genome revolutionized the understanding of how genetics influence the interplay between health and disease, in a multidisciplinary perspective. Thus, the development of exogenous nucleic acids-based therapies has increased to overcome hereditary or acquired genetic-associated diseases. Gene drug delivery using non-viral systems, for instance micelleplexes, have been recognized as promising options for gene-target therapies. Micelleplexes are core-shell structures, at a nanometric scale, designed using amphiphilic block copolymers. These can self-assemble in an aqueous medium, leading to the formation of a hydrophilic and positively charged corona - that can transport nucleic acids, - and a hydrophobic core - which can transport poor water-soluble drugs. However, the performance of these types of carriers usually is hindered by several in vivo barriers. Fortunately, due to a significant amount of research, strategies to overcome these shortcomings emerged. With a wide range of structural features, good stability against proteolytic degradation, affordable characteristic, easy synthesis, low immunogenicity, among other advantages, peptides have increasingly gained popularity as target ligands for non-viral carriers. Hence, this review addresses the use of peptides with micelleplexes illustrating, through the analysis of in vitro and in vivo studies, the potential and future perspectives of this combination.
Collapse
|
33
|
Petrova K, Kello M, Kuruc T, Backorova M, Petrovova E, Vilkova M, Goga M, Rucova D, Backor M, Mojzis J. Potential Effect of Pseudevernia furfuracea (L.) Zopf Extract and Metabolite Physodic Acid on Tumour Microenvironment Modulation in MCF-10A Cells. Biomolecules 2021; 11:biom11030420. [PMID: 33809098 PMCID: PMC8000760 DOI: 10.3390/biom11030420] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/01/2021] [Accepted: 03/09/2021] [Indexed: 01/23/2023] Open
Abstract
Lichens comprise a number of unique secondary metabolites with remarkable biological activities and have become an interesting research topic for cancer therapy. However, only a few of these metabolites have been assessed for their effectiveness against various in vitro models. Therefore, the aim of the present study was to assess the effect of extract Pseudevernia furfuracea (L.) Zopf (PSE) and its metabolite physodic acid (Phy) on tumour microenvironment (TME) modulation, focusing on epithelial–mesenchymal transition (EMT), cancer-associated fibroblasts (CAFs) transformation and angiogenesis. Here, we demonstrate, by using flow cytometry, Western blot and immunofluorescence microscopy, that tested compounds inhibited the EMT process in MCF-10A breast cells through decreasing the level of different mesenchymal markers in a time- and dose-dependent manner. By the same mechanisms, PSE and Phy suppressed the function of Transforming growth factor beta (TGF-β)-stimulated fibroblasts. Moreover, PSE and Phy resulted in a decreasing level of the TGF-β canonical pathway Smad2/3, which is essential for tumour growth. Furthermore, PSE and Phy inhibited angiogenesis ex ovo in a quail embryo chorioallantoic model, which indicates their potential anti-angiogenic activity. These results also provided the first evidence of the modulation of TME by these substances.
Collapse
Affiliation(s)
- Klaudia Petrova
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia; (K.P); (T.K.)
| | - Martin Kello
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia; (K.P); (T.K.)
- Correspondence: (M.K.); (J.M.)
| | - Tomas Kuruc
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia; (K.P); (T.K.)
| | - Miriam Backorova
- Department of Pharmaceutical Technology, Pharmacognosy and Botany, University of Veterinary Medicine and Pharmacy, 041 81 Košice, Slovakia;
| | - Eva Petrovova
- Department of Anatomy, Histology and Physiology, University of Veterinary Medicine and Pharmacy, 041 81 Košice, Slovakia;
| | - Maria Vilkova
- Department of NMR Spectroscopy, Institute of Chemistry, Faculty of Science, Pavol Jozef Šafárik University, Moyzesova 11, 040 11 Košice, Slovakia;
| | - Michal Goga
- Core Facility Cell Imaging and Ultrastructure Research, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria;
- Department of Botany, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University, Mánesova 23, 041 67 Košice, Slovakia; (D.R.); (M.B.)
| | - Dajana Rucova
- Department of Botany, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University, Mánesova 23, 041 67 Košice, Slovakia; (D.R.); (M.B.)
| | - Martin Backor
- Department of Botany, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University, Mánesova 23, 041 67 Košice, Slovakia; (D.R.); (M.B.)
| | - Jan Mojzis
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia; (K.P); (T.K.)
- Correspondence: (M.K.); (J.M.)
| |
Collapse
|
34
|
Tajbakhsh A, Farjami Z, Nesaei-Bajestani A, Afzaljavan F, Rivandi M, Moezzi A, Abedini S, Asghari M, Kooshyar MM, Homaei Shandiz F, Pasdar A. Evaluating the Association between CCR5delta32 Polymorphism (rs333) and the Risk of Breast Cancer in a Cohort of Iranian Population. IRANIAN JOURNAL OF PUBLIC HEALTH 2021; 50:583-591. [PMID: 34178806 PMCID: PMC8214612 DOI: 10.18502/ijph.v50i3.5604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Background CC chemokine receptor 5 (CCR5) is introduced as an immune response modulator. The activity of CCR5 influences breast tumour development in a p53-dependent manner. This study aimed to investigate the frequency of CCR5delta32 and its association with the risk of breast cancer in 1038 blood samples in North East of Iran. Methods In this case-control study, we genotyped 570 control samples and 468 breast cancer patients by a gel electrophoresis-based gap-polymerase chain reaction (gap-PCR) method Mashhad, Iran. The data were analyzed using the SPSS software. Results Of 570 controls included, 542 (95.09%) had CCR5delta32 wild/wild (W/W) genotype, 28 samples (4.91%) had CCR5delta32 wild/deletion (W/D) genotype and none of them were CCR5delta32 deletion/deletion (D/D) genotype (0%). While 428 samples of patients (91.45%) had CCR5delta32 W/W genotype, 40 samples (8.55%) had CCR5delta32 W/D and CCR5delta32 D/D homozygous was nil (0%) amongst cases. All samples were in the Hardy-Weinberg equilibrium (P>0.05). According to the allele frequency, D allele, as a risky allele, in the cases was more than the control samples (0.0427 vs 0.0245, respectively) (P=0.0206). Hence, W/D genotype may confer a risk effect (OR=1.77, CI: 1.09-2.90; P=0.0206) compared with WW genotype between case and control groups. Conclusion There is a statistically significant association between CCR5W/D and breast cancer risk. CCR5 may be regarded as a target for the prevention of breast cancer in certain conditions such as interaction with p53 variants, which remains to be further investigated.
Collapse
Affiliation(s)
- Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Medical Genetics & Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mash-had, Iran.,Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Farjami
- Department of Medical Genetics & Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mash-had, Iran.,Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abolfazl Nesaei-Bajestani
- Department of Basic Sciences, Faculty of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Fahimeh Afzaljavan
- Department of Medical Genetics & Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mash-had, Iran
| | - Mahdi Rivandi
- Department of Medical Genetics & Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mash-had, Iran
| | - Atefeh Moezzi
- Department of Medical Genetics & Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mash-had, Iran.,Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Soheila Abedini
- Department of Medical Genetics & Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mash-had, Iran
| | - Mahla Asghari
- Department of Medical Genetics & Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mash-had, Iran
| | - Mohammad Mahdi Kooshyar
- Department of Hematology-Oncology, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Alireza Pasdar
- Department of Medical Genetics & Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mash-had, Iran.,Division of Applied Medicine, Faculty of Medicine, University of Aberdeen, Foresterhill, Aberdeen, UK.,Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
35
|
Tinaburri L, Valente C, Teson M, Minafò YA, Cordisco S, Guerra L, Dellambra E. The Secretome of Aged Fibroblasts Promotes EMT-Like Phenotype in Primary Keratinocytes from Elderly Donors through BDNF-TrkB Axis. J Invest Dermatol 2020; 141:1052-1062.e12. [PMID: 32931807 DOI: 10.1016/j.jid.2020.08.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 08/11/2020] [Accepted: 08/21/2020] [Indexed: 02/07/2023]
Abstract
Age-related changes in the dermis can play a primary role in tumor initiation promoting the unrestrained proliferation of precancerous keratinocytes (KCs) through cytokines and GF secretion. We found a high percentage of epithelial-to-mesenchymal transition-like colonies raising in primary human KC cultures from old subjects after treatment with aged fibroblast supernatants (SPNs). Continuous extracellular signals were required for maintaining these changes. Conversely, the secretome did not induce epithelial-to-mesenchymal transition-like colonies in KCs from young subjects. SPN-treated aged KCs displayed the activation of pathways involved in the disjunction of cell‒cell adhesion, extracellular matrix remodeling, manifestation of a mesenchymal phenotype, and dedifferentiation programs. Moreover, they recovered proliferation and clonogenic ability and showed enhanced migration. We identified an age-related increase of the BDNF secretion from fibroblasts as well as of the expression of its receptor TrkB in KCs. BDNF treatment of aged KCs induced TrkB phosphorylation and recapitulated the modifications promoted by aged fibroblast SPN. Furthermore, the treatment with a specific antibody against BDNF or a TrkB antagonist inhibited the paracrine signaling preventing SPN-mediated morphological and molecular changes. Finally, BDNF induced signs of matrix invasion in a three-dimensional organotypic model. Therefore, we demonstrate that aged fibroblast SPN promotes phenotypic plasticity in KCs from the elderly through BDNF-TrkB axis.
Collapse
Affiliation(s)
| | | | - Massimo Teson
- Molecular and Cell Laboratory, IDI-IRCCS, Rome, Italy
| | | | - Sonia Cordisco
- Molecular and Cell Laboratory, IDI-IRCCS, Rome, Italy; Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | | | | |
Collapse
|
36
|
Loy TL, Vehlow D, Kauschke V, Müller M, Heiss C, Lips KS. Effects of BDNF and PEC Nanoparticles on Osteocytes. Molecules 2020; 25:molecules25184151. [PMID: 32927875 PMCID: PMC7570603 DOI: 10.3390/molecules25184151] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 12/21/2022] Open
Abstract
Bone substitute materials loaded with mediators that stimulate fracture healing are demanded in the clinical treatment in trauma surgery and orthopedics. Brain-derived neurotrophic factor (BDNF) enhances the proliferation and differentiation of mesenchymal stem cells into osteoblast. To load the implants with BDNF, a drug delivery system that allows the release of BDNF under spatiotemporal control would improve functionality. Polyelectrolyte complex nanoparticles (PECNP) have been reported as a suitable drug delivery system. The suitability of PECNP in contact with osteocytes as the main cell type of bone is not known so far. Thus, we aimed to verify that BDNF and PECNP loaded with BDNF (PECNP+BDNF) as well as pure PECNP have no negative effects on osteocytes in vitro. Therefore, the murine osteocyte cell line MLO-Y4 was treated with BDNF and PECNP+BDNF. The effects on proliferation were analyzed by the BrdU test (n = 5). The results demonstrated a significant increase in proliferation 24 h after BDNF application, whereas PECNP+BDNF did not lead to significant changes. Thus, we conclude that BDNF is an appropriate mediator to stimulate osteocytes. Since the addition of PECNP did not affect the viability of osteocytes, we conclude that PECNP are a suitable drug delivery system for bone implants.
Collapse
Affiliation(s)
- Thomas Leonhard Loy
- Experimental Trauma Surgery, Justus-Liebig-University, 35392 Giessen, Germany; (T.L.L.); (V.K.); (C.H.)
| | - David Vehlow
- Department Functional Colloidal Materials, Leibniz Institute of Polymer Research, 01069 Dresden, Germany; (D.V.); (M.M.)
| | - Vivien Kauschke
- Experimental Trauma Surgery, Justus-Liebig-University, 35392 Giessen, Germany; (T.L.L.); (V.K.); (C.H.)
| | - Martin Müller
- Department Functional Colloidal Materials, Leibniz Institute of Polymer Research, 01069 Dresden, Germany; (D.V.); (M.M.)
| | - Christian Heiss
- Experimental Trauma Surgery, Justus-Liebig-University, 35392 Giessen, Germany; (T.L.L.); (V.K.); (C.H.)
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital of Giessen-Marburg GmbH, Campus Giessen, 35392 Giessen, Germany
| | - Katrin Susanne Lips
- Experimental Trauma Surgery, Justus-Liebig-University, 35392 Giessen, Germany; (T.L.L.); (V.K.); (C.H.)
- Correspondence: ; Tel.: +49-641-99-30580
| |
Collapse
|
37
|
Serafim Junior V, Fernandes GMDM, Oliveira-Cucolo JGD, Pavarino EC, Goloni-Bertollo EM. Role of Tropomyosin-related kinase B receptor and brain-derived neurotrophic factor in cancer. Cytokine 2020; 136:155270. [PMID: 32911446 DOI: 10.1016/j.cyto.2020.155270] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 08/27/2020] [Indexed: 02/07/2023]
Abstract
The tropomyosin-related kinase B (TrkB) receptor is a member of the neurotrophic tyrosine kinase receptors family and, together with the brain-derived neurotrophic factor (BDNF), plays an important role in the development of breast cancer, lung cancer, neuroblastoma, colorectal cancer, leukemia, cervical cancer, gallbladder cancer, gastric cancer, kidney cancer, Ewing's sarcoma, esophageal cancer, and head and neck cancer. Overexpression of these two factors has been associated with increased processes involved in carcinogenesis, such as invasion, migration, epithelial-mesenchymal transition (EMT), angiogenesis, metastasis, cell proliferation, resistance to apoptosis, resistance to cell death due to loss of adhesion (anoikis), activation of cell proliferation pathways, regulation of tumor suppressor genes, and drug resistance, and is related to advanced clinical stage. Inhibition of the TrkB/BDNF axis using drugs in phase 1 studies, approved drugs, and small interfering RNA (siRNA) are promising strategies for the treatment of various malignant tumors in addition to increasing the sensitivity of cells resistant to chemotherapy, improving the effectiveness of drugs without increasing toxicity. Another factor related to poor cancer prognosis is the presence of cancer stem cells, having effects similar to the high expression of the TrkB/BDNF axis, on cancer. This review aimed to show the role of the TrkB/BDNF axis in several types of cancer, its possible use as a prognostic biomarker, the effects of inhibiting this axis, and its role in the cancer stem cells.
Collapse
Affiliation(s)
- Vilson Serafim Junior
- Genetics and Molecular Biology Research Unit (UPGEM), São José do Rio Preto Medical School (FAMERP), São José do Rio Preto, São Paulo, Brazil
| | - Glaucia Maria de Mendonça Fernandes
- Genetics and Molecular Biology Research Unit (UPGEM), São José do Rio Preto Medical School (FAMERP), São José do Rio Preto, São Paulo, Brazil
| | - Juliana Garcia de Oliveira-Cucolo
- Genetics and Molecular Biology Research Unit (UPGEM), São José do Rio Preto Medical School (FAMERP), São José do Rio Preto, São Paulo, Brazil
| | - Erika Cristina Pavarino
- Genetics and Molecular Biology Research Unit (UPGEM), São José do Rio Preto Medical School (FAMERP), São José do Rio Preto, São Paulo, Brazil
| | - Eny Maria Goloni-Bertollo
- Genetics and Molecular Biology Research Unit (UPGEM), São José do Rio Preto Medical School (FAMERP), São José do Rio Preto, São Paulo, Brazil.
| |
Collapse
|
38
|
Qiu J, Singh P, Pan G, de Paolis A, Champagne FA, Liu J, Cardoso L, Rodríguez-Contreras A. Defining the relationship between maternal care behavior and sensory development in Wistar rats: Auditory periphery development, eye opening and brain gene expression. PLoS One 2020; 15:e0237933. [PMID: 32822407 PMCID: PMC7442246 DOI: 10.1371/journal.pone.0237933] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 08/05/2020] [Indexed: 12/18/2022] Open
Abstract
Defining the relationship between maternal care, sensory development and brain gene expression in neonates is important to understand the impact of environmental challenges during sensitive periods in early life. In this study, we used a selection approach to test the hypothesis that variation in maternal licking and grooming (LG) during the first week of life influences sensory development in Wistar rat pups. We tracked the onset of the auditory brainstem response (ABR), the timing of eye opening (EO), middle ear development with micro-CT X-ray tomography, and used qRT-PCR to monitor changes in gene expression of the hypoxia-sensitive pathway and neurotrophin signaling in pups reared by low-LG or high-LG dams. The results show the first evidence that the transcription of genes involved in the hypoxia-sensitive pathway and neurotrophin signaling is regulated during separate sensitive periods that occur before and after hearing onset, respectively. Although the timing of ABR onset, EO, and the relative mRNA levels of genes involved in the hypoxia-sensitive pathway did not differ between pups from different LG groups, we found statistically significant increases in the relative mRNA levels of four genes involved in neurotrophin signaling in auditory brain regions from pups of different LG backgrounds. These results suggest that sensitivity to hypoxic challenge might be widespread in the auditory system of neonate rats before hearing onset, and that maternal LG may affect the transcription of genes involved in experience-dependent neuroplasticity.
Collapse
Affiliation(s)
- Jingyun Qiu
- Department of Biology and Center for Discovery and Innovation, City College, City University of New York, New York, New York, United States of America
| | - Preethi Singh
- Department of Biology and Center for Discovery and Innovation, City College, City University of New York, New York, New York, United States of America
| | - Geng Pan
- Department of Biology and Center for Discovery and Innovation, City College, City University of New York, New York, New York, United States of America
| | - Annalisa de Paolis
- Department of Biomedical Engineering, City College, City University of New York, New York, New York, United States of America
| | - Frances A. Champagne
- Department of Psychology, University of Texas at Austin, Austin, Texas, United States of America
| | - Jia Liu
- Neuroscience Initiative, Advanced Science Research Center at the Graduate Center, City University of New York, New York, New York, United States of America
| | - Luis Cardoso
- Department of Biomedical Engineering, City College, City University of New York, New York, New York, United States of America
| | - Adrián Rodríguez-Contreras
- Department of Biology and Center for Discovery and Innovation, City College, City University of New York, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
39
|
Hu X, Zou W, Liu D, Qin G, Jiang L. The Down-Regulation of TrkB Alleviates the Malignant Biological Behavior and Cancer Stem-Like Property of Laryngeal Cancer. Cancer Manag Res 2020; 12:6865-6875. [PMID: 32801910 PMCID: PMC7415445 DOI: 10.2147/cmar.s260693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/20/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND This study aimed to evaluate the effect of TrkB down-regulation on the malignant biological behavior and stem-like characteristics of laryngeal cancer. METHODS The relationship was analyzed between TrkB and clinicopathological parameters in patients with laryngeal cancer. The mRNA expressive levels of TrkB and miR-10a-5p were detected by qRT-PCR in laryngeal cancer tissues and cell lines. In vitro, Hep-2 and AMC-HN-8 cell proliferation, apoptosis and stem-like properties were detected by colony formation assay, flow cytometry, sphere formation, and Western blot, respectively. In vivo, the BALB/c nude mice model was used to evaluate the effect of TrkB on tumor growth. RESULTS The results showed that TrkB was related to smoking history, clinical stage, and lymph node metastasis, but had nothing to do with the gender, age, and tumor location of patients with laryngeal cancer. TrkB was highly expressed and miR-10a-5p was lowly expressed in laryngeal cancer tissues and cell lines. Down-regulation of TrkB inhibited Hep-2 and AMC-HN-8 cell proliferation and sphere formation as well as enhanced apoptosis, The result showed that miR-10a-5p bound to the 3'-UTR of BDNF by a dual-luciferase reporter assay. Down-regulation of miR-10a-5p induced up-regulation of TrkB promoting development of laryngeal cancer. In vivo, down-regulation of TrkB suppressed tumor growth and inhibited the expression of stem-like marker proteins and promoted apoptosis. CONCLUSION In conclusion, down-regulation of TrkB plays an important role in laryngeal cancer and is a promising target for future intervention strategies.
Collapse
Affiliation(s)
- Xiaoyan Hu
- Department of Pathogenic Biology, Southwest Medical University, Luzhou, Sichuan646000, People’s Republic of China
| | - Wujun Zou
- Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan646000, People’s Republic of China
| | - Dianzhong Liu
- Department of Clinical Laboratory, Affiliated Hospital of Stomatology, Southwest Medical University, Luzhou, Sichuan646000, People’s Republic of China
| | - Gang Qin
- Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan646000, People’s Republic of China
| | - Liang Jiang
- Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan646000, People’s Republic of China
| |
Collapse
|
40
|
Anderson G. Glioblastoma chemoresistance: roles of the mitochondrial melatonergic pathway. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2020; 3:334-355. [PMID: 35582450 PMCID: PMC8992488 DOI: 10.20517/cdr.2020.17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/18/2020] [Accepted: 04/24/2020] [Indexed: 12/14/2022]
Abstract
Treatment-resistance is common in glioblastoma (GBM) and the glioblastoma stem-like cells (GSC) from which they arise. Current treatment options are generally regarded as very poor and this arises from a poor conceptualization of the biological underpinnings of GBM/GSC and of the plasticity that these cells are capable of utilizing in response to different treatments. A number of studies indicate melatonin to have utility in the management of GBM/GSC, both per se and when adjunctive to chemotherapy. Recent work shows melatonin to be produced in mitochondria, with the mitochondrial melatonergic pathway proposed to be a crucial factor in driving the wide array of changes in intra- and inter-cellular processes, as well as receptors that can be evident in the cells of the GBM/GSC microenvironment. Variations in the enzymatic conversion of N-acetylserotonin (NAS) to melatonin may be especially important in GSC, as NAS can activate the tyrosine receptor kinase B to increase GSC survival and proliferation. Consequently, variations in the NAS/melatonin ratio may have contrasting effects on GBM/GSC survival. It is proposed that mitochondrial communication across cell types in the tumour microenvironment is strongly driven by the need to carefully control the mitochondrial melatonergic pathways across cell types, with a number of intra- and inter-cellular processes occurring as a consequence of the need to carefully regulate the NAS/melatonin ratio. This better integrates previously disparate data on GBM/GSC as well as providing clear future research and treatment options.
Collapse
Affiliation(s)
- George Anderson
- CRC Scotland & London, Eccleston Square, London SW1V 1PG, UK
| |
Collapse
|
41
|
Rogez B, Pascal Q, Bobillier A, Machuron F, Toillon RA, Tierny D, Chopin V, Le Bourhis X. Expression and Prognostic Significance of Neurotrophins and Their Receptors in Canine Mammary Tumors. Vet Pathol 2020; 57:507-519. [PMID: 32351171 DOI: 10.1177/0300985820921813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Accumulating data highlight the role of neurotrophins and their receptors in human breast cancer. This family includes nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF), both synthetized as proneurotrophins (proNGF and proBDNF). (pro)NGF and (pro)BDNF initiate their biological effects by binding to both their specific receptors TrkA and TrkB, respectively, and the common receptor p75NTR. Currently, no data are available about their expression and potential role in canine mammary tumors. The aim of this study was to investigate expression of proNGF and BDNF as well as their receptors TrkA, TrkB, and p75NTR in canine mammary carcinomas, and to correlate them with clinicopathological parameters (grade, histological type, lymph node status, recurrence, and distant metastasis) and survival. Immunohistochemistry was performed on serial sections of 96 canine mammary carcinomas with antibodies against proNGF, BDNF, TrkA, TrkB, and p75NTR. Of the 96 carcinomas, proNGF expression was detected in 71 (74%), BDNF in 79 (82%), TrkA in 94 (98%), TrkB in 35 (37%), and p75NTR in 44 (46%). No association was observed between proNGF, BDNF, or TrkA expression and either clinicopathological parameters or survival. TrkB and p75NTR expression were associated with favorable clinicopathological parameters as well as better overall survival.
Collapse
Affiliation(s)
- Bernadette Rogez
- University of Lille, INSERM U908 "Cell Plasticity and Cancer," Villeneuve d'Ascq, France.,OCR (Oncovet Clinical Research), Parc Eurasanté, Loos, France
| | - Quentin Pascal
- OCR (Oncovet Clinical Research), Parc Eurasanté, Loos, France
| | | | | | - Robert-Alain Toillon
- University of Lille, INSERM U908 "Cell Plasticity and Cancer," Villeneuve d'Ascq, France
| | | | - Valérie Chopin
- University of Lille, INSERM U908 "Cell Plasticity and Cancer," Villeneuve d'Ascq, France.,University of Picardie Jules Verne, Amiens, France.,Contributed equally to this work
| | - Xuefen Le Bourhis
- University of Lille, INSERM U908 "Cell Plasticity and Cancer," Villeneuve d'Ascq, France.,Contributed equally to this work
| |
Collapse
|
42
|
Clinical impact of melatonin on breast cancer patients undergoing chemotherapy; effects on cognition, sleep and depressive symptoms: A randomized, double-blind, placebo-controlled trial. PLoS One 2020; 15:e0231379. [PMID: 32302347 PMCID: PMC7164654 DOI: 10.1371/journal.pone.0231379] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 03/22/2020] [Indexed: 12/29/2022] Open
Abstract
This randomized, double-blinded, placebo-controlled trial tested the hypothesis that 20mg of melatonin before and during the first cycle of adjuvant chemotherapy for breast cancer (ACBC) reduced the side effects associated with cognitive impairment. We evaluated the effects of melatonin on cognition, depressive symptoms and sleep quality, and whether these effects were related to serum levels of Brain Derived Neurotrophic Factor (BDNF) and its receptor, tropomyosin kinase B (TrkB). Thirty-six women were randomly assigned to receive melatonin or placebo for 10 days. To evaluate cognitive performance, we used the Trail-Making-Test Parts A and B (A-B), Rey Auditory-Verbal Learning Test (RAVLT), Controlled Oral Word Association Test (COWAT) and an inhibitory task type Go / No-Go. Our results revealed that melatonin improved executive function on TMT scores, enhanced episodic memory (immediate and delayed) and recognition on RAVLT, and increased verbal fluency in the orthographic COWAT. The TMT-A-B(A-B) were negatively correlated with baseline levels of TrkB and BDNF, respectively. At the end of treatment, changes in TrkB and BDNF were inversely associated with depressive symptoms and sleep quality, but not with the TMT scores. These results suggest a neuroprotective effect of melatonin to counteract the adverse effects of ACBC on cognitive function, sleep quality and depressive symptoms.
Collapse
|
43
|
Identification of Long Noncoding RNAs as Predictors of Survival in Triple-Negative Breast Cancer Based on Network Analysis. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8970340. [PMID: 32190687 PMCID: PMC7073484 DOI: 10.1155/2020/8970340] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/31/2019] [Accepted: 01/21/2020] [Indexed: 12/24/2022]
Abstract
Breast cancer is the most common cancer observed in adult females, worldwide. Due to the heterogeneity and varied molecular subtypes of breast cancer, the molecular mechanisms underlying carcinogenesis in different subtypes of breast cancer are distinct. Recently, long noncoding RNAs (lncRNAs) have been shown to be oncogenic or play important roles in cancer suppression and are used as biomarkers for diagnosis and therapy. In this study, we identified 134 lncRNAs and 6,414 coding genes were differentially expressed in triple-negative (TN), human epidermal growth factor receptor 2- (HER2-) positive, luminal A-positive, and luminal B-positive breast cancer. Of these, 37 lncRNAs were found to be dysregulated in all four subtypes of breast cancers. Subtypes of breast cancer special modules and lncRNA-mRNA interaction networks were constructed through weighted gene coexpression network analysis (WGCNA). Survival analysis of another public datasets was used to verify the identified lncRNAs exhibiting potential indicative roles in TN prognosis. Results from heat map analysis of the identified lncRNAs revealed that five blocks were significantly displayed. High expressions of lncRNAs, including LINC00911, CSMD2-AS1, LINC01192, SNHG19, DSCAM-AS1, PCAT4, ACVR28-AS1, and CNTFR-AS1, and low expressions of THAP9-AS1, MALAT1, TUG1, CAHM, FAM2011, NNT-AS1, COX10-AS1, and RPARP-AS1 were associated with low survival possibility in TN breast cancers. This study provides novel lncRNAs as potential biomarkers for the therapeutic and prognostic classification of different breast cancer subtypes.
Collapse
|
44
|
DNA methylation landscape of triple-negative ductal carcinoma in situ (DCIS) progressing to the invasive stage in canine breast cancer. Sci Rep 2020; 10:2415. [PMID: 32051475 PMCID: PMC7015930 DOI: 10.1038/s41598-020-59260-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 01/16/2020] [Indexed: 11/09/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a subtype of breast cancer unresponsive to traditional receptor-targeted treatments, leading to a disproportionate number of deaths. Invasive breast cancer is believed to evolve from non-invasive ductal carcinoma in situ (DCIS). Detection of triple-negative DCIS (TN-DCIS) is challenging, therefore strategies to study molecular events governing progression of pre-invasive TN-DCIS to invasive TNBC are needed. Here, we study a canine TN-DCIS progression and investigate the DNA methylation landscape of normal breast tissue, atypical ductal hyperplasia (ADH), DCIS and invasive breast cancer. We report hypo- and hypermethylation of genes within functional categories related to cancer such as transcriptional regulation, apoptosis, signal transduction, and cell migration. DNA methylation changes associated with cancer-related genes become more pronounced at invasive breast cancer stage. Importantly, we identify invasive-only and DCIS-specific DNA methylation alterations that could potentially determine which lesions progress to invasive cancer and which could remain as pre-invasive DCIS. Changes in DNA methylation during TN-DCIS progression in this canine model correspond with gene expression patterns in human breast tissues. This study provides evidence for utilizing methylation status of gene candidates to define late-stage (DCIS and invasive), invasive stage only or DCIS stage only of TN-DCIS progression.
Collapse
|
45
|
Yin R, Zhao S, Qiu C. Brain-derived neurotrophic factor fused with a collagen-binding domain inhibits neuroinflammation and promotes neurological recovery of traumatic brain injury mice via TrkB signalling. ACTA ACUST UNITED AC 2020; 72:539-550. [PMID: 32034779 DOI: 10.1111/jphp.13233] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/01/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVES As one of the vital nutrient factors in central nervous system (CNS), brain-derived neurotrophic factor (BDNF) can significantly attenuate neuron damage and promote neurogenesis. Nevertheless, little research has been conducted on regulating the effect of BDNF on the inflammatory response after traumatic brain injury (TBI). METHODS In this study, we used BDNF fused with a collagen-binding domain (CBD-BDNF) to maintain a sufficient concentration of BDNF in the TBI hemisphere, and then, the regulatory effects of BDNF and CBD-BDNF on the inflammatory response of microglia were investigated both on a TBI mice model in vivo and LPS-stimulated microglia experiment in vitro. KEY FINDINGS The results revealed that BDNF and CBD-BDNF had similar effects on attenuating the pro-inflammatory reactions but promoting anti-inflammatory responses of microglia induced by LPS in vitro. Furthermore, CBD-BDNF significantly improved the neurological behaviours of TBI mice and alleviated the inflammatory reaction after TBI, while BDNF had weaker effects compared with those of CBD-BDNF. Additionally, the TrkB inhibitor K252a significantly inhibited the above effects of CBD-BDNF. CONCLUSIONS In conclusion, CBD-BDNF can promote the anti-inflammatory function of microglia and neurological recovery of TBI mice through TrkB signalling.
Collapse
Affiliation(s)
- Rui Yin
- Department of Neurosurgery, Huzhou Central Hospital, Huzhou, China
| | - Shufa Zhao
- Department of Neurosurgery, Huzhou Central Hospital, Huzhou, China
| | - Caixia Qiu
- Department of Neurosurgery, Huzhou Central Hospital, Huzhou, China
| |
Collapse
|
46
|
Yuan L, Sun S, Pan X, Zheng L, Li Y, Yang J, Wu C. Pseudoginsenoside-F11 improves long-term neurological function and promotes neurogenesis after transient cerebral ischemia in mice. Neurochem Int 2020; 133:104586. [DOI: 10.1016/j.neuint.2019.104586] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/07/2019] [Accepted: 11/04/2019] [Indexed: 12/14/2022]
|
47
|
Zhao Y, Liang W, Cai F, Wu Q, Wang Y. Fluconazole for Hypercortisolism in Cushing's Disease: A Case Report and Literature Review. Front Endocrinol (Lausanne) 2020; 11:608886. [PMID: 33391186 PMCID: PMC7774647 DOI: 10.3389/fendo.2020.608886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/12/2020] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Cushing's disease is associated with an increased risk of pulmonary fungal infection, which could be a relative contraindication for pituitary adenoma excision surgery. CASE We report a case of a patient with Cushing's disease and pulmonary Cryptococcus neoformans. A 48-year-old woman was admitted to our hospital because of moon face and edema. Laboratory and radiological findings suggested a diagnosis of Cushing's disease and pulmonary cryptococcus infection. Fluconazole 400 mg per day was administered intravenously and continued orally for 3 months. Both cryptococcus infection and hypercortisolism relieved and transsphenoidal resection was performed. CONCLUSION Cushing's disease can be effectively treated with fluconazole to normalize cortisol concentration prior to pituitary surgery. Fluconazole is an alternative treatment especially in Cushing's disease patients with cryptococcal pneumonia.
Collapse
Affiliation(s)
- Yiming Zhao
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China
| | - Weiwei Liang
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China
| | - Feng Cai
- Department of Neurosurgery, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China
| | - Qun Wu
- Department of Neurosurgery, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China
| | - Yongjian Wang
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Yongjian Wang,
| |
Collapse
|
48
|
Tajbakhsh A, Rivandi M, Abedini S, Pasdar A, Sahebkar A. Regulators and mechanisms of anoikis in triple-negative breast cancer (TNBC): A review. Crit Rev Oncol Hematol 2019; 140:17-27. [DOI: 10.1016/j.critrevonc.2019.05.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 12/13/2018] [Accepted: 05/14/2019] [Indexed: 12/17/2022] Open
|
49
|
Song Y, Wang G, Zhuang J, Ni J, Zhang S, Ye Y, Xia W. MicroRNA‑584 prohibits hepatocellular carcinoma cell proliferation and invasion by directly targeting BDNF. Mol Med Rep 2019; 20:1994-2001. [PMID: 31257521 DOI: 10.3892/mmr.2019.10424] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 05/22/2019] [Indexed: 11/05/2022] Open
Abstract
In recent decades, an increasing number of studies have demonstrated that numerous microRNAs (miRNAs) are dysregulated in hepatocellular carcinoma (HCC); these aberrantly expressed miRNAs are contributing regulators of HCC formation and progression. Thus, revealing the biological roles of miRNAs in HCC may provide novel information on the identification of effective therapeutic targets and valuable diagnosis methods. Herein, reverse transcription‑quantitative PCR was performed to determine the expression profile of miRNA‑584 (miR‑584) in HCC tissues and cell lines. Cell Counting Kit‑8 and cell invasion assays were utilized to evaluate the influence of mIR‑584 overexpression on HCC cell proliferation and invasion, respectively. The present study demonstrated that miR‑584 expression was reduced in HCC tissues and cell lines compared with normal controls. Clinical analysis indicated that decreased miR‑584 expression was significantly associated with tumor size, TNM stage and lymph node metastasis of patients with HCC. Additionally, resumption of miR‑584 expression inhibited proliferation and invasion of HCC cells. Mechanistically, it was demonstrated that miR‑584 can directly interact with the 3'‑untranslated regions of brain‑derived neurotrophic factor (BDNF) mRNA, and reduce its mRNA and protein levels in HCC cells. Furthermore, BDNF was upregulated in HCC tissues, and its level was inversely correlated with miR‑584 expression. Notably, restored BDNF expression antagonized the inhibitory effects of miR‑584 overexpression on HCC cells. In conclusion, miR‑584 may serve tumor‑suppressive roles in HCC by directly targeting BDNF, thus suggesting that miR‑584 may serve as a potential candidate for treatment of patients with this disease.
Collapse
Affiliation(s)
- Yanan Song
- Department of Nuclear Medicine, The Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| | - Guoyu Wang
- Department of Nuclear Medicine, The Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| | - Juhua Zhuang
- Department of Nuclear Medicine, The Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| | - Jing Ni
- Department of Nuclear Medicine, The Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| | - Suiliang Zhang
- Department of Oncology, The Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| | - Ying Ye
- Department of Nuclear Medicine, The Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| | - Wei Xia
- Department of Nuclear Medicine, The Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| |
Collapse
|
50
|
γ-Synuclein Induces Human Cortical Astrocyte Proliferation and Subsequent BDNF Expression and Release. Neuroscience 2019; 410:41-54. [PMID: 31078687 DOI: 10.1016/j.neuroscience.2019.04.057] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 04/29/2019] [Accepted: 04/30/2019] [Indexed: 01/03/2023]
Abstract
γ-Synuclein (γ-syn) is expressed by astrocytes in the human nervous system, and increased extracellularly in the brain and cerebrospinal fluid of individuals diagnosed with Alzheimer's disease. Upregulation of γ-syn also coincides with proliferation of glioblastomas and other cancers. In order to better understand regulation and function of extracellular γ-syn, primary human cortical astrocytes were treated with γ-syn conditioned media at various physiological concentrations (50, 100, 150 nM) after cell synchronization. Additionally, extracellular brain-derived neurotrophic factor (BDNF), a neuroprotective growth factor released by astrocytes that has been shown to be decreased extracellularly in neurodegenerative disease, was observed in response to γ-syn treatment. Analysis of 5-bromodeoxyuridine (BrdU) and propidium iodide through flow cytometry 24 h after release from synchronization revealed an increase in G2/M phase of the cell cycle with 100 nM γ-syn during initial cell division, an effect that was reversed at 48 h. However, increased extracellular BDNF was observed at 48 h with 100 nM and 150 nM γ-syn treatment with no difference between controls at 24 h. Further analysis of cell cycle markers with immunocytochemistry of BrdU and Ki67 after treatment with 100 nM γ-syn confirmed increased initial cell proliferation and decreased non-proliferating cells. Western blot analysis demonstrated increased γ-syn levels after 100 nM treatment at 24 and 48 h, and increased pro-BDNF, mature BDNF and cell viability at 48 h. The results demonstrate that γ-syn internalization by human cortical astrocytes causes upregulation of the cell cycle, followed by subsequent BDNF expression and release.
Collapse
|