1
|
Alami M, Morvaridzadeh M, El Khayari A, Boumezough K, El Fatimy R, Khalil A, Fulop T, Berrougui H. Reducing Alzheimer's disease risk with SGLT2 inhibitors: From glycemic control to neuroprotection. Ageing Res Rev 2025; 108:102751. [PMID: 40204129 DOI: 10.1016/j.arr.2025.102751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/28/2025] [Accepted: 04/04/2025] [Indexed: 04/11/2025]
Abstract
Recent research has established a strong link between metabolic abnormalities and an increased risk of dementia. In parallel, there is growing epidemiological evidence supporting the neuroprotective effects of antidiabetic medications against cognitive impairments. Among these, sodium-glucose co-transporter (SGLT2) inhibitors have emerged as pharmacological candidates with promising potential in alleviating the burden of age-related diseases, particularly neurodegenerative diseases (NDD). SGLT2 inhibitor therapies are FDA-approved medications routinely prescribed to manage diabetes. This novel class was initially developed to address cardiovascular disorders and to reduce the risk of hypoglycemia associated with insulin-secretagogue agents. It subsequently attracted growing interest for its beneficial effects on central nervous system (CNS) disorders. However, the molecular mechanisms through which these glucose-lowering therapies mitigate cognitive decline and limit the progression of certain brain degenerative diseases remain largely unexplored. Consequently, the neuroscientific community needs further studies that gather, analyze, and critically discuss the available mechanistic evidence regarding the neuroprotective effects of SGLT2 inhibitors. This review aims to critically examine the most relevant published findings, both in vitro and in vivo, as well as human studies evaluating the impact of SGLT2 inhibitors exposure on Alzheimer's disease (AD). It seeks to integrate the current understanding of their beneficial effects at the molecular level and their role in addressing the pathophysiology and neuropathology of AD. These insights will help extend our knowledge of how SGLT2 inhibitor therapies are associated with reduced risk of dementia and thus shed light on the link between diabetes and AD.
Collapse
Affiliation(s)
- Mehdi Alami
- Sultan Moulay Sliman University, Polydisciplinary Faculty, Department of Biology, Beni Mellal, Morocco; University of Sherbrooke, Faculty of Medicine and Health Sciences, Department of Medicine, Geriatrics Service, Sherbrooke, QC, Canada
| | - Mojgan Morvaridzadeh
- University of Sherbrooke, Faculty of Medicine and Health Sciences, Department of Medicine, Geriatrics Service, Sherbrooke, QC, Canada
| | - Abdellatif El Khayari
- Faculty of Medical Sciences, UM6P Hospitals, Mohammed VI Polytechnic University, Ben-Guerir 43150, Morocco; Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Kaoutar Boumezough
- Sultan Moulay Sliman University, Polydisciplinary Faculty, Department of Biology, Beni Mellal, Morocco; University of Sherbrooke, Faculty of Medicine and Health Sciences, Department of Medicine, Geriatrics Service, Sherbrooke, QC, Canada
| | - Rachid El Fatimy
- Faculty of Medical Sciences, UM6P Hospitals, Mohammed VI Polytechnic University, Ben-Guerir 43150, Morocco
| | - Abdelouahed Khalil
- University of Sherbrooke, Faculty of Medicine and Health Sciences, Department of Medicine, Geriatrics Service, Sherbrooke, QC, Canada
| | - Tamas Fulop
- University of Sherbrooke, Faculty of Medicine and Health Sciences, Department of Medicine, Geriatrics Service, Sherbrooke, QC, Canada
| | - Hicham Berrougui
- Sultan Moulay Sliman University, Polydisciplinary Faculty, Department of Biology, Beni Mellal, Morocco; University of Sherbrooke, Faculty of Medicine and Health Sciences, Department of Medicine, Geriatrics Service, Sherbrooke, QC, Canada.
| |
Collapse
|
2
|
Xu B, Liu Y, Zhang T, He Z, Zhou J. A comprehensive review of the efficacy and safety of ertugliflozin. Expert Opin Drug Metab Toxicol 2025; 21:373-382. [PMID: 39838812 DOI: 10.1080/17425255.2025.2457393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/31/2024] [Accepted: 01/20/2025] [Indexed: 01/23/2025]
Abstract
INTRODUCTION Ertugliflozin is the fourth sodium-glucose co-transporter (SGLT2) inhibitor approved by the US FDA in 2017 for the treatment of type 2 diabetes mellitus. AREAS COVERED The main purpose of this review is to evaluate the clinical efficacy and safety of ertugliflozin. We conducted a search of relevant literature on ertugliflozin in the PubMed and Web of Science databases up to 22 October 2024. EXPERT OPINION Ertugliflozin reduces the incidence of composite renal endpoints, maintain eGFR, and decreases urine albumin to creatinine ratio. Cardiovascular effects of ertugliflozin are primarily demonstrated in the VERTIS CV trial. However, the cardiovascular benefits of ertugliflozin are inferior to those of empagliflozin or canagliflozin. Ertugliflozin had non-significant impact on major adverse cardiovascular events, cardiovascular death, or hospitalization for heart failure (HHF); ertugliflozin did reduce the risk of HHF, including in elderly population. Notably, ertugliflozin did not significantly reduce NT-proBNP levels in heart failure patients, while it decreased the incidence of persistent ventricular tachycardia or ventricular fibrillation events. Ertugliflozin may be beneficial for ocular diseases or neurodegenerative diseases. Adverse events associated with ertugliflozin are similar to those of previously approved SGLT2 inhibitors, although it is associated with a higher overall risk of cancer, especially renal cancer.
Collapse
Affiliation(s)
- Bo Xu
- The First Affiliated Hospital, Hunan Provincial Clinical Medical Research Center for Drug Evaluation of Major Chronic Diseases, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Hengyang Clinical Pharmacology Research Center, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Hengyang Key Laboratory of Clinical Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Pharmacy Department, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yilin Liu
- The First Affiliated Hospital, Hunan Provincial Clinical Medical Research Center for Drug Evaluation of Major Chronic Diseases, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Hengyang Clinical Pharmacology Research Center, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Hengyang Key Laboratory of Clinical Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Pharmacy Department, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Tianqiao Zhang
- The First Affiliated Hospital, Hunan Provincial Clinical Medical Research Center for Drug Evaluation of Major Chronic Diseases, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Hengyang Clinical Pharmacology Research Center, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Hengyang Key Laboratory of Clinical Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Pharmacy Department, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Zunbo He
- The First Affiliated Hospital, Hunan Provincial Clinical Medical Research Center for Drug Evaluation of Major Chronic Diseases, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Hengyang Clinical Pharmacology Research Center, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Hengyang Key Laboratory of Clinical Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jiecan Zhou
- The First Affiliated Hospital, Hunan Provincial Clinical Medical Research Center for Drug Evaluation of Major Chronic Diseases, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Hengyang Clinical Pharmacology Research Center, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Hengyang Key Laboratory of Clinical Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Pharmacy Department, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
3
|
Zhang Y, Liao X, Xu J, Yin J, Li S, Li M, Shi X, Zhang S, Li C, Xu W, Yu X, Yang Y. The Promising Potency of Sodium-Glucose Cotransporter 2 Inhibitors in the Prevention of and as Treatment for Cognitive Impairment Among Type 2 Diabetes Patients. Biomedicines 2024; 12:2783. [PMID: 39767690 PMCID: PMC11673520 DOI: 10.3390/biomedicines12122783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 11/28/2024] [Accepted: 12/04/2024] [Indexed: 01/03/2025] Open
Abstract
Type 2 diabetes mellitus (T2DM), accounting for the majority of diabetes mellitus prevalence, is associated with an increased risk of cognition decline and deterioration of cognition function in diabetic patients. The sodium-glucose cotransporter 2 (SGLT2), located in the renal proximal tubule, plays a role in urine glucose reabsorption. SGLT2 inhibitors (SGLT2i), have shown potential benefits beyond cardiac and renal improvement in preventing and treating cognitive impairment (CI), including mild cognitive impairment, Alzheimer's disease and vascular dementia in T2DM patients. Studies suggest that SGLT2i may ameliorate diabetic CI through metabolism pathways, inflammation, oxidative stress, neurotrophic factors and AChE inhibition. Clinical trials and meta-analyses have reported significant and insignificant results. Given their vascular effects, SGLT2i may offer unique protection against vascular CI. This review compiles mechanisms and clinical evidence, emphasizing the need for future analysis, evaluation, trials and meta-analyses to verify and recommend optimal SGLT2i selection and dosage for specific patients.
Collapse
Affiliation(s)
- Yibin Zhang
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.Z.); (X.L.); (J.X.); (J.Y.); (S.L.); (M.L.); (X.S.); (S.Z.); (C.L.); (W.X.); (X.Y.)
- Second Clinical College, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaobin Liao
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.Z.); (X.L.); (J.X.); (J.Y.); (S.L.); (M.L.); (X.S.); (S.Z.); (C.L.); (W.X.); (X.Y.)
- Second Clinical College, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jialu Xu
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.Z.); (X.L.); (J.X.); (J.Y.); (S.L.); (M.L.); (X.S.); (S.Z.); (C.L.); (W.X.); (X.Y.)
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan 430030, China
| | - Jiaxin Yin
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.Z.); (X.L.); (J.X.); (J.Y.); (S.L.); (M.L.); (X.S.); (S.Z.); (C.L.); (W.X.); (X.Y.)
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan 430030, China
| | - Shan Li
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.Z.); (X.L.); (J.X.); (J.Y.); (S.L.); (M.L.); (X.S.); (S.Z.); (C.L.); (W.X.); (X.Y.)
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan 430030, China
| | - Mengni Li
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.Z.); (X.L.); (J.X.); (J.Y.); (S.L.); (M.L.); (X.S.); (S.Z.); (C.L.); (W.X.); (X.Y.)
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan 430030, China
| | - Xiaoli Shi
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.Z.); (X.L.); (J.X.); (J.Y.); (S.L.); (M.L.); (X.S.); (S.Z.); (C.L.); (W.X.); (X.Y.)
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan 430030, China
| | - Shujun Zhang
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.Z.); (X.L.); (J.X.); (J.Y.); (S.L.); (M.L.); (X.S.); (S.Z.); (C.L.); (W.X.); (X.Y.)
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan 430030, China
| | - Chunyu Li
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.Z.); (X.L.); (J.X.); (J.Y.); (S.L.); (M.L.); (X.S.); (S.Z.); (C.L.); (W.X.); (X.Y.)
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan 430030, China
| | - Weijie Xu
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.Z.); (X.L.); (J.X.); (J.Y.); (S.L.); (M.L.); (X.S.); (S.Z.); (C.L.); (W.X.); (X.Y.)
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan 430030, China
| | - Xuefeng Yu
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.Z.); (X.L.); (J.X.); (J.Y.); (S.L.); (M.L.); (X.S.); (S.Z.); (C.L.); (W.X.); (X.Y.)
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan 430030, China
| | - Yan Yang
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.Z.); (X.L.); (J.X.); (J.Y.); (S.L.); (M.L.); (X.S.); (S.Z.); (C.L.); (W.X.); (X.Y.)
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan 430030, China
| |
Collapse
|
4
|
Davri AS, Katsenos AP, Tulyaganova GK, Tzavellas NP, Simos YV, Kanellos FS, Konitsiotis S, Dounousi E, Niaka K, Bellou S, Lekkas P, Bekiari C, Batistatou A, Peschos D, Tsamis KI. The SGLT2 inhibitor empagliflozin exerts neuroprotective effect against hydrogen peroxide-induced toxicity on primary neurons. Metab Brain Dis 2024; 40:15. [PMID: 39560812 DOI: 10.1007/s11011-024-01478-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 08/20/2024] [Indexed: 11/20/2024]
Abstract
Oxidative stress has been implicated in several chronic pathological conditions, leading to cell death and injury. Alzheimer's disease (AD) and type 2 diabetes mellitus (T2DM) have several overlapping mechanisms as they are both characterized by increased oxidative stress, inflammation, insulin resistance, and autophagy dysfunction. The objective of this study was to elucidate the possible neuroprotective effect of empagliflozin, a sodium-glucose co-transporter 2 inhibitor (SGLT2i), against hydrogen peroxide-induced neurotoxicity in primary hippocampal neurons derived from wild-type (WT) and transgenic AD rats (TgF344-AD). An in vitro oxidative stress model was established using hydrogen peroxide to induce damage to neurons. Empagliflozin pretreatment was tested on this model initially through a cell viability assay. Flow cytometry and cell sorting were employed to discriminate the apoptotic and necrotic neuronal cell populations. Finally, the morphological and morphometric features of the neurons, including dendritic length and spine density, were evaluated using the SNT ImageJ plug-in following immunostaining with GFP. Sholl analysis was used to evaluate the impact of empagliflozin and hydrogen peroxide on dendritic arborization. Empagliflozin tended to ameliorate hydrogen peroxide-induced toxicity in primary neurons derived from WT rats and led to the preservation of dendritic spine density in both WT and TgF344-AD neurons (one-way ANOVA, p < 0.05). A modest improvement in dendrites' length was also observed. Empagliflozin pretreatment can partially mitigate dendritic and spine alterations induced by hydrogen peroxide in primary neurons. These results underscore the impact of empagliflozin on neuronal morphology and highlight its potential as a candidate for the treatment and/or prevention of AD.
Collapse
Affiliation(s)
- Athena S Davri
- Laboratory of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, 45110, Greece
- Department of Pathology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, 45110, Greece
| | - Andreas P Katsenos
- Laboratory of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, 45110, Greece
- Nanomedicine and Nanobiotechnology Research Group, University of Ioannina, Ioannina, 45110, Greece
| | - Guzal K Tulyaganova
- Laboratory of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, 45110, Greece
| | - Nikolaos P Tzavellas
- Laboratory of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, 45110, Greece
- Nanomedicine and Nanobiotechnology Research Group, University of Ioannina, Ioannina, 45110, Greece
| | - Yannis V Simos
- Laboratory of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, 45110, Greece
- Nanomedicine and Nanobiotechnology Research Group, University of Ioannina, Ioannina, 45110, Greece
| | - Foivos S Kanellos
- Laboratory of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, 45110, Greece
| | - Spyridon Konitsiotis
- Department of Neurology, Faculty of Medicine, School of Health Sciences, University Hospital of Ioannina, Ioannina, 45110, Greece
| | - Evangelia Dounousi
- Department of Nephrology, Faculty of Medicine, School of Health Sciences, Dialysis Center, University of Ιoannina, Nephroxenia Ioannina, Ioannina, 45110, Greece
| | - Konstantina Niaka
- Department of Biological Applications and Technology, School of Health Sciences, Institute of Biosciences, University Research Centre, University of Ioannina, Ioannina, 45110, Greece
| | - Sofia Bellou
- Biomedical Research Institute, University of Ioannina Network of Research Supporting Laboratories (NRSL) Confocal Laser Scanning Microscopy Unit and Foundation for Research & Technology-Hellas, University Campus, Ioannina, 45110, Greece
| | - Panagiotis Lekkas
- Laboratory of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, 45110, Greece
| | - Chryssa Bekiari
- Laboratory of Anatomy, Histology & Embryology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Anna Batistatou
- Department of Pathology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, 45110, Greece
| | - Dimitrios Peschos
- Laboratory of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, 45110, Greece
- Nanomedicine and Nanobiotechnology Research Group, University of Ioannina, Ioannina, 45110, Greece
| | - Konstantinos I Tsamis
- Laboratory of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, 45110, Greece.
- Nanomedicine and Nanobiotechnology Research Group, University of Ioannina, Ioannina, 45110, Greece.
- Department of Neurology, Faculty of Medicine, School of Health Sciences, University Hospital of Ioannina, Ioannina, 45110, Greece.
| |
Collapse
|
5
|
Chen P, Liang L, Dai Y, Hui S. The role and mechanism of dapagliflozin in Alzheimer disease: A review. Medicine (Baltimore) 2024; 103:e39687. [PMID: 39331931 PMCID: PMC11441869 DOI: 10.1097/md.0000000000039687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/29/2024] Open
Abstract
Alzheimer disease (AD), as the main type of dementia, is primarily characterized by cognitive dysfunction across multiple domains. Current drugs for AD have not achieved the desired clinical efficacy due to potential risks, inapplicability, high costs, significant side effects, and poor patient compliance. However, recent findings offer new hope by suggesting that sodium-glucose cotransporter 2 inhibitors (SGLT-2i) may possess neuroprotective properties, potentially opening up novel avenues for the treatment of AD. This review delves deeply into the multifaceted mechanisms of action of SGLT-2i in AD, encompassing antioxidative stress, antineuroinflammation, upregulation of autophagy, antiapoptosis, acetylcholinesterase inhibitor activity, and protection of endothelial cells against atherosclerosis and damage to the blood-brain barrier, among others. Furthermore, it provides an overview of recent advances in clinical research on this drug. These findings suggest that SGLT-2i is poised to emerge as a pivotal candidate for the treatment of AD, given its diverse functional effects.
Collapse
Affiliation(s)
- Ping Chen
- Department of Geriatrics, Hunan Provincial People's Hospital Hunan Normal University First Affiliated Hospital, Changsha, China
| | | | | | | |
Collapse
|
6
|
Isop LM, Neculau AE, Necula RD, Kakucs C, Moga MA, Dima L. Metformin: The Winding Path from Understanding Its Molecular Mechanisms to Proving Therapeutic Benefits in Neurodegenerative Disorders. Pharmaceuticals (Basel) 2023; 16:1714. [PMID: 38139841 PMCID: PMC10748332 DOI: 10.3390/ph16121714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/25/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Metformin, a widely prescribed medication for type 2 diabetes, has garnered increasing attention for its potential neuroprotective properties due to the growing demand for treatments for Alzheimer's, Parkinson's, and motor neuron diseases. This review synthesizes experimental and clinical studies on metformin's mechanisms of action and potential therapeutic benefits for neurodegenerative disorders. A comprehensive search of electronic databases, including PubMed, MEDLINE, Embase, and Cochrane library, focused on key phrases such as "metformin", "neuroprotection", and "neurodegenerative diseases", with data up to September 2023. Recent research on metformin's glucoregulatory mechanisms reveals new molecular targets, including the activation of the LKB1-AMPK signaling pathway, which is crucial for chronic administration of metformin. The pleiotropic impact may involve other stress kinases that are acutely activated. The precise role of respiratory chain complexes (I and IV), of the mitochondrial targets, or of the lysosomes in metformin effects remains to be established by further research. Research on extrahepatic targets like the gut and microbiota, as well as its antioxidant and immunomodulatory properties, is crucial for understanding neurodegenerative disorders. Experimental data on animal models shows promising results, but clinical studies are inconclusive. Understanding the molecular targets and mechanisms of its effects could help design clinical trials to explore and, hopefully, prove its therapeutic effects in neurodegenerative conditions.
Collapse
Affiliation(s)
- Laura Mihaela Isop
- Department of Fundamental, Prophylactic and Clinical Sciences, Faculty of Medicine, Transilvania University of Brasov, 500036 Brașov, Romania; (L.M.I.)
| | - Andrea Elena Neculau
- Department of Fundamental, Prophylactic and Clinical Sciences, Faculty of Medicine, Transilvania University of Brasov, 500036 Brașov, Romania; (L.M.I.)
| | - Radu Dan Necula
- Department of Medical and Surgical Specialties, Faculty of Medicine, Transilvania University of Brasov, 500036 Brașov, Romania
| | - Cristian Kakucs
- Department of Medical and Surgical Specialties, Faculty of Medicine, Transilvania University of Brasov, 500036 Brașov, Romania
| | - Marius Alexandru Moga
- Department of Medical and Surgical Specialties, Faculty of Medicine, Transilvania University of Brasov, 500036 Brașov, Romania
| | - Lorena Dima
- Department of Fundamental, Prophylactic and Clinical Sciences, Faculty of Medicine, Transilvania University of Brasov, 500036 Brașov, Romania; (L.M.I.)
| |
Collapse
|
7
|
Goodarzi G, Tehrani SS, Fana SE, Moradi-Sardareh H, Panahi G, Maniati M, Meshkani R. Crosstalk between Alzheimer's disease and diabetes: a focus on anti-diabetic drugs. Metab Brain Dis 2023; 38:1769-1800. [PMID: 37335453 DOI: 10.1007/s11011-023-01225-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 04/26/2023] [Indexed: 06/21/2023]
Abstract
Alzheimer's disease (AD) and Type 2 diabetes mellitus (T2DM) are two of the most common age-related diseases. There is accumulating evidence of an overlap in the pathophysiological mechanisms of these two diseases. Studies have demonstrated insulin pathway alternation may interact with amyloid-β protein deposition and tau protein phosphorylation, two essential factors in AD. So attention to the use of anti-diabetic drugs in AD treatment has increased in recent years. In vitro, in vivo, and clinical studies have evaluated possible neuroprotective effects of anti-diabetic different medicines in AD, with some promising results. Here we review the evidence on the therapeutic potential of insulin, metformin, Glucagon-like peptide-1 receptor agonist (GLP1R), thiazolidinediones (TZDs), Dipeptidyl Peptidase IV (DPP IV) Inhibitors, Sulfonylureas, Sodium-glucose Cotransporter-2 (SGLT2) Inhibitors, Alpha-glucosidase inhibitors, and Amylin analog against AD. Given that many questions remain unanswered, further studies are required to confirm the positive effects of anti-diabetic drugs in AD treatment. So to date, no particular anti-diabetic drugs can be recommended to treat AD.
Collapse
Affiliation(s)
- Golnaz Goodarzi
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Student Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pathobiology and Laboratory Sciences, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Sadra Samavarchi Tehrani
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Student Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeed Ebrahimi Fana
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Student Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Ghodratollah Panahi
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmood Maniati
- English Department, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Reza Meshkani
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Nakhal MM, Jayaprakash P, Aburuz S, Sadek B, Akour A. Canagliflozin Ameliorates Oxidative Stress and Autistic-like Features in Valproic-Acid-Induced Autism in Rats: Comparison with Aripiprazole Action. Pharmaceuticals (Basel) 2023; 16:ph16050769. [PMID: 37242552 DOI: 10.3390/ph16050769] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/06/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Based on their proven anti-inflammatory and antioxidant effects, recent studies have examined the therapeutic potential of the sodium-glucose cotransporter 2 (SGLT2) inhibitors in neurodevelopmental disorders such as autism spectrum disorder (ASD). Therefore, the aim of this study is to assess the effects of subchronic systemic treatment with intraperitoneal (i.p.) canagliflozin (20, 50, and 100 mg/kg) compared to aripiprazole (ARP) (3 mg/g, i.p.) in a valproic acid (VPA)-induced rat model of autism. The behavioral characteristics of ASD, oxidative stress, and acetylcholinesterase (AChE) activity in rats with ASD-like behaviors, which were induced by prenatal exposure to VPA, were evaluated. The behavioral assessment methods used for this study were the open field test (OFT), the marble-burying test (MBT), and the nestlet-shredding test (NST) to examine their exploratory, anxiety, and compulsiveness-like actions, while the biochemical assessment used for this study was an ELISA colorimetric assay to measure ASD biomarker activity in the hippocampus, prefrontal cortex, and cerebellum. Rats that were pretreated with 100 mg/kg of canagliflozin displayed a significantly lower percentage of shredding (1.12 ± 0.6%, p < 0.01) compared to the ARP group (3.52 ± 1.6%). Pretreatment with (20 mg/kg, 50 mg/kg, and 100 mg/kg) canagliflozin reversed anxiety levels and hyperactivity and reduced hyper-locomotor activity significantly (161 ± 34.9 s, p < 0.05; 154 ± 44.7 s, p < 0.05; 147 ± 33.6 s, p < 0.05) when compared with the VPA group (303 ± 140 s). Moreover, canagliflozin and ARP mitigated oxidative stress status by restoring levels of glutathione (GSH) and catalase (CAT) and increasing the levels of malondialdehyde (MDA) in all tested brain regions. The observed results propose repurposing of canagliflozin in the therapeutic management of ASD. However, further investigations are still required to verify the clinical relevance of canagliflozin in ASD.
Collapse
Affiliation(s)
- Mohammed Moutaz Nakhal
- Department of Biochemistry and Molecular Biology Sciences, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Petrilla Jayaprakash
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Salahdein Aburuz
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al-Ain P.O. Box 17666, United Arab Emirates
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman 11942, Jordan
| | - Bassem Sadek
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al-Ain P.O. Box 17666, United Arab Emirates
| | - Amal Akour
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al-Ain P.O. Box 17666, United Arab Emirates
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman 11942, Jordan
| |
Collapse
|
9
|
Pang B, Zhang LL, Li B, Sun FX, Wang ZD. The sodium glucose co-transporter 2 inhibitor ertugliflozin for Alzheimer's disease: Inhibition of brain insulin signaling disruption-induced tau hyperphosphorylation. Physiol Behav 2023; 263:114134. [PMID: 36809844 DOI: 10.1016/j.physbeh.2023.114134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023]
Abstract
An antidiabetic agent sodium glucose co-transporter 2 (SGLT2) inhibitor ertugliflozin has been revealed to bind to catalytic anionic site of acetylcholinesterase (AChE), which is considered to be associated with the cognitive decline in neurodegenerative diseases, such as Alzheimer's disease (AD). The aim of the present study was thus to probe the effect of ertugliflozin on AD. Intracerebroventricular injection of streptozotocin (STZ/i.c.v) (3 mg/kg) was done bilaterally in male Wistar rats at 7-8 weeks of age. Two treatment doses (5 mg/kg and 10 mg/kg) of ertugliflozin were given intragastrically to STZ/i.c.v-induced rats for 20 days daily for behavioral assessment. Biochemical estimations of cholinergic activity, neuronal apoptosis, mitochondrial function and synaptic plasticity were performed. Behavioral results with ertugliflozin treatment revealed attenuation of cognitive deficit. Ertugliflozin also inhibited hippocampal AChE activity, downregulated pro-apoptotic marker expression, as well as mitigated mitochondrial dysfunction and synaptic damage in STZ/i.c.v rats. Importantly, we found that the hyperphosphorylation of tau in the hippocampus of STZ/i.c.v rats was decreased after oral administration of ertugliflozin, which was accompanied by decreased Phospho.IRS-1Ser307/Total.IRS-1 ratio and increased Phospho.AktSer473/Total.Akt and Phospho.GSK3βSer9/Total.GSK3β ratios. Our results indicated that treatment with ertugliflozin reversed AD pathology, which may be associated with inhibition of insulin signaling disruption-induced tau hyperphosphorylation.
Collapse
Affiliation(s)
- Bo Pang
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China; Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin 300134, China
| | - Lu-Lu Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Bin Li
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China; Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin 300134, China
| | - Feng-Xian Sun
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Zhi-Da Wang
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China; Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin 300134, China.
| |
Collapse
|
10
|
Amin AM, Mostafa H, Khojah HMJ. Insulin resistance in Alzheimer's disease: The genetics and metabolomics links. Clin Chim Acta 2023; 539:215-236. [PMID: 36566957 DOI: 10.1016/j.cca.2022.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/16/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease with significant socioeconomic burden worldwide. Although genetics and environmental factors play a role, AD is highly associated with insulin resistance (IR) disorders such as metabolic syndrome (MS), obesity, and type two diabetes mellitus (T2DM). These findings highlight a shared pathogenesis. The use of metabolomics as a downstream systems' biology (omics) approach can help to identify these shared metabolic traits and assist in the early identification of at-risk groups and potentially guide therapy. Targeting the shared AD-IR metabolic trait with lifestyle interventions and pharmacological treatments may offer promising AD therapeutic approach. In this narrative review, we reviewed the literature on the AD-IR pathogenic link, the shared genetics and metabolomics biomarkers between AD and IR disorders, as well as the lifestyle interventions and pharmacological treatments which target this pathogenic link.
Collapse
Affiliation(s)
- Arwa M Amin
- Department of Clinical and Hospital Pharmacy, College of Pharmacy, Taibah University, Madinah, Saudi Arabia.
| | - Hamza Mostafa
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Food Innovation Network (XIA), Nutrition and Food Safety Research Institute (INSA), Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Hani M J Khojah
- Department of Clinical and Hospital Pharmacy, College of Pharmacy, Taibah University, Madinah, Saudi Arabia
| |
Collapse
|
11
|
Ferris HA. Insulin and neurodegenerative diseases. INSULIN 2023:315-338. [DOI: 10.1016/b978-0-323-91707-0.00012-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
12
|
Identification of repurposed drugs targeting significant long non-coding RNAs in the cross-talk between diabetes mellitus and Alzheimer's disease. Sci Rep 2022; 12:18332. [PMID: 36316461 PMCID: PMC9622874 DOI: 10.1038/s41598-022-22822-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 10/19/2022] [Indexed: 11/14/2022] Open
Abstract
The relationship between diabetes mellitus (DM) and Alzheimer's disease (AD) is so strong that scientists called it "brain diabetes". According to several studies, the critical factor in this relationship is brain insulin resistance. Due to the rapid global spread of both diseases, overcoming this cross-talk has a significant impact on societies. Long non-coding RNAs (lncRNAs), on the other hand, have a substantial impact on complex diseases due to their ability to influence gene expression via a variety of mechanisms. Consequently, the regulation of lncRNA expression in chronic diseases permits the development of innovative therapeutic techniques. However, developing a new drug requires considerable time and money. Recently repurposing existing drugs has gained popularity due to the use of low-risk compounds, which may result in cost and time savings. in this study, we identified drug repurposing candidates capable of controlling the expression of common lncRNAs in the cross-talk between DM and AD. We also utilized drugs that interfered with this cross-talk. To do this, high degree common lncRNAs were extracted from microRNA-lncRNA bipartite network. The drugs that interact with the specified lncRNAs were then collected from multiple data sources. These drugs, referred to as set D, were classified in to positive (D+) and negative (D-) groups based on their effects on the expression of the interacting lncRNAs. A feature selection algorithm was used to select six important features for D. Using a random forest classifier, these features were capable of classifying D+ and D- with an accuracy of 82.5%. Finally, the same six features were extracted for the most recently Food and Drug Administration (FDA) approved drugs in order to identify those with the highest likelihood of belonging to D+ or D-. The most significant FDA-approved positive drugs, chromium nicotinate and tapentadol, were presented as repurposing candidates, while cefepime and dihydro-alpha-ergocryptine were recommended as significant adverse drugs. Moreover, two natural compounds, curcumin and quercetin, were recommended to prevent this cross-talk. According to the previous studies, less attention has been paid to the role of lncRNAs in this cross-talk. Our research not only did identify important lncRNAs, but it also suggested potential repurposed drugs to control them.
Collapse
|
13
|
Nakhal MM, Aburuz S, Sadek B, Akour A. Repurposing SGLT2 Inhibitors for Neurological Disorders: A Focus on the Autism Spectrum Disorder. Molecules 2022; 27:7174. [PMID: 36364000 PMCID: PMC9653623 DOI: 10.3390/molecules27217174] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/13/2022] [Accepted: 10/19/2022] [Indexed: 09/29/2023] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder with a substantially increasing incidence rate. It is characterized by repetitive behavior, learning difficulties, deficits in social communication, and interactions. Numerous medications, dietary supplements, and behavioral treatments have been recommended for the management of this condition, however, there is no cure yet. Recent studies have examined the therapeutic potential of the sodium-glucose cotransporter 2 (SGLT2) inhibitors in neurodevelopmental diseases, based on their proved anti-inflammatory effects, such as downregulating the expression of several proteins, including the transforming growth factor beta (TGF-β), interleukin-6 (IL-6), C-reactive protein (CRP), nuclear factor κB (NF-κB), tumor necrosis factor alpha (TNF-α), and the monocyte chemoattractant protein (MCP-1). Furthermore, numerous previous studies revealed the potential of the SGLT2 inhibitors to provide antioxidant effects, due to their ability to reduce the generation of free radicals and upregulating the antioxidant systems, such as glutathione (GSH) and superoxide dismutase (SOD), while crossing the blood brain barrier (BBB). These properties have led to significant improvements in the neurologic outcomes of multiple experimental disease models, including cerebral oxidative stress in diabetes mellitus and ischemic stroke, Alzheimer's disease (AD), Parkinson's disease (PD), and epilepsy. Such diseases have mutual biomarkers with ASD, which potentially could be a link to fill the gap of the literature studying the potential of repurposing the SGLT2 inhibitors' use in ameliorating the symptoms of ASD. This review will look at the impact of the SGLT2 inhibitors on neurodevelopmental disorders on the various models, including humans, rats, and mice, with a focus on the SGLT2 inhibitor canagliflozin. Furthermore, this review will discuss how SGLT2 inhibitors regulate the ASD biomarkers, based on the clinical evidence supporting their functions as antioxidant and anti-inflammatory agents capable of crossing the blood-brain barrier (BBB).
Collapse
Affiliation(s)
- Mohammed Moutaz Nakhal
- Department of Biochemistry, College of Medicine and Health Sciences, Al-Ain P.O. Box 15551, United Arab Emirates
| | - Salahdein Aburuz
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, Al-Ain P.O. Box 15551, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al-Ain P.O. Box 17666, United Arab Emirates
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman 11942, Jordan
| | - Bassem Sadek
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, Al-Ain P.O. Box 15551, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al-Ain P.O. Box 17666, United Arab Emirates
| | - Amal Akour
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, Al-Ain P.O. Box 15551, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al-Ain P.O. Box 17666, United Arab Emirates
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman 11942, Jordan
| |
Collapse
|
14
|
Ghiam S, Eslahchi C, Shahpasand K, Habibi-Rezaei M, Gharaghani S. Exploring the role of non-coding RNAs as potential candidate biomarkers in the cross-talk between diabetes mellitus and Alzheimer’s disease. Front Aging Neurosci 2022; 14:955461. [PMID: 36092798 PMCID: PMC9451601 DOI: 10.3389/fnagi.2022.955461] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/04/2022] [Indexed: 11/17/2022] Open
Abstract
Background Recent research has investigated the connection between Diabetes Mellitus (DM) and Alzheimer’s Disease (AD). Insulin resistance plays a crucial role in this interaction. Studies have focused on dysregulated proteins to disrupt this connection. Non-coding RNAs (ncRNAs), on the other hand, play an important role in the development of many diseases. They encode the majority of the human genome and regulate gene expression through a variety of mechanisms. Consequently, identifying significant ncRNAs and utilizing them as biomarkers could facilitate the early detection of this cross-talk. On the other hand, computational-based methods may help to understand the possible relationships between different molecules and conduct future wet laboratory experiments. Materials and methods In this study, we retrieved Genome-Wide Association Study (GWAS, 2008) results from the United Kingdom Biobank database using the keywords “Alzheimer’s” and “Diabetes Mellitus.” After excluding low confidence variants, statistical analysis was performed, and adjusted p-values were determined. Using the Linkage Disequilibrium method, 127 significant shared Single Nucleotide Polymorphism (SNP) were chosen and the SNP-SNP interaction network was built. From this network, dense subgraphs were extracted as signatures. By mapping each signature to the reference genome, genes associated with the selected SNPs were retrieved. Then, protein-microRNA (miRNA) and miRNA-long non-coding RNA (lncRNA) bipartite networks were built and significant ncRNAs were extracted. After the validation process, by applying the scoring function, the final protein-miRNA-lncRNA tripartite network was constructed, and significant miRNAs and lncRNAs were identified. Results Hsa-miR-199a-5p, hsa-miR-199b-5p, hsa-miR-423-5p, and hsa-miR-3184-5p, the four most significant miRNAs, as well as NEAT1, XIST, and KCNQ1OT1, the three most important lncRNAs, and their interacting proteins in the final tripartite network, have been proposed as new candidate biomarkers in the cross-talk between DM and AD. The literature review also validates the obtained ncRNAs. In addition, miRNA/lncRNA pairs; hsa-miR-124-3p/KCNQ1OT1, hsa-miR-124-3p/NEAT1, and hsa-miR-124-3p/XIST, all expressed in the brain, and their interacting proteins in our final network are suggested for future research investigation. Conclusion This study identified 127 shared SNPs, 7 proteins, 15 miRNAs, and 11 lncRNAs involved in the cross-talk between DM and AD. Different network analysis and scoring function suggested the most significant miRNAs and lncRNAs as potential candidate biomarkers for wet laboratory experiments. Considering these candidate biomarkers may help in the early detection of DM and AD co-occurrence.
Collapse
Affiliation(s)
- Shokoofeh Ghiam
- Laboratory of Bioinformatics and Drug Design, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Changiz Eslahchi
- Department of Computer and Data Sciences, Faculty of Mathematical Sciences, Shahid-Beheshti University, Tehran, Iran
- School of Biological Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
- Changiz Eslahchi,
| | - Koorosh Shahpasand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology (RI-SCBT), Tehran, Iran
| | - Mehran Habibi-Rezaei
- Department of Cell and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Sajjad Gharaghani
- Laboratory of Bioinformatics and Drug Design, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
- *Correspondence: Sajjad Gharaghani,
| |
Collapse
|
15
|
Vavra O, Damborsky J, Bednar D. Fast approximative methods for study of ligand transport and rational design of improved enzymes for biotechnologies. Biotechnol Adv 2022; 60:108009. [PMID: 35738509 DOI: 10.1016/j.biotechadv.2022.108009] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/12/2022] [Accepted: 06/16/2022] [Indexed: 11/27/2022]
Abstract
Acceleration of chemical reactions by the enzymes optimized using protein engineering represents one of the key pillars of the contribution of biotechnology towards sustainability. Tunnels and channels of enzymes with buried active sites enable the exchange of ligands, ions, and water molecules between the outer environment and active site pockets. The efficient exchange of ligands is a fundamental process of biocatalysis. Therefore, enzymes have evolved a wide range of mechanisms for repetitive conformational changes that enable periodic opening and closing. Protein-ligand interactions are traditionally studied by molecular docking, whereas molecular dynamics is the method of choice for studying conformational changes and ligand transport. However, computational demands make molecular dynamics impractical for screening purposes. Thus, several approximative methods have been recently developed to study interactions between a protein and ligand during the ligand transport process. Apart from identifying the best binding modes, these methods also provide information on the energetics of the transport and identify problematic regions limiting the ligand passage. These methods use approximations to simulate binding or unbinding events rapidly (calculation times from minutes to hours) and provide energy profiles that can be used to rank ligands or pathways. Here we provide a critical comparison of available methods, showcase their results on sample systems, discuss their practical applications in molecular biotechnologies and outline possible future developments.
Collapse
Affiliation(s)
- Ondrej Vavra
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital Brno, Pekařská 53, 656 91 Brno, Czech Republic
| | - Jiri Damborsky
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital Brno, Pekařská 53, 656 91 Brno, Czech Republic; Enantis, INBIT, Kamenice 34, 625 00 Brno, Czech Republic.
| | - David Bednar
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital Brno, Pekařská 53, 656 91 Brno, Czech Republic.
| |
Collapse
|
16
|
Ogura J, Yamaguchi H. The Effectiveness of Antidiabetic Drugs in Treating Dementia: A Peek into Pharmacological and Pharmacokinetic Properties. Int J Mol Sci 2022; 23:6542. [PMID: 35742986 PMCID: PMC9223777 DOI: 10.3390/ijms23126542] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 12/04/2022] Open
Abstract
Dementia dramatically affects the activities of daily living and quality of life; thus, many therapeutic approaches for overcoming dementia have been developed. However, an effective treatment regimen is yet to be developed. As diabetes is a well-known risk factor for dementia, drug repositioning and repurposing of antidiabetic drugs are expected to be effective dementia treatments. Several observational studies have been useful for understanding the effectiveness of antidiabetic drugs in treating dementia, but it is difficult to conclusively analyze the association between antidiabetic drug treatment and the risk of developing dementia after correcting for potential confounding factors. Mechanism-based approaches may provide a better understanding of the effectiveness of antidiabetic drugs for treating dementia. Since the peripheral circulation and the central nerve system are separated by the blood-brain barrier, it is important to understand the regulation of the central glucose metabolism. In this review, we discuss the pharmacological and pharmacokinetic properties of antidiabetic drugs in relation to treating dementia.
Collapse
Affiliation(s)
- Jiro Ogura
- Department of Pharmacy, Yamagata University Hospital, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan;
| | | |
Collapse
|
17
|
Ning P, Luo A, Mu X, Xu Y, Li T. Exploring the dual character of metformin in Alzheimer's disease. Neuropharmacology 2022; 207:108966. [PMID: 35077762 DOI: 10.1016/j.neuropharm.2022.108966] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 12/17/2021] [Accepted: 01/17/2022] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease, which results in dementia typically in the elderly. The disease is mainly characterized by the deposition of amyloid beta (Aβ) plaques and neurofibrillary tangles (NFTs) in the brain. However, only few drugs are available for AD because of its unknown pathological mechanism which limits the development of new drugs. Therefore, it is urgent to identify potential therapeutic strategies for AD. Moreover, research have showed that there is a significant association between Type 2 diabetes mellites (T2DM) and AD, suggesting that the two diseases may share common pathophysiological mechanisms. Such mechanisms include impaired insulin signaling, altered glucose metabolism, inflammation, oxidative stress, and premature aging, which strongly affect cognitive function and increased risk of dementia. Consequently, as a widely used drug for T2DM, metformin also has therapeutic potential for AD in vivo. It has been confirmed that metformin is beneficial on the brain of AD animal models. The mechanisms underlying the effects of metformin in Alzheimer's disease are complex and multifaceted. Metformin may work through mechanisms involving homeostasis of glucose metabolism, decrease of amyloid plaque deposition, normalization of tau protein phosphorylation and enhancement of autophagy. However, in clinical trials, metformin had little effects on patients with mild cognitive impairment or mild AD. Pathological effects and negative clinical results of metformin on AD make the current topic quite controversial. By reviewing the latest progress of related research, this paper summarizes the possible role of metformin in AD. The purpose of this study is not only to determine the potential treatment of AD, but also other related neurodegenerative diseases.
Collapse
Affiliation(s)
- Pingping Ning
- Department of Neurology, West China Hospital, Sichuan University, 37 Guo Xue Xiang, Chengdu, Sichuan Province, 610041, PR China.
| | - Anling Luo
- Department of Neurology, West China Hospital, Sichuan University, 37 Guo Xue Xiang, Chengdu, Sichuan Province, 610041, PR China.
| | - Xin Mu
- Department of Neurology, Chengdu First People's Hospital, 18 Wanxiang North Road, Chengdu, Sichuan Province, 610041, PR China.
| | - Yanming Xu
- Department of Neurology, West China Hospital, Sichuan University, 37 Guo Xue Xiang, Chengdu, Sichuan Province, 610041, PR China.
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University/Air Force Medical University, No. 169 Changle West Rd, Xi'an, 710032, PR China.
| |
Collapse
|
18
|
Zhou F, Du N, Zhou L, Wang C, Ren H, Sun Q. The safety of sotagliflozin in the therapy of diabetes mellitus type 1 and type 2: A meta-analysis of randomized trials. Front Endocrinol (Lausanne) 2022; 13:968478. [PMID: 36225203 PMCID: PMC9548998 DOI: 10.3389/fendo.2022.968478] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Diabetes mellitus (DM) is a global health problem, and it has become a shocking threat in the contemporary era. The objective of this study was to analyze the safety of sotagliflozin in patients with DM systematically and intuitively. METHODS On November 15, 2021, literature retrieval was performed on PubMed, Web of Science, EBSCO, and Cochrane libraries. The meta-analysis results included genital mycotic infection, related-to-acidosis events, and other related adverse events, including diarrhea, severe nocturnal hypoglycemia event, and volume depletion. In addition, a subgroup analysis was also conducted based on different doses of sotagliflozin. Moreover, the patient-treated years analyzed in the study were 12 weeks, 24 weeks, and 52 weeks, respectively, for type 1 diabetes, and were 12 weeks, 22 weeks, and 52 weeks, respectively, for type 2 diabetes. RESULTS The results of this meta-analysis illustrated that sotagliflozin could increase the risk of genital mycotic infection for patients with T1D and T2D (RR: 3.49, 95% Cl: 2.54-4.79, p < 0.001; RR: 2.83, 95% Cl: 2.04-3.93, p < 0.001; respectively). In addition, the subgroup analysis showed that the drug doses that could increase the risk of genital mycotic infection were 400 mg and 200 mg (RR: 3.63, 95% Cl: 2.46-5.36, p < 0.001; RR: 3.21, 95% Cl: 1.84-5.62, p < 0.001; respectively) in T1D. Moreover, sotagliflozin could increase the risk of events related to acidosis in the patients of T1D, including acidosis-related adverse events, positively adjudicated diabetic ketoacidosis, acidosis-related event, and diabetic ketoacidosis (RR: 7.49, 95% Cl: 3.20-17.52, p < 0.001; RR: 6.05, 95% Cl: 2.56-14.30, p < 0.001; RR: 4.83, 95% Cl: 3.13-7.45, p < 0.001; RR: 8.12, 95% Cl: 3.06-21.52, p < 0.001; respectively). In the patients of T2D, sotagliflozin could not increase the risk of DKA (RR: 1.30, 95% Cl: 0.34-4.99, p = 0.70). About serious of acidosis-related adverse events, positively adjudicated diabetic ketoacidosis (DKA) and acidosis-related event, the included studies were not reported for T2D patients. As for the other related adverse events, sotagliflozin was found to be a risk factor for diarrhea and volume depletion in T1D patients (RR: 1.44, 95% Cl: 1.09-1.90, p = 0.01; RR: 2.50, 95% Cl: 1.33-4.69, p < 0.01; respectively) and T2D patients (RR: 1.44, 95% Cl: 1.26-1.64, p < 0.001; RR: 1.25, 95% Cl: 1.07-1.45, p < 0.01; respectively). CONCLUSIONS This meta-analysis showed that the adverse events of sotagliflozin were tolerable to patients with DM, in terms of the incidence of genital mycotic infection, related-to-acidosis events, diarrhea, volume depletion, and severe nocturnal hypoglycemia events. In addition, the subgroup analysis of sotagliflozin dosage is considered to have great clinical significance for future guidance of sotagliflozin application in patients with DM.
Collapse
Affiliation(s)
- Feifei Zhou
- Laboratory of Cell Engineering, Institute of Biotechnology, Research Unit of Cell Death Mechanism, Chinese Academy of Medical Science, Beijing, China
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Nannan Du
- Laboratory of Cell Engineering, Institute of Biotechnology, Research Unit of Cell Death Mechanism, Chinese Academy of Medical Science, Beijing, China
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lulin Zhou
- Laboratory of Cell Engineering, Institute of Biotechnology, Research Unit of Cell Death Mechanism, Chinese Academy of Medical Science, Beijing, China
| | - Chenxi Wang
- Laboratory of Cell Engineering, Institute of Biotechnology, Research Unit of Cell Death Mechanism, Chinese Academy of Medical Science, Beijing, China
| | - He Ren
- Laboratory of Cell Engineering, Institute of Biotechnology, Research Unit of Cell Death Mechanism, Chinese Academy of Medical Science, Beijing, China
| | - Qiang Sun
- Laboratory of Cell Engineering, Institute of Biotechnology, Research Unit of Cell Death Mechanism, Chinese Academy of Medical Science, Beijing, China
- *Correspondence: Qiang Sun,
| |
Collapse
|
19
|
Pawlos A, Broncel M, Woźniak E, Gorzelak-Pabiś P. Neuroprotective Effect of SGLT2 Inhibitors. Molecules 2021; 26:7213. [PMID: 34885795 PMCID: PMC8659196 DOI: 10.3390/molecules26237213] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 12/17/2022] Open
Abstract
Patients with diabetes are at higher risk of cardiovascular diseases and cognitive impairment. SGLT2 inhibitors (Empagliflozin, Canagliflozin, Dapagliflozin, Ertugliflozin, Sotagliflozin) are newer hypoglycemic agents with many pleiotropic effects. In this review, we discuss their neuroprotective potential. SGLT2 inhibitors (SGLT2i) are lipid-soluble and reach the brain/serum ratio from 0.3 to 0.5. SGLT receptors are present in the central nervous system (CNS). Flozins are not fully SGLT2-selective and have an affinity for the SGLT1 receptor, which is associated with protection against ischemia/reperfusion brain damage. SGLT2i show an anti-inflammatory and anti-atherosclerotic effect, including reduction of proinflammatory cytokines, M2 macrophage polarization, JAK2/STAT1 and NLRP3 inflammasome inhibition, as well as cIMT regression. They also mitigate oxidative stress. SGLT2i improve endothelial function, prevent remodeling and exert a protective effect on the neurovascular unit, blood-brain barrier, pericytes, astrocytes, microglia, and oligodendrocytes. Flozins are also able to inhibit AChE, which contributes to cognitive improvement. Empagliflozin significantly increases the level of cerebral BDNF, which modulates neurotransmission and ensures growth, survival, and plasticity of neurons. Moreover, they may be able to restore the circadian rhythm of mTOR activation, which is quite a novel finding in the field of research on metabolic diseases and cognitive impairment. SGLT2i have a great potential to protect against atherosclerosis and cognitive impairment in patients with type 2 diabetes mellitus.
Collapse
Affiliation(s)
| | - Marlena Broncel
- Laboratory of Tissue Immunopharmacology, Department of Internal Diseases and Clinical Pharmacology, Medical University of Lodz, Kniaziewicza 1/5, 91-347 Lodz, Poland; (A.P.); (E.W.); (P.G.-P.)
| | | | | |
Collapse
|
20
|
Shakil S. Molecular interaction of inhibitors with human brain butyrylcholinesterase. EXCLI JOURNAL 2021; 20:1597-1607. [PMID: 35024017 PMCID: PMC8743831 DOI: 10.17179/excli2021-4418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/16/2021] [Indexed: 11/17/2022]
Abstract
Alzheimer's disease is a topic of deep research interest across the global scientific community. Butyrylcholinesterase (BuChE) is an important enzyme, and an interesting anti-Alzheimer's target. Identification or fresh design of promising BuChE-inhibitors is warranted. Virtual screening supported by molecular dynamics simulations has emerged as a key component of present drug-discovery cascades. The research piece aimed at identification of a putative BuChE-inhibitor as a fresh molecular frame that might aid drug design in the context of Alzheimer's disease. The study utilized 'MCULE' to screen a set of 5 million ligands to test their ability to bind to human BuChE. Pharmacokinetic profiling was achieved by the 'SWISS ADME' program. Toxicities were duly assessed. YASARA STRUCTURE version 20.10.4.W.64 was employed to run 133 ns molecular dynamics (MD) simulation for the complex of 'the top screened out inhibitor' and 'the human BuChE enzyme'. The simulation was executed for approx. 4 days (~93 hrs) on an HP ZR30w workstation. YANACONDA, a special language contained in YASARA STRUCTURE was employed to perform complex tasks. Fine resolution figures (notably the RMSD vs time plot) were created. Snapshots were extracted at every 250 ps. The selected ligand, (3-Bromophenyl)[5-(4-chlorophenyl)-5-hydroxy-3-(trifluoromethyl)-4,5-dihydro-1H-pyrazol-1-yl]methanone, exhibited the best overall binding with human BuChE. It interacted with human BuChE through 19 residues. Markedly, 9 of the 19 residues were confirmed to be matching to those of the reference complex (PDB ID 5DYW). Trajectory analysis returned 533 snapshots. The RMSD versus time plot indicated that around 22 ns, equilibrium was achieved and, from then on, the 'BuChE-Top inhibitor' complex remained predominantly stable. From 22 ns and onwards till 133 ns, the backbone RMSD fluctuations were observed to remain limited within a range of 1.2-1.9 Å. The molecule, (3-Bromophenyl)[5-(4-chlorophenyl)-5-hydroxy-3-(trifluoromethyl)-4,5-dihydro-1H-pyrazol-1-yl]methanone, satisfied ADMET requirements. Additionally, the feasibility of the proposed enzyme-inhibitor complex was supported by an adequately extended MD simulation of 133 ns. Hence, the proposed molecule could be a likely lead for designing inhibitor(s) against human BuChE. Scope remains for validatory wet laboratory investigation.
Collapse
Affiliation(s)
- Shazi Shakil
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia,*To whom correspondence should be addressed: Shazi Shakil, King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia, E-mail: ,
| |
Collapse
|
21
|
Baruah P, Das A, Paul D, Chakrabarty S, Aguan K, Mitra S. Sulfonylurea Class of Antidiabetic Drugs Inhibit Acetylcholinesterase Activity: Unexplored Auxiliary Pharmacological Benefit toward Alzheimer's Disease. ACS Pharmacol Transl Sci 2021; 4:193-205. [PMID: 33615172 PMCID: PMC7887854 DOI: 10.1021/acsptsci.0c00168] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Indexed: 12/21/2022]
Abstract
Contemporary literature documents extensive research on common causative mechanisms, pathogenic pathways and dual effective remedies for Alzheimer's disease (AD) and Type 2 diabetes mellitus (T2DM). Tolbutamide (TBM), chlorpropamide (CPM), and glyburide (GLY) are three sulfonylurea antidiabetic drugs of different generations. All these drugs were found to exhibit moderate to strong inhibitory efficiency on the neurotransmitter degrading enzyme acetylcholinesterase (AChE) with GLY (IC50 = 0.74 ± 0.02 μM) being the most potent, followed by CPM (IC50 = 5.72 ± 0.24 μM) and TBM (IC50 = 28.9 ± 1.60 μM). Notably, the inhibition efficiency of GLY is even comparable with the FDA approved AD drug, donepezil (DON). The larger size of GLY spans almost the full gorge of AChE ranging from catalytic active site (CAS) to the peripheral active site (PAS) with relatively strong binding affinity (6.0 × 105 M-1) and acts as a competitive inhibitor for AChE. On the other hand, while they show relatively weak binding ((2-6) × 104 M-1), both CPM and TBM act as noncompetitive binders. While these two drugs can bind to PAS, MD simulation results predict an alternative noncompetitive inhibition mechanism for CPM. These results open the possibility of repurposing the antidiabetic drugs, particularly GLY, in the treatment of AD. The consequential side effect of excess acetylcholine production, due to the administration of these drugs to AD-unaffected patients, can be rectified by using colloidal gold and silver nanofluids as potential AChE activity boosters.
Collapse
Affiliation(s)
- Prayasee Baruah
- Centre
for Advanced Studies in Chemistry and Department of Biotechnology &
Bioinformatics, North-Eastern Hill University, Shillong 793022, India
| | - Abhinandan Das
- Department
of Chemical, Biological & Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Salt Lake City, Kolkata 700106, India
| | - Debojit Paul
- Department
of Chemistry, Indian Institute of Technology
Guwahati, Guwahati 781039, India
| | - Suman Chakrabarty
- Department
of Chemical, Biological & Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Salt Lake City, Kolkata 700106, India
| | - Kripamoy Aguan
- Centre
for Advanced Studies in Chemistry and Department of Biotechnology &
Bioinformatics, North-Eastern Hill University, Shillong 793022, India
| | - Sivaprasad Mitra
- Centre
for Advanced Studies in Chemistry and Department of Biotechnology &
Bioinformatics, North-Eastern Hill University, Shillong 793022, India
| |
Collapse
|
22
|
Wiciński M, Wódkiewicz E, Górski K, Walczak M, Malinowski B. Perspective of SGLT2 Inhibition in Treatment of Conditions Connected to Neuronal Loss: Focus on Alzheimer's Disease and Ischemia-Related Brain Injury. Pharmaceuticals (Basel) 2020; 13:ph13110379. [PMID: 33187206 PMCID: PMC7697611 DOI: 10.3390/ph13110379] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/22/2020] [Accepted: 11/05/2020] [Indexed: 12/15/2022] Open
Abstract
Sodium-glucose co-transporter 2 inhibitors (SGLT2i) are oral anti-hyperglycemic agents approved for the treatment of type 2 diabetes mellitus. Some reports suggest their presence in the central nervous system and possible neuroprotective properties. SGLT2 inhibition by empagliflozin has shown to reduce amyloid burden in cortical regions of APP/PS1xd/db mice. The same effect was noticed regarding tau pathology and brain atrophy volume. Empagliflozin presented beneficial effect on cognitive function, which may be connected to an increase in cerebral brain-derived neurotrophic factor. Canagliflozin and dapagliflozin may possess acetylcholinesterase inhibiting activity, resembling in this matter Alzheimer’s disease-registered therapies. SGLT2 inhibitors may prove to impact risk factors of atherosclerosis and pathways participating both in acute and late stage of stroke. Their mechanism of action can be related to induction in hepatocyte nuclear factor-1α, vascular endothelial growth factor-A, and proinflammatory factors limitation. Empagliflozin may have a positive effect on preservation of neurovascular unit in diabetic mice, preventing its aberrant remodeling. Canagliflozin seems to present some cytostatic properties by limiting both human and mice endothelial cells proliferation. The paper presents potential mechanisms of SGLT-2 inhibitors in conditions connected with neuronal damage, with special emphasis on Alzheimer’s disease and cerebral ischemia.
Collapse
|
23
|
Empagliflozin reduces vascular damage and cognitive impairment in a mixed murine model of Alzheimer's disease and type 2 diabetes. ALZHEIMERS RESEARCH & THERAPY 2020; 12:40. [PMID: 32264944 PMCID: PMC7140573 DOI: 10.1186/s13195-020-00607-4] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 03/23/2020] [Indexed: 02/08/2023]
Abstract
Background Both Alzheimer’s disease (AD) and type 2 diabetes (T2D) share common pathological features including inflammation, insulin signaling alterations, or vascular damage. AD has no successful treatment, and the close relationship between both diseases supports the study of antidiabetic drugs to limit or slow down brain pathology in AD. Empagliflozin (EMP) is a sodium-glucose co-transporter 2 inhibitor, the newest class of antidiabetic agents. EMP controls hyperglycemia and reduces cardiovascular comorbidities and deaths associated to T2D. Therefore, we have analyzed the role of EMP at the central level in a complex mouse model of AD-T2D. Methods We have treated AD-T2D mice (APP/PS1xdb/db mice) with EMP 10 mg/kg for 22 weeks. Glucose, insulin, and body weight were monthly assessed. We analyzed learning and memory in the Morris water maze and the new object discrimination test. Postmortem brain assessment was conducted to measure brain atrophy, senile plaques, and amyloid-β levels. Tau phosphorylation, hemorrhage burden, and microglia were also measured in the brain after EMP treatment. Results EMP treatment helped to maintain insulin levels in diabetic mice. At the central level, EMP limited cortical thinning and reduced neuronal loss in treated mice. Hemorrhage and microglia burdens were also reduced in EMP-treated mice. Senile plaque burden was lower, and these effects were accompanied by an amelioration of cognitive deficits in APP/PS1xdb/db mice. Conclusions Altogether, our data support a feasible role for EMP to reduce brain complications associated to AD and T2D, including classical pathological features and vascular disease, and supporting further assessment of EMP at the central level.
Collapse
|
24
|
Tabrez S, Damanhouri GA. Computational and Kinetic Studies of Acetylcholine Esterase Inhibition by Phenserine. Curr Pharm Des 2019; 25:2108-2112. [DOI: 10.2174/1381612825666190618141015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 06/10/2019] [Indexed: 12/18/2022]
Abstract
Background:
The inhibition of cholinesterase enzymes is one of the promising strategies to manage
several neurological disorders that include Alzheimer's disease (AD).
Material and Methods:
In the current article, we estimated the potential inhibition of acetyl cholinesterase
(AChE) by phenserine using slightly modified Ellman assay. To find out the binding interactions of phenserine
with the catalytic site of AChE, a molecular docking study was also performed.
Results:
Phenserine was found to inhibit Electrophorus electricus AChE in a dose-dependent manner with an IC50
value of 0.013 µM. The kinetic analyses indicate that phenserine inhibits AChE in a mixed type manner (competitive
and uncompetitive) with Ki values of 0.39 μmole/l and 0.21 µmole/l, respectively. On the other hand, Km
and Vmax values were found to be 0.17 µM and 0.39 µM, respectively. The molecular docking studies indicate
efficient binding of phenserine through 6 hydrogen bonds, 4 pi-alkyl interactions, and 1 pi-pi interaction within
the AChE catalytic pocket.
Conclusion:
Results of our computational and kinetics studies indicated a mixed type inhibition by phenserine at
AChE catalytic site.
Collapse
Affiliation(s)
- Shams Tabrez
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ghazi A. Damanhouri
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
25
|
Shakil S. Molecular interaction of investigational ligands with human brain acetylcholinesterase. J Cell Biochem 2019; 120:11820-11830. [PMID: 30746750 DOI: 10.1002/jcb.28461] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/09/2018] [Accepted: 12/13/2018] [Indexed: 01/24/2023]
Abstract
Alzheimer's disease, a neurodegenerative disorder continues to be an area of investigation by the international researchers' fraternity. Despite all the ongoing efforts, the effective set of promising cholinesterase inhibitors available in the market for patients' use is limited. Furthermore, the currently available drugs could provide only a palliative type of treatment instead of providing a complete cure or foolproof prevention. Hence, design/discovery of fresh drug molecules as acetylcholinesterase (AChE) inhibitors still remains an urgent requirement. The drug discovery platform, MCULE in the "structure-based virtual screening" (SBVS) mode was used for high throughput ligand screening of over five million structures targeted against the AChE catalytic site. A stepwise query was made for the SBVS input. The number of hits was narrowed down in consecutive succession via varied filtration criteria as AutoDock-Vina rankings, MCULE toxicity filtration, exclusion of ligands having less than four H-bond acceptors, filtration by ΔG cutoff, rule-of-five violation and SWISS ADME profiling. This was followed by holistic analysis of all the results, thereby leading to one promising ligand. The screened out drug molecule, MCULE-5872671137-0-1 exhibited a robust interaction with the AChE catalytic site involving 20 amino acid residues, an acceptable binding free energy of -10.2 kcal/mol in addition to a favorable SWISS ADME-profie showing no harmful effects on the human body. It can be carefully stated that the molecule, MCULE-5872671137-0-1, which is chemically (3S)-N-{4-[(4-chlorophenyl)sulfanyl]phenyl}-3-hydroxypyrrolidine-1-carboxamide could function as a significant "seed" ligand for future design of potent AChE inhibitors and/or novel neuro drugs built upon the seed-scaffold.
Collapse
Affiliation(s)
- Shazi Shakil
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
26
|
Shakil S, Baig MH, Tabrez S, Rizvi SMD, Zaidi SK, Ashraf GM, Ansari SA, Khan AAP, Al-Qahtani MH, Abuzenadah AM, Chaudhary AG. Molecular and enzoinformatics perspectives of targeting Polo-like kinase 1 in cancer therapy. Semin Cancer Biol 2019; 56:47-55. [PMID: 29122685 DOI: 10.1016/j.semcancer.2017.11.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 10/22/2017] [Accepted: 11/04/2017] [Indexed: 12/25/2022]
Abstract
Cancer is a disease that has been the focus of scientific research and discovery and continues to remain so. Polo-like kinases (PLKs) are basically serine/threonine kinase enzymes that control cell cycle from yeast to humans. PLK-1 stands for 'Polo-like kinase-1'. It is the most investigated protein among PLKs. It is crucial for intracellular processes, hence a 'hot' anticancer drug-target. Accelerating innovations in Enzoinformatics and associated molecular visualization tools have made it possible to literally perform a 'molecular level walk' traversing through and observing the minutest contours of the active site of relevant enzymes. PLK-1 as a protein consists of a kinase domain at the protein N-terminal and a Polo Box Domain (PBD) at the C-terminal connected by a short inter-domain linking region. PBD has two Polo-Boxes. PBD of PLK-1 gives the impression of "a small clamp sandwiched between two clips", where the two Polo Boxes are the 'clips' and the 'phosphopeptide' is the small 'clamp'. Broadly, two major sites of PLK-1 can be potential targets: one is the adenosine-5'-triphosphate (ATP)-binding site in the kinase domain and the other is PBD (more preferred due to specificity). Targeting PLK-1 RNA and the interaction of PLK-1 with a key binding partner can also be approached. However, the list of potent small molecule inhibitors targeting the PBD site of PLK-1 is still not long enough and needs due input from the scientific community. Recently, eminent scientists have proposed targeting the 'Y'-shaped pocket of PLK-1-PBD and encouraged design of ligands that should be able to concurrently bind to two or more modules of the 'Y' pocket. Hence, it is suggested that during molecular interaction analyses, particular focus should be kept on the moiety in each ligand/drug candidate which directly interacts with the amino acid residue(s) that belong(s) to one of the three binding modules which together create this Y-shaped cavity. This obviously includes (but it is not limited to) the 'shallow cleft'-forming residues i.e. Trp414, H538 and K540, as significance of these binding residues has been consistently highlighted by many studies. The present article attempts to give a concise yet critically updated overview of targeting PLK-1 for cancer therapy.
Collapse
Affiliation(s)
- Shazi Shakil
- Center of Innovation in Personalized Medicine, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia; Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Mohammad H Baig
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Shams Tabrez
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Syed M Danish Rizvi
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Hail, Hail, Saudi Arabia
| | - Syed K Zaidi
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ghulam M Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Shakeel A Ansari
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Aftab Aslam Parwaz Khan
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohammad H Al-Qahtani
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Adel M Abuzenadah
- Center of Innovation in Personalized Medicine, King Abdulaziz University, Jeddah, Saudi Arabia; Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Adeel G Chaudhary
- Center of Innovation in Personalized Medicine, King Abdulaziz University, Jeddah, Saudi Arabia; Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|