1
|
Han H, Jia H, Wang YF, Song JP. Cardiovascular adaptations and pathological changes induced by spaceflight: from cellular mechanisms to organ-level impacts. Mil Med Res 2024; 11:68. [PMID: 39334239 PMCID: PMC11429428 DOI: 10.1186/s40779-024-00570-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 09/01/2024] [Indexed: 09/30/2024] Open
Abstract
The advancement in extraterrestrial exploration has highlighted the crucial need for studying how the human cardiovascular system adapts to space conditions. Human development occurs under the influence of gravity, shielded from space radiation by Earth's magnetic field, and within an environment characterized by 24-hour day-night cycles resulting from Earth's rotation, thus deviating from these conditions necessitates adaptive responses for survival. With upcoming manned lunar and Martian missions approaching rapidly, it is essential to understand the impact of various stressors induced by outer-space environments on cardiovascular health. This comprehensive review integrates insights from both actual space missions and simulated experiments on Earth, to analyze how microgravity, space radiation, and disrupted circadian affect cardiovascular well-being. Prolonged exposure to microgravity induces myocardial atrophy and endothelial dysfunction, which may be exacerbated by space radiation. Mitochondrial dysfunction and oxidative stress emerge as key underlying mechanisms along with disturbances in ion channel perturbations, cytoskeletal damage, and myofibril changes. Disruptions in circadian rhythms caused by factors such as microgravity, light exposure, and irregular work schedules, could further exacerbate cardiovascular issues. However, current research tends to predominantly focus on disruptions in the core clock gene, overlooking the multifactorial nature of circadian rhythm disturbances in space. Future space missions should prioritize targeted prevention strategies and early detection methods for identifying cardiovascular risks, to preserve astronaut health and ensure mission success.
Collapse
Affiliation(s)
- Han Han
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease; Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Hao Jia
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease; Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Yi-Fan Wang
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease; Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Jiang-Ping Song
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease; Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
| |
Collapse
|
2
|
Li Z, Wu J, Zhao T, Wei Y, Xu Y, Liu Z, Li X, Chen X. Microglial activation in spaceflight and microgravity: potential risk of cognitive dysfunction and poor neural health. Front Cell Neurosci 2024; 18:1296205. [PMID: 38425432 PMCID: PMC10902453 DOI: 10.3389/fncel.2024.1296205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
Due to the increased crewed spaceflights in recent years, it is vital to understand how the space environment affects human health. A lack of gravitational force is known to risk multiple physiological functions of astronauts, particularly damage to the central nervous system (CNS). As innate immune cells of the CNS, microglia can transition from a quiescent state to a pathological state, releasing pro-inflammatory cytokines that contribute to neuroinflammation. There are reports indicating that microglia can be activated by simulating microgravity or exposure to galactic cosmic rays (GCR). Consequently, microglia may play a role in the development of neuroinflammation during spaceflight. Prolonged spaceflight sessions raise concerns about the chronic activation of microglia, which could give rise to various neurological disorders, posing concealed risks to the neural health of astronauts. This review summarizes the risks associated with neural health owing to microglial activation and explores the stressors that trigger microglial activation in the space environment. These stressors include GCR, microgravity, and exposure to isolation and stress. Of particular focus is the activation of microglia under microgravity conditions, along with the proposal of a potential mechanism.
Collapse
Affiliation(s)
- Zihan Li
- Beijing International Science and Technology Cooperation Base for Antiviral Drugs, College of Chemistry and Life Science, Beijing University of Technology, Beijing, China
| | - Jiarui Wu
- Beijing International Science and Technology Cooperation Base for Antiviral Drugs, College of Chemistry and Life Science, Beijing University of Technology, Beijing, China
| | - Tianyuan Zhao
- Beijing International Science and Technology Cooperation Base for Antiviral Drugs, College of Chemistry and Life Science, Beijing University of Technology, Beijing, China
| | - Yiyun Wei
- Beijing International Science and Technology Cooperation Base for Antiviral Drugs, College of Chemistry and Life Science, Beijing University of Technology, Beijing, China
| | - Yajing Xu
- Beijing International Science and Technology Cooperation Base for Antiviral Drugs, College of Chemistry and Life Science, Beijing University of Technology, Beijing, China
| | - Zongjian Liu
- Department of Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Xiaoqiong Li
- School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Xuechai Chen
- Beijing International Science and Technology Cooperation Base for Antiviral Drugs, College of Chemistry and Life Science, Beijing University of Technology, Beijing, China
| |
Collapse
|
3
|
Effects of High Glucose on Human Endothelial Cells Exposed to Simulated Microgravity. Biomolecules 2023; 13:biom13020189. [PMID: 36830559 PMCID: PMC9952903 DOI: 10.3390/biom13020189] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/14/2023] [Accepted: 01/15/2023] [Indexed: 01/18/2023] Open
Abstract
A diabetogenic state induced by spaceflight provokes stress and health problems in astronauts. Microgravity (µg) is one of the main stressors in space causing hyperglycaemia. However, the underlying molecular pathways and synergistic effects of µg and hyperglycaemia are not fully understood. In this study, we investigated the effects of high glucose on EA.hy926 endothelial cells in simulated µg (s-µg) using a 3D clinostat and static normogravity (1g) conditions. After 14 days of cell culture under s-µg and 1g conditions, we compared the expression of extracellular matrix (ECM), inflammation, glucose metabolism, and apoptosis-related genes and proteins through qPCR, immunofluorescence, and Western blot analyses, respectively. Apoptosis was evaluated via TUNEL staining. Gene interactions were examined via STRING analysis. Our results show that glucose concentrations had a weaker effect than altered gravity. µg downregulated the ECM gene and protein expression and had a stronger influence on glucose metabolism than hyperglycaemia. Moreover, hyperglycaemia caused more pronounced changes in 3D cultures than in 2D cultures, including bigger and a greater number of spheroids, upregulation of NOX4 and the apoptotic proteins NF-κB and CASP3, and downregulation of fibronectin and transglutaminase-2. Our findings bring new insights into the possible molecular pathways involved in the diabetogenic vascular effects in µg.
Collapse
|
4
|
Zhang H, Li B, Ding J, Ye R, Xu Z, Zhang Q, Feng S, Jiang Q, Zhu W, Yan B. DCZ19931, a novel multi-targeting kinase inhibitor, inhibits ocular neovascularization. Sci Rep 2022; 12:21539. [PMID: 36513701 PMCID: PMC9747701 DOI: 10.1038/s41598-022-25811-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022] Open
Abstract
Neovascularization is a prominent cause of irreversible blindness in a variety of ocular diseases. Current therapies for pathological neovascularization are concentrated on the suppression of vascular endothelial growth factors (VEGF). Despite the remarkable efficacy of anti-VEGF drugs, several problems still exist, including ocular complications and drug resistance. Thus, it is still required to design novel drugs for anti-angiogenic treatment. This study aimed to investigate the anti-angiogenic effects of a small molecule multi-target tyrosine kinase inhibitor, DCZ19931, on ocular neovascularization. The results showed that administration of DCZ19931 at the tested concentrations did not cause obvious cytotoxicity and tissue toxicity. DCZ19931 could reduce the size of choroidal neovascularization (CNV) lesions in laser-induced CNV model and suppress ocular neovascularization in oxygen-induced retinopathy (OIR) model. DCZ19931 could suppress VEGF-induced proliferation, migration, and tube formation ability of endothelial cells, exhibiting similar anti-angiogenic effects as Ranibizumab. DCZ19931 could reduce the levels of intercellular cell adhesion molecule-1 (ICAM-1) expression in vivo and in vitro. Network pharmacology prediction and western blots revealed that DCZ19931 exerted its anti-angiogenic effects through the inactivation of ERK1/2-MAPK signaling and p38-MAPK signaling. In conclusion, this study indicates that DCZ19931 is a promising drug for anti-angiogenic therapy for ocular diseases.
Collapse
Affiliation(s)
- Huiying Zhang
- grid.89957.3a0000 0000 9255 8984The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China
| | - Bo Li
- grid.419093.60000 0004 0619 8396State Key Laboratory of Drug Research, Shanghai, China ,grid.419093.60000 0004 0619 8396Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Shanghai, China
| | - Jingjuan Ding
- grid.89957.3a0000 0000 9255 8984The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China
| | - Rong Ye
- grid.89957.3a0000 0000 9255 8984The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China
| | - Zhijian Xu
- grid.419093.60000 0004 0619 8396State Key Laboratory of Drug Research, Shanghai, China ,grid.419093.60000 0004 0619 8396Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Shanghai, China
| | - Qiuyang Zhang
- grid.89957.3a0000 0000 9255 8984The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China
| | - Siguo Feng
- grid.89957.3a0000 0000 9255 8984The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China
| | - Qin Jiang
- grid.89957.3a0000 0000 9255 8984The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China
| | - Weiliang Zhu
- grid.419093.60000 0004 0619 8396State Key Laboratory of Drug Research, Shanghai, China ,grid.419093.60000 0004 0619 8396Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Shanghai, China
| | - Biao Yan
- grid.8547.e0000 0001 0125 2443Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China ,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China ,grid.8547.e0000 0001 0125 2443National Health Commission (NHC) Key Laboratory of Myopia, Fudan University, Shanghai, China
| |
Collapse
|
5
|
An R. MRTF may be the missing link in a multiscale mechanobiology approach toward macrophage dysfunction in space. Front Cell Dev Biol 2022; 10:997365. [PMID: 36172272 PMCID: PMC9510870 DOI: 10.3389/fcell.2022.997365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/10/2022] [Indexed: 11/23/2022] Open
Abstract
Macrophages exhibit impaired phagocytosis, adhesion, migration, and cytokine production in space, hindering their ability to elicit immune responses. Considering that the combined effect of spaceflight microgravity and radiation is multiscale and multifactorial in nature, it is expected that contradictory findings are common in the field. This theory paper reanalyzes research on the macrophage spaceflight response across multiple timescales from seconds to weeks, and spatial scales from the molecular, intracellular, extracellular, to the physiological. Key findings include time-dependence of both pro-inflammatory activation and integrin expression. Here, we introduce the time-dependent, intracellular localization of MRTF-A as a hypothetical confounder of macrophage activation. We discuss the mechanosensitive MRTF-A/SRF pathway dependence on the actin cytoskeleton/nucleoskeleton, microtubules, membrane mechanoreceptors, hypoxia, oxidative stress, and intracellular/extracellular crosstalk. By adopting a multiscale perspective, this paper provides the first mechanistic answer for a three-decade-old question regarding impaired cytokine secretion in microgravity—and strengthens the connection between the recent advances in mechanobiology, microgravity, and the spaceflight immune response. Finally, we hypothesize MRTF involvement and complications in treating spaceflight-induced cardiovascular, skeletal, and immune disease.
Collapse
Affiliation(s)
- Rocky An
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, United States
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, United States
- *Correspondence: Rocky An,
| |
Collapse
|
6
|
Morbidelli L, Genah S, Cialdai F. Effect of Microgravity on Endothelial Cell Function, Angiogenesis, and Vessel Remodeling During Wound Healing. Front Bioeng Biotechnol 2021; 9:720091. [PMID: 34631676 PMCID: PMC8493071 DOI: 10.3389/fbioe.2021.720091] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/03/2021] [Indexed: 12/24/2022] Open
Abstract
Wound healing is a complex phenomenon that involves different cell types with various functions, i.e., keratinocytes, fibroblasts, and endothelial cells, all influenced by the action of soluble mediators and rearrangement of the extracellular matrix (ECM). Physiological angiogenesis occurs in the granulation tissue during wound healing to allow oxygen and nutrient supply and waste product removal. Angiogenesis output comes from a balance between pro- and antiangiogenic factors, which is finely regulated in a spatial and time-dependent manner, in order to avoid insufficient or excessive nonreparative neovascularization. The understanding of the factors and mechanisms that control angiogenesis and their change following unloading conditions (in a real or simulated space environment) will allow to optimize the tissue response in case of traumatic injury or medical intervention. The potential countermeasures under development to optimize the reparative angiogenesis that contributes to tissue healing on Earth will be discussed in relation to their exploitability in space.
Collapse
Affiliation(s)
| | - Shirley Genah
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Francesca Cialdai
- ASA Campus Joint Laboratory, ASA Research Division & Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| |
Collapse
|
7
|
Zhao M, Wang S, Zuo A, Zhang J, Wen W, Jiang W, Chen H, Liang D, Sun J, Wang M. HIF-1α/JMJD1A signaling regulates inflammation and oxidative stress following hyperglycemia and hypoxia-induced vascular cell injury. Cell Mol Biol Lett 2021; 26:40. [PMID: 34479471 PMCID: PMC8414688 DOI: 10.1186/s11658-021-00283-8] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 08/19/2021] [Indexed: 11/10/2022] Open
Abstract
Background Endothelial cell (EC) injury accelerates the progression of diabetic macrovascular complications. Hypoxia is an important cause of EC injury. Hypoxia-inducible factor-1 alpha (HIF-1α) is an important hypoxia regulatory protein. Our previous studies showed that high-glucose and hypoxic conditions could upregulate HIF-1α expression and enhance EC inflammatory injury, independently of the nuclear factor kappa-B (NF-κB) pathway. However, it is not clear whether HIF-1α plays a role in vascular disease through epigenetic-related mechanisms. Methods We conducted gene expression analysis and molecular mechanistic studies in human umbilical vein endothelial cells (HUVECs) induced by hyperglycemia and hypoxia using RNA sequencing (RNA-seq) and small interfering HIF-1α (si-HIF-1α). We determined HIF-1α and Jumonji domain-containing protein 1 A (JMJD1A) expression by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and Western blot, analyzed inflammatory protein secretion in the cell supernatant by enzymelinked immunosorbent assay (ELISA), and assessed protein interaction between HIF-1α and JMJD1A by chromatin immunoprecipitation (Ch-IP). We used the Cell Counting Kit8 (CCK-8) assay to analyze cell viability, and assessed oxidative stress indicators by using a detection kit and flow cytometry. Results High glucose and hypoxia up-regulated HIF-1α expression, and down-regulated HIF-1α decreased the level of inflammation and oxidative stress in HUVECs. To determine the downstream pathways, we observed histone demethylases genes and related pathway by RNA-sEq. Among these, JMJD1A was the most upregulated gene in histone demethylases. Moreover, we observed that HIF-1α bound to the promoter of JMJD1A, and the ameliorative effects of si-HIF-1α on oxidative stress and inflammatory cytokines in high-glucose and hypoxia-induced HUVECs were reversed by JMJD1A overexpression. Furthermore, knockdown of JMJD1A decreased inflammatory and oxidative stress injury. To determine the JMJD1A-related factors, we conducted gene expression analysis on JMJD1A-knockdown HUVECs. We observed that downregulation of inflammation and the oxidative stress pathway were enriched and FOS and FOSB might be important protective transcription factors. Conclusions These findings provide novel evidence that the HIF-1α/JMJD1A signaling pathway is involved in inflammation and oxidative stress in HUVECs induced by high glucose and hypoxia. Also, this pathway might act as a novel regulator of oxidative stress and inflammatory-related events in response to diabetic vascular injury and thus contribute to the pathological progression of diabetes and vascular disease. Supplementary Information The online version contains supplementary material available at 10.1186/s11658-021-00283-8.
Collapse
Affiliation(s)
- Min Zhao
- Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Shaoting Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Anna Zuo
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Jiaxing Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Weiheng Wen
- Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Weiqiang Jiang
- Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Hong Chen
- Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Donghui Liang
- Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Jia Sun
- Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China.
| | - Ming Wang
- Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China. .,School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510282, Guangdong, China.
| |
Collapse
|
8
|
Green MJ, Aylott JW, Williams P, Ghaemmaghami AM, Williams PM. Immunity in Space: Prokaryote Adaptations and Immune Response in Microgravity. Life (Basel) 2021; 11:life11020112. [PMID: 33540536 PMCID: PMC7912908 DOI: 10.3390/life11020112] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 01/25/2021] [Accepted: 01/28/2021] [Indexed: 12/16/2022] Open
Abstract
Immune dysfunction has long been reported by medical professionals regarding astronauts suffering from opportunistic infections both during their time in space and a short period afterwards once back on Earth. Various species of prokaryotes onboard these space missions or cultured in a microgravity analogue exhibit increased virulence, enhanced formation of biofilms, and in some cases develop specific resistance for specific antibiotics. This poses a substantial health hazard to the astronauts confined in constant proximity to any present bacterial pathogens on long space missions with a finite number of resources including antibiotics. Furthermore, some bacteria cultured in microgravity develop phenotypes not seen in Earth gravity conditions, providing novel insights into bacterial evolution and avenues for research. Immune dysfunction caused by exposure to microgravity may increase the chance of bacterial infection. Immune cell stimulation, toll-like receptors and pathogen-associated molecular patterns can all be altered in microgravity and affect immunological crosstalk and response. Production of interleukins and other cytokines can also be altered leading to immune dysfunction when responding to bacterial infection. Stem cell differentiation and immune cell activation and proliferation can also be impaired and altered by the microgravity environment once more adding to immune dysfunction in microgravity. This review elaborates on and contextualises these findings relating to how bacteria can adapt to microgravity and how the immune system subsequently responds to infection.
Collapse
Affiliation(s)
- Macauley J. Green
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK; (M.J.G.); (J.W.A.)
- School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (P.W.); (A.M.G.)
| | - Jonathan W. Aylott
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK; (M.J.G.); (J.W.A.)
| | - Paul Williams
- School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (P.W.); (A.M.G.)
| | - Amir M. Ghaemmaghami
- School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (P.W.); (A.M.G.)
| | - Philip M. Williams
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK; (M.J.G.); (J.W.A.)
- Correspondence:
| |
Collapse
|
9
|
Bauer TJ, Gombocz E, Wehland M, Bauer J, Infanger M, Grimm D. Insight in Adhesion Protein Sialylation and Microgravity Dependent Cell Adhesion-An Omics Network Approach. Int J Mol Sci 2020; 21:ijms21051749. [PMID: 32143440 PMCID: PMC7084616 DOI: 10.3390/ijms21051749] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 02/28/2020] [Accepted: 03/02/2020] [Indexed: 12/18/2022] Open
Abstract
The adhesion behavior of human tissue cells changes in vitro, when gravity forces affecting these cells are modified. To understand the mechanisms underlying these changes, proteins involved in cell-cell or cell-extracellular matrix adhesion, their expression, accumulation, localization, and posttranslational modification (PTM) regarding changes during exposure to microgravity were investigated. As the sialylation of adhesion proteins is influencing cell adhesion on Earth in vitro and in vivo, we analyzed the sialylation of cell adhesion molecules detected by omics studies on cells, which change their adhesion behavior when exposed to microgravity. Using a knowledge graph created from experimental omics data and semantic searches across several reference databases, we studied the sialylation of adhesion proteins glycosylated at their extracellular domains with regards to its sensitivity to microgravity. This way, experimental omics data networked with the current knowledge about the binding of sialic acids to cell adhesion proteins, its regulation, and interactions in between those proteins provided insights into the mechanisms behind our experimental findings, suggesting that balancing the sialylation against the de-sialylation of the terminal ends of the adhesion proteins' glycans influences their binding activity. This sheds light on the transition from two- to three-dimensional growth observed in microgravity, mirroring cell migration and cancer metastasis in vivo.
Collapse
Affiliation(s)
- Thomas J. Bauer
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke-University Magdeburg, D-39120 Magdeburg, Germany; (T.J.B.); (M.W.); (M.I.); (D.G.)
| | - Erich Gombocz
- Melissa Informatics, 2550 Ninth Street, Suite 114, Berkeley, CA 94710, USA;
| | - Markus Wehland
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke-University Magdeburg, D-39120 Magdeburg, Germany; (T.J.B.); (M.W.); (M.I.); (D.G.)
| | - Johann Bauer
- Max Planck Institute of Biochemistry, D-82152 Martinsried, Germany
- Correspondence: ; Tel.: +49-89-85783803
| | - Manfred Infanger
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke-University Magdeburg, D-39120 Magdeburg, Germany; (T.J.B.); (M.W.); (M.I.); (D.G.)
| | - Daniela Grimm
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke-University Magdeburg, D-39120 Magdeburg, Germany; (T.J.B.); (M.W.); (M.I.); (D.G.)
- Department of Biomedicine, Aarhus University Hospital, DK-8000 Aarhus C, Denmark
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, Pfälzer Platz, 39106 Magdeburg, Germany
| |
Collapse
|
10
|
Sokolovskaya A, Korneeva E, Zaichenko D, Virus E, Kolesov D, Moskovtsev A, Kubatiev A. Changes in the Surface Expression of Intercellular Adhesion Molecule 3, the Induction of Apoptosis, and the Inhibition of Cell-Cycle Progression of Human Multidrug-Resistant Jurkat/A4 Cells Exposed to a Random Positioning Machine. Int J Mol Sci 2020; 21:E855. [PMID: 32013031 PMCID: PMC7037860 DOI: 10.3390/ijms21030855] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 01/21/2020] [Accepted: 01/27/2020] [Indexed: 12/18/2022] Open
Abstract
Experiments from flight- and ground-based model systems suggest that unexpected alterations of the human lymphoblastoid cell line Jurkat, as well as effects on cell growth, metabolism, and apoptosis, can occur in altered gravity conditions. Using a desktop random positioning machine (RPM), we investigated the effects of simulated microgravity on Jurkat cells and their multidrug-resistant subline, Jurkat/A4 cells. The viability of Jurkat/A4 cells decreased after simulated microgravity in contrast with the Jurkat cells. At the same time, the viability between the experimental Jurkat cells and control Jurkat cells was not significantly different. Of note, Jurkat cells appeared as less susceptible to apoptosis than their multidrug-resistant clone Jurkat/A4 cells, whereas cell-cycle analysis showed that the percentage of Jurkat/A4 cells in the S-phase was increased after 72 and 96 h of RPM-simulated microgravity relative to their static counterparts. The differences in Jurkat cells at all phases between static and simulated microgravity were not significant. The surface expression of the intercellular adhesion molecule 3 (ICAM-3)-also known as cluster of differentiation (CD)50-protein was changed for Jurkat/A4 cells following exposure to the RPM. Changes in cell morphology were observed in the Jurkat/A4 cells after 96 h of RPM-simulated microgravity. Thus, we concluded that Jurkat/A4 cells are more sensitive to RPM-simulated microgravity as compared with the parental Jurkat cell line. We also suggest that intercellular adhesion molecule 3 may be an important adhesion molecule involved in the induction of leukocyte apoptosis. The Jurkat/A4 cells with an acquired multidrug resistance phenotype could be a useful model for studying the effects of simulated microgravity and testing anticancer drugs.
Collapse
Affiliation(s)
- Alisa Sokolovskaya
- Department of Molecular and Cellular Pathophysiology, Institute of General Pathology and Pathophysiology, Baltiyskaya str. 8, 125315 Moscow, Russia; (E.K.); (D.Z.); (E.V.); (D.K.); (A.M.); (A.K.)
| | | | | | | | | | | | | |
Collapse
|
11
|
Ratushnyy A, Yakubets D, Andreeva E, Buravkova L. Simulated microgravity modulates the mesenchymal stromal cell response to inflammatory stimulation. Sci Rep 2019; 9:9279. [PMID: 31243304 PMCID: PMC6594925 DOI: 10.1038/s41598-019-45741-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 06/14/2019] [Indexed: 12/31/2022] Open
Abstract
The duration and distance of manned space flights emphasizes the importance of advanced elucidation of space flight factors and their effects on human beings. The exposure to inflammatory mediators under microgravity may contribute to the activity of different cells, perivascular stromal cells (MSCs) in particular. Inflammatory activation is now considered as a principal cue of MSC engagement in reparative remodeling. In the present paper, the effect of simulated microgravity (sµg) on TNFα-mediated priming of adipose tissue-derived MSC (ASCs) was examined. Sµg per se did not induce inflammatory-related changes, such as elevation of ICAM-1 and HLA-ABC expression, soluble mediator production, or shifting of the transcription profile in ASCs. Moreover, the attenuated ASC response to TNFα priming under sµg was manifested in decreased production of TNFα-dependent pleiotropic cytokines (IL-8 and MCP-1), matrix remodeling proteases, and downregulation of some genes encoding growth factors and cytokines. Time-dependent analysis detected the first signs of priming attenuation after 48 hours of 3D-clinorotation. A reduced response of MSCs to priming under sµg can be a negative factor in terms of MSC involvement in tissue remodeling processes.
Collapse
Affiliation(s)
- Andrey Ratushnyy
- Lab. of Cell Physiology, Institute of Biomedical Problems of Russia Academy of Sciences, Moscow, 123007, Russia
| | - Danila Yakubets
- Lab. of Cell Physiology, Institute of Biomedical Problems of Russia Academy of Sciences, Moscow, 123007, Russia
| | - Elena Andreeva
- Lab. of Cell Physiology, Institute of Biomedical Problems of Russia Academy of Sciences, Moscow, 123007, Russia
| | - Ludmila Buravkova
- Lab. of Cell Physiology, Institute of Biomedical Problems of Russia Academy of Sciences, Moscow, 123007, Russia.
| |
Collapse
|
12
|
Reptiles in Space Missions: Results and Perspectives. Int J Mol Sci 2019; 20:ijms20123019. [PMID: 31226840 PMCID: PMC6627973 DOI: 10.3390/ijms20123019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/04/2019] [Accepted: 06/17/2019] [Indexed: 12/17/2022] Open
Abstract
Reptiles are a rare model object for space research. However, some reptile species demonstrate effective adaptation to spaceflight conditions. The main scope of this review is a comparative analysis of reptile experimental exposure in weightlessness, demonstrating the advantages and shortcomings of this model. The description of the known reptile experiments using turtles and geckos in the space and parabolic flight experiments is provided. Behavior, skeletal bones (morphology, histology, and X-ray microtomography), internal organs, and the nervous system (morphology, histology, and immunohistochemistry) are studied in the spaceflight experiments to date, while molecular and physiological results are restricted. Therefore, the results are discussed in the scope of molecular data collected from mammalian (mainly rodents) specimens and cell cultures in the parabolic and orbital flights and simulated microgravity. The published data are compared with the results of the gecko model studies after the 12–44.5-day spaceflights with special reference to the unique peculiarities of the gecko model for the orbital experiments. The complex study of thick-toed geckos after three spaceflights, in which all geckos survived and demonstrated effective adaptation to spaceflight conditions, was performed. However, future investigations are needed to study molecular mechanisms of gecko adaptation in space.
Collapse
|
13
|
Effect of Weightlessness on the 3D Structure Formation and Physiologic Function of Human Cancer Cells. BIOMED RESEARCH INTERNATIONAL 2019; 2019:4894083. [PMID: 31073526 PMCID: PMC6470427 DOI: 10.1155/2019/4894083] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/27/2019] [Accepted: 02/27/2019] [Indexed: 02/07/2023]
Abstract
With the rapid development of modern medical technology and the deterioration of living environments, cancer, the most important disease that threatens human health, has attracted increasing concerns. Although remarkable achievements have been made in tumor research during the past several decades, a series of problems such as tumor metastasis and drug resistance still need to be solved. Recently, relevant physiological changes during space exploration have attracted much attention. Thus, space exploration might provide some inspiration for cancer research. Using on ground different methods in order to simulate microgravity, structure and function of cancer cells undergo many unique changes, such as cell aggregation to form 3D spheroids, cell-cycle inhibition, and changes in migration ability and apoptosis. Although numerous better experiments have been conducted on this subject, the results are not consistent. The reason might be that different methods for simulation have been used, including clinostats, random positioning machine (RPM) and rotating wall vessel (RWV) and so on. Therefore, we review the relevant research and try to explain novel mechanisms underlying tumor cell changes under weightlessness.
Collapse
|
14
|
Shilina MA, Grinchuk TM, Anatskaya OV, Vinogradov AE, Alekseenko LL, Elmuratov AU, Nikolsky NN. Cytogenetic and Transcriptomic Analysis of Human Endometrial MSC Retaining Proliferative Activity after Sublethal Heat Shock. Cells 2018; 7:cells7110184. [PMID: 30366433 PMCID: PMC6262560 DOI: 10.3390/cells7110184] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/19/2018] [Accepted: 10/23/2018] [Indexed: 12/14/2022] Open
Abstract
Temperature is an important exogenous factor capable of leading to irreversible processes in the vital activity of cells. However, the long-term effects of heat shock (HS) on mesenchymal stromal cells (MSC) remain unstudied. We investigated the karyotype and DNA repair drivers and pathways in the human endometrium MSC (eMSC) survived progeny at passage 6 after sublethal heat stress (sublethal heat stress survived progeny (SHS-SP)). G-banding revealed an outbreak of random karyotype instability caused by chromosome breakages and aneuploidy. Molecular karyotyping confirmed the random nature of this instability. Transcriptome analysis found homologous recombination (HR) deficiency that most likely originated from the low thermostability of the AT-rich HR driving genes. SHS-SP protection from transformation is provided presumably by low oncogene expression maintained by tight co-regulation between thermosensitive HR drivers BRCA, ATM, ATR, and RAD51 (decreasing expression after SHS), and oncogenes mTOR, MDM2, KRAS, and EGFR. The cancer-related transcriptomic features previously identified in hTERT transformed MSC in culture were not found in SHS-SP, suggesting no traits of malignancy in them. The entrance of SHS-SP into replicative senescence after 25 passages confirms their mortality and absence of transformation features. Overall, our data indicate that SHS may trigger non-tumorigenic karyotypic instability due to HR deficiency and decrease of oncogene expression in progeny of SHS-survived MSC. These data can be helpful for the development of new therapeutic approaches in personalized medicine.
Collapse
Affiliation(s)
- Mariia A Shilina
- Institute of Cytology, Russian Academy of Sciences, Tikhoretskay Ave 4, St. 194064 Petersburg, Russia.
| | - Tatiana M Grinchuk
- Institute of Cytology, Russian Academy of Sciences, Tikhoretskay Ave 4, St. 194064 Petersburg, Russia.
| | - Olga V Anatskaya
- Institute of Cytology, Russian Academy of Sciences, Tikhoretskay Ave 4, St. 194064 Petersburg, Russia.
| | - Alexander E Vinogradov
- Institute of Cytology, Russian Academy of Sciences, Tikhoretskay Ave 4, St. 194064 Petersburg, Russia.
| | - Larisa L Alekseenko
- Institute of Cytology, Russian Academy of Sciences, Tikhoretskay Ave 4, St. 194064 Petersburg, Russia.
| | - Artem U Elmuratov
- Institute of Biomedical Chemistry (IBMC) of Russian Academy of Sciences, 10 Building 8, Pogodinskaya Street, 119121 Moscow, Russia.
- Medical Genetics Centre Genotek, Nastavnichesky Alley 17-1-15, 10510 Moscow, Russia.
| | - Nikolai N Nikolsky
- Institute of Cytology, Russian Academy of Sciences, Tikhoretskay Ave 4, St. 194064 Petersburg, Russia.
| |
Collapse
|
15
|
Li N, Wang C, Sun S, Zhang C, Lü D, Chen Q, Long M. Microgravity-Induced Alterations of Inflammation-Related Mechanotransduction in Endothelial Cells on Board SJ-10 Satellite. Front Physiol 2018; 9:1025. [PMID: 30108515 PMCID: PMC6079262 DOI: 10.3389/fphys.2018.01025] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 07/11/2018] [Indexed: 12/19/2022] Open
Abstract
Endothelial cells (ECs) are mechanosensitive cells undergoing morphological and functional changes in space. Ground-based study has provided a body of evidences about how ECs can respond to the effect of simulated microgravity, however, these results need to be confirmed by spaceflight experiments in real microgravity. In this work, we cultured EA.hy926 ECs on board the SJ-10 Recoverable Scientific Satellite for 3 and 10 days, and analyzed the effects of space microgravity on the ECs. Space microgravity suppressed the glucose metabolism, modulated the expression of cellular adhesive molecules such as ICAM-1, VCAM-1, and CD44, and depressed the pro-angiogenesis and pro-inflammation cytokine secretion. Meanwhile, it also induced the depolymerization of actin filaments and microtubules, promoted the vimentin accumulation, restrained the collagen I and fibronectin deposition, regulated the mechanotransduction through focal adhesion kinase and Rho GTPases, and enhanced the exosome-mediated mRNA transfer. Unlike the effect of simulated microgravity, neither three-dimensional growth nor enhanced nitric oxide production was observed in our experimental settings. This work furthers the understandings in the effects and mechanisms of space microgravity on ECs, and provides useful information for future spaceflight experimental design.
Collapse
Affiliation(s)
- Ning Li
- Key Laboratory of Microgravity - National Microgravity Laboratory, Center of Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China.,School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Chengzhi Wang
- Key Laboratory of Microgravity - National Microgravity Laboratory, Center of Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China.,School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Shujin Sun
- Key Laboratory of Microgravity - National Microgravity Laboratory, Center of Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China.,School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Chen Zhang
- Key Laboratory of Microgravity - National Microgravity Laboratory, Center of Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China.,School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Dongyuan Lü
- Key Laboratory of Microgravity - National Microgravity Laboratory, Center of Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China.,School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Qin Chen
- Key Laboratory of Microgravity - National Microgravity Laboratory, Center of Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China.,School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Mian Long
- Key Laboratory of Microgravity - National Microgravity Laboratory, Center of Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China.,School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|