1
|
Chatterjee P, Ghosh D, Chowdhury SR, Roy SS. ETS1 drives EGF-induced glycolytic shift and metastasis of epithelial ovarian cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119805. [PMID: 39159682 DOI: 10.1016/j.bbamcr.2024.119805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/10/2024] [Accepted: 07/20/2024] [Indexed: 08/21/2024]
Abstract
Epithelial ovarian cancer (EOC), a leading cause of gynecological cancer-related morbidity and mortality and the most common type of ovarian cancer (OC), is widely characterized by alterations in the Epidermal Growth Factor (EGF) signaling pathways. The phenomenon of metastasis is largely held accountable for the majority of EOC-associated deaths. Existing literature reports substantiate evidence on the indispensable role of metabolic reprogramming, particularly the phenomenon of the 'Warburg effect' or aerobic glycolysis in priming the cancer cells towards Epithelial to Mesenchymal transition (EMT), subsequently facilitating EMT. Considering the diverse roles of growth factor signaling across different stages of oncogenesis, our prime emphasis was laid on unraveling mechanistic details of EGF-induced 'Warburg effect' and resultant metastasis in EOC cells. Our study puts forth Ets1, an established oncoprotein and key player in OC progression, as the prime metabolic sensor to EGF-induced cues from the tumor microenvironment (TME). EGF treatment has been found to induce Ets1 expression in OC cells predominantly through the Extracellular Signal-Regulated Kinase1/2 (ERK1/2) pathway activation. This subsequently results in pronounced glycolysis, characterized by an enhanced lactate production through transcriptional up-regulation of key determinant genes of the central carbon metabolism namely, hexokinase 2 (HK2) and monocarboxylate transporter 4 (MCT4). Furthermore, this study reports an unforeseen combinatorial blockage of HK2 and MCT4 as an effective approach to mitigate cellular metastasis in OC. Collectively, our work proposes a novel mechanistic insight into EGF-induced glycolytic bias in OC cells and also sheds light on an effective therapeutic intervention approach exploiting these insights.
Collapse
Affiliation(s)
- Priti Chatterjee
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Deepshikha Ghosh
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | | | - Sib Sankar Roy
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
2
|
Wang Y, Zhang H, Zhan Y, Li Z, Li S, Guo S. Comprehensive in silico analysis of prognostic and immune infiltrates for FGFs in human ovarian cancer. J Ovarian Res 2024; 17:197. [PMID: 39385288 PMCID: PMC11465590 DOI: 10.1186/s13048-024-01496-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/14/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Fibroblast growth factors (FGFs) are cell signaling proteins that perform multiple biological processes in many biological processes (cell development, repair, and metabolism). The dynamics of tumor cells, such as angiogenesis, transformation, and proliferation, have a significant impact on neoplasia and are modulated by FGFs. FGFs' expression and prognostic significance in ovarian cancer (OC), however, remain unclear. METHODS Through a series of in silico analysis, we investigated the transcriptional, survival data, genetic variation, gene-gene interaction network, ferroptosis-related genes, and DNA methylation of FGFs in OC patients. RESULTS We discovered that while FGF18 expression levels were higher in OC tissues than in normal OC tissues, FGF2/7/10/17/22 expression levels were lower in the former, and that FGF1/19 expression was related to the tumor stage in OC patients. According to the survival analysis, the clinical prognosis of individuals with OC was associated with the aberrant expression of FGFs. The function of FGFs and their neighboring genes was mainly connected to the cellular response to FGF stimulus. There was a negative correlation between FGF expression and various immune cell infiltration. CONCLUSIONS This study clarifies the relationship between FGFs and OC, which might provide new insights into the choice of prognostic biomarkers of OC patients.
Collapse
Affiliation(s)
- Yu Wang
- Emergency Medicine Clinical Research Center, Beijing Chao-yang Hospital, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Capital Medical University, Beijing, 100020, P.R. China
| | - Haiyue Zhang
- Thrombosis research center, Beijing Jishuitan hospital, Capital Medical University, Beijing, China, Xicheng District, Beijing 100035, China
- Department of Clinical Laboratory, Beijing Jishuitan Hospital Affiliated to Capital Medical University, Xicheng District, Beijing, China
| | - Yuanyuan Zhan
- Department of Endocrinology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, 100020, P.R. China
| | - Zhuoran Li
- Emergency Medicine Clinical Research Center, Beijing Chao-yang Hospital, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Capital Medical University, Beijing, 100020, P.R. China
| | - Sujing Li
- Department of Plastic Surgery, Zhengzhou First People's Hospital, Zhengzhou, China
| | - Shubin Guo
- Emergency Medicine Clinical Research Center, Beijing Chao-yang Hospital, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Capital Medical University, Beijing, 100020, P.R. China.
| |
Collapse
|
3
|
Liu Y, Yuan L, Lin Z, Huixian M, Huangyang M, Cheng W. The serum LDH level and KELIM scores are potential predictors of a benefit from bevacizumab first-line therapy for patients with advanced ovarian cancer. Clin Transl Oncol 2024:10.1007/s12094-024-03569-3. [PMID: 38904923 DOI: 10.1007/s12094-024-03569-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/12/2024] [Indexed: 06/22/2024]
Abstract
OBJECTIVE The survival benefit of first-line treatment with bevacizumab in advanced ovarian cancer patients are multifaceted. In our study, we aimed to identify potential markers of bevacizumab efficacy to help predict which patients would experience survival benefits. METHODS This was a retrospective analysis of 114 patients examined from January 1, 2015, to March 1, 2023, and data on clinical, biological, and imaging variables, such as ascites, serum LDH, and CA125, were extracted from electronic medical records. We performed a correlation analysis and principal component analysis to investigate correlations among variables and reduce their dimensionality. Then, univariate and multivariate Cox proportional hazards regression analyses were used to identify the predictors of progression-free survival. RESULTS Favorable KELIM score (≥ 1, HR 0.376, 95% CI [0.202-0.700], p = 0.002), which indicated better chemosensitivity, and lower LDH levels (≤ 210 U/L, HR 38.73, 95% CI [6.108-245.6], p < 0.001) were found to be independent predictors of a treatment benefit with bevacizumab in patients with advanced ovarian cancer. Regardless of LDH level, patients with favorable KELIM scores had a higher progression-free survival (PFS) benefit (p = 0.18). Among patients with unfavorable KELIM scores, those with higher LDH levels had the lowest PFS benefit (median: 11.5 months, p = 0.0059). CONCLUSION Patients with poor chemosensitivity and low LDH levels are more likely to benefit from first-line bevacizumab treatment. The combination of the two markers can be a helpful predictor of patients who are most likely to benefit from treatment and a guide for treatment decisions-making. Retrospectively registered: 2020-MD-371, 2020.10.12.
Collapse
Affiliation(s)
- Yi Liu
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Lin Yuan
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Zhang Lin
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Miao Huixian
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Meng Huangyang
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Wenjun Cheng
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
4
|
Sun J, Feng Q, Xu Y, Liu P, Wu Y. Analysis of prognostic value of lactate metabolism-related genes in ovarian cancer based on bioinformatics. J Ovarian Res 2024; 17:110. [PMID: 38778371 PMCID: PMC11110319 DOI: 10.1186/s13048-024-01426-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 04/30/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Recent studies have provided evidence supporting the functional role and mechanism of lactate in suppressing anticancer immunity. However, there is no systematic analysis of lactate metabolism-related genes (LMRGs) and ovarian cancer (OV) prognosis. RESULTS Six genes (CCL18, CCND1, MXRA5, NRBP2, OLFML2B and THY1) were selected as prognostic genes and a prognostic model was utilized. Kaplan-Meier (K-M) and Receiver Operating Characteristic (ROC) analyses were further performed and indicated that the prognostic model was effective. Subsequently, the neoplasm_cancer_status and RiskScore were determined as independent prognostic factors, and a nomogram was established with relatively accurate forecasting ability. Additionally, 2 types of immune cells (Central memory CD8 T cell and Immature B cell), 4 types of immune functions (APC co inhibition, DCs, Tfh and Th1 cells), 9 immune checkpoints (BTLA, CTLA4, IDO1, LAG3, VTCN1, CXCL10, CXCL9, IFNG, CD27) and tumor immune dysfunction and exclusion (TIDE) scores were significantly different between risk groups. The expression of 6 genes were verified by quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) and the expression of 6 genes were higher in the high-grade serous carcinoma (HGSC) samples. CONCLUSION A prognostic model related to lactate metabolism was established for OV based on six genes (CCL18, CCND1, MXRA5, NRBP2, OLFML2B and THY1) that could provide new insights into therapy.
Collapse
Affiliation(s)
- Jinrui Sun
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Beijing Maternal and Child Health Care Hospital, Capital Medical University, Beijing, 100006, China
- Department of Gynecology, Shanxi Provincial People's Hospital, Taiyuan, 030001, Shanxi Province, China
| | - Qinmei Feng
- Department of Gynecology, Shanxi Provincial People's Hospital, Taiyuan, 030001, Shanxi Province, China
| | - Yingying Xu
- Department of Gynecology, Shanxi Provincial People's Hospital, Taiyuan, 030001, Shanxi Province, China
| | - Ping Liu
- Department of Gynecology, Shanxi Provincial People's Hospital, Taiyuan, 030001, Shanxi Province, China
| | - Yumei Wu
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Beijing Maternal and Child Health Care Hospital, Capital Medical University, Beijing, 100006, China.
| |
Collapse
|
5
|
Chang CC, Takada YK, Cheng CW, Maekawa Y, Mori S, Takada Y. FGF9, a Potent Mitogen, Is a New Ligand for Integrin αvβ3, and the FGF9 Mutant Defective in Integrin Binding Acts as an Antagonist. Cells 2024; 13:307. [PMID: 38391921 PMCID: PMC10887216 DOI: 10.3390/cells13040307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/24/2024] [Accepted: 02/01/2024] [Indexed: 02/24/2024] Open
Abstract
FGF9 is a potent mitogen and survival factor, but FGF9 protein levels are generally low and restricted to a few adult organs. Aberrant expression of FGF9 usually results in cancer. However, the mechanism of FGF9 action has not been fully established. Previous studies showed that FGF1 and FGF2 directly bind to integrin αvβ3, and this interaction is critical for signaling functions (FGF-integrin crosstalk). FGF1 and FGF2 mutants defective in integrin binding were defective in signaling, whereas the mutants still bound to FGFR suppressed angiogenesis and tumor growth, indicating that they act as antagonists. We hypothesize that FGF9 requires direct integrin binding for signaling. Here, we show that docking simulation of the interaction between FGF9 and αvβ3 predicted that FGF9 binds to the classical ligand-binding site of αvβ3. We show that FGF9 bound to integrin αvβ3 and generated FGF9 mutants in the predicted integrin-binding interface. An FGF9 mutant (R108E) was defective in integrin binding, activating FRS2α and ERK1/2, inducing DNA synthesis, cancer cell migration, and invasion in vitro. R108E suppressed DNA synthesis and activation of FRS2α and ERK1/2 induced by WT FGF9 (dominant-negative effect). These findings indicate that FGF9 requires direct integrin binding for signaling and that R108E has potential as an antagonist to FGF9 signaling.
Collapse
Affiliation(s)
- Chih-Chieh Chang
- Department of Dermatology, University of California, Davis School of Medicine, Sacramento, CA 95817, USA; (C.-C.C.); (Y.K.T.)
- Department of Biochemistry and Molecular Medicine, University of California, Davis School of Medicine, Sacramento, CA 95817, USA
| | - Yoko K. Takada
- Department of Dermatology, University of California, Davis School of Medicine, Sacramento, CA 95817, USA; (C.-C.C.); (Y.K.T.)
| | - Chao-Wen Cheng
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
| | - Yukina Maekawa
- Department of Medical Technology, Faculty of Health Science, Morinomiya University of Medical Sciences, Osaka 536-0025, Japan; (Y.M.); (S.M.)
| | - Seiji Mori
- Department of Medical Technology, Faculty of Health Science, Morinomiya University of Medical Sciences, Osaka 536-0025, Japan; (Y.M.); (S.M.)
- Department of Molecular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Yoshikazu Takada
- Department of Dermatology, University of California, Davis School of Medicine, Sacramento, CA 95817, USA; (C.-C.C.); (Y.K.T.)
- Department of Biochemistry and Molecular Medicine, University of California, Davis School of Medicine, Sacramento, CA 95817, USA
| |
Collapse
|
6
|
Chang CC, Takada YK, Cheng CW, Maekawa Y, Mori S, Takada Y. FGF9, a potent mitogen, is a new ligand for integrin αvβ3, and the FGF9 mutant defective in integrin binding acts as an antagonist. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.01.569657. [PMID: 38076804 PMCID: PMC10705552 DOI: 10.1101/2023.12.01.569657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
FGF9 is a potent mitogen and survival factor, but FGF9 protein level is generally low and restricted to a few adult organs. Aberrant expression of FGF9 usually results in cancer. However, the mechanism of FGF9 action has not been fully established. Previous studies showed that FGF1 and FGF2 directly bind to integrin αvβ3 and this interaction is critical for signaling functions (FGF-integrin crosstalk). FGF1 and FGF2 mutants defective in integrin binding were defective in signaling, whereas the mutants still bound to FGFR, and suppressed angiogenesis and tumor growth, indicating that they act as antagonists. We hypothesize that FGF9 requires direct integrin binding for signaling. Here we show that docking simulation of interaction between FGF9 and αvβ3 predicted that FGF9 binds to the classical ligand-binding site of αvβ3. We showed that FGF9 actually bound to integrin αvβ3, and generated an FGF9 mutants in the predicted integrin-binding interface. An FGF9 mutant (R108E) was defective in integrin binding, activating FRS2α and ERK1/2, inducing DNA synthesis, cancer cell migration, and invasion in vitro. R108E suppressed DNA synthesis induced by WT FGF9 and suppressed DNA synthesis and activation of FRS2α and ERK1/2 induced by WT FGF9 (dominant-negative effect). These findings indicate that FGF9 requires direct integrin binding for signaling and that R108E has potential as an antagonist to FGF9 signaling.
Collapse
|
7
|
Chakraborty J, Chakraborty S, Chakraborty S, Narayan MN. Entanglement of MAPK pathways with gene expression and its omnipresence in the etiology for cancer and neurodegenerative disorders. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194988. [PMID: 37739217 DOI: 10.1016/j.bbagrm.2023.194988] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 09/24/2023]
Abstract
Mitogen Activated Protein Kinase (MAPK) is one of the most well characterized cellular signaling pathways that controls fundamental cellular processes including proliferation, differentiation, and apoptosis. These cellular functions are consequences of transcription of regulatory genes that are influenced and regulated by the MAP-Kinase signaling cascade. MAP kinase components such as Receptor Tyrosine Kinases (RTKs) sense external cues or ligands and transmit these signals via multiple protein complexes such as RAS-RAF, MEK, and ERKs and eventually modulate the transcription factors inside the nucleus to induce transcription and other regulatory functions. Aberrant activation, dysregulation of this signaling pathway, and genetic alterations in any of these components results in the developmental disorders, cancer, and neurodegenerative disorders. Over the years, the MAPK pathway has been a prime pharmacological target, to treat complex human disorders that are genetically linked such as cancer, Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. The current review re-visits the mechanism of MAPK pathways in gene expression regulation. Further, a current update on the progress of the mechanistic understanding of MAPK components is discussed from a disease perspective.
Collapse
Affiliation(s)
- Joydeep Chakraborty
- Institute for Advancing Health through Agriculture, Texas A&M Agrilife, College Station, TX, USA
| | - Sayan Chakraborty
- Department of Anesthesiology, Weill Cornell School of Medicine, New York, USA
| | - Sohag Chakraborty
- Human Oncology & Pathogenesis Program (HOPP), Memorial Sloan Kettering Cancer Center, New York, USA
| | - Mahesh N Narayan
- Department of Chemistry and Biochemistry, University of Texas, El Paso, TX, USA.
| |
Collapse
|
8
|
Mannan A, Dhiamn S, Garg N, Singh TG. Pharmacological modulation of Sonic Hedgehog signaling pathways in Angiogenesis: A mechanistic perspective. Dev Biol 2023; 504:58-74. [PMID: 37739118 DOI: 10.1016/j.ydbio.2023.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/13/2023] [Accepted: 09/18/2023] [Indexed: 09/24/2023]
Abstract
The Sonic hedgehog (SHh) signaling pathway is an imperative operating network that helps in regulates the critical events during the development processes like multicellular embryo growth and patterning. Disruptions in SHh pathway regulation can have severe consequences, including congenital disabilities, stem cell renewal, tissue regeneration, and cancer/tumor growth. Activation of the SHh signal occurs when SHh binds to the receptor complex of Patch (Ptc)-mediated Smoothened (Smo) (Ptc-smo), initiating downstream signaling. This review explores how pharmacological modulation of the SHh pathway affects angiogenesis through canonical and non-canonical pathways. The canonical pathway for angiogenesis involves the activation of angiogenic cytokines such as fibroblast growth factor (FGF), vascular endothelial growth factor (VEGF), placental growth factor (PGF), hepatocyte growth factor (HGF), platelet-derived growth factor (PDGF), stromal cell-derived factor 1α, transforming growth factor-β1 (TGF-β1), and angiopoietins (Ang-1 and Ang-2), which facilitate the process of angiogenesis. The Non-canonical pathway includes indirect activation of certain pathways like iNOS/Netrin-1/PKC, RhoA/Rock, ERK/MAPK, PI3K/Akt, Wnt/β-catenin, Notch signaling pathway, and so on. This review will provide a better grasp of the mechanistic approach of SHh in mediating angiogenesis, which can aid in the suppression of certain cancer and tumor growths.
Collapse
Affiliation(s)
- Ashi Mannan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India.
| | - Sonia Dhiamn
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India.
| | - Nikhil Garg
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India.
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India.
| |
Collapse
|
9
|
Zhang L, Zhang Q, Teng D, Guo M, Tang K, Wang Z, Wei X, Lin L, Zhang X, Wang X, Huang D, Ren C, Yang Q, Zhang W, Gao Y, Chen W, Chang Y, Zhang H. FGF9 Recruits β-Catenin to Increase Hepatic ECM Synthesis and Promote NASH-Driven HCC. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301166. [PMID: 37566761 PMCID: PMC10558677 DOI: 10.1002/advs.202301166] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 07/20/2023] [Indexed: 08/13/2023]
Abstract
Most nonalcoholic steatohepatitis (NASH) patients develop severe fibrosis through extracellular matrix (ECM) accumulation, which can lead to hepatocellular carcinoma (HCC). Fibroblast growth factor 9 (FGF9) is involved in serial types of cancer; however, the specific role of FGF9 in NASH-driven HCC is not fully understood. This study finds that FGF9 is increased in patients with NASH-associated HCC. Furthermore, NASH-driven HCC mice models by feeding wildtype mice with high-fat/high-cholesterol (HFHC) diet and low dose carbon tetrachloride (CCl4 ) treatment is established; and identified that hepatic FGF9 is increased; with severe fibrosis. Additionally, AAV-mediated knockdown of FGF9 reduced the hepatic tumor burden of NASH-driven HCC mice models. Hepatocyte-specific FGF9 transgenic mice (FGF9Alb ) fed with a HFHC diet without CCl4 treatment exhibited an increased hepatic ECM and tumor burden. However, XAV-939 treatment blocked ECM accumulation and NASH-driven HCC in FGF9Alb mice fed with HFHC diet. Molecular mechanism studies show that FGF9 stimulated the expression of ECM related genes in a β-catenin dependent manner; and FGF9 exerts its effect on β-catenin stability via the ERK1/2-GSK-3β signaling pathway. In summary, the data provides evidence for the critical role of FGF9 in NASH-driven HCC pathogenesis; wherein it promotes the tumors formation through the ECM pathway.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Biochemistry and Molecular BiologyMetabolic Disease Research CenterSchool of Basic MedicineAnhui Medical University230032HefeiChina
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education)Tianjin Key of Cellular Homeostasis and DiseaseDepartment of Physiology and PathophysiologyTianjin Medical University300070TianjinChina
| | - Qing Zhang
- Department of Biochemistry and Molecular BiologyMetabolic Disease Research CenterSchool of Basic MedicineAnhui Medical University230032HefeiChina
| | - Da Teng
- Department of Hepatopancreatobiliary SurgeryAffifiliated Chuzhou Hospital of Anhui Medical University (The First People's Hospital of Chuzhou)Chuzhou239001China
| | - Manyu Guo
- Department of Biochemistry and Molecular BiologyMetabolic Disease Research CenterSchool of Basic MedicineAnhui Medical University230032HefeiChina
| | - Kechao Tang
- Department of Biochemistry and Molecular BiologyMetabolic Disease Research CenterSchool of Basic MedicineAnhui Medical University230032HefeiChina
| | - Zhenglin Wang
- Department of General SurgeryThe First Affiliated Hospital of Anhui Medical University230022HefeiChina
| | - Xiang Wei
- Department of Biochemistry and Molecular BiologyMetabolic Disease Research CenterSchool of Basic MedicineAnhui Medical University230032HefeiChina
| | - Li Lin
- Department of Biochemistry and Molecular BiologyMetabolic Disease Research CenterSchool of Basic MedicineAnhui Medical University230032HefeiChina
| | - Xiaomin Zhang
- Department of Biochemistry and Molecular BiologyMetabolic Disease Research CenterSchool of Basic MedicineAnhui Medical University230032HefeiChina
| | - Xiuyun Wang
- Department of Biochemistry and Molecular BiologyMetabolic Disease Research CenterSchool of Basic MedicineAnhui Medical University230032HefeiChina
| | - Dake Huang
- Synthetic Laboratory of School of Basic Medicine SciencesAnhui Medical University230032HefeiChina
| | - Cuiping Ren
- Department of Microbiology and ParasitologySchool of Basic MedicineAnhui Medical University230032HefeiChina
| | - Qingsong Yang
- Department of Hepatopancreatobiliary SurgeryAffifiliated Chuzhou Hospital of Anhui Medical University (The First People's Hospital of Chuzhou)Chuzhou239001China
| | - Wenjun Zhang
- Department of Hepatopancreatobiliary SurgeryAffifiliated Chuzhou Hospital of Anhui Medical University (The First People's Hospital of Chuzhou)Chuzhou239001China
| | - Yong Gao
- Science and Technology Innovation CenterGuangzhou University of Chinese Medicine510006GuangzhouChina
| | - Wei Chen
- Department of General SurgeryThe First Affiliated Hospital of Anhui Medical University230022HefeiChina
| | - Yongsheng Chang
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education)Tianjin Key of Cellular Homeostasis and DiseaseDepartment of Physiology and PathophysiologyTianjin Medical University300070TianjinChina
| | - Huabing Zhang
- Department of Biochemistry and Molecular BiologyMetabolic Disease Research CenterSchool of Basic MedicineAnhui Medical University230032HefeiChina
- The Affiliated Chuzhou Hospital of Anhui Medical University (The First People's Hospital of Chuzhou)Chuzhou239001China
| |
Collapse
|
10
|
Ghosh D, Pakhira S, Ghosh DD, Roychoudhury S, Roy SS. Ets1 facilitates EMT/invasion through Drp1-mediated mitochondrial fragmentation in ovarian cancer. iScience 2023; 26:107537. [PMID: 37664613 PMCID: PMC10469980 DOI: 10.1016/j.isci.2023.107537] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/03/2023] [Accepted: 07/28/2023] [Indexed: 09/05/2023] Open
Abstract
Ovarian cancer has sustained as a major cause of cancer-related female mortality owing to its aggressive nature and a dearth of early detection markers. Ets1 oncoprotein, a transcription factor belonging to the Ets family, is a well-established promoter of epithelial to mesenchymal transition (EMT) and a prospective malignancy marker in ovarian cancer. Our study establishes Ets1 as a regulator of mitochondrial fission-fusion dynamics through Drp1 augmentation via direct binding at DNM1L (DRP1) promoter. Ets1 overexpression-mediated Drp1 increment resulted in mitochondrial load reduction and compromised OXPHOS Complex 5 (ATP synthase) expression, facilitating a greater reliance on glycolysis over OXPHOS. Furthermore, our work demonstrates that inhibition of mitochondrial fission through molecular or pharmacological inhibition of Drp1 successfully mitigates Ets1-associated EMT in both in vitro and in vivo syngeneic mice model. Collectively, our data highlight the role of Drp1-mediated mitochondrial fragmentation in driving Ets1-mediated bioenergetic alterations and EMT/invasion in ovarian cancer.
Collapse
Affiliation(s)
- Deepshikha Ghosh
- Cell Biology and Physiology Division, CSIR Indian Institute of Chemical Biology (CSIR IICB), 4, Raja S.C. Mullick Road, Kolkata 700032, India
| | - Suman Pakhira
- Cell Biology and Physiology Division, CSIR Indian Institute of Chemical Biology (CSIR IICB), 4, Raja S.C. Mullick Road, Kolkata 700032, India
| | - Damayanti Das Ghosh
- Molecular and Diagnostics Laboratory, Basic and Translational Research, Saroj Gupta Cancer Centre & Research Institute, Thakurpukur, Kolkata 700063, India
| | - Susanta Roychoudhury
- Cell Biology and Physiology Division, CSIR Indian Institute of Chemical Biology (CSIR IICB), 4, Raja S.C. Mullick Road, Kolkata 700032, India
| | - Sib Sankar Roy
- Cell Biology and Physiology Division, CSIR Indian Institute of Chemical Biology (CSIR IICB), 4, Raja S.C. Mullick Road, Kolkata 700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
11
|
Chen R, Li P, Fu Y, Wu Z, Xu L, Wang J, Chen S, Yang M, Peng B, Yang Y, Zhang H, Han Q, Li S. Chaperone-mediated autophagy promotes breast cancer angiogenesis via regulation of aerobic glycolysis. PLoS One 2023; 18:e0281577. [PMID: 36913368 PMCID: PMC10010525 DOI: 10.1371/journal.pone.0281577] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 01/26/2023] [Indexed: 03/14/2023] Open
Abstract
Evidence shows that chaperone-mediated autophagy (CMA) is involved in cancer cell pathogenesis and progression. However, the potential role of CMA in breast cancer angiogenesis remains unknown. We first manipulated CMA activity by knockdown and overexpressing of lysosome-associated membrane protein type 2A (LAMP2A) in MDA-MB-231, MDA-MB-436, T47D and MCF7 cells. We found that the tube formation, migration and proliferation abilities of human umbilical vein endothelial cells (HUVECs) were inhibited after cocultured with tumor-conditioned medium from breast cancer cells of LAMP2A knockdown. While the above changes were promoted after cocultured with tumor-conditioned medium from breast cancer cells of LAMP2A overexpression. Moreover, we found that CMA could promote VEGFA expression in breast cancer cells and in xenograft model through upregulating lactate production. Finally, we found that lactate regulation in breast cancer cells is hexokinase 2 (HK2) dependent, and knockdown of HK2 can significantly reduce the ability of CMA-mediated tube formation capacity of HUVECs. Collectively, these results indicate that CMA could promote breast cancer angiogenesis via regulation of HK2-dependent aerobic glycolysis, which may serve as an attractive target for breast cancer therapies.
Collapse
Affiliation(s)
- Rui Chen
- Tibetan Traditional Medical College, Lhasa, China
| | - Peng Li
- Yantai Mountain Hospital, Yantai, Shandong, China
| | - Yan Fu
- General Hospital, Western Theater Command, Chengdu, Sichuan, China
| | - Zongyao Wu
- Tibetan Traditional Medical College, Lhasa, China
| | - Lijun Xu
- Tibetan Traditional Medical College, Lhasa, China
| | - Junhua Wang
- General Hospital of Tibet Area Military Command, Lhasa, China
| | - Sha Chen
- Army Medical University (Third Military Medical University), Chongqing, China
| | - Mingzhen Yang
- Army Medical University (Third Military Medical University), Chongqing, China
| | - Bingjie Peng
- Army Medical University (Third Military Medical University), Chongqing, China
| | - Yao Yang
- General Hospital, Western Theater Command, Chengdu, Sichuan, China
| | - Hongwei Zhang
- General Hospital of Tibet Area Military Command, Lhasa, China
| | - Qi Han
- General Hospital of Tibet Area Military Command, Lhasa, China
- Army Medical University (Third Military Medical University), Chongqing, China
- * E-mail: (SL); (QH)
| | - Shuhui Li
- Army Medical University (Third Military Medical University), Chongqing, China
- * E-mail: (SL); (QH)
| |
Collapse
|
12
|
Lin Y, Zhou X, Ni Y, Zhao X, Liang X. Metabolic reprogramming of the tumor immune microenvironment in ovarian cancer: A novel orientation for immunotherapy. Front Immunol 2022; 13:1030831. [PMID: 36311734 PMCID: PMC9613923 DOI: 10.3389/fimmu.2022.1030831] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/29/2022] [Indexed: 11/17/2022] Open
Abstract
Ovarian cancer is the most lethal gynecologic tumor, with the highest mortality rate. Numerous studies have been conducted on the treatment of ovarian cancer in the hopes of improving therapeutic outcomes. Immune cells have been revealed to play a dual function in the development of ovarian cancer, acting as both tumor promoters and tumor suppressors. Increasingly, the tumor immune microenvironment (TIME) has been proposed and confirmed to play a unique role in tumor development and treatment by altering immunosuppressive and cytotoxic responses in the vicinity of tumor cells through metabolic reprogramming. Furthermore, studies of immunometabolism have provided new insights into the understanding of the TIME. Targeting or activating metabolic processes of the TIME has the potential to be an antitumor therapy modality. In this review, we summarize the composition of the TIME of ovarian cancer and its metabolic reprogramming, its relationship with drug resistance in ovarian cancer, and recent research advances in immunotherapy.
Collapse
|
13
|
Xiang J, Su R, Wu S, Zhou L. Construction of a prognostic signature for serous ovarian cancer based on lactate metabolism-related genes. Front Oncol 2022; 12:967342. [PMID: 36185201 PMCID: PMC9520471 DOI: 10.3389/fonc.2022.967342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 08/31/2022] [Indexed: 11/21/2022] Open
Abstract
Background The key biochemical feature of malignant tumor is the conversion of energy metabolism from oxidative phosphorylation to glycolysis, which provides sufficient capacity and raw materials for tumor cell rapid growth. Our study aims to construct a prognostic signature for ovarian cancer based on lactate metabolism-related genes (LMRGs). Methods Data of ovarian cancer and non-diseased ovarian data were downloaded from TCGA and the GTEx database, respectively. LMRGs were obtained from GeneCards and MSigDB databases, and the differentially expressed LMRGs were identified using limma and DESeq2 R packages. Cox regression analysis and LASSO were performed to determine the LMRGs associated with OS and develop the prognostic signature. Then, clinical significance of the prognostic signature in ovarian cancer was assessed. Results A total of 485 differentially expressed LMRGs in ovarian tissue were selected for subsequent analysis, of which 324 were up-regulated and 161 were down regulated. We found that 22 LMRGs were most significantly associated with OS by using the univariate regression analysis. The prognostic scoring model was consisted of 12 LMRGs (SLCO1B3, ERBB4, SLC28A1, PDSS1, BDH1, AIFM1, TSFM, PPARGC1A, HGF, FGFR1, ABCC8, TH). Kaplan-Meier survival analysis indicated that poorer overall survival (OS) in the high-risk group patients (P<0.0001). This prognostic signature could be an independent prognostic indicator after adjusting to other clinical factors. The calibration curves of nomogram for the signature at 1, 2, and 3 years and the ROC curve demonstrated good agreement between the predicted and observed survival rates of ovarian cancer patients. Furthermore, the high-risk group patients have much lower expression level of immune checkpoint-TDO2 compared with the low-risk group (P=0.024). Conclusions We established a prognostic signature based on LMRGs for ovarian cancer, and highlighted emerging evidence indicating that this prognostic signature is a promising approach for predicting ovarian cancer prognosis and guiding clinical therapy.
Collapse
Affiliation(s)
- Jiangdong Xiang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Rongjia Su
- Department of Gynecologic Oncology, International Peace Maternity and Child Health Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Sufang Wu
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Lina Zhou
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- *Correspondence: Lina Zhou,
| |
Collapse
|
14
|
Adenosine Receptor A2B Negatively Regulates Cell Migration in Ovarian Carcinoma Cells. Int J Mol Sci 2022; 23:ijms23094585. [PMID: 35562985 PMCID: PMC9100769 DOI: 10.3390/ijms23094585] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/14/2022] [Accepted: 04/20/2022] [Indexed: 12/15/2022] Open
Abstract
The purinergic system is fundamental in the tumor microenvironment, since it regulates tumor cell interactions with the immune system, as well as growth and differentiation in autocrine-paracrine responses. Here, we investigated the role of the adenosine A2B receptor (A2BR) in ovarian carcinoma-derived cells’ (OCDC) properties. From public databases, we documented that high A2BR expression is associated with a better prognostic outcome in ovarian cancer patients. In vitro experiments were performed on SKOV-3 cell line to understand how A2BR regulates the carcinoma cell phenotype associated with cell migration. RT-PCR and Western blotting revealed that the ADORA2B transcript (coding for A2BR) and A2BR were expressed in SKOV-3 cells. Stimulation with BAY-606583, an A2BR agonist, induced ERK1/2 phosphorylation, which was abolished by the antagonist PSB-603. Pharmacological activation of A2BR reduced cell migration and actin stress fibers; in agreement, A2BR knockdown increased migration and enhanced actin stress fiber expression. Furthermore, the expression of E-cadherin, an epithelial marker, increased in BAY-606583-treated cells. Finally, cDNA microarrays revealed the pathways mediating the effects of A2BR activation on SKOV-3 cells. Our results showed that A2BR contributed to maintaining an epithelial-like phenotype in OCDC and highlighted this purinergic receptor as a potential biomarker.
Collapse
|
15
|
Peng Q, Zhou Y, Oyang L, Wu N, Tang Y, Su M, Luo X, Wang Y, Sheng X, Ma J, Liao Q. Impacts and mechanisms of alternative mRNA splicing in cancer metabolism, immune response, and therapeutics. Mol Ther 2022; 30:1018-1035. [PMID: 34793975 PMCID: PMC8899522 DOI: 10.1016/j.ymthe.2021.11.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/29/2021] [Accepted: 11/11/2021] [Indexed: 02/08/2023] Open
Abstract
Alternative pre-mRNA splicing (AS) provides the potential to produce diversity at RNA and protein levels. Disruptions in the regulation of pre-mRNA splicing can lead to diseases. With the development of transcriptome and genome sequencing technology, increasing diseases have been identified to be associated with abnormal splicing of mRNAs. In tumors, abnormal alternative splicing frequently plays critical roles in cancer pathogenesis and may be considered as new biomarkers and therapeutic targets for cancer intervention. Metabolic abnormalities and immune disorders are important hallmarks of cancer. AS produces multiple different isoforms and diversifies protein expression, which is utilized by the immune and metabolic reprogramming systems to expand gene functions. The abnormal splicing events contributed to tumor progression, partially due to effects on immune response and metabolic reprogramming. Herein, we reviewed the vital role of alternative splicing in regulating cancer metabolism and immune response. We discussed how alternative splicing regulates metabolic reprogramming of cancer cells and antitumor immune response, and the possible strategies to targeting alternative splicing pathways or splicing-regulated metabolic pathway in the context of anticancer immunotherapy. Further, we highlighted the challenges and discuss the perspectives for RNA-based strategies for the treatment of cancer with abnormally alternative splicing isoforms.
Collapse
Affiliation(s)
- Qiu Peng
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 Hunan, China,Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, China
| | - Yujuan Zhou
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 Hunan, China,Hunan Key Laboratory of Translational Radiation Oncology, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Linda Oyang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 Hunan, China
| | - Nayiyuan Wu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 Hunan, China
| | - Yanyan Tang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 Hunan, China
| | - Min Su
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 Hunan, China
| | - Xia Luo
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 Hunan, China
| | - Ying Wang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 Hunan, China
| | - Xiaowu Sheng
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 Hunan, China
| | - Jian Ma
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 Hunan, China; Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, China.
| | - Qianjin Liao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 Hunan, China; Hunan Key Laboratory of Translational Radiation Oncology, 283 Tongzipo Road, Changsha 410013, Hunan, China.
| |
Collapse
|
16
|
Xu Z, Cai Y, Liu W, Kang F, He Q, Hong Q, Zhang W, Li J, Yan Y, Peng J. Downregulated exosome-associated gene FGF9 as a novel diagnostic and prognostic target for ovarian cancer and its underlying roles in immune regulation. Aging (Albany NY) 2022; 14:1822-1835. [PMID: 35190498 PMCID: PMC8908935 DOI: 10.18632/aging.203905] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/15/2022] [Indexed: 02/05/2023]
Abstract
Exosome has been demonstrated to be secreted from cells and seized by targeted cells. Exosome could transmit signals and exert biological functions in cancer progression. Nevertheless, the underlying mechanisms of exosome in ovarian cancer (OC) have not been fully explored. In this study, we wanted to explore whether Fibroblast growth factor 9 (FGF9), as an exosome-associated gene, was importantly essential in OC progression and prognosis. Firstly, comprehensive bioinformatics platforms were applied to find that FGF9 expression was lower in OC tissues compared to normal ovarian tissues. Meanwhile, downregulated FGF9 displayed favorable prognostic values in OC patients. The gene enrichment of biological functions indicated that abnormally expressed FGF9 could be involved in the OC-related immune signatures, such as immunoinhibitors and chemokine receptors. Taken together, these findings could provide a novel insight into the significance of FGF9 in OC progress and supply a new destination of FGF9-related immunotherapy in clinical treatment.
Collapse
Affiliation(s)
- Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
- Department of Pathology, Xiangya Changde Hospital, Changde 415000, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Yuan Cai
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Wei Liu
- Department of Orthopedic Surgery, The Second Hospital University of South China, Hengyang 421001, Hunan, China
| | - Fanhua Kang
- Department of Pathology, Xiangya Changde Hospital, Changde 415000, Hunan, China
| | - Qingchun He
- Department of Emergency, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
- Department of Emergency, Xiangya Changde Hospital, Changde 415000, Hunan, China
| | - Qianhui Hong
- Department of Pathology, Xiangya Changde Hospital, Changde 415000, Hunan, China
| | - Wenqin Zhang
- Department of Pathology, Xiangya Changde Hospital, Changde 415000, Hunan, China
| | - Jianbo Li
- Department of Pathology, Xiangya Changde Hospital, Changde 415000, Hunan, China
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Jinwu Peng
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
- Department of Pathology, Xiangya Changde Hospital, Changde 415000, Hunan, China
| |
Collapse
|
17
|
Tang J, Li Y, Liu B, Liang W, Hu S, Shi M, Zeng J, Li M, Huang M. Uncovering a Key Role of ETS1 on Vascular Abnormality in Glioblastoma. Pathol Oncol Res 2021; 27:1609997. [PMID: 34867089 PMCID: PMC8641556 DOI: 10.3389/pore.2021.1609997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/28/2021] [Indexed: 12/02/2022]
Abstract
Glioblastoma (GBM) is the most aggressive type of brain tumor. Microvascular proliferation and abnormal vasculature are the hallmarks of the GBM, aggravating disease progression and increasing patient morbidity. Here, we uncovered a key role of ETS1 on vascular abnormality in glioblastoma. ETS1 was upregulated in endothelial cells from human tumors compared to endothelial cells from paired control brain tissue. Knockdown of Ets1 in mouse brain endothelial cells inhibited cell migration and proliferation, and suppressed expression of genes associated with vascular abnormality in GBM. ETS1 upregulation in tumor ECs was dependent on TGFβ signaling, and targeting TGFβ signaling by inhibitor decreased tumor angiogenesis and vascular abnormality in CT-2A glioma model. Our results identified ETS1 as a key factor regulating tumor angiogenesis, and suggested that TGFβ inhibition may suppress the vascular abnormality driven by ETS1.
Collapse
Affiliation(s)
- Jiefu Tang
- Trauma Center, The First Affiliated Hospital of Hunan University of Medicine, Huaihua, China
| | - Yaling Li
- Department of Obstetrics and Gynaecology, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, China
| | - Boxuan Liu
- Precision Medicine Center, The Second People's Hospital of Huaihua, Huaihua, China
| | - Wei Liang
- Department of Orthopaedics, The Second People's Hospital of Huaihua, Huaihua, China
| | - Sanbao Hu
- Department of Orthopaedics, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Meilian Shi
- Department of Infectious Diseases, The Second People's Hospital of Huaihua, Huaihua, China
| | - Jie Zeng
- Department of Orthopaedics, The Second People's Hospital of Huaihua, Huaihua, China
| | - Mingzhen Li
- Precision Medicine Center, The Second People's Hospital of Huaihua, Huaihua, China
| | | |
Collapse
|
18
|
Liu O, Wang C, Wang S, Hu Y, Gou R, Dong H, Li S, Li X, Lin B. Keratin 80 regulated by miR-206/ETS1 promotes tumor progression via the MEK/ERK pathway in ovarian cancer. J Cancer 2021; 12:6835-6850. [PMID: 34659572 PMCID: PMC8517993 DOI: 10.7150/jca.64031] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 09/18/2021] [Indexed: 12/16/2022] Open
Abstract
Introduction: Keratin 80 (KRT80) is a type II epithelial keratin protein that plays an important role in cell differentiation and tumor progression. However, its role and mechanisms in ovarian cancer remain unclear. Methods: The effect of KRT80 on the survival and prognosis of patients with ovarian cancer was determined using immunohistochemistry. Cell lines overexpressing KRT80 and with KRT80 knockdown were established to study its effect on the malignant behavior of ovarian cancer cells. Western blotting was used to detect changes in related molecules, and in the MEK/ERK signal transduction pathway. ChIP assay was used to confirm that ETS1 regulates KRT80 at the transcriptional level. A double luciferase assay was used to confirm the target of miR-206. Results: The expression levels of KRT80 were high in ovarian cancer tissue, and were related to survival and prognosis. KRT80 expression is an independent prognostic factor in patients with ovarian cancer. KRT80 overexpression promotes the proliferation of ovarian cancer cells, the transition from G1 phase to S phase, invasion, and migration. KRT80 overexpression increased the expression of BCL2/BAX, CyclinD1, MMP2, MMP9, and N-cadherin, decreased the expression of E-cadherin, and increased the phosphorylation of MEK and ERK. ETS1 binds to the upstream promoter sequence of KRT80 and regulates KRT80 expression at the transcriptional level. ETS1 is a direct target of miR-206 in ovarian cancer cells. Conclusion: KRT80 regulated by miR-206/ETS1 promotes tumor progression via the MEK/ERK pathway in ovarian cancer, and KRT80 may have applications as a screening biomarker and potential therapeutic target for ovarian cancer.
Collapse
Affiliation(s)
- Ouxuan Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Liaoning, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| | - Caixia Wang
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Shuang Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Liaoning, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| | - Yuexin Hu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Liaoning, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| | - Rui Gou
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Liaoning, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| | - Hui Dong
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Liaoning, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| | - Siting Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Liaoning, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| | - Xiao Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Liaoning, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| | - Bei Lin
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Liaoning, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| |
Collapse
|
19
|
Chang MM, Wu SZ, Yang SH, Wu CC, Wang CY, Huang BM. FGF9/FGFR1 promotes cell proliferation, epithelial-mesenchymal transition, M2 macrophage infiltration and liver metastasis of lung cancer. Transl Oncol 2021; 14:101208. [PMID: 34438248 PMCID: PMC8390529 DOI: 10.1016/j.tranon.2021.101208] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/18/2021] [Accepted: 08/18/2021] [Indexed: 12/20/2022] Open
Abstract
FGF9 induced cell proliferation, EMT, migration, and invasion of mouse Lewis lung cancer (LLC) cells, in vitro. FGF9 interacted with FGFR1 and activated FAK, AKT, and ERK/MAPK signal pathways, induced the expression of EMT key proteins (N-cadherin, vimentin, snail, MMP2, MMP3 and MMP13) and reduced the expression of E-cadherin. FGF9 promoted liver metastasis of subcutaneous inoculated LLC tumor with tumor growth, angiogenesis, EMT and M2-macrophage infiltration in the tumor microenvironment. The FGF9/LLC syngeneic animal model provides a useful tool for the mechanism studies of liver metastasis which is the worst prognostic factor for lung cancer patients with distant organ metastasis.
Fibroblast growth factors 9 (FGF9) modulates cell proliferation, differentiation and motility for development and repair in normal cells. Abnormal activation of FGF9 signaling is associated with tumor progression in many cancers. Also, FGF9 may be an unfavorable prognostic indicator for non-small cell lung cancer patients. However, the effects and mechanisms of FGF9 in lung cancer remain elusive. In this study, we investigated the FGF9-induced effects and signal activation profiles in mouse Lewis lung carcinoma (LLC) in vitro and in vivo. Our results demonstrated that FGF9 significantly induced cell proliferation and epithelial-to-mesenchymal transition (EMT) phenomena (migration and invasion) in LLC cells. Mechanism-wise, FGF9 interacted with FGFR1 and activated FAK, AKT, and ERK/MAPK signal pathways, induced the expression of EMT key proteins (N-cadherin, vimentin, snail, MMP2, MMP3 and MMP13), and reduced the expression of E-cadherin. Moreover, in the allograft mouse model, intratumor injection of FGF9 to LLC-tumor bearing C57BL/6 mice enhanced LLC tumor growth which were the results of increased Ki67 expression and decreased cleaved caspase-3 expression compared to control groups. Furthermore, we have a novel finding that FGF9 promoted liver metastasis of subcutaneous inoculated LLC tumor with angiogenesis, EMT and M2-macrophage infiltration in the tumor microenvironment. In conclusion, FGF9 activated FAK, AKT, and ERK signaling through FGFR1 with induction of EMT to stimulate LLC tumorigenesis and hepatic metastasis. This novel FGF9/LLC allograft animal model may therefore be useful to study the mechanism of liver metastasis which is the worst prognostic factor for lung cancer patients with distant organ metastasis.
Collapse
Affiliation(s)
- Ming-Min Chang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, Republic of China
| | - Su-Zhen Wu
- Department of Anesthesiology, Chi Mei Medical Center, Liouying, Tainan 73657, Taiwan, Republic of China
| | - Shang-Hsun Yang
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, Republic of China
| | - Chia-Ching Wu
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, Republic of China
| | - Chia-Yih Wang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, Republic of China.
| | - Bu-Miin Huang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, Republic of China; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40406, Taiwan, Republic of China.
| |
Collapse
|
20
|
Habibi H, Suzuki A, Hayashi K, Salimi H, Terai H, Hori Y, Tamai K, Orita K, Ohyama S, Yabu A, Maruf MH, Nakamura H. Expression and function of FGF9 in the hypertrophied ligamentum flavum of lumbar spinal stenosis patients. Spine J 2021; 21:1010-1020. [PMID: 33577925 DOI: 10.1016/j.spinee.2021.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 12/23/2020] [Accepted: 02/06/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Ligamentum flavum (LF) hypertrophy plays a dominant role in lumbar spinal stenosis (LSS). A previous study found that fibroblast growth factor 9 (FGF9) was upregulated with mechanical stress in rabbit LF. However, the expression and function of FGF9 are not well understood in human LF. PURPOSE To evaluate FGF9 expression and function in human LF with and without hypertrophy. STUDY DESIGN This study employed a basic research study design utilizing human LF tissue for histological analyses. PATIENT SAMPLES Hypertrophied LF tissue sample from patients with LSS, and nonhypertrophied (control) LFs from patients with lumbar disc herniation or other diseases were obtained during surgery. METHODS LF specimens were histologically analyzed for FGF9 and vascular endothelial growth factor A (VEGF-A) by immunohistochemistry. The number of total and FGF9 immuno-positive cells and blood vessels were counted and compared between LF with and without hypertrophy. For functional analysis, the effect of FGF9 on cell proliferation and migration was examined using a primary cell culture of human LF. RESULTS Histological studies revealed that the total cell number was significantly higher in the LF of patients with LSS than in the LF of control patients. Immunohistochemistry showed that the percentage of FGF9-positive cells was significantly higher in the LF of patients with LSS than in the controls, and it positively correlated with patients' age, regardless of disease. Double immune-positive cells for FGF9 and VEGF-A were often observed in vascular endothelial cells and fibroblasts in the fibrotic area of hypertrophied LF, and the number of double positive vessels was significantly higher in LF of LSS patients than in the LF of controls. Primary cell culture of human LF revealed that FGF9 promoted the proliferation and migration of LF cells. CONCLUSION The present study demonstrated that FGF9 expression is highly upregulated in hypertrophied human LF. FGF9 potentially plays a pivotal role in the process of hypertrophy of LF, which is associated with mechanical stress, through cell proliferation and migration. CLINICAL SIGNIFICANCE The results from this study partially reveal the molecular mechanisms of LF hypertrophy and suggest that FGF9 may be involved in the process of LF degeneration in elderly patients.
Collapse
Affiliation(s)
- Hasibullah Habibi
- Department of Orthopedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Akinobu Suzuki
- Department of Orthopedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan.
| | - Kazunori Hayashi
- Department of Orthopedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Hamidullah Salimi
- Department of Orthopedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Hidetomi Terai
- Department of Orthopedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Yusuke Hori
- Department of Orthopedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Koji Tamai
- Department of Orthopedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Kumi Orita
- Department of Orthopedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Shoichiro Ohyama
- Department of Orthopedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Akito Yabu
- Department of Orthopedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Mohammad Hasib Maruf
- Department of Orthopedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Hiroaki Nakamura
- Department of Orthopedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
21
|
Yuan J, Yi K, Yang L. LncRNA NEAT1 promotes proliferation of ovarian cancer cells and angiogenesis of co-incubated human umbilical vein endothelial cells by regulating FGF9 through sponging miR-365: An experimental study. Medicine (Baltimore) 2021; 100:e23423. [PMID: 33545926 PMCID: PMC7837846 DOI: 10.1097/md.0000000000023423] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 10/29/2020] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVE To uncover the function of lncRNA NEAT1 in ovarian cancer (OC) cells and its mechanism. METHODS The expression patterns of lncRNA NEAT1 and FGF9 in human OC cells and human ovarian epithelial cells was determined. OC cells were transfected with sh-NEAT1, pcDNA3.1-NEAT1, miR-365 mimic, miR-365 inhibitor or pcDNA3.1-NEAT1 + sh-NEAT1 before cell proliferation rate and cell clone formation rate were measured. After the transfected OC cells were co-cultivated with human umbilical vein endothelial cells (HUVECs), Matrigel angiogenesis assay tested angiogenesis of HUVECs; qRT-PCR and Western blot tested the expressions of vascular endothelial growth factor (VEGF), angiogenin 1 (Ang-1) and matrix metalloproteinase 2 (MMP2). Dual-luciferase reporter assay determined the targeted binding of NEAT1 and FGF9 to miR-365. RESULTS LncRNA NEAT1 and FGF9 are over-expressed in OC cells. Knockdown of NEAT1 or FGF9, or over-expression of miR-365 results in decreased proliferation rate and cell clones as well as inhibited angiogenesis and down-regulated expressions of VEGF, Ang-1 and MMP2. Over-expression of NEAT1 or knockdown of miR-365 can reverse the effect caused by FGF9 knockdown. NEAT1 can down-regulate the expression of miR-365 while up-regulating that of FGF9. Dual-luciferase reporter assay determined that NEAT1 competes with FGF9 for binding to miR-365. CONCLUSION LncRNA NEAT1 up-regulates FGF9 by sponging miR-365, thus promoting OC cell proliferation and angiogenesis of HUVECs.
Collapse
|
22
|
Alternative splicing modulates cancer aggressiveness: role in EMT/metastasis and chemoresistance. Mol Biol Rep 2021; 48:897-914. [PMID: 33400075 DOI: 10.1007/s11033-020-06094-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 12/15/2020] [Indexed: 12/11/2022]
Abstract
Enhanced metastasis and disease recurrence accounts for the high mortality rates associated with cancer. The process of Epithelial-Mesenchymal Transition (EMT) contributes towards the augmentation of cancer invasiveness along with the gain of stem-like and the subsequent drug-resistant behavior. Apart from the well-established transcriptional regulation, EMT is also controlled post-transcriptionally by virtue of alternative splicing (AS). Numerous genes including Fibroblast Growth Factor receptor (FGFR) as well as CD44 are differentially spliced during this trans-differentiation process which, in turn, governs cancer progression. These splicing alterations are controlled by various splicing factors including ESRP, RBFOX2 as well as hnRNPs. Here, we have depicted the mechanisms governing the splice isoform switching of FGFR and CD44. Moreover, the role of the splice variants generated by AS of these gene transcripts in modulating the metastatic potential and stem-like/chemoresistant behavior of cancer cells has also been highlighted. Additionally, the involvement of splicing factors in regulating EMT/invasiveness along with drug-resistance as well as the metabolic properties of the cells has been emphasized. Tumorigenesis is accompanied by a remodeling of the cellular splicing profile generating diverse protein isoforms which, in turn, control the cancer-associated hallmarks. Therefore, we have also briefly discussed about a wide variety of genes which are differentially spliced in the tumor cells and promote cancer progression. We have also outlined different strategies for targeting the tumor-associated splicing events which have shown promising results and therefore this approach might be useful in developing therapies to reduce cancer aggressiveness in a more specific manner.
Collapse
|
23
|
Anti-Cancer Effect of Cordycepin on FGF9-Induced Testicular Tumorigenesis. Int J Mol Sci 2020; 21:ijms21218336. [PMID: 33172093 PMCID: PMC7672634 DOI: 10.3390/ijms21218336] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/09/2020] [Accepted: 11/03/2020] [Indexed: 12/11/2022] Open
Abstract
Cordycepin, a bioactive constituent from the fungus Cordyceps sinensis, could inhibit cancer cell proliferation and promote cell death via induction of cell cycle arrest, apoptosis and autophagy. Our novel finding from microarray analysis of cordycepin-treated MA-10 mouse Leydig tumor cells is that cordycepin down-regulated the mRNA levels of FGF9, FGF18, FGFR2 and FGFR3 genes in MA-10 cells. Meanwhile, the IPA-MAP pathway prediction result showed that cordycepin inhibited MA-10 cell proliferation by suppressing FGFs/FGFRs pathways. The in vitro study further revealed that cordycepin decreased FGF9-induced MA-10 cell proliferation by inhibiting the expressions of p-ERK1/2, p-Rb and E2F1, and subsequently reducing the expressions of cyclins and CDKs. In addition, a mouse allograft model was performed by intratumoral injection of FGF9 and/or intraperitoneal injection of cordycepin to MA-10-tumor bearing C57BL/6J mice. Results showed that FGF9-induced tumor growth in cordycepin-treated mice was significantly smaller than that in a PBS-treated control group. Furthermore, cordycepin decreased FGF9-induced FGFR1-4 protein expressions in vitro and in vivo. In summary, cordycepin inhibited FGF9-induced testicular tumor growth by suppressing the ERK1/2, Rb/E2F1, cell cycle pathways, and the expressions of FGFR1-4 proteins, suggesting that cordycepin can be used as a novel anticancer drug for testicular cancers.
Collapse
|
24
|
Liang Z, Xu J, Ma Z, Li G, Zhu W. MiR-187 suppresses non-small-cell lung cancer cell proliferation by targeting FGF9. Bioengineered 2020; 11:70-80. [PMID: 31884893 PMCID: PMC6961586 DOI: 10.1080/21655979.2019.1706287] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Non-small-cell lung cancer (NSCLC) is the main pathological type of lung cancer and has a low overall five-year survival rate. miR-187 has been reported to play major roles in various tumor types. In this study, we explored the impact of miR-187 on NSCLC. qRT-PCR results demonstrated that miR-187 expression is lower in NSCLC and cancer cells than normal tissues and normal lung cells. miR-187 expression levels are associated with tumor size, TNM stage and overall survival rate. MTS and colony formation assays showed that high miR-187 expression inhibits NSCLC cell proliferation and colony formation ability, and flow cytometry showed that miR-187 overexpression induces cell cycle arrest at the G0/G1 phase. A luciferase reporter assay showed that FGF9 is a target of miR-187. miR-187 overexpression reduces the expression of FGF9, cyclin D1 CDK4 and CDK6. Therefore, miR-187 may present a new NSCLC treatment target by regulates cyclins-related protein expression.
Collapse
Affiliation(s)
- Zhihua Liang
- Department of Respiratory, HeXian Memorial Hospital Affiliated with Southern Medical University, Guang zhou, China
| | - Jianhui Xu
- GuangZhou Chest Hospital, Guang zhou, China
| | - Zhancheng Ma
- Department of Respiratory, HeXian Memorial Hospital Affiliated with Southern Medical University, Guang zhou, China
| | - Guihua Li
- Department of Respiratory, HeXian Memorial Hospital Affiliated with Southern Medical University, Guang zhou, China
| | - Wanhong Zhu
- Department of Respiratory, HeXian Memorial Hospital Affiliated with Southern Medical University, Guang zhou, China
| |
Collapse
|
25
|
Mitra T, Bhattacharya R. Phytochemicals modulate cancer aggressiveness: A review depicting the anticancer efficacy of dietary polyphenols and their combinations. J Cell Physiol 2020; 235:7696-7708. [PMID: 32324275 DOI: 10.1002/jcp.29703] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 03/28/2020] [Accepted: 04/01/2020] [Indexed: 12/11/2022]
Abstract
Cancer is referred to as the "Emperor of all maladies" accounting for the second-highest mortality rates worldwide. Major factors associated with cancer lethality are uncontrolled proliferation, metastasis, and frequent recurrence. The conventional therapeutic drugs used in cancer therapy have been associated with numerous damaging side-effects that call for the use of alternative therapeutic options. The natural plant compounds (NPCs) have been found to be effective against diverse groups of diseases including cancer. Among the different types, the polyphenolic phytochemicals like curcumin, (-)epigallocatechin-3-gallate, Resveratrol, and nimbolide which are predominant parts of daily dietary intake have proved their potency in reducing the aggressive properties of cancer. Here, we have highlighted the mechanisms through which these NPCs influence growth, metastatic potential, and the drug-resistant behavior of different cancer types. Moreover, we have also emphasized on their function as modulators of the immune system as well as the metabolic properties of the tumor. The role of these phytochemicals in reducing cancer progression has been highlighted when administered unaided or in combination with similar group of compounds. Moreover, their ability to enhance the drug-sensitivity of cancer cells which accounts for their use in combination with conventional chemotherapeutics has also been discussed in this article. Therefore, co-administration of these phytochemicals with chemically similar group members or with conventional chemotherapeutics may prove to be an effective treatment strategy for cancer.
Collapse
Affiliation(s)
- Tulika Mitra
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Rahul Bhattacharya
- Amity Institute of Biotechnology, Amity University, Kolkata, Kolkata, West Bengal, India
| |
Collapse
|
26
|
Guo YJ, Pan WW, Liu SB, Shen ZF, Xu Y, Hu LL. ERK/MAPK signalling pathway and tumorigenesis. Exp Ther Med 2020; 19:1997-2007. [PMID: 32104259 PMCID: PMC7027163 DOI: 10.3892/etm.2020.8454] [Citation(s) in RCA: 607] [Impact Index Per Article: 151.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 12/04/2019] [Indexed: 12/12/2022] Open
Abstract
Mitogen-activated protein kinase (MAPK) cascades are key signalling pathways that regulate a wide variety of cellular processes, including proliferation, differentiation, apoptosis and stress responses. The MAPK pathway includes three main kinases, MAPK kinase kinase, MAPK kinase and MAPK, which activate and phosphorylate downstream proteins. The extracellular signal-regulated kinases ERK1 and ERK2 are evolutionarily conserved, ubiquitous serine-threonine kinases that regulate cellular signalling under both normal and pathological conditions. ERK expression is critical for development and their hyperactivation plays a major role in cancer development and progression. The Ras/Raf/MAPK (MEK)/ERK pathway is the most important signalling cascade among all MAPK signal transduction pathways, and plays a crucial role in the survival and development of tumour cells. The present review discusses recent studies on Ras and ERK pathway members. With respect to processes downstream of ERK activation, the role of ERK in tumour proliferation, invasion and metastasis is highlighted, and the role of the ERK/MAPK signalling pathway in tumour extracellular matrix degradation and tumour angiogenesis is emphasised.
Collapse
Affiliation(s)
- Yan-Jun Guo
- Department of Human Anatomy and Embryology, College of Medicine, Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| | - Wei-Wei Pan
- Department of Human Anatomy and Embryology, College of Medicine, Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| | - Sheng-Bing Liu
- Department of Human Anatomy and Embryology, College of Medicine, Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| | - Zhong-Fei Shen
- Department of Human Anatomy and Embryology, College of Medicine, Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| | - Ying Xu
- Department of Human Anatomy and Embryology, College of Medicine, Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| | - Ling-Ling Hu
- Department of Human Anatomy and Embryology, College of Medicine, Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| |
Collapse
|
27
|
Yang J, Ren B, Yang G, Wang H, Chen G, You L, Zhang T, Zhao Y. The enhancement of glycolysis regulates pancreatic cancer metastasis. Cell Mol Life Sci 2020; 77:305-321. [PMID: 31432232 PMCID: PMC11104916 DOI: 10.1007/s00018-019-03278-z] [Citation(s) in RCA: 202] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/10/2019] [Accepted: 08/12/2019] [Indexed: 02/07/2023]
Abstract
Pancreatic ductal adenocarcinoma is prone to distant metastasis and is expected to become the second leading cause of cancer-related death. In an extremely nutrient-deficient and hypoxic environment resulting from uncontrolled growth, vascular disturbances and desmoplastic reactions, pancreatic cancer cells utilize "metabolic reprogramming" to satisfy their energy demand and support malignant behaviors such as metastasis. Notably, pancreatic cancer cells show extensive enhancement of glycolysis, including glycolytic enzyme overexpression and increased lactate production, and this is caused by mitochondrial dysfunction, cancer driver genes, specific transcription factors, a hypoxic tumor microenvironment and stromal cells, such as cancer-associated fibroblasts and tumor-associated macrophages. The metabolic switch from oxidative phosphorylation to glycolysis in pancreatic cancer cells regulates the invasion-metastasis cascade by promoting epithelial-mesenchymal transition, tumor angiogenesis and the metastatic colonization of distant organs. In addition to aerobic glycolysis, oxidative phosphorylation also plays a critical role in pancreatic cancer metastasis in ways that remain unclear. In this review, we expound on the intracellular and extracellular causes of the enhancement of glycolysis in pancreatic cancer and the strong association between glycolysis and cancer metastasis, which we expect will yield new therapeutic approaches targeting cancer metabolism.
Collapse
Affiliation(s)
- Jinshou Yang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, People's Republic of China
| | - Bo Ren
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, People's Republic of China
| | - Gang Yang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, People's Republic of China
| | - Huanyu Wang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, People's Republic of China
| | - Guangyu Chen
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, People's Republic of China
| | - Lei You
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, People's Republic of China.
| | - Taiping Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, People's Republic of China.
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, People's Republic of China.
| |
Collapse
|
28
|
Ramirez R, Herrera AM, Ramirez J, Qian C, Melton DW, Shireman PK, Jin YF. Deriving a Boolean dynamics to reveal macrophage activation with in vitro temporal cytokine expression profiles. BMC Bioinformatics 2019; 20:725. [PMID: 31852428 PMCID: PMC6921543 DOI: 10.1186/s12859-019-3304-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 12/03/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Macrophages show versatile functions in innate immunity, infectious diseases, and progression of cancers and cardiovascular diseases. These versatile functions of macrophages are conducted by different macrophage phenotypes classified as classically activated macrophages and alternatively activated macrophages due to different stimuli in the complex in vivo cytokine environment. Dissecting the regulation of macrophage activations will have a significant impact on disease progression and therapeutic strategy. Mathematical modeling of macrophage activation can improve the understanding of this biological process through quantitative analysis and provide guidance to facilitate future experimental design. However, few results have been reported for a complete model of macrophage activation patterns. RESULTS We globally searched and reviewed literature for macrophage activation from PubMed databases and screened the published experimental results. Temporal in vitro macrophage cytokine expression profiles from published results were selected to establish Boolean network models for macrophage activation patterns in response to three different stimuli. A combination of modeling methods including clustering, binarization, linear programming (LP), Boolean function determination, and semi-tensor product was applied to establish Boolean networks to quantify three macrophage activation patterns. The structure of the networks was confirmed based on protein-protein-interaction databases, pathway databases, and published experimental results. Computational predictions of the network evolution were compared against real experimental results to validate the effectiveness of the Boolean network models. CONCLUSION Three macrophage activation core evolution maps were established based on the Boolean networks using Matlab. Cytokine signatures of macrophage activation patterns were identified, providing a possible determination of macrophage activations using extracellular cytokine measurements.
Collapse
Affiliation(s)
- Ricardo Ramirez
- Department of Electrical and Computer Engineering, The University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX, 78249, USA
| | - Allen Michael Herrera
- Department of Electrical and Computer Engineering, The University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX, 78249, USA
| | - Joshua Ramirez
- Department of Electrical and Computer Engineering, The University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX, 78249, USA
| | - Chunjiang Qian
- Department of Electrical and Computer Engineering, The University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX, 78249, USA
| | - David W Melton
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA, 02215, USA
| | - Paula K Shireman
- Department of Surgery, Long School of Medicine, University of Texas Health Science Center San Antonio, 7703 Floyd Curl Dr, San Antonio, TX, 78229, USA
- South Texas Veterans Health Care System, 7400 Merton Minter Blvd, San Antonio, TX, 78229, USA
| | - Yu-Fang Jin
- Department of Electrical and Computer Engineering, The University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX, 78249, USA.
| |
Collapse
|
29
|
Zhu M, Jiang L, Yuan Y, Chen L, Liu X, Liang J, Zhu Q, Ding D, Song E. Intravitreal Ets1 siRNA alleviates choroidal neovascularization in a mouse model of age-related macular degeneration. Cell Tissue Res 2019; 376:341-351. [PMID: 30834976 DOI: 10.1007/s00441-019-03001-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 01/29/2019] [Indexed: 12/16/2022]
Abstract
Choroidal neovascularization (CNV) is the basic feature of neovascular age-related macular degeneration (AMD), the leading cause of blindness in elders. Macrophages and microglia promote CNV via producing pro-angiogenic factors and inflammatory cytokines. Transcription factor E26 transformation specific-1 (Ets1) plays a pro-angiogenic role via its pro-inflammatory function. In this study, Ets1 increased and localized in the macrophages and microglia of a mouse laser-induced CNV region. Ets1 siRNA intravitreal injection ameliorated the leakage and area of CNV, as well as inhibiting the dysfunction of retinal pigment epithelium (RPE) cells and the activation of macrophages/microglia. Taken together, we provide a new insight into the molecular mechanism of CNV progression, in which Ets1 can be a new therapeutic target.
Collapse
Affiliation(s)
- Manhui Zhu
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Li Jiang
- Department of Ophthalmology, Laizhou City People's Hospital, Yantai, Shandong, China
| | - You Yuan
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Lili Chen
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xiaojuan Liu
- Department of Pathogen Biology, Medical College, Nantong University, Nantong, Jiangsu, China
| | - Juan Liang
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Qiujian Zhu
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Dongmei Ding
- Department of Ophthalmology, Laizhou City People's Hospital, Yantai, Shandong, China.
| | - E Song
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|