1
|
Okuyan HM, Begen MA. LncRNAs in Osteoarthritis. Clin Chim Acta 2022; 532:145-163. [PMID: 35667478 DOI: 10.1016/j.cca.2022.05.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/29/2022] [Accepted: 05/31/2022] [Indexed: 11/27/2022]
Abstract
Osteoarthritis (OA) is a progressive joint disease that affects millions of older adults around the world. With increasing rates of incidence and prevalence worldwide, OA has become an enormous global socioeconomic burden on healthcare systems. Long non-coding ribonucleic acids (lncRNAs), essential functional molecules in many biological processes, are a group of non-coding RNAs that are greater than approximately 200 nucleotides in length. Fast-growing and recent developments in lncRNA research are captivating and represent a novel and promising field in understanding the complexity of OA pathogenesis. The involvement of lncRNAs in OA's pathological processes and their altered expressions in joint tissues, blood and synovial fluid make them attractive candidates for the diagnosis and treatment of OA. We focus on the recent advances in major regulator mechanisms of lncRNAs in the pathophysiology of OA and discuss potential diagnostic and therapeutic uses of lncRNAs for OA. We investigate how upregulation or downregulation of lncRNAs influences the pathogenesis of OA and how we can use lncRNAs to elucidate the molecular mechanism of OA. Furthermore, we evaluate how we can use lncRNAs as a diagnostic marker or therapeutic target for OA. Our study not only provides a comprehensive review of lncRNAs regarding OA's pathogenesis but also contributes to the elucidation of its molecular mechanisms and to the development of diagnostic and therapeutic approaches for OA.
Collapse
Affiliation(s)
- Hamza Malik Okuyan
- Biomedical Engineering, Physiotherapy and Rehabilitation, Faculty of Health Sciences, Sakarya University of Applied Sciences, Sakarya, Turkey; Ivey Business School, Epidemiology and Biostatistics - Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada.
| | - Mehmet A Begen
- Ivey Business School, Epidemiology and Biostatistics - Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
2
|
Abstract
The last decade has seen an enormous increase in long non-coding RNA (lncRNA) research within rheumatology. LncRNAs are arbitrarily classed as non-protein encoding RNA transcripts that exceed 200 nucleotides in length. These transcripts have tissue and cell specific patterns of expression and are implicated in a variety of biological processes. Unsurprisingly, numerous lncRNAs are dysregulated in rheumatoid conditions, correlating with disease activity and cited as potential biomarkers and targets for therapeutic intervention. In this chapter, following an introduction into each condition, we discuss the lncRNAs involved in rheumatoid arthritis, osteoarthritis and systemic lupus erythematosus. These inflammatory joint conditions share several inflammatory signalling pathways and therefore not surprisingly many commonly dysregulated lncRNAs are shared across these conditions. In the interest of translational research only those lncRNAs which are strongly conserved have been addressed. The lncRNAs discussed here have diverse roles in regulating inflammation, proliferation, migration, invasion and apoptosis. Understanding the molecular basis of lncRNA function in rheumatology will be crucial in fully determining the inflammatory mechanisms that drive these conditions.
Collapse
|
3
|
Zheng YL, Song G, Guo JB, Su X, Chen YM, Yang Z, Chen PJ, Wang XQ. Interactions Among lncRNA/circRNA, miRNA, and mRNA in Musculoskeletal Degenerative Diseases. Front Cell Dev Biol 2021; 9:753931. [PMID: 34708047 PMCID: PMC8542847 DOI: 10.3389/fcell.2021.753931] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/22/2021] [Indexed: 12/18/2022] Open
Abstract
Musculoskeletal degenerative diseases (MSDDs) are pathological conditions that affect muscle, bone, cartilage, joint and connective tissue, leading to physical and functional impairments in patients, mainly consist of osteoarthritis (OA), intervertebral disc degeneration (IDD), rheumatoid arthritis (RA) and ankylosing spondylitis (AS). Long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) are novel regulators of gene expression that play an important role in biological regulation, involving in chondrocyte proliferation and apoptosis, extracellular matrix degradation and peripheral blood mononuclear cell inflammation. Research on MSDD pathogenesis, especially on RA and AS, is still in its infancy and major knowledge gaps remain to be filled. The effects of lncRNA/circRNA-miRNA-mRNA axis on MSDD progression help us to fully understand their contribution to the dynamic cellular processes, provide the potential OA, IDD, RA and AS therapeutic strategies. Further studies are needed to explore the mutual regulatory mechanisms between lncRNA/circRNA regulation and effective therapeutic interventions in the pathology of MSDD.
Collapse
Affiliation(s)
- Yi-Li Zheng
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Ge Song
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Jia-Bao Guo
- The Second School of Clinical Medicine, Xuzhou Medical University, Xuzhou, China
| | - Xuan Su
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Yu-Meng Chen
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Zheng Yang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Pei-Jie Chen
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Xue-Qiang Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China.,Department of Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China
| |
Collapse
|
4
|
Xie W, Jiang L, Huang X, Shang H, Gao M, You W, Tan J, Yan H, Sun W. lncRNA MEG8 is downregulated in osteoarthritis and regulates chondrocyte cell proliferation, apoptosis and inflammation. Exp Ther Med 2021; 22:1153. [PMID: 34504598 PMCID: PMC8393379 DOI: 10.3892/etm.2021.10587] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 04/16/2021] [Indexed: 01/02/2023] Open
Abstract
Long noncoding RNA (lncRNA) maternally expressed 8, small nucleolar RNA host gene (MEG8) has been widely reported for its pro-proliferative, anti-apoptotic and anti-inflammatory effects in diverse diseases. The aim of the present study was to investigate the effects and underlying mechanism of MEG8 on IL-1β-stimulated human osteoarthritis (OA) chondrocytes. C28/I2 chondrocytes were cultured under the stimulation of IL-1β to establish a cellular model of OA. Functional assays involving Cell Counting Kit-8 and flow cytometry were performed to determine proliferation and apoptosis in the cells. The protein expression levels of caspase-3 and inflammatory cytokines were detected using cell-based ELISA. The expression levels of PI3K/AKT pathway-related proteins were evaluated by western blotting. It was identified that MEG8 expression was increased in the cartilage of patients with OA and in IL-1β-treated C28/I2 cells. In C28/I2 cells, silencing of MEG8 expression noticeably triggered IL-1β-induced proliferation suppression, cell death and an inflammatory response. However, transfection with MEG8 displayed adverse effects. Furthermore, MEG8 overexpression prevented IL-1β-induced activation of the PI3K/AKT signaling pathway in C28/I2 cells. These data demonstrated that MEG8 exerted protective effects against IL-1β-induced apoptosis and inflammation of OA chondrocytes by regulating the PI3K/AKT signaling pathway. Thus, the present study demonstrates that MEG8 might be a promising target for the treatment of OA.
Collapse
Affiliation(s)
- Wei Xie
- Department of Orthopedics, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong 518000, P.R. China
| | - Luoyong Jiang
- Department of Orthopedics, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong 518000, P.R. China
| | - Xiaoyang Huang
- Department of Orthopedics, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong 518000, P.R. China
| | - Hongxi Shang
- Department of Orthopedics, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong 518000, P.R. China
| | - Minghong Gao
- Department of Orthopedics, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong 518000, P.R. China
| | - Wei You
- Department of Orthopedics, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong 518000, P.R. China
| | - Jifeng Tan
- Department of Orthopedics, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong 518000, P.R. China
| | - Hong Yan
- Department of Orthopedics, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong 518000, P.R. China
| | - Wei Sun
- Department of Orthopedics, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong 518000, P.R. China
| |
Collapse
|
5
|
Bao C, He C. The role and therapeutic potential of MSC-derived exosomes in osteoarthritis. Arch Biochem Biophys 2021; 710:109002. [PMID: 34352243 DOI: 10.1016/j.abb.2021.109002] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/27/2021] [Accepted: 07/31/2021] [Indexed: 02/08/2023]
Abstract
Osteoarthritis (OA) is the most common painful disease with chronic articular cartilage degeneration. The pathological process of OA is complex and characterized by the imbalance between the synthesis and catabolism of chondrocytes and extracellular matrix, leading to the progressive destruction of articular cartilage damage. Because of the self-renewal and differentiation of mesenchymal stem cells (MSCs), various exogenous MSC-based cell therapies have been developed to treat OA. Moreover, the efficacy of MSC- based therapy is mainly attributed to the paracrine of cytokines, growth factors, and exosomes. Exosomes derived from MSCs can deliver various DNAs, RNAs, proteins and lipids, thus promoting MSCs migration and cartilage repair. Therefore, MSC-derived exosomes are considered as a promising alternative therapy for OA. In this review, we summarized properties of MSC-derived exosomes and the new role of MSC-derived exosomes in the treatment of OA. We also proposed possible perspectives of MSC-derived exosomes as cell-free regenerative reagents in the treatment of OA.
Collapse
Affiliation(s)
- Chuncha Bao
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Chengqi He
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
6
|
Wang J, Sun Y, Liu J, Yang B, Wang T, Zhang Z, Jiang X, Guo Y, Zhang Y. Roles of long non‑coding RNA in osteoarthritis (Review). Int J Mol Med 2021; 48:133. [PMID: 34013375 PMCID: PMC8148092 DOI: 10.3892/ijmm.2021.4966] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 05/05/2021] [Indexed: 02/01/2023] Open
Abstract
Osteoarthritis (OA) is a chronic bone and joint disease characterized by articular cartilage degeneration and joint inflammation and is the most common form of arthritis. The clinical manifestations of OA are chronic pain and joint activity disorder, which severely affect the patient quality of life. Long non-coding RNA (lncRNA) is a class of RNA molecules >200 nucleotides long that are expressed in animals, plants, yeast, prokaryotes and viruses. lncRNA molecules lack an open reading frame and are not translated into protein. The present review collated the results of recent studies on the role of lncRNA in the pathogenesis of OA to provide information for the prevention, diagnosis and treatment of OA.
Collapse
Affiliation(s)
- Jicheng Wang
- Department of Joint Surgery, Weifang People's Hospital, Weifang, Shandong 261000, P.R. China
| | - Yanshan Sun
- Department of Joint Surgery, Weifang People's Hospital, Weifang, Shandong 261000, P.R. China
| | - Jianyong Liu
- Department of Joint Surgery, Weifang People's Hospital, Weifang, Shandong 261000, P.R. China
| | - Bo Yang
- Department of Joint Surgery, Weifang People's Hospital, Weifang, Shandong 261000, P.R. China
| | - Tengyun Wang
- Department of Joint Surgery, Weifang People's Hospital, Weifang, Shandong 261000, P.R. China
| | - Zhen Zhang
- Department of Joint Surgery, Weifang People's Hospital, Weifang, Shandong 261000, P.R. China
| | - Xin Jiang
- Department of Joint Surgery, Weifang People's Hospital, Weifang, Shandong 261000, P.R. China
| | - Yongzhi Guo
- Department of Joint Surgery, Weifang People's Hospital, Weifang, Shandong 261000, P.R. China
| | - Yangyang Zhang
- Department of Joint Surgery, Weifang People's Hospital, Weifang, Shandong 261000, P.R. China
| |
Collapse
|
7
|
Zhu R, Hu X, Xu W, Wu Z, Zhu Y, Ren Y, Cheng L. LncRNA MALAT1 inhibits hypoxia/reoxygenation-induced human umbilical vein endothelial cell injury via targeting the microRNA-320a/RAC1 axis. Biol Chem 2021; 401:349-360. [PMID: 31408432 DOI: 10.1515/hsz-2019-0316] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 08/02/2019] [Indexed: 12/18/2022]
Abstract
Angiogenesis is believed to protect against hypoxia/reoxygenation (H/R)-induced cell injury. MALAT1 and microRNA-320a (miR-320a) are involved in cancer angiogenesis. To investigate the function of the MALAT1/miR-320a axis in H/R-induced cell injury, human umbilical vein endothelial cell (HUVEC) angiogenesis was detected using the Cell Counting Kit-8 (CCK-8), Transwell migration, cell adhesion and tube formation assays. The expression of MALAT1 and miR-320a was revealed by quantitative reverse transcription polymerase chain reaction (qRT-PCR). The direct binding relationship between miR-320a and MALAT1 was detected by RNA immunoprecipitation (RIP) and dual luciferase reporter assays. The data indicated that H/R induces angiogenesis injury and that the expression of MALAT1 was augmented in H/R-stimulated HUVECs. Overexpression of MALAT1 alleviated H/R-stimulated HUVEC dysfunction, whereas silencing of MALAT1 exerted the opposite effects. MALAT1 also reduced miR-320a levels in HUVECs. Overexpression of miR-320a repressed the function of MALAT1 on H/R-stimulated HUVECs, whereas inhibition of miR-320a exerted the opposite effect. Additionally, miR-320a inhibition alleviated H/R-stimulated HUVEC injury via RAC1. Taken together, this investigation concluded that MALAT1 represses H/R-stimulated HUVEC injury by targeting the miR-320a/RAC1 axis.
Collapse
Affiliation(s)
- Rongrong Zhu
- Division of Spine, Department of Orthopedics, Tongji Hospital affiliated to Tongji University School of Medicine, Shanghai 200092, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Tongji University, Ministry of Education, Shanghai, China
| | - Xiao Hu
- Division of Spine, Department of Orthopedics, Tongji Hospital affiliated to Tongji University School of Medicine, Shanghai 200092, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Tongji University, Ministry of Education, Shanghai, China
| | - Wei Xu
- Division of Spine, Department of Orthopedics, Tongji Hospital affiliated to Tongji University School of Medicine, Shanghai 200092, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Tongji University, Ministry of Education, Shanghai, China
| | - Zhourui Wu
- Division of Spine, Department of Orthopedics, Tongji Hospital affiliated to Tongji University School of Medicine, Shanghai 200092, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Tongji University, Ministry of Education, Shanghai, China
| | - Yanjing Zhu
- Division of Spine, Department of Orthopedics, Tongji Hospital affiliated to Tongji University School of Medicine, Shanghai 200092, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Tongji University, Ministry of Education, Shanghai, China
| | - Yilong Ren
- Division of Spine, Department of Orthopedics, Tongji Hospital affiliated to Tongji University School of Medicine, Shanghai 200092, China
| | - Liming Cheng
- Division of Spine, Department of Orthopedics, Tongji Hospital affiliated to Tongji University School of Medicine, Shanghai 200092, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Tongji University, Ministry of Education, Shanghai, China
| |
Collapse
|
8
|
Li Y, Wei S, Zhang Z. MicroRNA-200b relieves LPS-induced inflammatory injury by targeting FUT4 in knee articular chondrocytes in vitro. Exp Ther Med 2021; 21:407. [PMID: 33692838 PMCID: PMC7938448 DOI: 10.3892/etm.2021.9838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 09/29/2020] [Indexed: 11/06/2022] Open
Abstract
Osteoarthritis (OA), characterized by the degeneration of articular cartilage, is a major problem in aging populations, and cartilage chondrocytes have been indicated to serve a curial role in the progression of OA. MicroRNA-200b-3p (miR-200b) was preliminarily identified to participate in OA. However, its role and mechanism of action in injured chondrocytes in OA remain unclear to date. In the present study, lipopolysaccharide (LPS)-treated cells isolated from normal knee articular cartilage were used to mimic inflammatory injury of OA chondrocytes. Cell viability, apoptosis and inflammatory responses were detected using Cell Counting Kit-8, flow cytometry and enzyme-linked immunosorbent assay, respectively. The expression levels of miR-200b and fucosyltransferase-4 (FUT4) were measured by reverse transcription-quantitative PCR and western blotting. The association between miR-200b and FUT4 was verified using TargetScan software, dual-luciferase reporter assay and RNA immunoprecipitation. The results indicated that LPS treatment decreased cell viability of primary chondrocytes, and increased apoptosis rate and production of IL-1β, IL-6 and TNF-α. The expression level of miR-200b was downregulated, and that of FUT4 was upregulated in OA cartilage tissues and LPS-treated normal chondrocytes compared with normal cartilage tissues and chondrocytes. Overexpression of miR-200b via transfection with miR-200b mimic inhibited the apoptosis rate and reduced the levels of IL-1β, IL-6 and TNF-α in LPS-stimulated chondrocytes. However, the suppressive effect of miR-200b overexpression on the LPS-induced inflammatory injury in chondrocytes was reversed by the restoration of FUT4 levels. Notably, FUT4 was indicated to be a downstream target of miR-200b and was negatively regulated by miR-200b. Taken together, the results of the current study indicated that miR-200b protected chondrocytes from LPS-induced inflammatory injury in vitro by targeting FUT4. These findings revealed the miR-200b/FUT4 axis as a potential candidate to target the degeneration of cartilages, thereby inhibiting the progression of OA.
Collapse
Affiliation(s)
- Yintai Li
- Department of Rehabilitation, Baoji Traditional Chinese Medicine Hospital, Baoji, Shaanxi 721000, P.R. China
| | - Suizhuan Wei
- Department of Orthopedics, Baoji Traditional Chinese Medicine Hospital, Baoji, Shaanxi 721000, P.R. China
| | - Zhongping Zhang
- Department of Orthopedics, Yan'an People's Hospital, Yan'an, Shaanxi 716000, P.R. China
| |
Collapse
|
9
|
Knockdown of MALAT1 Inhibits the Progression of Chronic Periodontitis via Targeting miR-769-5p/HIF3A Axis. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8899863. [PMID: 33604388 PMCID: PMC7870306 DOI: 10.1155/2021/8899863] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/10/2020] [Accepted: 12/26/2020] [Indexed: 01/11/2023]
Abstract
Purpose Chronic periodontitis (CP) is a long-lasting inflammatory disease that seriously affects oral health. This study is aimed at investigating the regulatory mechanism of metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) in CP. Methods Primary human periodontal ligament cells (PDLCs) were treated with P. gingivalis lipopolysaccharide (LPS) to establish a CP model. Quantitative real-time PCR (qRT-PCR) was used to measure the expression of MALAT1 and miR-769-5p in gingival tissues of patients with CP and LPS-treated PDLCs. Cell viability was detected by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay. Enzyme-linked immunosorbent assay (ELISA) was used to measure the levels of inflammatory cytokines. The protein levels of caspase-3, Bax, Bcl-2, and hypoxia-inducible factor (HIF) 3A were determined by western blot assay. Dual-luciferase reporter (DLR) assay was applied to validate the target relationships between miR-769-5p and MALAT1/HIF3A. Results The expression of MALAT1 and HIF3A was enhanced, and the expression of miR-769-5p was reduced in gingival tissues of patients with CP and LPS-treated PDLCs. MALAT1 knockdown promoted cell viability and inhibited inflammation and cell apoptosis in LPS-treated PDLCs. MALAT1 targeted miR-769-5p and negatively regulated miR-769-5p expression. miR-769-5p overexpression promoted cell viability and inhibited inflammation and cell apoptosis in LPS-treated PDLCs. Besides, miR-769-5p targeted HIF3A and negatively modulated HIF3A expression. Both miR-769-5p inhibition and HIF3A overexpression reversed the inhibitory effects of MALAT1 silencing on LPS-induced PDLC injury in vitro. Conclusion MALAT1 knockdown attenuated LPS-induced PDLC injury via regulating the miR-769-5p/HIF3A axis, which may supply a new target for CP treatment.
Collapse
|
10
|
Suppression of lncRNA MALAT1 Reduces LPS- or IL-17A-Induced Inflammatory Response in Human Middle Ear Epithelial Cells via the NF- κB Signaling Pathway. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8844119. [PMID: 33506040 PMCID: PMC7808845 DOI: 10.1155/2021/8844119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/27/2020] [Accepted: 12/24/2020] [Indexed: 11/17/2022]
Abstract
Otitis media (OM) is a common inflammatory disease of the middle ear cavity and mainly occurs in children. As a critical regulator of inflammation response, the nuclear factor kappa B (NF-κB) pathway has been found to play an essential role in the pathogenesis of various human diseases. The aim of this study was to explore the potential mechanism under the inflammatory response of human middle ear epithelial cells (HMEECs). We established in vitro models of OM by treating HMEECs with lipopolysaccharide (LPS) or interleukin 17A (IL-17A). Enzyme-linked immunosorbent assay and western blot analysis were used to measure the inflammatory response of HMEECs under LPS or IL-17A stimulation. The results revealed that the concentrations of proinflammatory cytokines (p < 0.001) and protein levels of mucin (MUC) (for MUC5AC, p = 0.002, p = 0.004; for MUC8, p = 0.004, p < 0.001) were significantly elevated by LPS or IL-17A stimulation in HMEECs. Moreover, we found that LPS or IL-17A treatment promoted the phosphorylation of IκBα (for p-IκBα, p = 0.018, p = 0.002; for IκBα, p = 0.238, p = 0.057) and the translocation of p65 from cytoplasm to nucleus in HMEECs (for nucleus p65, p = 0.01; for cytoplasm p65, p < 0.001). In addition, RT-qPCR analysis revealed that long noncoding RNA (lncRNA) metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) was verified to be upregulated in LPS- or IL-17A-stimulated HMEECs (p < 0.001). Western blot analysis and immunofluorescence staining assay revealed that that MALAT1 knockdown significantly suppressed the activation of the NF-κB pathway by reducing phosphorylated IκBα levels and inhibiting the nuclear translocation of p65 (p < 0.001) in LPS- or IL-17A-stimulated HMEECs (for p-IκBα, p < 0.001; for IκBα, p = 0.242, p = 0.647). Silence of MALAT1 decreased the proinflammatory cytokine production and MUC protein levels (p < 0.001). Furthermore, rescue assays revealed that the increase of proinflammatory cytokine production (for TNF-α, p = 0.002, p = 0.015; for IL-1β, p < 0.001, p = 0.006; for IL-6, p = 0.002, p < 0.001) and MUC protein levels (for MUC5AC, p = 0.001, p < 0.001; for MUC8, p < 0.001, p = 0.001) induced by MALAT1 overexpression was neutralized by 4-N-[2-(4-phenoxyphenyl) ethyl] quinazoline-4, 6-diamine (QNZ) treatment in LPS- or IL-17A-stimulated HMEECs. In conclusion, MALAT1 promotes inflammatory response in LPS- or IL-17A- stimulated HMEECs via the NF-κB signaling pathway, which may provide a potential novel insight for the treatment of OM.
Collapse
|
11
|
Characterization of exosomal long non-coding RNAs in chondrogenic differentiation of human adipose-derived stem cells. Mol Cell Biochem 2021; 476:1411-1420. [PMID: 33389494 DOI: 10.1007/s11010-020-04003-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 11/24/2020] [Indexed: 12/16/2022]
Abstract
The exosomes derived from chondrogenic stem cells and long non-coding RNAs (lncRNAs) play a key role in cartilage regeneration. Here, we investigated the expression profile of exosomal lncRNAs in chondrogenesis of human adipose derived stem cells (hADSCs). hADSCs were induced to differentiate into chondrocytes in vitro. Exosomes from undifferentiated hADSCs and chondrogenic hADSCs were isolated. LncRNA and mRNA expression profiles in the isolated exosomes were analyzed by RNA sequencing. The resultant data were subjected to gene ontology (GO) terms and KEGG pathway analysis to identify differentially expressed lncRNAs. We identified 23 upregulated and 163 downregulated lncRNAs in exosomes derived from chondrogenic hADSCs compared to that in exosomes from undifferentiated hADSCs. In addition, analysis of mRNA expression data revealed 968 upregulated genes and 572 downregulated genes in exosomes of chondrogenic hADSCs. Lncrna and mRNA expression levels were further validated by qRT-PCR. Differentially expressed lncRNAs and mRNAs were utilized to construct a coding-non-coding gene co-expression network (CNC network). GO terms and KEGG pathway enrichment analysis revealed several significant processes differentially regulated between undifferentiated hADSCs and chondrogenic hADSCs. Taken together, this study revealed the differential expression of exosomal lncRNAs of chondrogenic hADSCs and provided a foundation for future study on the cartilage recovery mechanism of exosomes derived from chondrogenic stem cells.
Collapse
|
12
|
Born LJ, Harmon JW, Jay SM. Therapeutic potential of extracellular vesicle-associated long noncoding RNA. Bioeng Transl Med 2020; 5:e10172. [PMID: 33005738 PMCID: PMC7510462 DOI: 10.1002/btm2.10172] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/06/2020] [Accepted: 07/06/2020] [Indexed: 12/12/2022] Open
Abstract
Both extracellular vesicles (EVs) and long noncoding RNAs (lncRNAs) have been increasingly investigated as biomarkers, pathophysiological mediators, and potential therapeutics. While these two entities have often been studied separately, there are increasing reports of EV-associated lncRNA activity in processes such as oncogenesis as well as tissue repair and regeneration. Given the powerful nature and emerging translational impact of other noncoding RNAs such as microRNA (miRNA) and small interfering RNA, lncRNA therapeutics may represent a new frontier. While EVs are natural vehicles that transport and protect lncRNAs physiologically, they can also be engineered for enhanced cargo loading and therapeutic properties. In this review, we will summarize the activity of lncRNAs relevant to both tissue repair and cancer treatment and discuss the role of EVs in enabling the potential of lncRNA therapeutics.
Collapse
Affiliation(s)
- Louis J. Born
- Fischell Department of BioengineeringUniversity of MarylandCollege ParkMarylandUSA
| | - John W. Harmon
- Department of Surgery and Hendrix Burn/Wound LaboratoryJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Steven M. Jay
- Fischell Department of BioengineeringUniversity of MarylandCollege ParkMarylandUSA
- Program in Molecular and Cell BiologyUniversity of MarylandCollege ParkMarylandUSA
| |
Collapse
|
13
|
Wu Y, Lu X, Shen B, Zeng Y. The Therapeutic Potential and Role of miRNA, lncRNA, and circRNA in Osteoarthritis. Curr Gene Ther 2020; 19:255-263. [PMID: 31333128 DOI: 10.2174/1566523219666190716092203] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/10/2019] [Accepted: 06/24/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND Osteoarthritis (OA) is a disease characterized by progressive degeneration, joint hyperplasia, narrowing of joint spaces, and extracellular matrix metabolism. Recent studies have shown that the pathogenesis of OA may be related to non-coding RNA, and its pathological mechanism may be an effective way to reduce OA. OBJECTIVE The purpose of this review was to investigate the recent progress of miRNA, long noncoding RNA (lncRNA) and circular RNA (circRNA) in gene therapy of OA, discussing the effects of this RNA on gene expression, inflammatory reaction, apoptosis and extracellular matrix in OA. METHODS The following electronic databases were searched, including PubMed, EMBASE, Web of Science, and the Cochrane Library, for published studies involving the miRNA, lncRNA, and circRNA in OA. The outcomes included the gene expression, inflammatory reaction, apoptosis, and extracellular matrix. RESULTS AND DISCUSSION With the development of technology, miRNA, lncRNA, and circRNA have been found in many diseases. More importantly, recent studies have found that RNA interacts with RNA-binding proteins to regulate gene transcription and protein translation, and is involved in various pathological processes of OA, thus becoming a potential therapy for OA. CONCLUSION In this paper, we briefly introduced the role of miRNA, lncRNA, and circRNA in the occurrence and development of OA and as a new target for gene therapy.
Collapse
Affiliation(s)
- Yuangang Wu
- Department of Orthopaedic Surgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Xiaoxi Lu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Bin Shen
- Department of Orthopaedic Surgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Yi Zeng
- Department of Orthopaedic Surgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, 610041, China
| |
Collapse
|
14
|
Xu H, Liu X, Ni H. Clinical significance of miR-19b-3p in patients with sepsis and its regulatory role in the LPS-induced inflammatory response. Eur J Med Res 2020; 25:9. [PMID: 32188465 PMCID: PMC7079357 DOI: 10.1186/s40001-020-00408-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 02/27/2020] [Indexed: 02/07/2023] Open
Abstract
Background MicroRNAs (miRNAs) play important roles in the development and progression of sepsis. This study investigated the clinical value of miR-19b-3p in sepsis patients, and explored its role in regulating inflammatory responses in HUVECs cells. Methods 103 patients with sepsis and 98 healthy individuals were recruited. qRT-PCR was used for the measurement of miR-19b-3p level. Cell viability was evaluated using CCK-8. The protein levels of TNF-α and IL-6 were measured using ELISA. Receiver operating characteristic (ROC) curve and logistic regression analysis were constructed to evaluate the diagnostic and prognostic values of miR-19b-3p in sepsis patients. Results MiR-19b-3p level was significantly reduced in the serum from patients with sepsis compared with healthy controls (P < 0.001). Sepsis patients in the survival group had significantly high miR-19b-3p levels compared with the non-survival group (P < 0.001). MiR-19b-3p was of a good value in predicting sepsis risk, and was an independent prognostic factor for 28-day survival in sepsis patients (OR = 3.226, 95% CI 1.076–9.670, P = 0.037). MiR-19b-3p level was negatively associated with serum levels of IL-6 (r = − 0.852, P < 0.001) and TNF-α (r = − 0.761, P < 0.001). Overexpression of miR-19b-3p alleviated LPS-induced inflammatory response of HUVECs, which was reflected by the decrease of the levels of IL-6 and TNF-α induced by LPS treatment (P < 0.001). Conclusion MiR-19b-3p might be a potential biomarker for the early diagnosis and prognosis of sepsis patients. Overexpression of miR-19b-3p alleviated sepsis-induced inflammatory responses.
Collapse
Affiliation(s)
- Huimin Xu
- Department of Infectious Diseases, Linyi People's Hospital, Linyi, 276034, Shandong, China
| | - Xiuwu Liu
- Department of Internal Medicine, Linyi People's Hospital, Linyi, 276034, Shandong, China
| | - Huaijun Ni
- Department of Surgery, Linyi People's Hospital, No. 233, Fenghuang Street, Linyi, 276034, Shandong, China.
| |
Collapse
|
15
|
He Z, Yan T, Yuan Y, Yang D, Yang G. miRNAs and lncRNAs in Echinococcus and Echinococcosis. Int J Mol Sci 2020; 21:ijms21030730. [PMID: 31979099 PMCID: PMC7037763 DOI: 10.3390/ijms21030730] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/16/2020] [Accepted: 01/19/2020] [Indexed: 01/04/2023] Open
Abstract
Echinococcosis are considered to be potentially lethal zoonotic diseases that cause serious damage to hosts. The metacestode of Echinococcus multilocularis and E. granulosus can result in causing the alveolar and cystic echinococcoses, respectively. Recent studies have shown that non-coding RNAs are widely expressed in Echinococcus spp. and hosts. In this review, the two main types of non-coding RNAs—long non-coding RNAs (lncRNAs) and microRNAs (miRNAs)—and the wide-scale involvement of these molecules in these parasites and their hosts were discussed. The expression pattern of miRNAs in Echinococcus spp. is species- and developmental stage-specific. Furthermore, common miRNAs were detected in three Echinococcus spp. and their intermediate hosts. Here, we primarily focus on recent insights from transcriptome studies, the expression patterns of miRNAs and lncRNAs, and miRNA-related databases and techniques that are used to investigate miRNAs in Echinococcus and echinococcosis. This review provides new avenues for screening therapeutic and diagnostic markers.
Collapse
Affiliation(s)
- Zhi He
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; (Z.H.); (T.Y.); (Y.Y.)
| | - Taiming Yan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; (Z.H.); (T.Y.); (Y.Y.)
| | - Ya Yuan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; (Z.H.); (T.Y.); (Y.Y.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Deying Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; (Z.H.); (T.Y.); (Y.Y.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Correspondence: ; Tel.: +86-028-8278-3043
| | - Guangyou Yang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China;
| |
Collapse
|
16
|
Targeting of IL-6-Relevant Long Noncoding RNA Profiles in Inflammatory and Tumorous Disease. Inflammation 2020; 42:1139-1146. [PMID: 30825076 DOI: 10.1007/s10753-019-00995-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Interleukin-6 (IL-6) is a critical cytokine with a diverse repertoire of physiological functions. Dysregulation of IL-6 signaling is associated with inflammatory disorders as well as cancers. However, blockade of IL-6 activity via antibodies directed against the IL-6 signaling pathway may compromise the efficacy of the immune system; therefore, patients may not have a uniformly satisfactory response to treatment. Long noncoding RNAs (lncRNAs) have been discovered to be evolutionary conserved transcripts of noncoding DNA sequences and have emerged as biomarkers with great predictive and prognostic value, further employed as a targeted anticancer therapy. LncRNAs have been recently implicated in the regulation of IL-6-related signaling and function; they are tightly linked to the development of a range of IL-6 dysregulated diseases. Here, we will highlight those lncRNAs involved in IL-6 signaling, with an emphasis on the mechanisms of lncRNAs that interact with IL-6. Targeting of such lncRNAs related to IL-6 regulation could be, in the near future, a promising therapeutic strategy in the treatment of inflammatory- and tumor-related diseases.
Collapse
|
17
|
Jiang S, Liu Y, Xu B, Zhang Y, Yang M. Noncoding RNAs: New regulatory code in chondrocyte apoptosis and autophagy. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 11:e1584. [PMID: 31925936 DOI: 10.1002/wrna.1584] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 11/13/2019] [Accepted: 12/20/2019] [Indexed: 12/11/2022]
Abstract
Osteoarthritis (OA) is a bone and joint disease characterized by progressive cartilage degradation. In the face of global trends of population aging, OA is expected to become the fourth most common disabling disease by 2020. Nevertheless, the detailed pathogenesis of OA has not yet been elucidated. Noncoding RNAs (ncRNAs), including long noncoding RNAs, microRNAs, and circular RNAs, do not encode proteins but have recently emerged as important regulators of apoptosis and autophagy of chondrocytes, thereby highlighting a potential role in chondrocyte injury leading to OA onset and progression. We here review recent findings on these regulatory roles of ncRNAs to provide new directions for research on the pathogenesis of OA and offer new therapeutic targets for prevention and treatment. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA in Disease and Development > RNA in Development.
Collapse
Affiliation(s)
- Siyu Jiang
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Marine Medical Research Institute of Guangdong Zhanjiang, Guangdong Medical University, Zhanjiang, China.,Department of Pharmacology, Guangdong Medical University, Zhanjiang, China
| | - Yi Liu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Marine Medical Research Institute of Guangdong Zhanjiang, Guangdong Medical University, Zhanjiang, China.,Department of Pharmacology, Guangdong Medical University, Zhanjiang, China
| | - Bilian Xu
- Department of Pharmacology, Guangdong Medical University, Zhanjiang, China
| | - Yan Zhang
- Operating Room, Tianjin Binhai New Area Tanggu Obstetrics and Gynecology Hospital, Tianjin, China
| | - Min Yang
- Shenzhen Ritzcon Biological Technology Co., LTD, Shenzhen, China
| |
Collapse
|
18
|
Chen J, He Y, Zhou L, Deng Y, Si L. Long non‑coding RNA MALAT1 serves as an independent predictive biomarker for the diagnosis, severity and prognosis of patients with sepsis. Mol Med Rep 2020; 21:1365-1373. [PMID: 31922243 DOI: 10.3892/mmr.2020.10923] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 10/03/2019] [Indexed: 11/06/2022] Open
Abstract
The present prospective study was conducted to investigate the independent risk and predictive value of plasma long non‑coding RNA metastasis‑associated lung adenocarcinoma transcript 1 (MALAT1) as a biomarker for the diagnosis, severity and prognosis of sepsis. A total of 120 patients with sepsis and 60 healthy controls (HCs) were recruited. The expression levels of plasma MALAT1 were detected by quantitative PCR. The results demonstrated that the plasma levels of MALAT1 were significantly increased in patients with sepsis compared with HCs (P<0.001), in patients with septic shock compared with in patients without septic shock (P<0.001), and in non‑survivors compared with in survivors (P<0.001). MALAT1 plasma levels exhibited weak positive correlation with serum procalcitonin levels (r=0.253; P=0.005), arterial lactate levels (r=0.488; P<0.001), sepsis‑related organ failure assessment scores (r=0.566; P<0.001), and acute physiology and chronic health evaluation II scores (r=0.517; P<0.001) in patients with sepsis. Multivariate logistic regression analysis revealed that high MALAT1 expression was an independent risk factor for sepsis (P<0.001), septic shock (P=0.030) and poor prognosis (P=0.015). In addition, the receiver operating characteristic curve exhibited a significant predictive value for MALAT1 in distinguishing patients with sepsis from HCs with an area under the curve (AUC) of 0.910, patients with septic shock from patients without shock with an AUC of 0.836, and non‑survivors from survivors with an AUC of 0.886. In conclusion, plasma MALAT1 may serve as a biomarker for the diagnosis, severity and prognosis of sepsis.
Collapse
Affiliation(s)
- Jianjun Chen
- Department of Intensive Care Medicine, The First People's Hospital of Yancheng, Yancheng, Jiangsu 224000, P.R. China
| | - Yingfeng He
- Department of Intensive Care Medicine, The First People's Hospital of Yancheng, Yancheng, Jiangsu 224000, P.R. China
| | - Liangliang Zhou
- Department of Intensive Care Medicine, The First People's Hospital of Yancheng, Yancheng, Jiangsu 224000, P.R. China
| | - Yijun Deng
- Department of Intensive Care Medicine, The First People's Hospital of Yancheng, Yancheng, Jiangsu 224000, P.R. China
| | - Linjie Si
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
19
|
Xiaoling G, Shuaibin L, Kailu L. MicroRNA-19b-3p promotes cell proliferation and osteogenic differentiation of BMSCs by interacting with lncRNA H19. BMC MEDICAL GENETICS 2020; 21:11. [PMID: 31918667 PMCID: PMC6953218 DOI: 10.1186/s12881-020-0948-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 12/31/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND To investigated the role of miR-19b-3p in regulating bone marrow mesenchymal stem cell (BMSC) proliferation and osteoblast differentiation. METHODS The expression of miR-19b-3p and lncRNA H19 were measured in postmenopausal osteoporosis patients and BMP-22 induced BMSCs using qRT-PCR. MiR-19b-3p mimic or inhibitor was transfected into BMP-2 induced BMSCs. Cell proliferation was measured by BrdU method. Protein expression of RUNX2 and COL1A1 were measured by western blot. PcDNA3.1-lncRNA H19 with or without miR-19b-3p mimic was transfected into BMP-2 induced BMSCs. RESULTS The expression of miR-19b-3p was significantly up-regulated in postmenopausal osteoporosis patients and BMP-2 induced BMSCs. MiR-19b-3p overexpression dramatically elevated, while miR-19b-3p inhibition decreased cell proliferation of BMSCs. Additionally, protein expression levels of RUNX2 and COL1A1, as well as ALP activity were significantly promoted by miR-19b-3p mimic transfection and inhibited by miR-19b-3p inhibitor transfection. LncRNA H19 was obviously down-regulated in postmenopausal osteoporosis patients. H19 overexpression significantly decreased cell proliferation and differentiation by down-regulating miR-19b-3p. Moreover, the expression of miR-19b-3p was inhibited, while H19 elvated in 17β-estradiol (E2) treated BMSCs in a dose-dependent manner. CONCLUSION These data were the first to reveal the critical role of H19/miR-19b-3p in postmenopausal osteoporosis, and provided a new therapeutic target for OP.
Collapse
Affiliation(s)
- Gan Xiaoling
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Liu Shuaibin
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Liang Kailu
- Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
20
|
Qu D, Sun WW, Li L, Ma L, Sun L, Jin X, Li T, Hou W, Wang JH. Long noncoding RNA MALAT1 releases epigenetic silencing of HIV-1 replication by displacing the polycomb repressive complex 2 from binding to the LTR promoter. Nucleic Acids Res 2019; 47:3013-3027. [PMID: 30788509 PMCID: PMC6451131 DOI: 10.1093/nar/gkz117] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/10/2019] [Accepted: 02/14/2019] [Indexed: 12/23/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) may either repress or activate HIV-1 replication and latency; however, specific mechanisms for their action are not always clear. In HIV-1 infected CD4+ T cells, we performed RNA-Sequencing (RNA-Seq) analysis and discovered an up-regulation of MALAT1 (metastasis-associated lung adenocarcinoma transcript 1), an lncRNA previously described in cancer cells that associate with cancer pathogenesis. Moreover, we found that MALAT1 promoted HIV-1 transcription and infection, as its knockdown by CRISPR/Cas9 markedly reduced the HIV-1 long terminal repeat (LTR)-driven gene transcription and viral replication. Mechanistically, through an association with chromatin modulator polycomb repressive complex 2 (PRC2), MALAT1 detached the core component enhancer of zeste homolog 2 (EZH2) from binding with HIV-1 LTR promoter, and thus removed PRC2 complex-mediated methylation of histone H3 on lysine 27 (H3K27me3) and relieved epigenetic silencing of HIV-1 transcription. Moreover, the reactivation of HIV-1 stimulated with latency reversal agents (LRAs) induced MALAT1 expression in latently infected cells. Successful combination antiretroviral therapy (cART) was accompanied by significantly diminished MALAT1 expression in patients, suggesting a positive correlation of MALAT1 expression with HIV-1 replication. Our data have identified MALAT1 as a promoter of HIV-1 transcription, and suggested that MALAT1 may be targeted for the development of new therapeutics.
Collapse
Affiliation(s)
- Di Qu
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China.,University of Chinese Academy of Sciences, Beijing 100039, China
| | - Wei-Wei Sun
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China.,University of Chinese Academy of Sciences, Beijing 100039, China
| | - Li Li
- School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei 430070, China.,State Key Laboratory of Virology, Wuhan University, Wuhan, Hubei 430070, China
| | - Li Ma
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Li Sun
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xia Jin
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Taisheng Li
- Department of Infectious Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Wei Hou
- School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei 430070, China.,State Key Laboratory of Virology, Wuhan University, Wuhan, Hubei 430070, China
| | - Jian-Hua Wang
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China.,University of Chinese Academy of Sciences, Beijing 100039, China
| |
Collapse
|
21
|
Mei X, Tong J, Zhu W, Zhu Y. lncRNA‑NR024118 overexpression reverses LPS‑induced inflammatory injury and apoptosis via NF‑κB/Nrf2 signaling in ATDC5 chondrocytes. Mol Med Rep 2019; 20:3867-3873. [PMID: 31485657 PMCID: PMC6755246 DOI: 10.3892/mmr.2019.10639] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/31/2019] [Indexed: 12/11/2022] Open
Abstract
Osteoarthritis (OA) is one of the most prevalent types of chronic joint diseases. Chondrocytes survival is closely associated with the destruction of joints in patients with OA. Long noncoding RNAs (lncRNAs) serve a critical role in OA. However, to the best of our knowledge, the role of lncRNAs NR024118 in OA has not been examined. In the present study, the expression levels of NR024118 in lipopolysaccharide (LPS)-induced chondrocytes was measured using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and the apoptosis levels of cells was determined using flow cytometry. The levels of scavenged reactive oxygen species and expression levels of the antioxidant enzymes including superoxide dismutase (SOD), catalase (CAT), and heme oxygenase-1 (HO-1) were measured using specialized detection kits. The expression of interleukin (IL)-1β, IL-6 and IL-18 were measured using ELISA. Expression of the cell apoptosis markers Bcl-2, Bax, Bcl-2-like protein 11, NF-κB, phosphorylated (p)-NF-κB inhibitor β (IκBβ), IκBβ, p-transcription factor p65 (p65) and p65, and nuclear factor erythroid-2 related factor 2 (Nrf2) signaling pathways-associated proteins, Nrf2, HO-1 and quinone oxidoreductase-1 were detected by western blot analysis and RT-qPCR. The results indicated that in ATDC5 cells, apoptosis, oxidative stress and inflammation were significantly increased and the expression level of NR024118 was significantly decreased by LPS-mediated induction. NR024118 overexpression significantly reversed the effects of LPS treatment in the ATDC5 cell line. In addition, the overexpression of NR024118 decreased NF-κB expression levels and activated the Nrf2 signaling pathways in LPS-induced ATDC5 cells. The present study demonstrated that NR024118 attenuated the effects of LPS-induction on ATDC5 cells. These results suggest that NR024118 may be a potential target for diagnosis and treatment of OA.
Collapse
Affiliation(s)
- Xiaoliang Mei
- Department of Orthopedics, The Affiliated Taizhou People's Hospital of Nantong University, Taizhou, Jiangsu 225300, P.R. China
| | - Jian Tong
- Department of Orthopedics, The Affiliated Taizhou People's Hospital of Nantong University, Taizhou, Jiangsu 225300, P.R. China
| | - Wei Zhu
- Department of Orthopedics, The Affiliated Taizhou People's Hospital of Nantong University, Taizhou, Jiangsu 225300, P.R. China
| | - Yongliang Zhu
- Department of Orthopedics, Nanjing Central Hospital, Nanjing, Jiangsu 210018, P.R. China
| |
Collapse
|
22
|
Duan L, Duan D, Wei W, Sun Z, Xu H, Guo L, Wu X. MiR-19b-3p attenuates IL-1β induced extracellular matrix degradation and inflammatory injury in chondrocytes by targeting GRK6. Mol Cell Biochem 2019; 459:205-214. [DOI: 10.1007/s11010-019-03563-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 05/27/2019] [Indexed: 12/01/2022]
|
23
|
Wei S, Wang K, Huang X, Tang W, Zhao Z, Zhao Z. Knockdown of the lncRNA MALAT1 alleviates lipopolysaccharide‑induced A549 cell injury by targeting the miR‑17‑5p/FOXA1 axis. Mol Med Rep 2019; 20:2021-2029. [PMID: 31257497 DOI: 10.3892/mmr.2019.10392] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 05/23/2019] [Indexed: 11/06/2022] Open
Abstract
Long‑noncoding RNAs (lncRNAs) are crucial for the pathophysiology of acute lung injury (ALI). Metastasis‑associated lung adenocarcinoma transcript 1 (MALAT1) suppresses inflammatory responses via microRNA (miR)‑146a in lipopolysaccharide (LPS)‑induced ALI. However, the molecular mechanisms underlying the MALAT1‑mediated regulation of cell proliferation and apoptosis in LPS‑induced ALI remain unclear. In the present study, it was found that LPS treatment upregulated MALAT1 expression and suppressed the proliferation of A549 cells. MALAT1 knockdown significantly promoted the proliferation and G1/S phase transition and inhibited apoptosis in LPS‑treated A549 cells. In addition, miR‑17‑5p was a direct target of MALAT1. miR‑17‑5p expression was downregulated and FOXA1 expression was upregulated in LPS‑treated A549 cells. Further, MALAT1 knockdown promoted miR‑17‑5p expression and inhibited FOXA1 expression, whereas the combined suppression of MALAT1 and miR‑17‑5p induced FOXA1 expression. Moreover, miR‑17‑5p knockdown reversed the effects of MALAT1 suppression on LPS‑induced A549 cell proliferation. These results indicated that MALAT1 serves as a competing endogenous lncRNA that, by sequestering miR‑17‑5p, stimulates FOXA1 expression and mediates LPS‑induced A549 cell injury. In conclusion, the present study demonstrated that MALAT1 knockdown alleviates LPS‑induced A549 cell injury by targeting the miR‑17‑5p/FOXA1 axis.
Collapse
Affiliation(s)
- Shuquan Wei
- Department of Pulmonary and Critical Care Medicine, Guangzhou First People's Hospital, The Second Affiliated Hospital of South China University of Technology, Guangzhou, Guangdong 510180, P.R. China
| | - Kangwei Wang
- Department of Pathology, Guangzhou First People's Hospital, The Second Affiliated Hospital of South China University of Technology, Guangzhou, Guangdong 510180, P.R. China
| | - Xiaomei Huang
- Department of Pulmonary and Critical Care Medicine, Guangzhou First People's Hospital, The Second Affiliated Hospital of South China University of Technology, Guangzhou, Guangdong 510180, P.R. China
| | - Wanna Tang
- Department of Pulmonary and Critical Care Medicine, Guangzhou First People's Hospital, The Second Affiliated Hospital of South China University of Technology, Guangzhou, Guangdong 510180, P.R. China
| | - Zhuxiang Zhao
- Department of Pulmonary and Critical Care Medicine, Guangzhou First People's Hospital, The Second Affiliated Hospital of South China University of Technology, Guangzhou, Guangdong 510180, P.R. China
| | - Ziwen Zhao
- Department of Pulmonary and Critical Care Medicine, Guangzhou First People's Hospital, The Second Affiliated Hospital of South China University of Technology, Guangzhou, Guangdong 510180, P.R. China
| |
Collapse
|
24
|
Wang Y, Yu C, Zhang H. Lipopolysaccharides-mediated injury to chondrogenic ATDC5 cells can be relieved by Sinomenine via downregulating microRNA-192. Phytother Res 2019; 33:1827-1836. [PMID: 31094031 DOI: 10.1002/ptr.6372] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 03/05/2019] [Accepted: 03/30/2019] [Indexed: 12/15/2022]
Abstract
Sinomenine (SIN) is an isoquinoline derived from Caulis Sinomenii that has been used to treat rheumatoid arthritis and osteoarthritis for several decades in China. This study aims to reveal the effects of SIN on mouse chondrogenic ATDC5 cells growth and inflammation. SIN was used to treat ATDC5 cells injured by lipopolysaccharides (LPS). The following parameters were determined for evaluating the treatment effects of SIN: cell viability, apoptosis, reactive oxygen species generation, and pro-inflammatory cytokines release. Besides, the expression of LPS-sensitive miRNA (miR-192) and the activation of NF-κB and MAPK signaling were studied to explain SIN's function. SIN with concentration of 30 μM significantly attenuated LPS-induced cell damage via increasing cell viability, inhibiting apoptosis and reactive oxygen species generation, and declining IL-6 and TNF-α release. miR-192 was downregulated by SIN treatment. Restoration of miR-192 expression by miRNA transfection could significantly impede SIN's protective action. Besides, the inhibitory effects of SIN on the activation of NF-κB and MAPK signaling were attenuated by miR-192 overexpression. Furthermore, GDF11 was found to be a target gene of miR-192. LPS-mediated injury to chondrogenic ATDC5 cells can be relieved by SIN via downregulating miR-192 and subsequently repressing the activation of NF-κB and MAPK signaling.
Collapse
Affiliation(s)
- Yang Wang
- Department of Orthopaedics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Chuandong Yu
- Department of Orthopaedics, Heze Municipal Hospital, Heze, China
| | - Hanyang Zhang
- Department of Orthopaedics, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
25
|
Exosomal KLF3-AS1 from hMSCs promoted cartilage repair and chondrocyte proliferation in osteoarthritis. Biochem J 2018; 475:3629-3638. [PMID: 30341166 DOI: 10.1042/bcj20180675] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/17/2018] [Accepted: 10/18/2018] [Indexed: 02/06/2023]
Abstract
The present study was designed to explore whether exosomal lncRNA-KLF3-AS1 derived from human mesenchymal stem cells (hMSCs) can serve as a positive treatment for osteoarthritis (OA). hMSCs and MSC-derived exosomes (MSC-exo) were prepared for morphological observation and identification by transmission electron microscopy and flow cytometry. IL-1β-induced OA chondrocytes and collagenase-induced rat model of OA were established for the further experiments. Lentivirus-mediated siRNA targeting KLF3-AS1 was transfected into MSCs for silencing KLF3-AS1. The real-time quantitative PCR and western blotting analysis were performed to examine the mRNA and protein levels of type II collagen alpha 1 (Col2a1), aggrecan, matrix metalloproteinase 13 and runt-related transcription factor 2. Cell proliferation, apoptosis and migration were evaluated by CCK-8 assay, flow cytometry and transwell assay. HE (hematoxylin and eosin) staining and immunohistochemistry were used for histopathological studies. MSC-exo ameliorated IL-1β-induced cartilage injury. Furthermore, lncRNA KLF3-AS1 was markedly enriched in MSC-exo, and exosomal KLF3-AS1 suppressed IL-1β-induced apoptosis of chondrocytes. Further in vivo investigation indicated that exosomal KLF3-AS1 promoted cartilage repair in a rat model of OA. Exosomal KLF3-AS1 promoted cartilage repair and chondrocyte proliferation in a rat model of OA, which might be an underlying therapeutic target for OA.
Collapse
|