1
|
Zhou Y, Zhang H, Yan H, Huang C, Liu Y. Mendelian randomization based on immune cells in diabetic nephropathy. Front Endocrinol (Lausanne) 2024; 15:1460652. [PMID: 39165512 PMCID: PMC11333325 DOI: 10.3389/fendo.2024.1460652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 07/22/2024] [Indexed: 08/22/2024] Open
Abstract
Background DKD, a leading cause of chronic kidney and end-stage renal disease, lacks robust immunological research. Recent GWAS utilizing SNPs and CNVs has shed light on immune mechanisms of kidney diseases. However, DKD's immunological basis remains elusive. Our goal is to unravel cause-effect relationships between immune cells and DKD using Mendelian randomization. Methodology We analyzed FinnGen data (1032 DKD cases, 451,248 controls) with 731 immunocyte GWAS summaries (MP=32, MFI=389, AC=118, RC=192). We employed forward and reverse Mendelian randomization to explore causal links between immune cell traits and DKD. Sensitivity analysis ensured robustness, heterogeneity checks, and FDR correction minimized false positives. Results Our study explored the causal link between diabetic nephropathy (DKD) and immunophenotypes using two-sample Mendelian Randomization (MR) with IVW. Nine immunophenotypes were significantly associated with DKD at p<0.05 after FDR correction. Elevated CD24, CD3 in Treg subsets, CD39+ CD4+, and CD33- HLA DR- AC correlated positively with DKD risk, while CD27 in B cells and SSC-A in CD4+ inversely correlated. Notably, while none showed significant protection, further research on immune cells' role in DKD may provide valuable insights. Conclusion The results of this study show that the immune cells are closely related to DKD, which may be helpful in the future clinical study.
Collapse
Affiliation(s)
- Ye Zhou
- Department of Endocrinology, Zhaotong Hospital of Traditional Chinese Medicine, Zhaotong, Yunnan, China
| | - Hengyan Zhang
- Department of Endocrinology, Zhaotong Hospital of Traditional Chinese Medicine, Zhaotong, Yunnan, China
| | - Heguo Yan
- Department of Endocrinology, Zhaotong Hospital of Traditional Chinese Medicine, Zhaotong, Yunnan, China
- Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Changxing Huang
- Department of Endocrinology, Zhaotong Hospital of Traditional Chinese Medicine, Zhaotong, Yunnan, China
| | - Yangwen Liu
- Department of Endocrinology, Zhaotong Hospital of Traditional Chinese Medicine, Zhaotong, Yunnan, China
| |
Collapse
|
2
|
Lohia S, Valkenburg S, Stroggilos R, Lygirou V, Makridakis M, Zoidakis J, Verbeke F, Glorieux G, Vlahou A. Investigation of the human-gut-kidney axis by fecal proteomics, highlights molecular mechanisms affected in CKD. Heliyon 2024; 10:e32828. [PMID: 38975221 PMCID: PMC11226915 DOI: 10.1016/j.heliyon.2024.e32828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/10/2024] [Accepted: 06/10/2024] [Indexed: 07/09/2024] Open
Abstract
Objective The interplay of gut microbiota with the kidney system in chronic kidney disease (CKD), is characterized by increased concentrations of uric acid in the gut, which in turn, may increase bacterial uricase activity and may lead to the generation of uremic toxins. Nevertheless, knowledge on these underlying bidirectional molecular mechanisms is still limited. Methods In this exploratory study, proteomic analysis was performed on fecal samples, targeting to investigate this largely unexplored biological material as a source of information reflecting the gut-kidney axis. Specifically, fecal suspension samples from patients with CKD1 (n = 12) and CKD4 (n = 17) were analysed by LC-MS/MS, using both the Human and Bacterial UniProt RefSeq reviewed databases. Results This fecal proteomic analysis collectively identified 701 human and 1011 bacterial proteins of high confidence. Differential expression analysis (CKD4/CKD1) revealed significant changes in human proteins (n = 8, including proteins such as galectin-3-binding protein and prolactin-inducible protein), that were found to be associated with inflammation and CKD. The differential protein expression of pancreatic alpha-amylase further suggested plausible reduced saccharolytic fermentation in CKD4/CKD1. Significant changes in bacterial proteins (n = 9, such as glyceraldehyde-3-phosphate dehydrogenase and enolase), participating in various carbohydrate and metabolic pathways important for the synthesis of butyrate, in turn suggested differential butyrate synthesis in CKD4/CKD1. Further, targeted quantification of fecal pancreatic alpha-amylase and butyrate in the same fecal suspension samples, supported these hypotheses. Conclusion Collectively, this exploratory fecal proteomic analysis highlighted changes in human and bacterial proteins reflecting inflammation and reduced saccharolytic fermentation in CKD4/CKD1, plausibly affecting the butyrate synthesis pathways in advanced stage kidney disease. Integrative multi-omics validation is planned.
Collapse
Affiliation(s)
- Sonnal Lohia
- Center of Systems Biology, Biomedical Research Foundation of the Academy of Athens, 11527, Athens, Greece
- Institute for Molecular Cardiovascular Research, RWTH Aachen University Hospital, 52074, Aachen, Germany
| | - Sophie Valkenburg
- Department of Internal Medicine and Paediatrics, Nephrology Division, Ghent University Hospital, 9000, Gent, Belgium
| | - Rafael Stroggilos
- Center of Systems Biology, Biomedical Research Foundation of the Academy of Athens, 11527, Athens, Greece
| | - Vasiliki Lygirou
- Center of Systems Biology, Biomedical Research Foundation of the Academy of Athens, 11527, Athens, Greece
| | - Manousos Makridakis
- Center of Systems Biology, Biomedical Research Foundation of the Academy of Athens, 11527, Athens, Greece
| | - Jerome Zoidakis
- Center of Systems Biology, Biomedical Research Foundation of the Academy of Athens, 11527, Athens, Greece
| | - Francis Verbeke
- Department of Internal Medicine and Paediatrics, Nephrology Division, Ghent University Hospital, 9000, Gent, Belgium
| | - Griet Glorieux
- Department of Internal Medicine and Paediatrics, Nephrology Division, Ghent University Hospital, 9000, Gent, Belgium
| | - Antonia Vlahou
- Center of Systems Biology, Biomedical Research Foundation of the Academy of Athens, 11527, Athens, Greece
| |
Collapse
|
3
|
Liu Y, Cui X, Zhang X, Xie Z, Wang W, Xi J, Xie Y. Exploring the potential mechanisms of Tongmai Jiangtang capsules in treating diabetic nephropathy through multi-dimensional data. Front Endocrinol (Lausanne) 2023; 14:1172226. [PMID: 38027201 PMCID: PMC10654657 DOI: 10.3389/fendo.2023.1172226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023] Open
Abstract
Background Diabetic nephropathy (DN) is a prevalent and debilitating disease that represents the leading cause of chronic kidney disease which imposes public health challenges Tongmai Jiangtang capsule (TMJT) is commonly used for the treatment of DN, albeit its underlying mechanisms of action are still elusive. Methods This study retrieved databases to identify the components and collect the targets of TMJT and DN. Target networks were constructed to screen the core components and targets. Samples from the GEO database were utilized to perform analyses of targets and immune cells and obtain significantly differentially expressed core genes (SDECGs). We also selected a machine learning model to screen the feature genes and construct a nomogram. Furthermore, molecular docking, another GEO dataset, and Mendelian randomization (MR) were utilized for preliminary validation. We subsequently clustered the samples based on SDECG expression and consensus clustering and performed analyses between the clusters. Finally, we scored the SDECG score and analyzed the differences between clusters. Results This study identified 13 SDECGs between DN and normal groups which positively regulated immune cells. We also identified five feature genes (CD40LG, EP300, IL1B, GAPDH, and EGF) which were used to construct a nomogram. MR analysis indicated a causal link between elevated IL1B levels and an increased risk of DN. Clustering analysis divided DN samples into four groups, among which, C1 and CI were mainly highly expressed and most immune cells were up-regulated. C2 and CII were the opposite. Finally, we found significant differences in SDECG scores between C1 and C2, CI and CII, respectively. Conclusion TMJT may alleviate DN via core components (e.g. Denudatin B, hancinol, hirudinoidine A) targeting SDECGs (e.g. SRC, EGF, GAPDH), with the involvement of feature genes and modulation of immune and inflammation-related pathways. These findings have potential implications for clinical practice and future investigations.
Collapse
Affiliation(s)
- Yi Liu
- Institute Of Basic Research In Clinical Medicine, China Academy Of Chinese Medical Sciences, Beijing, China
| | - Xin Cui
- Institute Of Basic Research In Clinical Medicine, China Academy Of Chinese Medical Sciences, Beijing, China
| | - Xuming Zhang
- Institute Of Basic Research In Clinical Medicine, China Academy Of Chinese Medical Sciences, Beijing, China
| | - Zhuoting Xie
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Weili Wang
- Institute Of Basic Research In Clinical Medicine, China Academy Of Chinese Medical Sciences, Beijing, China
| | - Junyu Xi
- Institute Of Basic Research In Clinical Medicine, China Academy Of Chinese Medical Sciences, Beijing, China
| | - Yanming Xie
- Institute Of Basic Research In Clinical Medicine, China Academy Of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
4
|
Li Z, Deng H, Guo X, Yan S, Lu C, Zhao Z, Feng X, Li Q, Wang J, Zeng J, Ma X. Effective dose/duration of natural flavonoid quercetin for treatment of diabetic nephropathy: A systematic review and meta-analysis of rodent data. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 105:154348. [PMID: 35908521 DOI: 10.1016/j.phymed.2022.154348] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/29/2022] [Accepted: 07/17/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Given the challenges on diabetic nephropathy (DN) treatment, research has been carried out progressively focusing on dietary nutrition and natural products as a novel option with the objective of enhancing curative effect and avoiding adverse reactions. As a representative, Quercetin (Qu) has proved to be of great value in current data. PURPOSE We aimed to synthetize the evidence regarding the therapeutic effect and specific mechanism of quercetin on DN via systematically reviewing and performing meta-analysis. METHODS Preclinical literature published prior to August 2021, was systematical retrieval and manually filtrated across four major databases including PubMed, Web of Science, EMBASE and Cochrane library. Pooled overall effect sizes of results were generated by STATA 16.0, and underlying mechanisms were summarized. Three-dimensional dose/time-effect analyses and radar maps were conducted to examine the dosage/time-response relations between Qu and DN. RESULTS This paper pools all current available evidence in a comprehensive way, and shows the therapeutic benefits as well as potential action mechanisms of Qu in protecting the kidney against damage. A total of 304 potentially relevant citations were identified, of which 18 studies were enrolled into analysis. Methodological quality was calculated, resulting in an average score of 7.06/10. This paper provided the preliminary evidence that consumption of Qu could induce a statistical reduction in mesangial index, Scr, BUN, 24-h urinary protein, serum urea, BG, kidney index, TC, TG, LDL-C, AST, MDA, AGE, TNF-α, TGF-β1, TGF-β1 mRNA, CTGF and IL-1β, whereas HDL-C, SOD, GSH, GSH-Px, CAT and smad-7 were significantly increased. Furthermore, Qu could remarkably improve the renal pathology. In terms of the mechanisms underlying therapy of DN, Qu exerts anti-diabetic nephropathy properties possibly through PI3K/PKB, AMPK-P38 MAPK, SCAP/SREBP2/LDLr, mtROS-TRX/TXNIP/NLRP3/IL-1β, TGF-β1/Smad, Nrf2/HO-1, Hippo, mTORC1/p70S6K and SHH pathways. Dose/time-response images predicted a modest association between Qu dosage consumption/administration length and therapeutic efficacy, with the optimal dosage at 90-150 mg/kg/d and administration length ranging from 8 weeks to 12 weeks. CONCLUSIONS Quercetin exhibit highly pleiotropic actions, which simultaneously contributes to prevent fundamental progression of DN, such as hyperglycemia, dyslipidemia, inflammation, fibrotic lesions and oxidative stress. The therapeutic effect becomes stronger when Qu administration at higher dosages lasts for longer durations. Taken together, quercetin could be used in patients with DN as a promising agent, which has well-established safety profiles and nontoxicity according to existing literature.
Collapse
Affiliation(s)
- Ziyu Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Haichuan Deng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Xiaochuan Guo
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Sining Yan
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Chaorui Lu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Zewei Zhao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Xinyu Feng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Qihong Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Jiayi Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Jinhao Zeng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China.
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
5
|
Verissimo T, Faivre A, Sgardello S, Naesens M, de Seigneux S, Criton G, Legouis D. Estimated Renal Metabolomics at Reperfusion Predicts One-Year Kidney Graft Function. Metabolites 2022; 12:57. [PMID: 35050179 PMCID: PMC8778290 DOI: 10.3390/metabo12010057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/26/2021] [Accepted: 01/04/2022] [Indexed: 02/04/2023] Open
Abstract
Renal transplantation is the gold-standard procedure for end-stage renal disease patients, improving quality of life and life expectancy. Despite continuous advancement in the management of post-transplant complications, progress is still needed to increase the graft lifespan. Early identification of patients at risk of rapid graft failure is critical to optimize their management and slow the progression of the disease. In 42 kidney grafts undergoing protocol biopsies at reperfusion, we estimated the renal metabolome from RNAseq data. The estimated metabolites' abundance was further used to predict the renal function within the first year of transplantation through a random forest machine learning algorithm. Using repeated K-fold cross-validation we first built and then tuned our model on a training dataset. The optimal model accurately predicted the one-year eGFR, with an out-of-bag root mean square root error (RMSE) that was 11.8 ± 7.2 mL/min/1.73 m2. The performance was similar in the test dataset, with a RMSE of 12.2 ± 3.2 mL/min/1.73 m2. This model outperformed classic statistical models. Reperfusion renal metabolome may be used to predict renal function one year after allograft kidney recipients.
Collapse
Affiliation(s)
- Thomas Verissimo
- Laboratory of Nephrology, Department of Medicine, University Hospitals of Geneva, 1205 Geneva, Switzerland; (T.V.); (A.F.); (S.d.S.)
| | - Anna Faivre
- Laboratory of Nephrology, Department of Medicine, University Hospitals of Geneva, 1205 Geneva, Switzerland; (T.V.); (A.F.); (S.d.S.)
| | - Sebastian Sgardello
- Department of Surgery, University Hospital of Geneva, 1205 Geneva, Switzerland;
| | - Maarten Naesens
- Service of Nephrology, University Hospitals of Leuven, 3000 Leuven, Belgium;
| | - Sophie de Seigneux
- Laboratory of Nephrology, Department of Medicine, University Hospitals of Geneva, 1205 Geneva, Switzerland; (T.V.); (A.F.); (S.d.S.)
- Service of Nephrology, Department of Internal Medicine Specialties, University Hospital of Geneva, 1205 Geneva, Switzerland
| | - Gilles Criton
- Geneva School of Economics and Management, University of Geneva, 1205 Geneva, Switzerland;
| | - David Legouis
- Laboratory of Nephrology, Department of Medicine, University Hospitals of Geneva, 1205 Geneva, Switzerland; (T.V.); (A.F.); (S.d.S.)
- Division of Intensive Care, Department of Acute Medicine, University hospital of Geneva, 1205 Geneva, Switzerland
| |
Collapse
|
6
|
Lin T, Xu Y, Zhao A, He W, Xiao F. Flexible electrochemical sensors integrated with nanomaterials for in situ determination of small molecules in biological samples: A review. Anal Chim Acta 2022; 1207:339461. [DOI: 10.1016/j.aca.2022.339461] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 12/15/2022]
|
7
|
Gould RL, Craig SW, McClatchy S, Churchill GA, Pazdro R. Genetic mapping of renal glutathione suggests a novel regulatory locus on the murine X chromosome and overlap with hepatic glutathione regulation. Free Radic Biol Med 2021; 174:28-39. [PMID: 34324982 PMCID: PMC8597656 DOI: 10.1016/j.freeradbiomed.2021.07.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/14/2021] [Accepted: 07/25/2021] [Indexed: 11/29/2022]
Abstract
Glutathione (GSH) is a critical cellular antioxidant that protects against byproducts of aerobic metabolism and other reactive electrophiles to prevent oxidative stress and cell death. Proper maintenance of its reduced form, GSH, in excess of its oxidized form, GSSG, prevents oxidative stress in the kidney and protects against the development of chronic kidney disease. Evidence has indicated that renal concentrations of GSH and GSSG, as well as their ratio GSH/GSSG, are moderately heritable, and past research has identified polymorphisms and candidate genes associated with these phenotypes in mice. Yet those discoveries were made with in silico mapping methods that are prone to false positives and power limitations, so the true loci and candidate genes that control renal glutathione remain unknown. The present study utilized high-resolution gene mapping with the Diversity Outbred mouse stock to identify causal loci underlying variation in renal GSH levels and redox status. Mapping output identified a suggestive locus associated with renal GSH on murine chromosome X at 51.602 Mbp, and bioinformatic analyses identified apoptosis-inducing factor mitochondria-associated 1 (Aifm1) as the most plausible candidate. Then, mapping outputs were compiled and compared against the genetic architecture of the hepatic GSH system, and we discovered a locus on murine chromosome 14 that overlaps between hepatic GSH concentrations and renal GSH redox potential. Overall, the results support our previously proposed model that the GSH redox system is regulated by both global and tissue-specific loci, vastly improving our understanding of GSH and its regulation and proposing new candidate genes for future mechanistic studies.
Collapse
Affiliation(s)
- Rebecca L Gould
- Department of Nutritional Sciences, University of Georgia, 305 Sanford Drive, Athens, GA, 30602, USA
| | - Steven W Craig
- Department of Nutritional Sciences, University of Georgia, 305 Sanford Drive, Athens, GA, 30602, USA
| | - Susan McClatchy
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
| | - Gary A Churchill
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
| | - Robert Pazdro
- Department of Nutritional Sciences, University of Georgia, 305 Sanford Drive, Athens, GA, 30602, USA.
| |
Collapse
|
8
|
Badmus OO, Areola ED, Benjamin E, Obekpa MA, Adegoke TE, Elijah OE, Imam A, Olajide OJ, Olatunji LA. Suppression of Adenosine Deaminase and Xanthine Oxidase Activities by Mineralocorticoid and Glucocorticoid Receptor Blockades Restores Renal Antioxidative Barrier in Oral Contraceptive-Treated Dam. J Renin Angiotensin Aldosterone Syst 2021; 2021:9966372. [PMID: 34285713 PMCID: PMC8265027 DOI: 10.1155/2021/9966372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 04/10/2021] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVE We tested the hypothesis that postpartum combined oral contraceptive (COC) treatment would induce oxidative stress via the adenosine deaminase-xanthine oxidase pathway in the kidney. We also sought to determine whether mineralocorticoid receptor (MR) or glucocorticoid receptor (GR ) blockade would suppress the activities of ADA and xanthine oxidase caused by postpartum COC treatment in the kidney. METHODS Twenty-four Wistar dams were randomly assigned to 4 groups (n = 6/group). Dams received vehicle (po), COC (1.0 μg ethinylestradiol and 5.0 μg levonorgestrel; po), COC with GR blockade (mifepristone; 80.0 mg/kg; po), and COC with MR blockade (spironolactone; 0.25 mg/kg; po) daily between 3rd and 11th week postpartum. RESULTS Data showed that postpartum COC caused increased plasma creatinine and urea, increased renal triglyceride/high-density lipoprotein ratio, free fatty acid accumulation, alanine aminotransferase, gamma-glutamyltransferase, uric acid, and activities of renal XO and ADA. On the other hand, postpartum COC resulted in decreased plasma albumin, renal glutathione, and Na+-K+-ATPase activity with no effect on lactate production. However, MR or GR blockade ameliorated the alterations induced by postpartum COC treatment. The present results demonstrate that MR or GR blockade ameliorates postpartum COC-induced increased activities of ADA and xanthine oxidase and restores glutathione-dependent antioxidative defense. CONCLUSION These findings implicate the involvements of GR and MR in renal dysfunctions caused by COC in dams via disrupted glutathione antioxidative barrier.
Collapse
Affiliation(s)
- Olufunto O. Badmus
- HOPE Cardiometabolic Research Team and Department of Physiology, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
- Department of Public Health, Kwara State University, Malete, Nigeria
| | - Emmanuel D. Areola
- HOPE Cardiometabolic Research Team and Department of Physiology, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Eleojo Benjamin
- HOPE Cardiometabolic Research Team and Department of Physiology, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Matthew A. Obekpa
- HOPE Cardiometabolic Research Team and Department of Physiology, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Tolulope E. Adegoke
- HOPE Cardiometabolic Research Team and Department of Physiology, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Oluwatobi E. Elijah
- HOPE Cardiometabolic Research Team and Department of Physiology, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Aminu Imam
- Department of Anatomy, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Olayemi J. Olajide
- Department of Anatomy, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Lawrence A. Olatunji
- HOPE Cardiometabolic Research Team and Department of Physiology, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| |
Collapse
|
9
|
Gao D, Wang S, Lin Y, Sun Z. In vivo AAV delivery of glutathione reductase gene attenuates anti-aging gene klotho deficiency-induced kidney damage. Redox Biol 2020; 37:101692. [PMID: 32863229 PMCID: PMC7476318 DOI: 10.1016/j.redox.2020.101692] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/27/2020] [Accepted: 08/17/2020] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE Klotho is an aging-suppressor gene which leads to accelerated aging when disrupted. This study was designed to investigate whether glutathione reductase (GR), a critical intracellular antioxidant enzyme, is involved in the pathogenesis of kidney damages associated with accelerated aging in Klotho-haplodeficient (KL+/-) mice. METHODS AND RESULTS Klotho-haplodeficient (KL+/-) mice and WT mice were used. We found that Klotho haplodeficiency impaired kidney function as evidenced by significant increases in plasma urea and creatinine and a decrease in urinary creatinine in KL+/- mice. The expression and activity of GR was decreased significantly in renal tubular epithelial cells of KL+/- mice, suggesting that Klotho deficiency downregulated GR. We constructed adeno-associated virus 2 (AAV2) carrying GR full-length cDNA (AAV-GR). Interestingly, in vivo AAV-GR delivery significantly improved Klotho deficiency-induced renal functional impairment and structural remodeling. Furthermore, in vivo expression of GR rescued the downregulation of the reduced glutathione/oxidized glutathione (GSH/GSSG) ratio, which subsequently diminished oxidative damages in kidneys, as evidenced by significant decreases in renal 4-HNE expression and urinary 8-isoprostane levels in KL mice. CONCLUSION This study provides the first evidence that Klotho deficiency-induced kidney damage may be partly attributed to downregulation of GR expression. In vivo delivery of AAV-GR may be a promising therapeutic approach for aging-related kidney damage.
Collapse
Affiliation(s)
- Diansa Gao
- Department of Cardiology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Shirley Wang
- Department of Physiology, College of Medicine, University of Tennessee Health Sciences Center, Memphis, TN, 38163, USA
| | - Yi Lin
- Department of Physiology, College of Medicine, University of Tennessee Health Sciences Center, Memphis, TN, 38163, USA
| | - Zhongjie Sun
- Department of Physiology, College of Medicine, University of Tennessee Health Sciences Center, Memphis, TN, 38163, USA.
| |
Collapse
|
10
|
Zhou T, Lin W, Lin S, Zhong Z, Luo Y, Lin Z, Xie W, Shen W, Hong K. Association of Nuclear Receptor Coactivators with Hypoxia-Inducible Factor-1 α in the Serum of Patients with Chronic Kidney Disease. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1587915. [PMID: 32884936 PMCID: PMC7455818 DOI: 10.1155/2020/1587915] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/29/2020] [Accepted: 08/04/2020] [Indexed: 02/07/2023]
Abstract
Nuclear receptor coactivators (NCOAs), consisting of coactivators and corepressors, dramatically enhance the transcriptional activity of nuclear receptors. Hypoxia-inducible factor-1α (HIF-1α) is a transcription factor that plays a major role under hypoxic conditions. This study was performed with the focus on the association of NCOAs with HIF-1α in the serum of chronic kidney disease (CKD) patients. Sixty patients with stage 5 CKD and 30 healthy controls from The Second Affiliated Hospital of Shantou University Medical College, between March 21, 2019, and October 30, 2019, were recruited in this prospective cohort study. We analyzed the serum levels of NCOAs (NCOA1, NCOA2, and NCOA3), HIF-1α, vascular endothelial growth factor (VEGF), etc. and assessed whether there was any relationship between these parameters and CKD disease. We found that circulating NCOA1 was positively associated with circulating NCOA2, NCOA3, and HIF-1α. A positive correlation was also observed between NCOA2 and NCOA1, NCOA3, HIF-1α, and VEGF. Furthermore, statistically significant correlations between NCOA3 and NCOA1, NCOA2, and HIF-1α were observed. The serum levels of VEGF in the CKD group were higher than those of the healthy control group. Circulating NCOA1 and circulating NCOA2 were negatively associated with procalcitonin. In conclusion, there was an association between circulating NCOA1, NCOA2, NCOA3, and circulating HIF-1α, and circulating VEGF was a risk factor for CKD disease. However, more studies should be performed to confirm this hypothesis.
Collapse
Affiliation(s)
- Tianbiao Zhou
- Department of Nephrology, The Second Affiliated Hospital, Shantou University Medical College, 515041 Shantou, China
| | - Wenshan Lin
- Department of Nephrology, The Second Affiliated Hospital, Shantou University Medical College, 515041 Shantou, China
| | - Shujun Lin
- Department of Nephrology, The Second Affiliated Hospital, Shantou University Medical College, 515041 Shantou, China
| | - Zhiqing Zhong
- Department of Nephrology, The Second Affiliated Hospital, Shantou University Medical College, 515041 Shantou, China
| | - Yuanyuan Luo
- Department of Nephrology, The Second Affiliated Hospital, Shantou University Medical College, 515041 Shantou, China
| | - Zhijun Lin
- Department of Nephrology, The Second Affiliated Hospital, Shantou University Medical College, 515041 Shantou, China
| | - Weiji Xie
- Department of Nephrology, The Second Affiliated Hospital, Shantou University Medical College, 515041 Shantou, China
| | - Weitao Shen
- Department of Clinical Laboratory, The Second Affiliated Hospital, Shantou University Medical College, 515041 Shantou, China
| | - Kai Hong
- Department of Clinical Laboratory, The Second Affiliated Hospital, Shantou University Medical College, 515041 Shantou, China
| |
Collapse
|
11
|
Guo F, Xiong H, Wang X, Jiang L, Yu N, Hu Z, Sun Y, Tsao R. Phenolics of Green Pea ( Pisum sativum L.) Hulls, Their Plasma and Urinary Metabolites, Bioavailability, and in Vivo Antioxidant Activities in a Rat Model. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:11955-11968. [PMID: 31595748 DOI: 10.1021/acs.jafc.9b04501] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Increased processing of pulses generates large volumes of hulls, which are known as an excellent source of phenolic antioxidants. However, the bioavailability and in vivo activity of these phenolics are rarely reported. This research was therefore carried out to study the absorption, metabolism, and in vivo antioxidant activities of green pea hull (GPH) phenolics using ultrahigh-pressure liquid chromatography with a linear ion trap-high-resolution Orbitrap mass spectrometry and an oxidative stress rat model. A total of 31 phenolics, including 4 phenolic acids, 24 flavonoids, and 3 other phenolics, were tentatively identified. Ten of these phenolics and 49 metabolites were found in the plasma and urine of rats, which helped to explain the favorable changes by GPH phenolics in key antioxidant enzymes (superoxide dismutase, glutathione peroxidase, and glutathione) and indicators (total antioxidant capacity, malondialdehyde) in the plasma and different tissues of rats. This is the first comprehensive report on dry pea hull phenolics and their bioavailability, metabolic profiles, and mechanisms of in vivo antioxidant activities.
Collapse
Affiliation(s)
- Fanghua Guo
- State Key Laboratory of Food Science and Technology , Nanchang University , Nanchang 330047 , Jiangxi , China
| | - Hua Xiong
- State Key Laboratory of Food Science and Technology , Nanchang University , Nanchang 330047 , Jiangxi , China
| | - Xiaoya Wang
- State Key Laboratory of Food Science and Technology , Nanchang University , Nanchang 330047 , Jiangxi , China
| | - Li Jiang
- Jiangxi University of Traditional Chinese Medicine , Nanchang 330004 , Jiangxi , China
| | - Ningxiang Yu
- State Key Laboratory of Food Science and Technology , Nanchang University , Nanchang 330047 , Jiangxi , China
| | - Zhenying Hu
- State Key Laboratory of Food Science and Technology , Nanchang University , Nanchang 330047 , Jiangxi , China
| | - Yong Sun
- State Key Laboratory of Food Science and Technology , Nanchang University , Nanchang 330047 , Jiangxi , China
| | - Rong Tsao
- Agricultural and Agri-Food Canada , Guelph Research and Development Centre , 93 Stone Road West , Guelph , ON N1G 5C9 , Canada
| |
Collapse
|