1
|
Wu F, Wang L, Zuo H, Tian H. LncRNA A1BG-AS1 regulates the progress of diabetic foot ulcers via sponging miR-214-3p. Endocr J 2025; 72:295-306. [PMID: 39779214 PMCID: PMC11913556 DOI: 10.1507/endocrj.ej24-0440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2025] Open
Abstract
Nerve aberrations and vascular lesions in the distal lower limbs are the etiological factors for diabetic foot ulcers (DFUs). This study aimed to understand the regulatory mechanism of angiogenesis in patients with DFU by examining lncRNA, as well as to explore effective targets for diagnosing and treating DFU. The serum levels of A1BG-AS1 and miR-214-3p and the predictive power of A1BG-AS1 for DFU were determined by quantitative PCR and ROC analysis. The correlation of A1BG-AS1 with clinical characteristics was examined using chi-square tests. The risk factors for DFU in patients with type 2 diabetes mellitus (T2DM) were identified using the logistic regression model. Furthermore, the binding sites of A1BG-AS1 and miR-214-3p were determined. Next, A1BG-AS1 interference plasmid and miR-214-3p inhibitor were co-transfected into high glucose-induced cells to investigate their effects on the expression of angiogenesis-related genes and cell proliferation. The A1BG-AS1 levels were upregulated, whereas the miR-214-3p levels were downregulated in patients with DFU. The upregulation of A1BG-AS1 was significantly associated with both blood glucose levels and ulcer grades. A1BG-AS1 served as a crucial biomarker for diagnosing DFU and evaluating the risk of DFU occurrence in patients with T2DM. Co-transfection experiments revealed that the inhibition of miR-214-3p effectively recovered the suppressive effects of A1BG-AS1 on angiogenesis-related gene expression, endothelial cell differentiation, and proliferation. The sponging effect of A1BG-AS1 on miR-214-3p impaired angiogenesis in patients with DFU. Thus, A1BG-AS1 is a potential therapeutic target for DFU.
Collapse
Affiliation(s)
- Fangfang Wu
- Department of Vascular, Shijiazhuang Hospital of Traditional Chinese Medicine, Shijiazhuang 050011, China
| | - Lixia Wang
- Department of Internal Medicine, Huailai Shiji Hospital, Zhangjiakou 075400, China
| | - Hongju Zuo
- Department of Vascular, Shijiazhuang Hospital of Traditional Chinese Medicine, Shijiazhuang 050011, China
| | - Hanbing Tian
- Department of Vascular, Shijiazhuang Hospital of Traditional Chinese Medicine, Shijiazhuang 050011, China
| |
Collapse
|
2
|
Gao J, You T, Liu J, Yang L, Liu Y, Wang Y. TIPRL, a Potential Double-edge Molecule to be Targeted and Re-targeted Toward Cancer. Cell Biochem Biophys 2024; 82:1681-1691. [PMID: 38888871 DOI: 10.1007/s12013-024-01334-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2024] [Indexed: 06/20/2024]
Abstract
The target of rapamycin (TOR) proteins exhibits phylogenetic conservation across various species, ranging from yeast to humans, and are classified as members of the phosphatidylinositol kinase (PIK)-related kinase family. Multiple serine/threonine (Ser/Thr) protein phosphatases (PP)2A, PP4, and PP6, have been recognized as constituents of the TOR signaling pathway in mammalian cells. The protein known as TOR signaling pathway regulator-like (TIPRL) functions as a regulatory agent by impeding the activity of the catalytic subunits of PP2A. Various cellular contexts have been postulated for TIPRL, encompassing the regulation of mechanistic target of rapamycin (mTOR) signaling, inhibition of apoptosis and biogenesis, and recycling of PP2A. According to reports, there has been an observed increase in TIPRL levels in several types of carcinomas, such as non-small-cell lung carcinoma (NSCLC) and hepatocellular carcinomas (HCC). This review aims to comprehensively examine the significance of the Tor pathway in regulating apoptosis and proliferation of cancer cells, with a specific focus on the role of TOR signaling and TIPRL in cancer.
Collapse
Affiliation(s)
- Jie Gao
- Department of Pharmacy, Zibo Central Hospital, Zibo, 255036, China
| | - Tiantian You
- Department of Pharmacy, Zibo Central Hospital, Zibo, 255036, China
| | - Jiao Liu
- Department of Pharmacy, Zibo Central Hospital, Zibo, 255036, China
| | - Lili Yang
- Department of Pharmacy, Zibo Central Hospital, Zibo, 255036, China
| | - Yan Liu
- Department of Pharmacy, Zibo Central Hospital, Zibo, 255036, China
| | - Yanyan Wang
- Department of Pharmacy, Zibo Central Hospital, Zibo, 255036, China.
| |
Collapse
|
3
|
Ma LN, Ma Y, Luo X, Ma ZM, Ma LN, Ding XC. AKR1B10 expression characteristics in hepatocellular carcinoma and its correlation with clinicopathological features and immune microenvironment. Sci Rep 2024; 14:12149. [PMID: 38802416 PMCID: PMC11130141 DOI: 10.1038/s41598-024-62323-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 05/15/2024] [Indexed: 05/29/2024] Open
Abstract
Hepatocellular carcinoma (HCC) represents a major global health threat with diverse and complex pathogenesis. Aldo-keto reductase family 1 member B10 (AKR1B10), a tumor-associated enzyme, exhibits abnormal expression in various cancers. However, a comprehensive understanding of AKR1B10's role in HCC is lacking. This study aims to explore the expression characteristics of AKR1B10 in HCC and its correlation with clinicopathological features, survival prognosis, and tumor immune microenvironment, further investigating its role and potential regulatory mechanisms in HCC. This study conducted comprehensive analyses using various bioinformatics tools and databases. Initially, differentially expressed genes related to HCC were identified from the GEO database, and the expression of AKR1B10 in HCC and other cancers was compared using TIMER and GEPIA databases, with validation of its specificity in HCC tissue samples using the HPA database. Furthermore, the relationship of AKR1B10 expression with clinicopathological features (age, gender, tumor size, staging, etc.) of HCC patients was analyzed using the TCGA database's LIHC dataset. The impact of AKR1B10 expression levels on patient prognosis was evaluated using Kaplan-Meier survival analysis and the Cox proportional hazards model. Additionally, the correlation of AKR1B10 expression with tumor biology-related signaling pathways and tumor immune microenvironment was studied using databases like GSEA, Targetscan, and others, identifying microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) that regulate AKR1B10 expression to explore potential regulatory mechanisms. Elevated AKR1B10 expression was significantly associated with gender, primary tumor size, and fibrosis stage in HCC tissues. High AKR1B10 expression indicated poor prognosis and served as an independent predictor for patient outcomes. Detailed mechanism analysis revealed a positive correlation between high AKR1B10 expression, immune cell infiltration, and pro-inflammatory cytokines, suggesting a potential DANCR-miR-216a-5p-AKR1B10 axis regulating the tumor microenvironment and impacting HCC development and prognosis. The heightened expression of AKR1B10 in HCC is not only related to significant clinical-pathological traits but may also influence HCC progression and prognosis by activating key signaling pathways and altering the tumor immune microenvironment. These findings provide new insights into the role of AKR1B10 in HCC pathogenesis and highlight its potential as a biomarker and therapeutic target.
Collapse
Affiliation(s)
- Li-Na Ma
- Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Yan Ma
- Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Xia Luo
- Department of Infectious Disease, General Hospital of Ningxia Medical University, 804 Shengli South Street, Xingqing District, Yinchuan, 750004, Ningxia, China
| | - Zi-Min Ma
- Xinasheng Biotech of Ningxia, Yinchuan, 750004, Ningxia, China
| | - Li-Na Ma
- Department of Infectious Disease, General Hospital of Ningxia Medical University, 804 Shengli South Street, Xingqing District, Yinchuan, 750004, Ningxia, China.
| | - Xiang-Chun Ding
- Department of Infectious Disease, General Hospital of Ningxia Medical University, 804 Shengli South Street, Xingqing District, Yinchuan, 750004, Ningxia, China.
| |
Collapse
|
4
|
Yang Z, Luo Y, Zhang F, Ma L. Exosome-derived lncRNA A1BG-AS1 attenuates the progression of prostate cancer depending on ZC3H13-mediated m6A modification. Cell Div 2024; 19:5. [PMID: 38351022 PMCID: PMC10863231 DOI: 10.1186/s13008-024-00110-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/05/2024] [Indexed: 02/18/2024] Open
Abstract
BACKGROUND Exosome-derived long non-coding RNAs (lncRNAs) and N6-methyladenosine (m6A) modifications of lncRNAs have been shown crucial functions in prostate cancer (PCa). Herein, we aim to investigate the detailed mechanism of exosome-derived lncRNA A1BG-AS1 in PCa process. METHODS PCa cell exosomes were extracted, exosomal marker proteins (CD63, CD9) were detected utilizing western blotting, and exosomes with overexpressing A1BG-AS1 were co-cultured with targeted PCa cells. qRT-PCR was used to detect A1BG-AS1 expression and m6A methyltransferase ZC3H13 in PCa. Transwell, colony formation and CCK-8 assays were utilized to assess the invasion, migration, and proliferation ability of PCa cells. Then, we performed actinomycin D and MeRIP assays to analyze the regulatory effect of ZC3H13 on A1BG-AS1 mRNA stability and m6A modification level. RESULTS We observed that A1BG-AS1 and ZC3H13 expression was restricted in PCa tumors. The invasion, proliferation and migratory capacities of PCa cells could be inhibited by up-regulating A1BG-AS1 or by co-culturing with exosomes that up-regulate A1BG-AS1. Additionally, ZC3H13 promoted stable A1BG-AS1 expression by regulating the m6A level of A1BG-AS1. CONCLUSION Exosomal A1BG-AS1 was m6A-modified by the m6A methyltransferase ZC3H13 to stabilize expression and thus prevent PCa cell malignancy. These findings offer a possible target for clinical therapy of PCa.
Collapse
Affiliation(s)
- Zhi Yang
- Department of Urology, The Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, No. 168, Hong Kong Road, Jiangan District, Wuhan, 430015, Hubei, China
| | - Yu Luo
- Department of Urology, The Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, No. 168, Hong Kong Road, Jiangan District, Wuhan, 430015, Hubei, China
| | - Fan Zhang
- Department of Urology, The Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, No. 168, Hong Kong Road, Jiangan District, Wuhan, 430015, Hubei, China
| | - Likun Ma
- Department of Urology, The Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, No. 168, Hong Kong Road, Jiangan District, Wuhan, 430015, Hubei, China.
| |
Collapse
|
5
|
Kyrgiafini MA, Giannoulis T, Chatziparasidou A, Christoforidis N, Mamuris Z. Unveiling the Genetic Complexity of Teratozoospermia: Integrated Genomic Analysis Reveals Novel Insights into lncRNAs' Role in Male Infertility. Int J Mol Sci 2023; 24:15002. [PMID: 37834450 PMCID: PMC10573971 DOI: 10.3390/ijms241915002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
Male infertility is a global health issue, affecting over 20 million men worldwide. Genetic factors are crucial in various male infertility forms, including teratozoospermia. Nonetheless, the genetic causes of male infertility remain largely unexplored. In this study, we employed whole-genome sequencing and RNA expression analysis to detect differentially expressed (DE) long-noncoding RNAs (lncRNAs) in teratozoospermia, along with mutations that are exclusive to teratozoospermic individuals within these DE lncRNAs regions. Bioinformatic tools were used to assess variants' impact on lncRNA structure, function, and lncRNA-miRNA interactions. Our analysis identified 1166 unique mutations in teratozoospermic men within DE lncRNAs, distinguishing them from normozoospermic men. Among these, 64 variants in 23 lncRNAs showed potential regulatory roles, 7 variants affected 4 lncRNA structures, while 37 variants in 17 lncRNAs caused miRNA target loss or gain. Pathway Enrichment and Gene Ontology analyses of the genes targeted by the affected miRNAs revealed dysregulated pathways in teratozoospermia and a link between male infertility and cancer. This study lists novel variants and lncRNAs associated for the first time with teratozoospermia. These findings pave the way for future studies aiming to enhance diagnosis and therapy in the field of male infertility.
Collapse
Affiliation(s)
- Maria-Anna Kyrgiafini
- Laboratory of Genetics, Comparative and Evolutionary Biology, Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500 Larissa, Greece
| | - Themistoklis Giannoulis
- Laboratory of Biology, Genetics and Bioinformatics, Department of Animal Sciences, University of Thessaly, Gaiopolis, 41336 Larissa, Greece
| | - Alexia Chatziparasidou
- Embryolab IVF Unit, St. 173-175 Ethnikis Antistaseos, Kalamaria, 55134 Thessaloniki, Greece
| | | | - Zissis Mamuris
- Laboratory of Genetics, Comparative and Evolutionary Biology, Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500 Larissa, Greece
| |
Collapse
|
6
|
Han X, Yin M, Gong C, Zhang C, Zhu G, Hu M, Tan K, Jiang L, Wang G, Li L. A1BG-AS1 promotes the biological functions of osteosarcoma cells via regulating the microRNA-148a-3p/USP22 axis and stabilizing the expression of SIRT1 through deubiquitinase function. Expert Opin Ther Targets 2023; 27:1017-1029. [PMID: 37747800 DOI: 10.1080/14728222.2023.2263908] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 09/24/2023] [Indexed: 09/27/2023]
Abstract
BACKGROUND The study aims to explore the role of A1BG antisense RNA 1 (A1BG-AS1), microRNA (miR)-148a-3p and ubiquitin-specific protease 22 (USP22) on osteosarcoma (OS) cell growth. RESEARCH DESIGN & METHODS A1BG-AS1, miR-148a-3p, USP22, and silent information regulator 2 homolog 1 (SIRT1) levels in OS tissues and cells were determined. The effects of A1BG-AS1, miR-148a-3p, and USP22 on the biological functions of OS cells were examined by functional assays. In vivo assay was conducted to observe the effect of A1BG-AS1 on OS growth in vitro. The relationship of A1BG-AS1, miR-148a-3p, and USP22 was analyzed by bioinformatics analysis, RNA-fluorescence in situ hybridization, luciferase activity, and RNA binding protein immunoprecipitation assays. The relation between USP22 and SIRT1 was evaluated by immunoprecipitation. RESULTS A1BG-AS1 and USP22 were highly expressed, and miR-148a-3p was lowly expressed in OS tissues and cells. Down-regulation of A1BG-AS1 and USP22 or up-regulation of miR-148a-3p impaired the malignant behaviors of OS cells. A1BG-AS1 sponged miR-148a-3p, and miR-148a-3p targeted USP22, thereby inhibiting USP22 expression. Up-regulating USP22 reversed the A1BG-AS1 suppression-induced phenotypic inhibition of OS cells. USP22 affected the biological functions of OS cells by deubiquitinating SIRT1. CONCLUSION A1BG-AS1 facilitates the biological functions of OS cells via mediating the miR-148a-3p/USP22 axis.
Collapse
Affiliation(s)
- Xiuxin Han
- Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center of Cancer, Tianjin, China
| | - Mengfan Yin
- Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center of Cancer, Tianjin, China
- Department of Orthopedic Surgery, Tianjin Fifth Central Hospital, Tianjin, China
| | - Chen Gong
- General Clinical Research Center, Anhui Wanbei Coal-Electricity Group General Hospital, Suzhou, Anhui, China
| | - Chao Zhang
- Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center of Cancer, Tianjin, China
| | - Genbao Zhu
- General Clinical Research Center, Anhui Wanbei Coal-Electricity Group General Hospital, Suzhou, Anhui, China
| | - Mengxue Hu
- General Clinical Research Center, Anhui Wanbei Coal-Electricity Group General Hospital, Suzhou, Anhui, China
| | - Kemeng Tan
- General Clinical Research Center, Anhui Wanbei Coal-Electricity Group General Hospital, Suzhou, Anhui, China
| | - La Jiang
- General Clinical Research Center, Anhui Wanbei Coal-Electricity Group General Hospital, Suzhou, Anhui, China
| | - Guowen Wang
- Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center of Cancer, Tianjin, China
| | - Lili Li
- General Clinical Research Center, Anhui Wanbei Coal-Electricity Group General Hospital, Suzhou, Anhui, China
| |
Collapse
|
7
|
Sun W, Lei X, Lu Q, Wu Q, Ma Q, Huang D, Zhang Y. LncRNA FRMD6-AS1 promotes hepatocellular carcinoma cell migration and stemness by regulating SENP1/HIF-1α axis. Pathol Res Pract 2023; 243:154377. [PMID: 36827886 DOI: 10.1016/j.prp.2023.154377] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/07/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023]
Abstract
BACKGROUND Long non-cording RNAs (lncRNAs) drive the malignant progression of hepatocellular carcinoma (HCC), a cancer with high mortality rates but the function of FERM Domain Containing 6 antisense RNA 1 (FRMD6-AS1) in HCC has not been fully addressed. Hypoxia-inducible factors (HIFs) are transcription factors relevant to HCC under hypoxia and are regulated by SUMO-specific protease 1 (SENP1) through its deSUMOylation of HIF-1α. The current study investigated the role of FRMD6-AS1 in the regulation of SENP1-mediated deSUMOylation of HIF-1α. METHODS HUH7 and MHCC97H cells were treated with CoCl2 to mimic hypoxia in vitro and lentiviral vector-mediated FRMD6-AS1 overexpressing HCC cells were established. Wound-healing, Transwell, sphere formation assay, Western blotting analysis and animal experiments were performed. Expression of FRMD6-AS1, SENP1 mRNA and HIF-1α mRNA was assessed by RT-qPCR and of HIF-1α and SENP1 protein by Western blot. DeSUMOylation of HIF-1α was detected by immunoprecipitation. RNA immunoprecipitation with SENP1 antibody or IgG was performed to assess endogenous interactions between SENP1 and FRMD6-AS1. RESULTS FRMD6-AS1 was upregulated in HCC tissues and cells and its upregulation indicated poor prognosis for HCC patients. FRMD6-AS1 promoted HCC cells migration and stemness in vitro and also promoted tumor growth in an in vivo mouse xenograft model. Mechanistic studies showed that FRMD6-AS1 regulated the level of HIF-1α protein but not the mRNA and this effect was achieved by binding to SENP1 protein and enhancing its protease activity. Rescue experiments demonstrated the oncogenic role of the FRMD6-AS1/SENP1/ HIF-1α axis in HCC cells. CONCLUSIONS High FRMD6-AS1 expression was associated with poor prognosis of HCC patients. FRMD6-AS1 may have an oncogenic role in HCC via regulation of the SENP1/HIF-1α axis and may be a prognostic biomarker for HCC. Blockade of FRMD6-AS1 may offer a novel therapeutic approach to restrict HCC progression.
Collapse
Affiliation(s)
- Wen Sun
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310014, China
| | - Xiangxiang Lei
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou 310053, China
| | - Qiliang Lu
- Qingdao medical college, Qingdao university, Qingdao 266000, China
| | - Qingsong Wu
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310014, China
| | - Qiancheng Ma
- College of Bioscience Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Dongsheng Huang
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, No. 8, Yikang Street, Lin'an District, Hangzhou 310014, China.
| | - Yaping Zhang
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, No. 8, Yikang Street, Lin'an District, Hangzhou 310014, China.
| |
Collapse
|
8
|
Hamidi AA, Taghehchian N, Zangouei AS, Akhlaghipour I, Maharati A, Basirat Z, Moghbeli M. Molecular mechanisms of microRNA-216a during tumor progression. Cancer Cell Int 2023; 23:19. [PMID: 36740668 PMCID: PMC9899407 DOI: 10.1186/s12935-023-02865-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/02/2023] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) as the members of non-coding RNAs family are involved in post-transcriptional regulation by translational inhibiting or mRNA degradation. They have a critical role in regulation of cell proliferation and migration. MiRNAs aberrations have been reported in various cancers. Considering the importance of these factors in regulation of cellular processes and their high stability in body fluids, these factors can be suggested as suitable non-invasive markers for the cancer diagnosis. MiR-216a deregulation has been frequently reported in different cancers. Therefore, in the present review we discussed the molecular mechanisms of the miR-216a during tumor progression. It has been reported that miR-216a mainly functioned as a tumor suppressor through the regulation of signaling pathways and transcription factors. This review paves the way to suggest the miR-216a as a probable therapeutic and diagnostic target in cancer patients.
Collapse
Affiliation(s)
- Amir Abbas Hamidi
- grid.411583.a0000 0001 2198 6209Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Negin Taghehchian
- grid.411583.a0000 0001 2198 6209Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Sadra Zangouei
- grid.411583.a0000 0001 2198 6209Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Iman Akhlaghipour
- grid.411583.a0000 0001 2198 6209Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhosein Maharati
- grid.411583.a0000 0001 2198 6209Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Basirat
- grid.411583.a0000 0001 2198 6209Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- grid.411583.a0000 0001 2198 6209Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran ,grid.411583.a0000 0001 2198 6209Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
9
|
Alfano R, Bijnens E, Langie SAS, Nawrot TS, Reimann B, Vanbrabant K, Wang C, Plusquin M. Epigenome-wide analysis of maternal exposure to green space during gestation and cord blood DNA methylation in the ENVIRONAGE cohort. ENVIRONMENTAL RESEARCH 2023; 216:114828. [PMID: 36400229 PMCID: PMC9760568 DOI: 10.1016/j.envres.2022.114828] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 06/05/2023]
Abstract
BACKGROUND DNA methylation programming is sensitive to prenatal life environmental influences, but the impact of maternal exposure to green space on newborns DNA methylation has not been studied yet. METHODS We conducted a meta-epigenome-wide association study (EWAS) of maternal exposure to green space during gestation with cord blood DNA methylation in two subsets of the ENVIRONAGE cohort (N = 538). Cord blood DNA methylation was measured by Illumina HumanMethylation 450K in one subset (N = 189) and EPICarray in another (N = 349). High (vegetation height>3 m (m)), low (vegetation height<3 m) and total (including both) high-resolution green space exposures during pregnancy were estimated within 100 m and 1000 m distance around maternal residence. In each subset, we sought cytosine-phosphate-guanine (CpG) sites via linear mixed models adjusted on newborns' sex, ethnicity, gestational age, season at delivery, sampling day, maternal parity, age, smoking, education, and estimated blood cell proportions. EWASs results were meta-analysed via fixed-effects meta-analyses. Differentially methylated regions (DMRs) were identified via ENmix-combp and DMRcate algorithms. Sensitivity analyses were additionally adjusted on PM2.5, distance to major roads, urbanicity and neighborhood income. In the 450K subset, cord blood expression of differentially methylated genes was measured by Agilent microarrays and associated with green space. RESULTS 147 DMRs were identified, 85 of which were still significant upon adjustment for PM2.5, distance to major roads, urbanicity and neighborhood income, including HLA-DRB5, RPTOR, KCNQ1DN, A1BG-AS1, HTR2A, ZNF274, COL11A1 and PRSS36 DMRs. One CpG reached genome-wide significance, while 54 CpGs were suggestive significant (p-values<1e-05). Among them, a CpG, hypermethylated with 100 m buffer total green space, was annotated to PAQR9, whose expression decreased with 1000 m buffer low green space (p-value = 1.45e-05). CONCLUSIONS Our results demonstrate that maternal exposure to green space during pregnancy is associated with cord blood DNA methylation, mainly at loci organized in regions, in genes playing important roles in neurological development (e.g., HTR2A).
Collapse
Affiliation(s)
- Rossella Alfano
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium.
| | - Esmée Bijnens
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
| | - Sabine A S Langie
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium; Department of Pharmacology & Toxicology, School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, the Netherlands
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium; Department of Public Health, Leuven University (KU Leuven), Leuven, Belgium
| | - Brigitte Reimann
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
| | - Kenneth Vanbrabant
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
| | - Congrong Wang
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
| | - Michelle Plusquin
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
| |
Collapse
|
10
|
Lu Q, Wang H, Lei X, Ma Q, Zhao J, Sun W, Guo C, Huang D, Xu Q. LncRNA ALKBH3-AS1 enhances ALKBH3 mRNA stability to promote hepatocellular carcinoma cell proliferation and invasion. J Cell Mol Med 2022; 26:5292-5302. [PMID: 36098205 PMCID: PMC9575106 DOI: 10.1111/jcmm.17558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 08/22/2022] [Accepted: 09/02/2022] [Indexed: 11/29/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are confirmed as the key regulators of hepatocellular carcinoma (HCC) occurrence and progression, but the role of AlkB homologue 3 antisense RNA 1 (ALKBH3-AS1) in HCC is unclear. We revealed the overexpression of ALKBH3-AS1 in HCC tissues. The upregulated levels of ALKBH3-AS1 were observed in HCC cells. ALKBH3-AS1 was expressed in the nucleus and cytoplasm of HCC cells. The high ALKBH3-AS1 expression was markedly associated with a decreased survival rate of HCC patients. ALKBH3-AS1 knockdown repressed and ALKBH3-AS1 overexpression enhanced HCC cell invasion and proliferation. ALKBH3-AS1 silencing restricted HCC growth in vivo. A significant positive correlation between ALKBH3-AS1 and ALKBH3 mRNA levels was confirmed in HCC specimens. ALKBH3-AS1 silencing reduced ALKBH3 expression by stabilizing its mRNA stability in HCC cells. Notably, the impact of ALKBH3 silencing on HCC cells was similar to that of ALKBH3-AS1 knockdown. ALKBH3 restoration prominently attenuated the suppressive effects resulting from ALKBH3-AS1 silencing in HCCLM3 cells. Hypoxia-inducible factor-1α (HIF-1α) transcriptionally activated ALKBH3-AS1 expression in hypoxic HCC cells. ALKBH3-AS1 knockdown markedly attenuated cell proliferation and invasion in hypoxic Huh7 cells. Collectively, HIF-1α-activated ALKBH3-AS1 exerted an oncogenic role by enhancing ALKBH3 mRNA stability in HCC cells.
Collapse
Affiliation(s)
- Qiliang Lu
- Qingdao Medical College, Qingdao University, Qingdao, China.,The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Hao Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | | | - Qiancheng Ma
- Zhejiang University of Technology, Hangzhou, China
| | - Jie Zhao
- Zhejiang University of Technology, Hangzhou, China
| | - Wen Sun
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Cheng Guo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Dongsheng Huang
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Qiuran Xu
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
11
|
Kulkarni A, Gayathrinathan S, Nair S, Basu A, Al-Hilal TA, Roy S. Regulatory Roles of Noncoding RNAs in the Progression of Gastrointestinal Cancers and Health Disparities. Cells 2022; 11:2448. [PMID: 35954293 PMCID: PMC9367924 DOI: 10.3390/cells11152448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/31/2022] [Accepted: 08/03/2022] [Indexed: 01/17/2023] Open
Abstract
Annually, more than a million individuals are diagnosed with gastrointestinal (GI) cancers worldwide. With the advancements in radio- and chemotherapy and surgery, the survival rates for GI cancer patients have improved in recent years. However, the prognosis for advanced-stage GI cancers remains poor. Site-specific GI cancers share a few common risk factors; however, they are largely distinct in their etiologies and descriptive epidemiologic profiles. A large number of mutations or copy number changes associated with carcinogenesis are commonly found in noncoding DNA regions, which transcribe several noncoding RNAs (ncRNAs) that are implicated to regulate cancer initiation, metastasis, and drug resistance. In this review, we summarize the regulatory functions of ncRNAs in GI cancer development, progression, chemoresistance, and health disparities. We also highlight the potential roles of ncRNAs as therapeutic targets and biomarkers, mainly focusing on their ethnicity-/race-specific prognostic value, and discuss the prospects of genome-wide association studies (GWAS) to investigate the contribution of ncRNAs in GI tumorigenesis.
Collapse
Affiliation(s)
- Aditi Kulkarni
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968, USA
- Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Sharan Gayathrinathan
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Soumya Nair
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Anamika Basu
- Copper Mountain College, Joshua Tree, CA 92252, USA
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Taslim A. Al-Hilal
- Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968, USA
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Sourav Roy
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968, USA
- Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968, USA
| |
Collapse
|
12
|
Liu J, Lu J, Li W, Mao W, Lu Y. Machine Learning Screens Potential Drugs Targeting a Prognostic Gene Signature Associated With Proliferation in Hepatocellular Carcinoma. Front Genet 2022; 13:900380. [PMID: 35836576 PMCID: PMC9273781 DOI: 10.3389/fgene.2022.900380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/13/2022] [Indexed: 02/05/2023] Open
Abstract
Background: This study aimed to screen potential drugs targeting a new prognostic gene signature associated with proliferation in hepatocellular carcinoma (HCC). Methods: CRISPR Library and TCGA datasets were used to explore differentially expressed genes (DEGs) related to the proliferation of HCC cells. Differential gene expression analysis, univariate COX regression analysis, random forest algorithm and multiple combinatorial screening were used to construct a prognostic gene signature. Then the predictive power of the gene signature was validated in the TCGA and ICGC datasets. Furthermore, potential drugs targeting this gene signature were screened. Results: A total of 640 DEGs related to HCC proliferation were identified. Using univariate Cox analysis and random forest algorithm, 10 hub genes were screened. Subsequently, using multiplex combinatorial screening, five hub genes (FARSB, NOP58, CCT4, DHX37 and YARS) were identified. Taking the median risk score as a cutoff value, HCC patients were divided into high- and low-risk groups. Kaplan-Meier analysis performed in the training set showed that the overall survival of the high-risk group was worse than that of the low-risk group (p < 0.001). The ROC curve showed a good predictive efficiency of the risk score (AUC > 0.699). The risk score was related to gene mutation, cancer cell stemness and immune function changes. Prediction of immunotherapy suggetsted the IC50s of immune checkpoint inhibitors including A-443654, ABT-888, AG-014699, ATRA, AUY-922, and AZ-628 in the high-risk group were lower than those in the low-risk group, while the IC50s of AMG-706, A-770041, AICAR, AKT inhibitor VIII, Axitinib, and AZD-0530 in the high-risk group were higher than those in the low-risk group. Drug sensitivity analysis indicated that FARSB was positively correlated with Hydroxyurea, Vorinostat, Nelarabine, and Lomustine, while negatively correlated with JNJ-42756493. DHX37 was positively correlated with Raltitrexed, Cytarabine, Cisplatin, Tiotepa, and Triethylene Melamine. YARS was positively correlated with Axitinib, Fluphenazine and Megestrol acetate. NOP58 was positively correlated with Vorinostat and 6-thioguanine. CCT4 was positively correlated with Nerabine. Conclusion: The five-gene signature associated with proliferation can be used for survival prediction and risk stratification for HCC patients. Potential drugs targeting this gene signature deserve further attention in the treatment of HCC.
Collapse
Affiliation(s)
- Jun Liu
- Department of Clinical Laboratory, Yue Bei People’s Hospital, Shantou University Medical College, Shaoguan, China
- Medical Research Center, Yue Bei People’s Hospital, Shantou University Medical College, Shaoguan, China
| | - Jianjun Lu
- Department of Medical Affairs, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wenli Li
- Reproductive Medicine Center, Yue Bei People’s Hospital, Shantou University Medical College, Shaoguan, China
| | - Wenjie Mao
- Emergency Department, Yue Bei People’s Hospital, Shantou University Medical College, Shaoguan, China
| | - Yamin Lu
- Department of Clinical Laboratory, Yue Bei People’s Hospital, Shantou University Medical College, Shaoguan, China
| |
Collapse
|
13
|
Zhao R, Cao B, Li H, Li T, Xu X, Cui H, Deng H, Wei B. Glucose starvation suppresses gastric cancer through targeting miR-216a-5p/Farnesyl-Diphosphate Farnesyltransferase 1 axis. Cancer Cell Int 2021; 21:704. [PMID: 34953498 PMCID: PMC8710003 DOI: 10.1186/s12935-021-02416-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 12/17/2021] [Indexed: 11/18/2022] Open
Abstract
Background Fasting mimic diet is an effect approach for gastric cancer (GC) treatment. Exploring mechanisms of glucose deprivation-mediated GC suppression is required to develop novel therapeutic regimens. Farnesyltransferase 1 (FDFT1), as a novel target in basic research, has been reported to regulate malignant progression in some types of cancer. However, biological functions of FDFT1 in GC are still unclear. This study focused on biological functions of FDFT1 in GC and the association between glucose starvation (GS) and FDFT1. Methods The data derived from the Kaplan–Meier Plotter database were collected to identify the relationship between survival time and FDFT1 expression levels of GC patients. Bioinformatic analysis was performed to explore the biological functions of FDFT1. The expression levels of targeted genes and microRNAs (miRNAs) were detected with immunohistochemistry, quantitative real-time PCR and western blot. Malignant behaviors were measured using cell counting, cell counting kit-8, 5-ethynyl-2-deoxyuridine, wound healing, invasion transwell assays in vitro and constructions of subcutaneous and lung-metastatic tumors in vivo. The glycolysis of GC cells was determined by a series of metabolites, including lactate acid, pyruvic acid, ATP production, rates of glucose uptake, extracellular acidification rate and oxygen consumption rate. Results FDFT1 was downregulated in GC and negatively correlated with pathological T stage, pathological TNM stage and cancer differentiation. High expression of FDFT1 also indicated better prognosis of GC patients. FDFT1 upregulation attenuated proliferation, migration and invasion of GC. miR-216a-5p was identified as a critical suppressor of FDFT1 expression and miR-216a-5p/FDFT1 axis regulated malignant behaviors and glycolysis of GC cells. GS suppressed malignant behaviors of GC by targeting miR-216a-5p/FDFT1 axis both in vitro and in vivo. Conclusion This study illustrated novel mechanisms by which GS effectively suppresses GC. FDFT1 may become a potential prognostic indicator and novel target of GC therapy. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02416-7.
Collapse
Affiliation(s)
- Ruiyang Zhao
- Medical School of Chinese PLA, Beijing, China.,Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Bo Cao
- Medical School of Chinese PLA, Beijing, China.,Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Hanghang Li
- Medical School of Chinese PLA, Beijing, China.,Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Xingming Xu
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Hao Cui
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Huan Deng
- Medical School of Chinese PLA, Beijing, China.,Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Bo Wei
- Medical School of Chinese PLA, Beijing, China. .,Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
14
|
Ding S, Li H, Zhang YH, Zhou X, Feng K, Li Z, Chen L, Huang T, Cai YD. Identification of Pan-Cancer Biomarkers Based on the Gene Expression Profiles of Cancer Cell Lines. Front Cell Dev Biol 2021; 9:781285. [PMID: 34917619 PMCID: PMC8669964 DOI: 10.3389/fcell.2021.781285] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/16/2021] [Indexed: 12/12/2022] Open
Abstract
There are many types of cancers. Although they share some hallmarks, such as proliferation and metastasis, they are still very different from many perspectives. They grow on different organ or tissues. Does each cancer have a unique gene expression pattern that makes it different from other cancer types? After the Cancer Genome Atlas (TCGA) project, there are more and more pan-cancer studies. Researchers want to get robust gene expression signature from pan-cancer patients. But there is large variance in cancer patients due to heterogeneity. To get robust results, the sample size will be too large to recruit. In this study, we tried another approach to get robust pan-cancer biomarkers by using the cell line data to reduce the variance. We applied several advanced computational methods to analyze the Cancer Cell Line Encyclopedia (CCLE) gene expression profiles which included 988 cell lines from 20 cancer types. Two feature selection methods, including Boruta, and max-relevance and min-redundancy methods, were applied to the cell line gene expression data one by one, generating a feature list. Such list was fed into incremental feature selection method, incorporating one classification algorithm, to extract biomarkers, construct optimal classifiers and decision rules. The optimal classifiers provided good performance, which can be useful tools to identify cell lines from different cancer types, whereas the biomarkers (e.g. NCKAP1, TNFRSF12A, LAMB2, FKBP9, PFN2, TOM1L1) and rules identified in this work may provide a meaningful and precise reference for differentiating multiple types of cancer and contribute to the personalized treatment of tumors.
Collapse
Affiliation(s)
- ShiJian Ding
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Hao Li
- College of Food Engineering, Jilin Engineering Normal University, Changchun, China
| | - Yu-Hang Zhang
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - XianChao Zhou
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - KaiYan Feng
- Department of Computer Science, Guangdong AIB Polytechnic College, Guangzhou, China
| | - ZhanDong Li
- College of Food Engineering, Jilin Engineering Normal University, Changchun, China
| | - Lei Chen
- College of Information Engineering, Shanghai Maritime University, Shanghai, China
| | - Tao Huang
- CAS Key Laboratory of Computational Biology, Bio-Med Big Data Center, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.,CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
15
|
Shi Y, Liu JB, Deng J, Zou DZ, Wu JJ, Cao YH, Yin J, Ma YS, Da F, Li W. The role of ceRNA-mediated diagnosis and therapy in hepatocellular carcinoma. Hereditas 2021; 158:44. [PMID: 34758879 PMCID: PMC8582193 DOI: 10.1186/s41065-021-00208-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/12/2021] [Indexed: 01/27/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death worldwide due to its high degree of malignancy, high incidence, and low survival rate. However, the underlying mechanisms of hepatocarcinogenesis remain unclear. Long non coding RNA (lncRNA) has been shown as a novel type of RNA. lncRNA by acting as ceRNA can participate in various biological processes of HCC cells, such as tumor cell proliferation, migration, invasion, apoptosis and drug resistance by regulating downstream target gene expression and cancer-related signaling pathways. Meanwhile, lncRNA can predict the efficacy of treatment strategies for HCC and serve as a potential target for the diagnosis and treatment of HCC. Therefore, lncRNA serving as ceRNA may become a vital candidate biomarker for clinical diagnosis and treatment. In this review, the epidemiology of HCC, including morbidity, mortality, regional distribution, risk factors, and current treatment advances, was briefly discussed, and some biological functions of lncRNA in HCC were summarized with emphasis on the molecular mechanism and clinical application of lncRNA-mediated ceRNA regulatory network in HCC. This paper can contribute to the better understanding of the mechanism of the influence of lncRNA-mediated ceRNA networks (ceRNETs) on HCC and provide directions and strategies for future studies.
Collapse
Affiliation(s)
- Yi Shi
- College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, 412007, Hunan, China.,Cancer Institute, Affiliated Tumor Hospital of Nantong University, Nantong, 226631, China.,National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Ji-Bin Liu
- Cancer Institute, Affiliated Tumor Hospital of Nantong University, Nantong, 226631, China
| | - Jing Deng
- National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Da-Zhi Zou
- Department of Spine Surgery, Longhui County People's Hospital, Longhui, 422200, Hunan, China
| | - Jian-Jun Wu
- Nantong Haimen Yuelai Health Centre, Haimen, 226100, China
| | - Ya-Hong Cao
- Department of Respiratory, Nantong Traditional Chinese Medicine Hospital, Nantong, 226019, Jiangsu Province, China
| | - Jie Yin
- Department of General Surgery, Haian people's Hospital, Haian, 226600, Jiangsu, China
| | - Yu-Shui Ma
- Cancer Institute, Affiliated Tumor Hospital of Nantong University, Nantong, 226631, China.
| | - Fu Da
- Cancer Institute, Affiliated Tumor Hospital of Nantong University, Nantong, 226631, China. .,National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China.
| | - Wen Li
- College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, 412007, Hunan, China. .,National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China.
| |
Collapse
|
16
|
Liu Y, Liu R, Zhao J, Zeng Z, Shi Z, Lu Q, Guo J, Li L, Yao Y, Liu X, Xu Q. LncRNA TMEM220-AS1 suppresses hepatocellular carcinoma cell proliferation and invasion by regulating the TMEM220/β-catenin axis. J Cancer 2021; 12:6805-6813. [PMID: 34659569 PMCID: PMC8517989 DOI: 10.7150/jca.63351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/14/2021] [Indexed: 12/28/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are critical drivers and suppressors of human hepatocellular carcinoma (HCC). The downregulation of transmembrane protein 220 antisense RNA 1 (TMEM220-AS1) is correlated with poor prognosis in HCC. Nevertheless, the role of TMEM220-AS1 in HCC and the underlying mechanism remains unclear. In this study, TMEM220-AS1 levels were markedly reduced in HCC tissues compared with noncancerous tissues. TMEM220-AS1 downregulation was confirmed in HCC cell lines. TMEM220-AS1 expression was associated with tumor stage, venous infiltration, tumor size, and survival of HCC patients. TMEM220-AS1 overexpression suppressed the migration, invasion, and proliferation of HCC cells. Interestingly, ectopic expression of TMEM220-AS1 increased TMEM220 levels in HCC cells. Decreased TMEM220 levels were observed in HCC tissues and cell lines. TMEM220 expression was positively correlated with TMEM220-AS1 levels in HCC tissue samples and TMEM220 downregulation was significantly correlated with reduced patient survival. TMEM220 overexpression suppressed HCC cell proliferation and mobility. TMEM220 knockdown eliminated the suppressive effect of TMEM220-AS1 in HCCLM3 cells. Mechanistically, TMEM220 overexpression reduced the nuclear accumulation of β-catenin and decreased MYC, Cyclin D1, and Snail1 mRNA levels in HCCLM3 cells. BIO, a GSK3β inhibitor, eliminated TMEM220-induced Wnt/β-catenin pathway inactivation and inhibited HCC cell proliferation and mobility. In conclusion, TMEM220-AS1 and TMEM220 were expressed at low levels in HCC patients. TMEM220-AS1 inhibited the malignant behavior of HCC cells by enhancing TMEM220 expression and subsequently inactivating the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Yang Liu
- The Medical College of Qingdao University, Qingdao, 266071, China.,The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, China
| | - Runkun Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Junjun Zhao
- Graduate Department, Bengbu Medical College, Bengbu 233030, China
| | - Zhi Zeng
- The Medical College of Qingdao University, Qingdao, 266071, China
| | - Zhan Shi
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Qiliang Lu
- The Medical College of Qingdao University, Qingdao, 266071, China
| | - Jinhui Guo
- The Medical College of Qingdao University, Qingdao, 266071, China
| | - Lijie Li
- Department of Obstetrics and Gynaecology, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou 310013, China
| | - Yingmin Yao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Xin Liu
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, China
| | - Qiuran Xu
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, China
| |
Collapse
|
17
|
LncRNA SNHG7 Regulates Gastric Cancer Progression by miR-485-5p. JOURNAL OF ONCOLOGY 2021; 2021:6147962. [PMID: 34512753 PMCID: PMC8424243 DOI: 10.1155/2021/6147962] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/20/2021] [Indexed: 12/14/2022]
Abstract
Background Long noncoding ribonucleic acids (lncRNAs) were closely related to the development of gastric cancer. This study investigated the effect of SNHG7 on gastric cancer progression and its potential molecular mechanism. Methods SNHG7 and microRNA-485-5p (miR-485-5p) expressions in gastric cancer tissues and cells were detected by quantitative real-time polymerase chain reaction (qRT-PCR). Cell counting kit-8 (CCK-8), wound healing, and transwell experiments were used to detect cell proliferation, migration, and invasion. The dual luciferase reporter assay, RNA immunoprecipitation (RIP) experiment, and Pearson's correlation analysis were used to confirm the relationship between SNHG7 and miR-485-5p. Results SNHG7 expression was increased in human gastric cancer tissues and cells. Knockdown of SNHG7 could notably inhibit the gastric cancer cells proliferation, migration, and invasion. The dual-luciferase reporter assay and RIP experiments proved that miR-485-5p was a direct target of SNHG7. At the same time, further experiments demonstrated that miR-485-5p inhibition reversed the suppression of SNHG7 knockdown on gastric cancer cells proliferation, migration, and invasion. Conclusions SNHG7 knockdown could hamper gastric cancer progression via inhibiting miR-485-5p expression, providing a novel understanding for gastric cancer development.
Collapse
|
18
|
Ma JY, Liu SH, Chen J, Liu Q. Metabolism-related long non-coding RNAs (lncRNAs) as potential biomarkers for predicting risk of recurrence in breast cancer patients. Bioengineered 2021; 12:3726-3736. [PMID: 34254565 PMCID: PMC8806870 DOI: 10.1080/21655979.2021.1953216] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Metabolism affects the development, progression, and prognosis of various cancers, including breast cancer (BC). Our aim was to develop a metabolism-related long non-coding RNA (lncRNA) signature to assess the prognosis of BC patients in order to optimize treatment. Metabolism-related genes between breast tumors and normal tissues were screened out, and Pearson correlation analysis was used to investigate metabolism-related lncRNAs. In total, five metabolism-related lncRNAs were enrolled to establish prognostic signatures. Kaplan-Meier plots and the receiver operating characteristic (ROC) curves demonstrated good performance in both training and validation groups. Further analysis demonstrated that the signature was an independent prognostic factor for BC. A nomogram incorporating risk score and tumor stage was then constructed to evaluate the 3 - and 5-year recurrence-free survival (RFS) in patients with BC. In conclusion, this study identified a metabolism-related lncRNA signature that can predict RFS of BC patients and established a prognostic nomogram that helps guide the individualized treatment of patients at different risks.
Collapse
Affiliation(s)
- Jian-Ying Ma
- Department of Breast Surgery, Thyroid Surgery, Huangshi Central Hospital of Edong Healthcare Group, Hubei Polytechnic University, Huangshi, Hubei, China
| | - Shao-Hua Liu
- Department of Pharmacy, Huangshi Central Hospital of Edong Healthcare Group, Hubei Polytechnic University, Huangshi, Hubei, China
| | - Jie Chen
- Department of Respiratory Medicine, Huangshi Central Hospital of Edong Healthcare Group, Hubei Polytechnic University, Huangshi, Hubei, China
| | - Qin Liu
- Department of Breast Surgery, Thyroid Surgery, Huangshi Central Hospital of Edong Healthcare Group, Hubei Polytechnic University, Huangshi, Hubei, China
| |
Collapse
|
19
|
Long non-coding RNA A1BG-AS1 promotes tumorigenesis in breast cancer by sponging microRNA-485-5p and consequently increasing expression of FLOT1 expression. Hum Cell 2021; 34:1517-1531. [PMID: 34115333 DOI: 10.1007/s13577-021-00554-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 05/15/2021] [Indexed: 12/24/2022]
Abstract
The dysregulated long non-coding RNA A1BG antisense RNA 1 (A1BG-AS1) has been implicated in the oncogenicity of hepatocellular carcinoma. Using reverse transcription quantitative polymerase chain reaction in this study, we detected A1BG-AS1 expression in breast cancer and elucidated the regulatory functions and exact mechanisms of A1BG-AS1 in breast cancer cells. The regulatory functions of A1BG-AS1 were examined in vitro using the Cell Counting Kit-8 assay, flow cytometric, and Transwell migration and invasion assays and in vivo through tumor xenograft experiments. In addition, we performed bioinformatics analysis, luciferase reporter assay, RNA immunoprecipitation, and rescue experiments to verify the interaction among A1BG-AS1, microRNA-485-5p (miR-485-5p), and flotillin-1 (FLOT1) in breast cancer. We found A1BG-AS1 to be highly expressed in breast cancer tissues and cell lines. In terms of function, depleted A1BG-AS1 markedly suppressed cell proliferation, accelerated cell apoptosis, and hindered cell migration and invasion in breast cancer. Furthermore, A1BG-AS1 interference reduced tumor growth in vivo. Mechanistic investigations confirmed that A1BG-AS1 directly interacted with miR-485-5p as a molecular sponge. We demonstrated that FLOT1 is a direct target of miR-485-5p, which could be positively regulated by A1BG-AS1 by competing for miR-485-5p. Rescue experiments clearly showed that the downregulation of miR-485-5p and upregulation of FLOT1 were capable of reversing the anticancer activities of A1BG-AS1 deficiency in terms of breast cancer cell malignancy. A1BG-AS1 acts as a miR-485-5p sponge and subsequently increases FLOT1 expression in breast cancer cells, ultimately facilitating cancer progression. Hence, the A1BG-AS1/miR-485-5p/FLOT1 pathway might offer a novel therapeutic perspective for breast cancer.
Collapse
|
20
|
Riquier S, Mathieu M, Bessiere C, Boureux A, Ruffle F, Lemaitre JM, Djouad F, Gilbert N, Commes T. Long non-coding RNA exploration for mesenchymal stem cell characterisation. BMC Genomics 2021; 22:412. [PMID: 34088266 PMCID: PMC8178833 DOI: 10.1186/s12864-020-07289-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 11/28/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The development of RNA sequencing (RNAseq) and the corresponding emergence of public datasets have created new avenues of transcriptional marker search. The long non-coding RNAs (lncRNAs) constitute an emerging class of transcripts with a potential for high tissue specificity and function. Therefore, we tested the biomarker potential of lncRNAs on Mesenchymal Stem Cells (MSCs), a complex type of adult multipotent stem cells of diverse tissue origins, that is frequently used in clinics but which is lacking extensive characterization. RESULTS We developed a dedicated bioinformatics pipeline for the purpose of building a cell-specific catalogue of unannotated lncRNAs. The pipeline performs ab initio transcript identification, pseudoalignment and uses new methodologies such as a specific k-mer approach for naive quantification of expression in numerous RNAseq data. We next applied it on MSCs, and our pipeline was able to highlight novel lncRNAs with high cell specificity. Furthermore, with original and efficient approaches for functional prediction, we demonstrated that each candidate represents one specific state of MSCs biology. CONCLUSIONS We showed that our approach can be employed to harness lncRNAs as cell markers. More specifically, our results suggest different candidates as potential actors in MSCs biology and propose promising directions for future experimental investigations.
Collapse
Affiliation(s)
- Sébastien Riquier
- IRMB, University of Montpellier, INSERM, 80 rue Augustin Fliche, Montpellier, France
| | - Marc Mathieu
- IRMB, University of Montpellier, INSERM, 80 rue Augustin Fliche, Montpellier, France
| | - Chloé Bessiere
- IRMB, University of Montpellier, INSERM, 80 rue Augustin Fliche, Montpellier, France
| | - Anthony Boureux
- IRMB, University of Montpellier, INSERM, 80 rue Augustin Fliche, Montpellier, France
| | - Florence Ruffle
- IRMB, University of Montpellier, INSERM, 80 rue Augustin Fliche, Montpellier, France
| | - Jean-Marc Lemaitre
- IRMB, University of Montpellier, INSERM, 80 rue Augustin Fliche, Montpellier, France
| | - Farida Djouad
- IRMB, University of Montpellier, INSERM, 80 rue Augustin Fliche, Montpellier, France
| | - Nicolas Gilbert
- IRMB, University of Montpellier, INSERM, 80 rue Augustin Fliche, Montpellier, France
| | - Thérèse Commes
- IRMB, University of Montpellier, INSERM, 80 rue Augustin Fliche, Montpellier, France
| |
Collapse
|
21
|
Shen C, Ding L, Mo H, Liu R, Xu Q, Tu K. Long noncoding RNA FIRRE contributes to the proliferation and glycolysis of hepatocellular carcinoma cells by enhancing PFKFB4 expression. J Cancer 2021; 12:4099-4108. [PMID: 34093813 PMCID: PMC8176253 DOI: 10.7150/jca.58097] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/27/2021] [Indexed: 12/15/2022] Open
Abstract
Recent reports show that long noncoding RNA (lncRNA) FIRRE contributes to the proliferation, apoptosis resistance, and invasion of colorectal cancer and diffuse large B-cell lymphoma. However, the biological function of FIRRE in hepatocellular carcinoma (HCC) remains unknown. Here, we disclosed that the FIRRE level was frequently increased in HCC compared to nontumor tissues. Compared with normal liver cells, we also confirmed the upregulated level of FIRRE in HCC cells. Notably, the FIRRE high expression was related to malignant clinical features, including advanced TNM stage and tumor size ≥5 cm, and conferred to worse survival of HCC. Functionally, FIRRE knockdown repressed the proliferation and glycolysis of HCCLM3 cells. Overexpression of FIRRE strengthened Huh7 cell proliferation and glycolysis. Notably, FIRRE positively regulated the glycolic enzyme 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 4 (PFKFB4) expression in HCC cells. PFKFB4 was highly expressed and positively associated with FIRRE level in HCC tissues. The upregulated expression of PFKFB4 was associated with high tumor grade and advanced TNM stage. TCGA data revealed that the PFKFB4 high expression indicated a poor prognosis of HCC. Mechanistically, modulating FIRRE level did not affect the stability of PFKFB4 mRNA. FIRRE was mainly distributed in HCC cells' nucleus and promoted PFKFB4 transcription and expression via cAMP-responsive element-binding protein (CREB). PFKFB4 could abolish the effects of FIRRE knockdown on HCC cell proliferation and glycolysis. To conclude, the highly expressed FIRRE facilitated HCC cell proliferation and glycolysis by enhancing CREB-mediated PFKFB4 transcription and expression.
Collapse
Affiliation(s)
- Cunyi Shen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Lu Ding
- Department of Anesthesiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Huanye Mo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Runkun Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Qiuran Xu
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, China
| | - Kangsheng Tu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| |
Collapse
|
22
|
O’Brien MH, Pitot HC, Chung SH, Lambert PF, Drinkwater NR, Bilger A. Estrogen Receptor-α Suppresses Liver Carcinogenesis and Establishes Sex-Specific Gene Expression. Cancers (Basel) 2021; 13:2355. [PMID: 34068249 PMCID: PMC8153146 DOI: 10.3390/cancers13102355] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/10/2021] [Indexed: 02/06/2023] Open
Abstract
Estrogen protects females from hepatocellular carcinoma (HCC). To determine whether this protection is mediated by classic estrogen receptors, we tested HCC susceptibility in estrogen receptor-deficient mice. In contrast to a previous study, we found that diethylnitrosamine induces hepatocarcinogenesis to a significantly greater extent when females lack Esr1, which encodes Estrogen Receptor-α. Relative to wild-type littermates, Esr1 knockout females developed 9-fold more tumors. Deficiency of Esr2, which encodes Estrogen Receptor-β, did not affect liver carcinogenesis in females. Using microarrays and QPCR to examine estrogen receptor effects on hepatic gene expression patterns, we found that germline Esr1 deficiency resulted in the masculinization of gene expression in the female liver. Six of the most dysregulated genes have previously been implicated in HCC. In contrast, Esr1 deletion specifically in hepatocytes of Esr1 conditional null female mice (in which Cre was expressed from the albumin promoter) resulted in the maintenance of female-specific liver gene expression. Wild-type adult females lacking ovarian estrogen due to ovariectomy, which is known to make females susceptible to HCC, also maintained female-specific expression in the liver of females. These studies indicate that Esr1 mediates liver cancer risk, and its control of sex-specific liver gene expression involves cells other than hepatocytes.
Collapse
Affiliation(s)
- Mara H. O’Brien
- Department of Craniofacial Sciences, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030, USA;
| | - Henry C. Pitot
- McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin—Madison, 1111 Highland Ave, Madison, WI 53705, USA; (H.C.P.); (P.F.L.); (N.R.D.)
| | - Sang-Hyuk Chung
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA;
| | - Paul F. Lambert
- McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin—Madison, 1111 Highland Ave, Madison, WI 53705, USA; (H.C.P.); (P.F.L.); (N.R.D.)
| | - Norman R. Drinkwater
- McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin—Madison, 1111 Highland Ave, Madison, WI 53705, USA; (H.C.P.); (P.F.L.); (N.R.D.)
| | - Andrea Bilger
- McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin—Madison, 1111 Highland Ave, Madison, WI 53705, USA; (H.C.P.); (P.F.L.); (N.R.D.)
| |
Collapse
|
23
|
Adylova A, Mukhanbetzhanovna AA, Attar R, Yulaevna IM, Farooqi AA. Regulation of TGFβ/SMAD signaling by long non-coding RNAs in different cancers: Dark Knight in the Castle of molecular oncology. Noncoding RNA Res 2021; 6:23-28. [PMID: 33511320 PMCID: PMC7814108 DOI: 10.1016/j.ncrna.2020.12.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 12/24/2020] [Accepted: 12/25/2020] [Indexed: 11/15/2022] Open
Abstract
One of the complex themes in recent years has been the multi-layered regulation of TGFβ signaling in cancer cells. TGFβ/SMAD signaling pathway is a highly complicated web of proteins which work spatio-temporally to regulate multiple steps of carcinogenesis. TGFβ/SMAD has been shown to dualistically regulate cancer progression. Therefore, TGFβ/SMAD signaling behaves as a “double-edged sword” in molecular oncology. Accordingly, regulation of TGFβ/SMAD is multi-layered because of oncogenic and tumor suppressor long non-coding RNAs (LncRNAs). In this review, we have summarized most recent breakthroughs in our understanding related to regulation of TGFβ/SMAD signaling by lncRNAs. We have comprehensively analyzed how different lncRNAs positively and negatively regulate TGFβ/SMAD signaling in different cancers. We have gathered missing pieces of an incomplete jig-saw puzzle of lncRNA-interactome ranging from “sponge effects” of lncRNAs to mechanistic modulation of TGFβ/SMAD signaling by lncRNAs.
Collapse
Affiliation(s)
- Aima Adylova
- Biomedical Engineering & Molecular Medicine PhD candidate, Guangdong Key Laboratory for Genome Stability & Disease Prevention and Carson International Cancer Center, Shenzhen University School of Medicine, Shenzhen, Guangdong, 518060, China
| | | | - Rukset Attar
- Department of Obstetrics and Gynecology, Yeditepe University, Turkey
| | | | | |
Collapse
|
24
|
Pang L, Zhang Q, Wu Y, Yang Q, Zhang J, Liu Y, Li R. Long non-coding RNA CCAT1 promotes non-small cell lung cancer progression by regulating the miR-216a-5p/RAP2B axis. Exp Biol Med (Maywood) 2021; 246:142-152. [PMID: 33023331 PMCID: PMC7871119 DOI: 10.1177/1535370220961013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 09/02/2020] [Indexed: 12/17/2022] Open
Abstract
The long non-coding RNA colon cancer-associated transcript 1 (CCAT1) has been investigated to involve in the progression of non-small cell lung cancer (NSCLC). Thus, this study aims to explore the detailed molecular mechanisms of CCAT1 in NSCLC. The expression of CCAT1, miR-216a-5p, RAP2B, Bax, Bcl-2, and cleaved caspase 3 was detected by qRT-PCR or Western blot. Cell proliferation, apoptosis, migration, and invasion were analyzed using cell counting kit-8, flow cytometry or Transwell assays, respectively. The interaction between miR-216a-5p and CCAT1 or RAP2B was analyzed by luciferase reporter, RNA immunoprecipitation, and pull-down assays. The expression of CCAT1 was elevated in NSCLC, and CCAT1 deletion could inhibit NSCLC cell proliferation, migration, and invasion but induce apoptosis in vitro as well as imped tumor growth in vivo. MiR-216a-5p was confirmed to be a target of CCAT1, and silencing miR-216a-5p could reverse CCAT1 depletion-mediated inhibitory effects on cell tumorigenesis in NSCLC. Besides that, miR-216a-5p was decreased in NSCLC, and miR-216a-5p restoration inhibited cell tumorigenesis by regulating RAP2B, which was verified to be a target of miR-216a-5p. Additionally, co-expression analysis suggested that CCAT1 indirectly regulated RAP2B level by targeting miR-216a-5p in NSCLC cells. Taken together, CCAT1 deletion could inhibit cell progression in NSCLC through miR-216a-5p/RAP2B axis, indicating a novel pathway underlying NSCLC cell progression and providing new potential targets for NSCLC treatment.
Collapse
Affiliation(s)
- Lingling Pang
- Department of Respiratory Medicine, Yantai Yuhuangding Hospital, Yantai 264000, China
| | - Qianqian Zhang
- Department of Respiratory Medicine, Yantai Muping District Chinese Medical Hospital, Yantai 264100, China
| | - Yanmin Wu
- Department of Respiratory Medicine, Xuzhou Central Hospital, Xuzhou 221009, China
| | - Qingru Yang
- Department of Respiratory Medicine, Xuzhou Central Hospital, Xuzhou 221009, China
| | - Jinghao Zhang
- Department of Respiratory Medicine, Xuzhou Central Hospital, Xuzhou 221009, China
| | - Yuanyuan Liu
- Department of Respiratory Medicine, Xuzhou Central Hospital, Xuzhou 221009, China
| | - Ruoran Li
- Department of Respiratory Medicine, Xuzhou Central Hospital, Xuzhou 221009, China
| |
Collapse
|
25
|
Han M, Liao Z, Liu F, Chen X, Zhang B. Modulation of the TGF-β signaling pathway by long noncoding RNA in hepatocellular carcinoma. Biomark Res 2020; 8:70. [PMID: 33292618 PMCID: PMC7709261 DOI: 10.1186/s40364-020-00252-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/24/2020] [Indexed: 12/21/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a type of liver cancer with poor prognosis. There have been demonstrated to exist many possible mechanisms in HCC tumorigenesis, and recent investigations have provided some promising therapy targets. However, further mechanisms remain to be researched to improve the therapeutic strategy and diagnosis of HCC. Transforming growth factor-β (TGF-β) is a pleiotropic cytokine which plays critical roles in networks of different cellular processes, and TGF-β signaling has been found to participate in tumor initiation and development of HCC in recent years. Moreover, among the molecules and signaling pathways, researchers paid more attention to lncRNAs (long non-coding RNAs), but the connection between lncRNAs and TGF-βremain poorly understood. In this review, we conclude the malignant procedure which lncRNAs and TGF-β involved in, and summarize the mechanisms of lncRNAs and TGF-βin HCC initiation and development. Furthermore, the interaction between lncRNA and TGF-β are paid more attention, and the potential therapy targets are mentioned.
Collapse
Affiliation(s)
- Mengzhen Han
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, China
| | - Zhibin Liao
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, China
| | - Furong Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, China
| | - Xiaoping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China. .,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, China.
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China. .,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, China.
| |
Collapse
|
26
|
Chen J, Liu X, Ke K, Zou J, Gao Z, Habuchi T, Yang X. LINC00992 contributes to the oncogenic phenotypes in prostate cancer via targeting miR-3935 and augmenting GOLM1 expression. BMC Cancer 2020; 20:749. [PMID: 32781986 PMCID: PMC7418399 DOI: 10.1186/s12885-020-07141-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 07/06/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Accumulating evidence has revealed the critical role of long non-coding RNAs (lncRNAs) in cellular processes during tumor progression. As documented in cancer-related literatures, LINC00992 expression is associated with cancer progression, whereas its function in tumors including prostate cancer has not been characterized yet. METHODS Data from GEPIA database suggested LINC00992 expression in prostate cancer tissues. The expression levels of RNAs were monitored via qRT-PCR. Western blot evaluated the levels of proteins. The proliferation, apoptosis and migration of prostate cancer cells were assessed by CCK-8, EdU, TUNEL, Transwell and wound healing assays. Luciferase reporter, RNA pull down and RIP assays were applied to detect the interplays among LINC00992, miR-3935 and GOLM1. RESULTS Elevated levels of LINC00992 and GOLM1 were detected in prostate cancer tissues and cells. LINC00992 exerted facilitating functions in prostate cancer cell proliferation and migration. Mechanically, LINC00992 interacted with and negatively regulated miR-3935 to elevate GOLM1 expression in prostate cancer cells. In addition, the in vitro suppressive effect of silenced LINC00992 on prostate cancer cell proliferation and migration was reversed by GOLM1 upregulation. Likewise, LINC00992 depletion restrained tumor growth in vivo was offset by enhanced GOLM1 expression. CONCLUSIONS LINC00992 competitively bound with miR-3935 to elevate GOLM1 expression and therefore facilitate the oncogenic phenotypes of prostate cancer cells, implying a potential LINC00992-targeted therapy for prostate cancer.
Collapse
Affiliation(s)
- Jianheng Chen
- Department of Urology, the First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Xiaodong Liu
- Department of Urology, the First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Kunbin Ke
- Department of Urology, the First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Jianan Zou
- Department of Urology, the First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, Anhui, China
| | - Zhan Gao
- Department of Urology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Tomonori Habuchi
- Department of Urology, Akita University School of Medicine, Akita, 010-8543, Japan
| | - Xuezhen Yang
- Department of Urology, the Second Affiliated Hospital of Bengbu Medical College, 220 Hongye Road, Bengbu, 233000, Anhui, China.
| |
Collapse
|
27
|
Chen J, Liu X, Ke K, Zou J, Gao Z, Habuchi T, Yang X. LINC00992 contributes to the oncogenic phenotypes in prostate cancer via targeting miR-3935 and augmenting GOLM1 expression. BMC Cancer 2020. [PMID: 32781986 DOI: 10.1186/s12885-020-07141-4;(corresponding] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Accumulating evidence has revealed the critical role of long non-coding RNAs (lncRNAs) in cellular processes during tumor progression. As documented in cancer-related literatures, LINC00992 expression is associated with cancer progression, whereas its function in tumors including prostate cancer has not been characterized yet. METHODS Data from GEPIA database suggested LINC00992 expression in prostate cancer tissues. The expression levels of RNAs were monitored via qRT-PCR. Western blot evaluated the levels of proteins. The proliferation, apoptosis and migration of prostate cancer cells were assessed by CCK-8, EdU, TUNEL, Transwell and wound healing assays. Luciferase reporter, RNA pull down and RIP assays were applied to detect the interplays among LINC00992, miR-3935 and GOLM1. RESULTS Elevated levels of LINC00992 and GOLM1 were detected in prostate cancer tissues and cells. LINC00992 exerted facilitating functions in prostate cancer cell proliferation and migration. Mechanically, LINC00992 interacted with and negatively regulated miR-3935 to elevate GOLM1 expression in prostate cancer cells. In addition, the in vitro suppressive effect of silenced LINC00992 on prostate cancer cell proliferation and migration was reversed by GOLM1 upregulation. Likewise, LINC00992 depletion restrained tumor growth in vivo was offset by enhanced GOLM1 expression. CONCLUSIONS LINC00992 competitively bound with miR-3935 to elevate GOLM1 expression and therefore facilitate the oncogenic phenotypes of prostate cancer cells, implying a potential LINC00992-targeted therapy for prostate cancer.
Collapse
Affiliation(s)
- Jianheng Chen
- Department of Urology, the First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Xiaodong Liu
- Department of Urology, the First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Kunbin Ke
- Department of Urology, the First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Jianan Zou
- Department of Urology, the First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, Anhui, China
| | - Zhan Gao
- Department of Urology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Tomonori Habuchi
- Department of Urology, Akita University School of Medicine, Akita, 010-8543, Japan
| | - Xuezhen Yang
- Department of Urology, the Second Affiliated Hospital of Bengbu Medical College, 220 Hongye Road, Bengbu, 233000, Anhui, China.
| |
Collapse
|
28
|
Ramilowski JA, Yip CW, Agrawal S, Chang JC, Ciani Y, Kulakovskiy IV, Mendez M, Ooi JLC, Ouyang JF, Parkinson N, Petri A, Roos L, Severin J, Yasuzawa K, Abugessaisa I, Akalin A, Antonov IV, Arner E, Bonetti A, Bono H, Borsari B, Brombacher F, Cameron CJF, Cannistraci CV, Cardenas R, Cardon M, Chang H, Dostie J, Ducoli L, Favorov A, Fort A, Garrido D, Gil N, Gimenez J, Guler R, Handoko L, Harshbarger J, Hasegawa A, Hasegawa Y, Hashimoto K, Hayatsu N, Heutink P, Hirose T, Imada EL, Itoh M, Kaczkowski B, Kanhere A, Kawabata E, Kawaji H, Kawashima T, Kelly ST, Kojima M, Kondo N, Koseki H, Kouno T, Kratz A, Kurowska-Stolarska M, Kwon ATJ, Leek J, Lennartsson A, Lizio M, López-Redondo F, Luginbühl J, Maeda S, Makeev VJ, Marchionni L, Medvedeva YA, Minoda A, Müller F, Muñoz-Aguirre M, Murata M, Nishiyori H, Nitta KR, Noguchi S, Noro Y, Nurtdinov R, Okazaki Y, Orlando V, Paquette D, Parr CJC, Rackham OJL, Rizzu P, Sánchez Martinez DF, Sandelin A, Sanjana P, Semple CAM, Shibayama Y, Sivaraman DM, Suzuki T, Szumowski SC, Tagami M, Taylor MS, Terao C, Thodberg M, Thongjuea S, Tripathi V, Ulitsky I, Verardo R, Vorontsov IE, Yamamoto C, et alRamilowski JA, Yip CW, Agrawal S, Chang JC, Ciani Y, Kulakovskiy IV, Mendez M, Ooi JLC, Ouyang JF, Parkinson N, Petri A, Roos L, Severin J, Yasuzawa K, Abugessaisa I, Akalin A, Antonov IV, Arner E, Bonetti A, Bono H, Borsari B, Brombacher F, Cameron CJF, Cannistraci CV, Cardenas R, Cardon M, Chang H, Dostie J, Ducoli L, Favorov A, Fort A, Garrido D, Gil N, Gimenez J, Guler R, Handoko L, Harshbarger J, Hasegawa A, Hasegawa Y, Hashimoto K, Hayatsu N, Heutink P, Hirose T, Imada EL, Itoh M, Kaczkowski B, Kanhere A, Kawabata E, Kawaji H, Kawashima T, Kelly ST, Kojima M, Kondo N, Koseki H, Kouno T, Kratz A, Kurowska-Stolarska M, Kwon ATJ, Leek J, Lennartsson A, Lizio M, López-Redondo F, Luginbühl J, Maeda S, Makeev VJ, Marchionni L, Medvedeva YA, Minoda A, Müller F, Muñoz-Aguirre M, Murata M, Nishiyori H, Nitta KR, Noguchi S, Noro Y, Nurtdinov R, Okazaki Y, Orlando V, Paquette D, Parr CJC, Rackham OJL, Rizzu P, Sánchez Martinez DF, Sandelin A, Sanjana P, Semple CAM, Shibayama Y, Sivaraman DM, Suzuki T, Szumowski SC, Tagami M, Taylor MS, Terao C, Thodberg M, Thongjuea S, Tripathi V, Ulitsky I, Verardo R, Vorontsov IE, Yamamoto C, Young RS, Baillie JK, Forrest ARR, Guigó R, Hoffman MM, Hon CC, Kasukawa T, Kauppinen S, Kere J, Lenhard B, Schneider C, Suzuki H, Yagi K, de Hoon MJL, Shin JW, Carninci P. Functional annotation of human long noncoding RNAs via molecular phenotyping. Genome Res 2020; 30:1060-1072. [PMID: 32718982 PMCID: PMC7397864 DOI: 10.1101/gr.254219.119] [Show More Authors] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 06/24/2020] [Indexed: 12/12/2022]
Abstract
Long noncoding RNAs (lncRNAs) constitute the majority of transcripts in the mammalian genomes, and yet, their functions remain largely unknown. As part of the FANTOM6 project, we systematically knocked down the expression of 285 lncRNAs in human dermal fibroblasts and quantified cellular growth, morphological changes, and transcriptomic responses using Capped Analysis of Gene Expression (CAGE). Antisense oligonucleotides targeting the same lncRNAs exhibited global concordance, and the molecular phenotype, measured by CAGE, recapitulated the observed cellular phenotypes while providing additional insights on the affected genes and pathways. Here, we disseminate the largest-to-date lncRNA knockdown data set with molecular phenotyping (over 1000 CAGE deep-sequencing libraries) for further exploration and highlight functional roles for ZNF213-AS1 and lnc-KHDC3L-2.
Collapse
Affiliation(s)
- Jordan A Ramilowski
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan.,RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
| | - Chi Wai Yip
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan.,RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
| | - Saumya Agrawal
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan.,RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
| | - Jen-Chien Chang
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan.,RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
| | - Yari Ciani
- Laboratorio Nazionale Consorzio Interuniversitario Biotecnologie (CIB), Trieste 34127, Italy
| | - Ivan V Kulakovskiy
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia.,Institute of Protein Research, Russian Academy of Sciences, Pushchino 142290, Russia
| | - Mickaël Mendez
- Department of Computer Science, University of Toronto, Toronto, Ontario M5S 1A1, Canada
| | | | - John F Ouyang
- Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
| | - Nick Parkinson
- Roslin Institute, University of Edinburgh, Edinburgh EH25 9RG, United Kingdom
| | - Andreas Petri
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, Copenhagen 9220, Denmark
| | - Leonie Roos
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London W12 0NN, United Kingdom.,Computational Regulatory Genomics, MRC London Institute of Medical Sciences, London W12 0NN, United Kingdom
| | - Jessica Severin
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan.,RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
| | - Kayoko Yasuzawa
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan.,RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
| | - Imad Abugessaisa
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan.,RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
| | - Altuna Akalin
- Berlin Institute for Medical Systems Biology, Max Delbrük Center for Molecular Medicine in the Helmholtz Association, Berlin 13125, Germany
| | - Ivan V Antonov
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, Moscow 117312, Russia
| | - Erik Arner
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan.,RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
| | - Alessandro Bonetti
- RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
| | - Hidemasa Bono
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima City 739-0046, Japan
| | - Beatrice Borsari
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Catalonia 08003, Spain
| | - Frank Brombacher
- International Centre for Genetic Engineering and Biotechnology (ICGEB), University of Cape Town, Cape Town 7925, South Africa.,Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Christopher JF Cameron
- School of Computer Science, McGill University, Montréal, Québec H3G 1Y6, Canada.,Department of Biochemistry, Rosalind and Morris Goodman Cancer Research Center, McGill University, Montréal, Québec H3G 1Y6, Canada.,Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06510, USA
| | - Carlo Vittorio Cannistraci
- Biomedical Cybernetics Group, Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering (CMCB), Center for Systems Biology Dresden (CSBD), Cluster of Excellence Physics of Life (PoL), Department of Physics, Technische Universität Dresden, Dresden 01062, Germany.,Center for Complex Network Intelligence (CCNI) at the Tsinghua Laboratory of Brain and Intelligence (THBI), Department of Bioengineering, Tsinghua University, Beijing 100084, China
| | - Ryan Cardenas
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Melissa Cardon
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Howard Chang
- Center for Personal Dynamic Regulome, Stanford University, Stanford, California 94305, USA
| | - Josée Dostie
- Department of Biochemistry, Rosalind and Morris Goodman Cancer Research Center, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - Luca Ducoli
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, Zurich 8093, Switzerland
| | - Alexander Favorov
- Department of Computational Systems Biology, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow 119991, Russia.,Department of Oncology, Johns Hopkins University, Baltimore, Maryland 21287, USA
| | - Alexandre Fort
- RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
| | - Diego Garrido
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Catalonia 08003, Spain
| | - Noa Gil
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Juliette Gimenez
- Epigenetics and Genome Reprogramming Laboratory, IRCCS Fondazione Santa Lucia, Rome 00179, Italy
| | - Reto Guler
- International Centre for Genetic Engineering and Biotechnology (ICGEB), University of Cape Town, Cape Town 7925, South Africa.,Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Lusy Handoko
- RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
| | - Jayson Harshbarger
- RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
| | - Akira Hasegawa
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan.,RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
| | - Yuki Hasegawa
- RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
| | - Kosuke Hashimoto
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan.,RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
| | - Norihito Hayatsu
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Peter Heutink
- Genome Biology of Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE), Tübingen 72076, Germany
| | - Tetsuro Hirose
- Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
| | - Eddie L Imada
- Department of Oncology, Johns Hopkins University, Baltimore, Maryland 21287, USA
| | - Masayoshi Itoh
- RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan.,RIKEN Preventive Medicine and Diagnosis Innovation Program (PMI), Saitama 351-0198, Japan
| | - Bogumil Kaczkowski
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan.,RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
| | - Aditi Kanhere
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Emily Kawabata
- RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
| | - Hideya Kawaji
- RIKEN Preventive Medicine and Diagnosis Innovation Program (PMI), Saitama 351-0198, Japan
| | - Tsugumi Kawashima
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan.,RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
| | - S Thomas Kelly
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Miki Kojima
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan.,RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
| | - Naoto Kondo
- RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
| | - Haruhiko Koseki
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Tsukasa Kouno
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan.,RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
| | - Anton Kratz
- RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
| | - Mariola Kurowska-Stolarska
- Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, Scotland G12 8QQ, United Kingdom
| | - Andrew Tae Jun Kwon
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan.,RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
| | - Jeffrey Leek
- Department of Oncology, Johns Hopkins University, Baltimore, Maryland 21287, USA
| | - Andreas Lennartsson
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge 14157, Sweden
| | - Marina Lizio
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan.,RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
| | - Fernando López-Redondo
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan.,RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
| | - Joachim Luginbühl
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan.,RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
| | - Shiori Maeda
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Vsevolod J Makeev
- Department of Computational Systems Biology, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow 119991, Russia.,Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
| | - Luigi Marchionni
- Department of Oncology, Johns Hopkins University, Baltimore, Maryland 21287, USA
| | - Yulia A Medvedeva
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, Moscow 117312, Russia.,Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
| | - Aki Minoda
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan.,RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
| | - Ferenc Müller
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Manuel Muñoz-Aguirre
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Catalonia 08003, Spain
| | - Mitsuyoshi Murata
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan.,RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
| | - Hiromi Nishiyori
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan.,RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
| | - Kazuhiro R Nitta
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan.,RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
| | - Shuhei Noguchi
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan.,RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
| | - Yukihiko Noro
- RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
| | - Ramil Nurtdinov
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Catalonia 08003, Spain
| | - Yasushi Okazaki
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan.,RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
| | - Valerio Orlando
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Denis Paquette
- Department of Biochemistry, Rosalind and Morris Goodman Cancer Research Center, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - Callum J C Parr
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Owen J L Rackham
- Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
| | - Patrizia Rizzu
- Genome Biology of Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE), Tübingen 72076, Germany
| | | | - Albin Sandelin
- Department of Biology and BRIC, University of Copenhagen, Denmark, Copenhagen N DK2200, Denmark
| | - Pillay Sanjana
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Colin A M Semple
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Youtaro Shibayama
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan.,RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
| | - Divya M Sivaraman
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan.,RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
| | - Takahiro Suzuki
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan.,RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
| | | | - Michihira Tagami
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan.,RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
| | - Martin S Taylor
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Chikashi Terao
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Malte Thodberg
- Department of Biology and BRIC, University of Copenhagen, Denmark, Copenhagen N DK2200, Denmark
| | - Supat Thongjuea
- RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
| | - Vidisha Tripathi
- National Centre for Cell Science, Pune, Maharashtra 411007, India
| | - Igor Ulitsky
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Roberto Verardo
- Laboratorio Nazionale Consorzio Interuniversitario Biotecnologie (CIB), Trieste 34127, Italy
| | - Ilya E Vorontsov
- Department of Computational Systems Biology, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow 119991, Russia
| | - Chinatsu Yamamoto
- RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
| | - Robert S Young
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh EH8 9AG, United Kingdom
| | - J Kenneth Baillie
- Roslin Institute, University of Edinburgh, Edinburgh EH25 9RG, United Kingdom
| | - Alistair R R Forrest
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan.,RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan.,Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Nedlands, Perth, Western Australia 6009, Australia
| | - Roderic Guigó
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Catalonia 08003, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Catalonia 08002, Spain
| | | | - Chung Chau Hon
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan.,RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
| | - Takeya Kasukawa
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan.,RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
| | - Sakari Kauppinen
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, Copenhagen 9220, Denmark
| | - Juha Kere
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge 14157, Sweden.,Stem Cells and Metabolism Research Program, University of Helsinki and Folkhälsan Research Center, 00290 Helsinki, Finland
| | - Boris Lenhard
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London W12 0NN, United Kingdom.,Computational Regulatory Genomics, MRC London Institute of Medical Sciences, London W12 0NN, United Kingdom.,Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen N-5008, Norway
| | - Claudio Schneider
- Laboratorio Nazionale Consorzio Interuniversitario Biotecnologie (CIB), Trieste 34127, Italy.,Department of Medicine and Consorzio Interuniversitario Biotecnologie p.zle Kolbe 1 University of Udine, Udine 33100, Italy
| | - Harukazu Suzuki
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan.,RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
| | - Ken Yagi
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan.,RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
| | - Michiel J L de Hoon
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan.,RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
| | - Jay W Shin
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan.,RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
| | - Piero Carninci
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan.,RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
29
|
Zhang J, Gao S, Zhang Y, Yi H, Xu M, Xu J, Liu H, Ding Z, He H, Wang H, Hao Z, Sun L, Liu Y, Wei F. MiR-216a-5p inhibits tumorigenesis in Pancreatic Cancer by targeting TPT1/mTORC1 and is mediated by LINC01133. Int J Biol Sci 2020; 16:2612-2627. [PMID: 32792860 PMCID: PMC7415429 DOI: 10.7150/ijbs.46822] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 07/01/2020] [Indexed: 12/25/2022] Open
Abstract
MiR-216a-5p has opposite effects on tumorigenesis and progression in the context of different tumors, acting as either a tumor suppressor or an oncogene. However, the expression and function of miR-216a-5p in pancreatic cancer (PC) is not well characterized. In this study, we found miR-216a-5p was significantly downregulated in PC tissues and cell lines, which showed a negative correlation with peripancreatic lymph, perineural invasion and TNM stage of PCs patients. We made use of functional assays to reveal that miR-216a-5p inhibited growth and migration of PC cells in vitro and in vivo. Then, by employing the bioinformatics analysis and luciferase reporter assay, we demonstrated TPT1 was a potential target of miR-216a-5p, which contributes to tumor malignance by mediating mTORC1 pathway-associated autophagy. Furthermore, bioinformatics analysis and RNA pulldown confirmed that miR-216a-5p was mediated by LINC01133, which sponge miR-216a-5p, as a competing endogenous RNA (ceRNA). Collectively, our study revealed an important role of LINC01133/miR-216a-5p/TPT1 axis in the genesis and progression of PCs, which provides potential biomarkers for clinical diagnosis and therapy of PCs.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Hepatobiliary and Pancreas Surgery, Jilin University First Hospital, Changchun, China
| | - Shuohui Gao
- Department of Gastrointestinal Colorectal Surgery, China-Japan Union hospital of Jilin University, Changchun, China
| | - Yandong Zhang
- Department of Hepatobiliary and Pancreas Surgery, Jilin University First Hospital, Changchun, China
| | - Huixin Yi
- Genetic Engineering Laboratory of PLA, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, China
| | - Mengxian Xu
- Genetic Engineering Laboratory of PLA, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, China
| | - Jialun Xu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University
| | - Huan Liu
- Department of Hepatobiliary and Pancreas Surgery, Jilin University First Hospital, Changchun, China
| | - Zhichen Ding
- Department of Hepatobiliary and Pancreas Surgery, Jilin University First Hospital, Changchun, China
| | - Hongbin He
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Hongmei Wang
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Zhuo Hao
- Genetic Engineering Laboratory of PLA, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, China
| | - Liankun Sun
- Department of Pathophysiology, College of Basic Medicine Sciences, Jilin University, Changchun, China
| | - Yan Liu
- Genetic Engineering Laboratory of PLA, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, China
| | - Feng Wei
- Department of Hepatobiliary and Pancreas Surgery, Jilin University First Hospital, Changchun, China
| |
Collapse
|
30
|
Luan M, Shi SS, Shi DB, Liu HT, Ma RR, Xu XQ, Sun YJ, Gao P. TIPRL, a Novel Tumor Suppressor, Suppresses Cell Migration, and Invasion Through Regulating AMPK/mTOR Signaling Pathway in Gastric Cancer. Front Oncol 2020; 10:1062. [PMID: 32719745 PMCID: PMC7350861 DOI: 10.3389/fonc.2020.01062] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 05/28/2020] [Indexed: 12/25/2022] Open
Abstract
Invasion and metastasis of gastric cancer after curative resection remain the most common lethal outcomes. However, our current understanding of the molecular mechanism underlying gastric cancer metastasis is far from complete. Herein, we identified TOR signaling pathway regulator (TIPRL) as a novel metastasis suppressor in gastric cancer through genome-wide gene expression profiling analysis using mRNA microarray. Decreased TIPRL expression was detected in clinical gastric cancer specimens, and low TIPRL expression was correlated with more-advanced TNM stage, distant metastasis, and poor clinical outcome. Moreover, TIPRL was identified as a direct target of miR-216a-5p and miR-383-5p. Functional study revealed that re-expression of TIPRL in gastric cancer cell lines suppressed their migratory and invasive capacities, whereas inverse effects were observed in TIPRL-deficient models. Mechanistically, TIPRL downstream effectors and signaling pathways were investigated using mRNA microarray. Gene expression profiling revealed that TIPRL could not modulate the downstream genes at transcriptional levels, thereby implying that the regulation might occur at the post-transcriptional levels. We further demonstrated that TIPRL induced phosphorylation/activation of AMPK, which in turn attenuated phosphorylation of mTOR, p70S6K, and 4E-BP1, thereby leading to inactivation of mTOR signaling and subsequent suppression of cell migration/invasion in gastric cancer. Taken together, TIPRL acts as a novel metastasis suppressor in gastric cancer, at least in part, through regulating AMPK/mTOR signaling, likely representing a promising target for new therapies in gastric cancer.
Collapse
Affiliation(s)
- Meng Luan
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.,Institute of Basic Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Shan-Shan Shi
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key Laboratory of Cardiovascular Proteomics of Shandong Province, Department of Geriatrics, Qilu Hospital of Shandong University, Jinan, China
| | - Duan-Bo Shi
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Pathology, Qilu Hospital, Shandong University, Jinan, China
| | - Hai-Ting Liu
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ran-Ran Ma
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Pathology, Qilu Hospital, Shandong University, Jinan, China
| | - Xiao-Qun Xu
- Institute of Basic Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yu-Jing Sun
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Pathology, Qilu Hospital, Shandong University, Jinan, China
| | - Peng Gao
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Pathology, Qilu Hospital, Shandong University, Jinan, China
| |
Collapse
|
31
|
Xiao Z, Liu Y, Zhao J, Li L, Hu L, Lu Q, Zeng Z, Liu X, Huang D, Yang W, Xu Q. Long noncoding RNA LINC01123 promotes the proliferation and invasion of hepatocellular carcinoma cells by modulating the miR-34a-5p/TUFT1 axis. Int J Biol Sci 2020; 16:2296-2305. [PMID: 32760198 PMCID: PMC7378647 DOI: 10.7150/ijbs.45457] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 05/25/2020] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC), one of the main causes of cancer-related deaths globally, is characterized by rapid growth and high invasiveness. Accumulating evidence demonstrates that long noncoding RNAs (lncRNAs) play critical roles in the growth and metastasis of HCC. Recently, lncRNA LINC01123 has been found to contribute to cell proliferation and aerobic glycolysis in lung cancer. However, the function of LINC01123 in HCC, as well as the underlying mechanism of its action, remain unclear. Here, we found that the expression of LINC01123 was clearly upregulated in HCC tissues compared to nontumor tissues. Furthermore, expression of LINC01123 in HCC cells was significantly higher than in LO2 cells. Importantly, the upregulated level of LINC01123 was related to unfavorable clinical features and poor prognosis of HCC. Next, we demonstrated that LINC01123 knockdown suppressed the proliferation, migration and invasion of HCC cells in vitro. Depletion of LINC01123 inhibited HCC xenograft growth in vivo. Conversely, ectopic expression of LINC01123 facilitated HCC cell proliferation and invasion. Mechanistically, LINC01123 acted as a molecular sponge for miR-34a-5p in HCC cells. Tuftelin1 (TUFT1) was identified as the target gene of miR-34a-5p. LINC01123 positively regulated TUFT1 level by targeting of miR-34a-5p in HCC cells. Notably, TUFT1 restoration can abolish miR-34a-5p-induced inhibitory effects on HCC cell proliferation, migration and invasion. In conclusion, LINC01123 was overexpressed in HCC and accelerated cancer cell proliferation and invasion by regulating the miR-34a-5p/TUFT1 axis.
Collapse
Affiliation(s)
- Zunqiang Xiao
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China.,Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, Zhejiang 310014, China
| | - Yang Liu
- The Medical College of Qindao University, Qindao, Shandong, 266071, China
| | - Junjun Zhao
- Graduate Department, BengBu Medical College, BengBu, Anhui 233030, China
| | - Lijie Li
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, Zhejiang 310014, China
| | - Linjun Hu
- The Medical College of Qindao University, Qindao, Shandong, 266071, China
| | - Qiliang Lu
- The Medical College of Qindao University, Qindao, Shandong, 266071, China
| | - Zhi Zeng
- The Medical College of Qindao University, Qindao, Shandong, 266071, China
| | - Xin Liu
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, Zhejiang 310014, China
| | - Dongsheng Huang
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, Zhejiang 310014, China
| | - Wei Yang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Shaanxi 710061, China
| | - Qiuran Xu
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, Zhejiang 310014, China
| |
Collapse
|
32
|
Investigation of microRNA expression signatures in HCC via microRNA Gene Chip and bioinformatics analysis. Pathol Res Pract 2020; 216:152982. [DOI: 10.1016/j.prp.2020.152982] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 03/27/2020] [Accepted: 04/13/2020] [Indexed: 12/12/2022]
|
33
|
Chai J, Zhang J, Han D, Dong W, Han L, Zou L, Feng B, Li B, Ma W. Identification of long non-coding RNA SCARNA9L as a novel molecular target for colorectal cancer. Oncol Lett 2020; 20:1452-1461. [PMID: 32724388 DOI: 10.3892/ol.2020.11661] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 03/26/2020] [Indexed: 12/14/2022] Open
Abstract
The aim of the present study was to analyze the microarray data of human colorectal cancer (CRC) tissues and identify novel therapeutic targets for CRC. Microarray analysis from the GSE73360 and GSE84984 datasets was performed to identify novel long non-coding RNAs (lncRNAs) that were differentially expressed in human CRC tissues. Additionally, small interfering RNAs were used to deplete the expression of the indicated lncRNAs in cells. Colony-formation, wound-closure, and transwell assays were performed on CRC cells to assess their proliferation and migration capacities. Through microarray analysis, SCARNA9L, SLMO2-ATP5E and LOC100132062 were identified as differentially expressed lncRNAs in CRC tissues. The present study demonstrated that the ablation of SCARNA9L inhibited cell proliferation and arrested the cell cycle of SW480 and SW620 CRC cells. Additionally, depletion of SCARNA9L restrained the migration of CRC cells in vitro. Overall, the present study investigated the potential involvement of SCARNA9L in CRC and suggests SCARNA9L as a potential biomarker.
Collapse
Affiliation(s)
- Jie Chai
- Department of Internal Medicine-Oncology, Tianjin Medical University, Tianjin 300070, P.R. China.,Department of Gastrointestinal Surgery, Shandong University Affiliated Shandong Cancer Hospital and Institute, Jinan, Shandong 250117, P.R. China
| | - Jianbo Zhang
- Department of Pathology, Shandong University Affiliated Shandong Cancer Hospital and Institute, Jinan, Shandong 250117, P.R. China
| | - Dali Han
- Department of Radiation Oncology, Shandong University Affiliated Shandong Cancer Hospital and Institute, Jinan, Shandong 250117, P.R. China
| | - Wei Dong
- Department of Radiation Oncology, Shandong University Affiliated Shandong Cancer Hospital and Institute, Jinan, Shandong 250117, P.R. China
| | - Li Han
- Department of Internal Medicine-Oncology, Shandong University Affiliated Shandong Cancer Hospital and Institute, Jinan, Shandong 250117, P.R. China
| | - Lei Zou
- Department of Gastrointestinal Surgery, Shandong University Affiliated Shandong Cancer Hospital and Institute, Jinan, Shandong 250117, P.R. China
| | - Bin Feng
- Department of Internal Medicine-Oncology, Affiliated Hospital of Shandong Academy of Medical Sciences, Jinan, Shandong 250033, P.R. China
| | - Baosheng Li
- Department of Radiation Oncology, Shandong University Affiliated Shandong Cancer Hospital and Institute, Jinan, Shandong 250117, P.R. China
| | - Wanli Ma
- Department of Orthopedics, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| |
Collapse
|
34
|
Jiang W, Cheng X, Wang T, Song X, Zheng Y, Wang L. LINC00467 promotes cell proliferation and metastasis by binding with IGF2BP3 to enhance the mRNA stability of TRAF5 in hepatocellular carcinoma. J Gene Med 2020; 22:e3134. [PMID: 31656043 DOI: 10.1002/jgm.3134] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/23/2019] [Accepted: 10/20/2019] [Indexed: 12/21/2022] Open
Affiliation(s)
- Wenjin Jiang
- Department of Interventional TherapyThe Affiliated Yantai Yuhuangding Hospital of Qingdao University Yantai Shandong China
| | - Xueling Cheng
- Operation departmentThe Affiliated Yantai Yuhuangding Hospital of Qingdao University Yantai Shandong China
| | - Tao Wang
- Department of Interventional TherapyThe Affiliated Yantai Yuhuangding Hospital of Qingdao University Yantai Shandong China
| | - Xuepeng Song
- Department of Interventional TherapyThe Affiliated Yantai Yuhuangding Hospital of Qingdao University Yantai Shandong China
| | - Yanbo Zheng
- Department of Interventional TherapyThe Affiliated Yantai Yuhuangding Hospital of Qingdao University Yantai Shandong China
| | - Ligang Wang
- Department of Interventional TherapyThe Affiliated Yantai Yuhuangding Hospital of Qingdao University Yantai Shandong China
| |
Collapse
|
35
|
Yang X, Yao B, Niu Y, Chen T, Mo H, Wang L, Guo C, Yao D. Hypoxia-induced lncRNA EIF3J-AS1 accelerates hepatocellular carcinoma progression via targeting miR-122–5p/CTNND2 axis. Biochem Biophys Res Commun 2019; 518:239-245. [DOI: 10.1016/j.bbrc.2019.08.039] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 08/08/2019] [Indexed: 02/07/2023]
|
36
|
Yang X, Sun L, Wang L, Yao B, Mo H, Yang W. LncRNA SNHG7 accelerates the proliferation, migration and invasion of hepatocellular carcinoma cells via regulating miR-122-5p and RPL4. Biomed Pharmacother 2019; 118:109386. [PMID: 31545291 DOI: 10.1016/j.biopha.2019.109386] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/19/2019] [Accepted: 08/22/2019] [Indexed: 01/14/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) play vital roles in the development and progression of hepatocellular carcinoma (HCC). The recent study finds a strong correlation between lncRNA small nucleolar RNA host gene 7 (SNHG7) and HCC metastasis. However, the molecular mechanism by which SNHG7 regulates HCC progression has not been investigated. In this study, we found that SNHG7 was highly expressed in HCC tissues compared to non-tumor tissues. Data from public databases consistently indicated the up-regulated expression of SNHG7 in HCC. Furthermore, the levels of SNHG7 were up-regulated in four HCC cell lines (Huh7, Hep3B, HCCLM3, MHCC97 H) compared with LO2 cells. Interestingly, the elevated expression of SNHG7 was closely correlated with advanced tumor stages, high tumor grades, vascular invasion and poor prognosis of HCC. Knockdown of SNHG7 markedly inhibited cell proliferation, migration and invasion in HCCLM3 and MHCC97H cells, and prominently suppressed the growth and metastasis of HCCLM3 cells in vivo. Mechanistically, SNHG7 silencing increased the level of miR-122-5p in HCC cells. Luciferase reporter assay revealed the direct interaction between SNHG7 and miR-122-5p. Moreover, SNHG7 knockdown decreased the levels of ribosomal protein L4 (RPL4) mRNA and protein in HCC cells. Accordingly, the stability of RPL4 mRNA was reduced by SNHG7 silencing. More importantly, either miR-122-5p knockdown or RPL4 restoration partially reversed SNHG7 silencing-induced tumor suppressive effects on HCC cells. In conclusion, we demonstrated that SNHG7 expression was up-regulated in HCC. SNHG7 contributed to HCC progression by regulating miR-122-5p and RPL4. Therefore, SNHG7 might be a potential biomarker and therapeutic target for HCC.
Collapse
Affiliation(s)
- Xue Yang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Liankang Sun
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Liang Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Bowen Yao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Huanye Mo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Wei Yang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
37
|
Liu X, Zhu Q, Guo Y, Xiao Z, Hu L, Xu Q. LncRNA LINC00689 promotes the growth, metastasis and glycolysis of glioma cells by targeting miR-338-3p/PKM2 axis. Biomed Pharmacother 2019; 117:109069. [PMID: 31181442 DOI: 10.1016/j.biopha.2019.109069] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/28/2019] [Accepted: 06/02/2019] [Indexed: 12/24/2022] Open
Abstract
Accumulating evidence supports that long non-coding RNAs (lncRNAs) are implicated in the tumorigenesis and progression of glioma. Recent studies find that lncRNA long intergenic non-protein coding RNA 689 (LINC00689) is associated with obesity and participates in eukaryotic gene expression. However, whether LINC00689 plays a critical role in glioma progression remains unknown. Here, we identified a highly expressed lncRNA LINC00689 in gliomas compared to normal brain tissues based on the GSE dataset (GSE4290). The analysis of our data indicated that the expression of LINC00689 was up-regulated in glioma tissues and cell lines. Moreover, the high expression of LINC00689 was closely correlated with tumor size ≥3 cm, high tumor grade, low KPS scores and poor prognosis of glioma patients. Further investigation demonstrated that LINC00689 knockdown markedly repressed the proliferation, migration, invasion and glycolysis of glioma cells. Additionally, silencing of LINC00689 significantly suppressed the growth of glioma cells in vivo. Mechanistically, LINC00689 functioned as a competing endogenous RNA (ceRNA) by directly interacting with miR-338-3p to promote pyruvate kinase M2 (PKM2) expression. Notably, we also revealed that restoration of PKM2 abolished the effects of LINC00689 silencing on glioma cell proliferation, migration, invasion and glycolysis. In summary, our results suggested that LINC00689/miR-338-3p/PKM2 axis might play an essential role in glioma progression.
Collapse
Affiliation(s)
- Xin Liu
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, Zhejiang Province, 310014, China
| | - Qiaojuan Zhu
- Department of Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, 310000, China
| | - Yang Guo
- Graduate Department, BengBu Medical College, BengBu, Anhui Province, 233030, China
| | - Zunqiang Xiao
- Department of Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, 310000, China
| | - Linjun Hu
- The Medical College of Qindao University, Qindao, Shandong Province, 266071, China
| | - Qiuran Xu
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, Zhejiang Province, 310014, China.
| |
Collapse
|
38
|
Zeng X, Liu Y, Zhu H, Chen D, Hu W. Downregulation of miR-216a-5p by long noncoding RNA PVT1 suppresses colorectal cancer progression via modulation of YBX1 expression. Cancer Manag Res 2019; 11:6981-6993. [PMID: 31440087 PMCID: PMC6664428 DOI: 10.2147/cmar.s208983] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 06/07/2019] [Indexed: 12/25/2022] Open
Abstract
Purpose Increasing evidence has demonstrated that microRNAs (miRNAs) are closely related to the occurrence and development of tumors. MiR-216a-5p, located at 2p16.1, has been shown to suppress proliferation of cancerous cells. However, its expression and function in colorectal cancer (CRC) remain unclear. Materials and methods The significance of miR-216a-5p in CRC was studied by analyzing miR-216a-5p expression in CRC tissues and its association with clinicopathological parameters. CRC cells, stably overexpressing miR-216a-5p, were evaluated for cell proliferation and metastasis using cell counting kit-8 (CCK-8) and transwell assay methods. Epithelial–mesenchymal transition (EMT) pathway was analyzed by Western blotting. Bioinformatics, quantitative real-time polymerase chain reaction (RT-qPCR), and luciferase reporter assay were performed to define the regulation of PVT1/miR-216a-5p/Y Box Binding Protein 1 (YBX1) axis in CRC. Results The expression of miR-216a-5p was found to be significantly downregulated in CRC and was correlated with the various stages and differentiation degree of the tumors. Moreover, the overexpression of miR-216a-5p could significantly inhibit the tumor growth, metastasis, and EMT progression in CRC. Furthermore, the expression of miR-216a-5p was negatively correlated with the expression of PVT1, and PVT1 could reverse tumor suppressive effect of miR-216a-5p in CRC cells. Finally, YBX1 might be the key target of PVT1/miR-216a-5p axis in CRC. Conclusion Downregulation of miR-216a-5p by PVT1 could suppress CRC progression via modulating YBX1 expression.
Collapse
Affiliation(s)
- Xiang Zeng
- Gastrointesitinal Oncosurgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Yan Liu
- Clinical Laboratory, Guangdong Women's and Children's Hospital, Guangzhou, People's Republic of China
| | - Hongquan Zhu
- Gastrointesitinal Oncosurgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Di Chen
- Gastrointesitinal Oncosurgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Weimin Hu
- Gastrointesitinal Oncosurgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
39
|
Ye J, Tan L, Fu Y, Xu H, Wen L, Deng Y, Liu K. LncRNA SNHG15 promotes hepatocellular carcinoma progression by sponging miR-141-3p. J Cell Biochem 2019; 120:19775-19783. [PMID: 31310393 DOI: 10.1002/jcb.29283] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 06/13/2019] [Indexed: 01/01/2023]
Abstract
Small nucleolar RNA host gene 15 (SNHG15) is a long noncoding RNA (lncRNA), which promotes progression of multiple cancers. Its specific function in hepatocellular carcinoma (HCC), however, is uncertain. The aims of our study were, therefore, to explore the role of SNHG15 in HCC. SNHG15 and miR-141-3p expression were assessed via quantitative real-time PCR (qRT-PCR) in 58 paired HCC samples and adjacent matched adjacent normal tissues. CCK-8 assay, flow cytometric examination, and wound healing/invasion assays were used to respectively assess how SNHG15 influences cell proliferation, the cell cycle, and the migratory and invasive potential of HCC cells. MicroRNA (miRNAs) that targeted SNHG15 was screened by Starbase2.0 and identified by RNA immunoprecipitation and luciferase reporter assays. SNHG15 expression was markedly increased, whereas miR-141-3p expression was substantially reduced in HCC cells and tissue samples relative to normal controls. When SNHG15 was knocked down, this resulted in a significant disruption to the proliferation, as well as the invasive and migratory ability of these HCC cells. miR-141-3p was also found to be an SNHG15 target in HCC cells. Furthermore, miR-141-3p inhibitor partially reversed the observed SNHG15 depletion-mediated reduction in HCC proliferation, migration, and invasion. By repressing miR-141-3p, SNHG15 could modulate zinc finger E-box binding homeobox 2 (ZEB2) and E2F transcription factor 3 (E2F3) expression, both of which are miR-141-3p targets. These finding suggested that SNHG15 promoted HCC progression via negative regulation of miR-141-3p, thus identifying a potential novel HCC treatment pathway.
Collapse
Affiliation(s)
- Junfeng Ye
- Department of Hepatopancreatobiliary Surgery, The First Hospital of Jilin University, Changchun, Jilin, P.R. China
| | - Ludong Tan
- Department of Hepatopancreatobiliary Surgery, The First Hospital of Jilin University, Changchun, Jilin, P.R. China
| | - Yu Fu
- Department of Hepatopancreatobiliary Surgery, The First Hospital of Jilin University, Changchun, Jilin, P.R. China
| | - Hongji Xu
- Department of Hepatopancreatobiliary Surgery, The First Hospital of Jilin University, Changchun, Jilin, P.R. China
| | - Lijia Wen
- Department of Hepatopancreatobiliary Surgery, The First Hospital of Jilin University, Changchun, Jilin, P.R. China
| | - Yu Deng
- Department of Hepatopancreatobiliary Surgery, The First Hospital of Jilin University, Changchun, Jilin, P.R. China
| | - Kai Liu
- Department of Hepatopancreatobiliary Surgery, The First Hospital of Jilin University, Changchun, Jilin, P.R. China
| |
Collapse
|
40
|
Xiao J, Yu H, Ma Z. LINC00339 promotes growth and invasiveness of hepatocellular carcinoma by the miR-1182/SKA1 pathway. Onco Targets Ther 2019; 12:4481-4488. [PMID: 31239716 PMCID: PMC6559240 DOI: 10.2147/ott.s207397] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 05/01/2019] [Indexed: 12/12/2022] Open
Abstract
Background: Extensive research has shown that long noncoding RNA (lncRNA) is involved in tumorigenesis, including hepatocellular carcinoma (HCC). The lncRNA LINC00339 was reported to regulate the development of lung cancer or breast cancer. However, whether LINC00339 participates in HCC progression remains unclear. Here, our results showed that LINC00339 was upregulated in HCC. Methods: qRT-PCR and in situ hybridization (ISH) was used to analyze LINC00339 expression in tumor tissues and cell lines. CCK8 and colony formation assays were used to analyze cell proliferation. Transwell assay was used to analyze cell migration and invasion. Xenograft experiment was used to test tumor growth in vivo. Results: LINC00339 overexpression was correlated with an advanced stage, metastasis, and bad prognosis in HCC patients. Functional investigation showed that LINC00339 knockdown significantly suppressed HCC cell proliferation, migration, and invasion. Moreover, decreased LINC00339 expression inhibited HCC growth in vivo. Mechanistically, LINC00339 could interact with miR-1182 to promote SKA1 expression. We also demonstrated that SKA1 acted as an oncogene and SKA1 upregulation reversed the effect of LINC00339 silencing. Conclusion: Our results illustrated that the LINC00339/miR-1182/SKA1 axis plays an essential role in HCC progression.
Collapse
Affiliation(s)
- Jun Xiao
- Department of Hepatobiliary Surgery, Wenzhou Central Hospital, Wenzhou 325000, People's Republic of China
| | - Haibo Yu
- Department of Hepatobiliary Surgery, Wenzhou Central Hospital, Wenzhou 325000, People's Republic of China
| | - Zhongwu Ma
- Department of Hepatobiliary Surgery, Wenzhou Central Hospital, Wenzhou 325000, People's Republic of China
| |
Collapse
|