1
|
Chen S, Wu S, Lin B. The potential therapeutic value of the natural plant compounds matrine and oxymatrine in cardiovascular diseases. Front Cardiovasc Med 2024; 11:1417672. [PMID: 39041001 PMCID: PMC11260750 DOI: 10.3389/fcvm.2024.1417672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/17/2024] [Indexed: 07/24/2024] Open
Abstract
Matrine (MT) and Oxymatrine (OMT) are two natural alkaloids derived from plants. These bioactive compounds are notable for their diverse pharmacological effects and have been extensively studied and recognized in the treatment of cardiovascular diseases in recent years. The cardioprotective effects of MT and OMT involve multiple aspects, primarily including antioxidative stress, anti-inflammatory actions, anti-atherosclerosis, restoration of vascular function, and inhibition of cardiac remodeling and failure. Clinical pharmacology research has identified numerous novel molecular mechanisms of OMT and MT, such as JAK/STAT, Nrf2/HO-1, PI3 K/AKT, TGF-β1/Smad, and Notch pathways, providing new evidence supporting their promising therapeutic potential against cardiovascular diseases. Thus, this review aims to investigate the potential applications of MT and OMT in treating cardiovascular diseases, encompassing their mechanisms, efficacy, and safety, confirming their promise as lead compounds in anti-cardiovascular disease drug development.
Collapse
Affiliation(s)
| | | | - Bin Lin
- Department of Cardiovascular Medicine, Wenzhou Central Hospital, Wenzhou, China
| |
Collapse
|
2
|
Liu F, Zhao L, Wu T, Yu W, Li J, Wang W, Huang C, Diao Z, Xu Y. Targeting autophagy with natural products as a potential therapeutic approach for diabetic microangiopathy. Front Pharmacol 2024; 15:1364616. [PMID: 38659578 PMCID: PMC11039818 DOI: 10.3389/fphar.2024.1364616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/26/2024] [Indexed: 04/26/2024] Open
Abstract
As the quality of life improves, the incidence of diabetes mellitus and its microvascular complications (DMC) continues to increase, posing a threat to people's health and wellbeing. Given the limitations of existing treatment, there is an urgent need for novel approaches to prevent and treat DMC. Autophagy, a pivotal mechanism governing metabolic regulation in organisms, facilitates the removal of dysfunctional proteins and organelles, thereby sustaining cellular homeostasis and energy generation. Anomalous states in pancreatic β-cells, podocytes, Müller cells, cardiomyocytes, and Schwann cells in DMC are closely linked to autophagic dysregulation. Natural products have the property of being multi-targeted and can affect autophagy and hence DMC progression in terms of nutrient perception, oxidative stress, endoplasmic reticulum stress, inflammation, and apoptosis. This review consolidates recent advancements in understanding DMC pathogenesis via autophagy and proposes novel perspectives on treating DMC by either stimulating or inhibiting autophagy using natural products.
Collapse
Affiliation(s)
- Fengzhao Liu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lijuan Zhao
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tao Wu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wenfei Yu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jixin Li
- Xi yuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wenru Wang
- Xi yuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chengcheng Huang
- Department of Endocrinology, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, China
| | - Zhihao Diao
- College of Acupuncture and Massage, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yunsheng Xu
- Department of Endocrinology, Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
3
|
Ao L, Chen Z, Yin J, Leng Y, Luo Y, Fu X, Liu H, Liu X, Gao H, Xie C. Chinese herbal medicine and active ingredients for diabetic cardiomyopathy: molecular mechanisms regulating endoplasmic reticulum stress. Front Pharmacol 2023; 14:1290023. [PMID: 38027018 PMCID: PMC10661377 DOI: 10.3389/fphar.2023.1290023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Background: Diabetic cardiomyopathy (DCM) is one of the serious microvascular complications of diabetes mellitus. It is often associated with clinical manifestations such as arrhythmias and heart failure, and significantly reduces the quality of life and years of survival of patients. Endoplasmic reticulum stress (ERS) is the removal of unfolded and misfolded proteins and is an important mechanism for the maintenance of cellular homeostasis. ERS plays an important role in the pathogenesis of DCM by causing cardiomyocyte apoptosis, insulin resistance, calcium imbalance, myocardial hypertrophy and fibrosis. Targeting ERS is a new direction in the treatment of DCM. A large number of studies have shown that Chinese herbal medicine and active ingredients can significantly improve the clinical outcome of DCM patients through intervention in ERS and effects on myocardial structure and function, which has become one of the hot research directions. Purpose: The aim of this review is to elucidate and summarize the roles and mechanisms of Chinese herbal medicine and active ingredients that have the potential to modulate endoplasmic reticulum stress, thereby contributing to better management of DCM. Methods: Databases such as PubMed, Web of Science, China National Knowledge Internet, and Wanfang Data Knowledge Service Platform were used to search, analyze, and collect literature, in order to review the mechanisms by which phytochemicals inhibit the progression of DCM by targeting the ERS and its key signaling pathways. Keywords used included "diabetic cardiomyopathy" and "endoplasmic reticulum stress." Results: This review found that Chinese herbs and their active ingredients can regulate ERS through IRE1, ATF6, and PERK pathways to reduce cardiomyocyte apoptosis, ameliorate myocardial fibrosis, and attenuate myocardial hypertrophy for the treatment of DCM. Conclusion: A comprehensive source of information on potential ERS inhibitors is provided in this review. The analysis of the literature suggests that Chinese herbal medicine and its active ingredients can be used as potential drug candidates for the treatment of DCM. In short, we cannot ignore the role of traditional Chinese medicine in regulating ERS and treating DCM, and look forward to more research and new drugs to come.
Collapse
Affiliation(s)
- Lianjun Ao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zhengtao Chen
- Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Jiacheng Yin
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yulin Leng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yue Luo
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xiaoxu Fu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hanyu Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xiaoke Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hong Gao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chunguang Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
4
|
Wu S, Lu D, Gajendran B, Hu Q, Zhang J, Wang S, Han M, Xu Y, Shen X. Tanshinone IIA ameliorates experimental diabetic cardiomyopathy by inhibiting endoplasmic reticulum stress in cardiomyocytes via SIRT1. Phytother Res 2023; 37:3543-3558. [PMID: 37128721 DOI: 10.1002/ptr.7831] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 05/03/2023]
Abstract
Diabetic cardiomyopathy (DCM) is a common complication in patients with diabetes, and ultimately leads to heart failure. Endoplasmic reticulum stress (ERS) induced by abnormal glycolipid metabolism is a critical factor that affects the occurrence and development of DCM. Additionally, the upregulation/activation of silent information regulation 2 homolog-1 (SIRT1) has been shown to protect against DCM. Tanshinone II A (Tan IIA), the main active component of Salviae miltiorrhizae radix et rhizome (a valuable Chinese medicine), has protective effects against cardiovascular disease and diabetes. However, its role and mechanisms in diabetes-induced cardiac dysfunction remain unclear. Therefore, we explored whether Tan IIA alleviates ERS-mediated DCM via SIRT1 and elucidated the underlying mechanism. The results suggested that Tan IIA alleviated the pathological changes in the hearts of diabetic mice, ameliorated the cytopathological morphology of cardiomyocytes, reduced the cell death rate, and inhibited the expression of ERS-related proteins and mRNA. The SIRT1 agonist inhibited the activities of glucose-regulated protein 78 (GRP78). Furthermore, the opposite results under the SIRT1 inhibitor. SIRT1 knockdown was induced by siRNA-SIRT1 transfection, and the degree of GRP78 acetylation was increased. Cumulatively, Tan IIA ameliorated DCM by inhibiting ERS and upregulating SIRT1 expression.
Collapse
Affiliation(s)
- Shun Wu
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources (The Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Dingchun Lu
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources (The Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
- The Department of Pharmacology, College of Basic Medical Sciences of Guizhou Medical University, Guiyang, China
| | - Babu Gajendran
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources (The Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Qilan Hu
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources (The Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Jian Zhang
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources (The Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Shengquan Wang
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources (The Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Minzhen Han
- The Department of Pharmacy, The Second Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Yini Xu
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources (The Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Xiangchun Shen
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources (The Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
- The Department of Pharmacology, College of Basic Medical Sciences of Guizhou Medical University, Guiyang, China
- The Key Laboratory of Endemic and Ethnic Diseases of Ministry of Education, Guizhou Medical University, Guiyang, China
| |
Collapse
|
5
|
Sun K, Zhang Y, Li Y, Yang P, Sun Y. Biochemical Targets and Molecular Mechanism of Matrine against Aging. Int J Mol Sci 2023; 24:10098. [PMID: 37373246 DOI: 10.3390/ijms241210098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/28/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
The aim of this study is to explore the potential targets and molecular mechanism of matrine (MAT) against aging. Bioinformatic-based network pharmacology was used to investigate the aging-related targets and MAT-treated targets. A total of 193 potential genes of MAT against aging were obtained and then the top 10 key genes (cyclin D1, cyclin-dependent kinase 1, Cyclin A2, androgen receptor, Poly [ADP-ribose] polymerase-1 (PARP1), histone-lysine N-methyltransferase, albumin, mammalian target of rapamycin, histone deacetylase 2, and matrix metalloproteinase 9) were filtered by the molecular complex detection, maximal clique centrality (MMC) algorithm, and degree. The Metascape tool was used for analyzing biological processes and pathways of the top 10 key genes. The main biological processes were response to an inorganic substance and cellular response to chemical stress (including cellular response to oxidative stress). The major pathways were involved in cellular senescence and the cell cycle. After an analysis of major biological processes and pathways, it appears that PARP1/nicotinamide adenine dinucleotide (NAD+)-mediated cellular senescence may play an important role in MAT against aging. Molecular docking, molecular dynamics simulation, and in vivo study were used for further investigation. MAT could interact with the cavity of the PARP1 protein with the binding energy at -8.5 kcal/mol. Results from molecular dynamics simulations showed that the PARP1-MAT complex was more stable than PARP1 alone and that the binding-free energy of the PARP1-MAT complex was -15.962 kcal/mol. The in vivo study showed that MAT could significantly increase the NAD+ level of the liver of d-gal-induced aging mice. Therefore, MAT could interfere with aging through the PARP1/NAD+-mediated cellular senescence signaling pathway.
Collapse
Affiliation(s)
- Kaiyue Sun
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
| | - Yingzi Zhang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
| | - Yingliang Li
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
| | - Pengyu Yang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
| | - Yingting Sun
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
| |
Collapse
|
6
|
Lin Y, He F, Wu L, Xu Y, Du Q. Matrine Exerts Pharmacological Effects Through Multiple Signaling Pathways: A Comprehensive Review. Drug Des Devel Ther 2022; 16:533-569. [PMID: 35256842 PMCID: PMC8898013 DOI: 10.2147/dddt.s349678] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/03/2022] [Indexed: 12/16/2022] Open
Abstract
As The main effective monomer of the traditional Chinese medicine Sophora flavescens Ait, matrine has a broad scope of pharmacological activities such as anti-tumor, anti-inflammatory, analgesic, anti-fibrotic, anti-viral, anti-arrhythmia, and improving immune function. These actions explain its therapeutic effects in various types of tumors, cardiopathy, encephalomyelitis, allergic asthma, rheumatoid arthritis (RA), osteoporosis, and central nervous system (CNS) inflammation. Evidence has shown that the mechanism responsible for the pharmacological actions of matrine may be via the activation or inhibition of certain key molecules in several cellular signaling pathways including the phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR), transforming growth factor-β/mothers against decapentaplegic homolog (TGF-β/Smad), nuclear factor kappa B (NF-κB), Wnt (wingless/ integration 1)/β-catenin, mitogen-activated protein kinases (MAPKs), and Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathways. This review comprehensively summarizes recent studies on the pharmacological mechanisms of matrine to provide a theoretical basis for molecular targeted therapies and further development and utilization of matrine.
Collapse
Affiliation(s)
- Yingda Lin
- Department of Pharmacy, the Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225012, People's Republic of China.,Medical College, Yangzhou University, Yangzhou, 225001, People's Republic of China
| | - Fuming He
- Medical College, Yangzhou University, Yangzhou, 225001, People's Republic of China
| | - Ling Wu
- Department of Pharmacy, the Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225012, People's Republic of China
| | - Yuan Xu
- Department of Pharmacy, the Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225012, People's Republic of China
| | - Qiu Du
- Department of Neurosurgery, the Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225012, People's Republic of China.,Department of Central Laboratory, the Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225012, People's Republic of China
| |
Collapse
|
7
|
Sun XY, Jia LY, Rong Z, Zhou X, Cao LQ, Li AH, Guo M, Jin J, Wang YD, Huang L, Li YH, He ZJ, Li L, Ma RK, Lv YF, Shao KK, Zhang J, Cao HL. Research Advances on Matrine. Front Chem 2022; 10:867318. [PMID: 35433636 PMCID: PMC9010661 DOI: 10.3389/fchem.2022.867318] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/22/2022] [Indexed: 11/13/2022] Open
Abstract
Matrine is an alkaloid extracted from traditional Chinese herbs including Sophora flavescentis, Sophora alopecuroides, Sophora root, etc. It has the dual advantages of traditional Chinese herbs and chemotherapy drugs. It exhibits distinct benefits in preventing and improving chronic diseases such as cardiovascular disease and tumors. The review introduced recent research progresses on extraction, synthesis and derivatization of Matrine. The summary focused on the latest research advances of Matrine on anti-atherosclerosis, anti-hypertension, anti-ischemia reperfusion injury, anti-arrhythmia, anti-diabetic cardiovascular complications, anti-tumor, anti-inflammatory, anti-bacterium, anti-virus, which would provide new core structures and new insights for new drug development in related fields.
Collapse
Affiliation(s)
- Xiao-Ying Sun
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Li-Yi Jia
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Zheng Rong
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Xin Zhou
- Xi’an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
| | - Lu-Qi Cao
- Xi’an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
| | - Ai-Hong Li
- Shaanxi Key Laboratory of Chinese Herb and Natural Drug Development, Medicine Research Institute, Shaanxi Pharmaceutical Holding Group Co., LTD, Xi’an, China
| | - Meng Guo
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Jie Jin
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Yin-Di Wang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Ling Huang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Yi-Heng Li
- College of Life Sciences, Northwest University, Xi’an, China
| | - Zhong-Jing He
- College of Life Sciences, Northwest University, Xi’an, China
| | - Long Li
- Xi’an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
| | - Rui-Kang Ma
- Xi’an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
| | - Yi-Fan Lv
- Xi’an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
| | - Ke-Ke Shao
- Xi’an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
| | - Juan Zhang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
- *Correspondence: Juan Zhang, ; Hui-Ling Cao,
| | - Hui-Ling Cao
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
- Xi’an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
- Shaanxi Key Laboratory of Chinese Herb and Natural Drug Development, Medicine Research Institute, Shaanxi Pharmaceutical Holding Group Co., LTD, Xi’an, China
- College of Life Sciences, Northwest University, Xi’an, China
- *Correspondence: Juan Zhang, ; Hui-Ling Cao,
| |
Collapse
|
8
|
Zhang R, Liao W, Wu K, Hua L, Wu M, Li C, Cai F. Matrine alleviates spatial learning and memory impairment in diabetic mice by inhibiting endoplasmic reticulum stress and through modulation of PK2/PKRs pathway. Neurochem Int 2022; 154:105289. [PMID: 35074478 DOI: 10.1016/j.neuint.2022.105289] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 01/05/2022] [Accepted: 01/11/2022] [Indexed: 12/20/2022]
Abstract
Clinical and epidemiological studies indicate that diabetic cognitive impairment often occurs in diabetes mellitus patients. Matrine (Mat), an active component of Sophora flavescens Ait root extracts, has widely pharmacological activities including anti-tumor, anti-diabetes, cardioprotective and neuroprotective effects. The present study was designed to elucidate the possibly neuroprotective effects of Mat against diabetic spatial learning and memory impairment caused by high-fat diet and streptozotocin injection in mice. The results showed that Mat treatment significantly ameliorated fasting blood glucose level, impaired glucose tolerance, and lipid metabolism disorder in diabetic mice. In addition, diabetic mice exhibited spatial learning and memory impairment in the Morris water maze test, which could be attenuated by Mat treatment. Moreover, administration of Mat remarkably alleviated histological damage in diabetic hippocampus. Also, further investigations showed that Mat treatment abated endoplasmic reticulum stress induced hippocampal ultra-structure injury as evidenced by increasing the numbers of rough endoplasmic reticulum and mitochondria, as well as down-regulating endoplasmic reticulum stress related protein levels (GRP78, CHOP, ATF6 and Caspase-12). Furthermore, administration of Mat enhanced hippocampal protein expressions of PK2, PKR1 and PKR2, which decreased significantly in diabetic mice. Collectively, these findings suggested that Mat could ameliorate diabetes-induced spatial learning and memory impairment, possibly by alleviating ER stress, and partly through modulation of PK2/PKRs pathway.
Collapse
Affiliation(s)
- Ruyi Zhang
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, 437100, China
| | - Wenli Liao
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, 437100, China; Basic Medical School, Hubei University of Science and Technology, Xianning, 437100, China
| | - Ke Wu
- School of Health Sciences, Wuhan University, Wuhan, 430071, China
| | - Liangliang Hua
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, 437100, China
| | - Mengyu Wu
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, 437100, China
| | - Cairong Li
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, 437100, China; Clinical Medical School, Hubei University of Science and Technology, Xianning, 437100, China.
| | - Fei Cai
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, 437100, China.
| |
Collapse
|
9
|
Li X, Tang Z, Wen L, Jiang C, Feng Q. Matrine: A review of its pharmacology, pharmacokinetics, toxicity, clinical application and preparation researches. JOURNAL OF ETHNOPHARMACOLOGY 2021; 269:113682. [PMID: 33307055 DOI: 10.1016/j.jep.2020.113682] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 11/11/2020] [Accepted: 12/05/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE "Dogel ebs" was known as Sophora flavescens Ait., which has been widely utilized in the clinical practice of traditional Chinese Mongolian herbal medicine for thousands of years. Shen Nong's Materia Medica (Shen Nong Ben Cao Jing in Chinese pinyin) recorded that it is bitter in taste and cold in nature with the effect of clearing heat and eliminating dampness, insecticide, diuresis. Due to its extensive application in the fields of ethnopharmacological utilization, the pharmaceutical researches of Sophora flavescens Ait.s keeps deepening. Modern pharmacological studies have exhibited that matrine, which is rich in this traditional herbal medicine, mediates its main biological properties. AIMS OF THE REVIEW This review aimed at summarizing the latest and comprehensive information of matrine on the pharmacology, pharmacokinetics, toxicity, clinical application and preparation researches to explore the therapeutic potential of this natural ingredient. In addition, outlooks and perspective for possible future researches that related are also discussed. MATERIALS AND METHODS Related information concerning matrine was gathered from the internet database of Google scholar, Pubmed, ResearchGate, Web of Science and Wiley Online Library with the keywords including "matrine", "pharmacology", "toxicology" and "pharmacokinetics", "clinical application", etc. RESULTS: Based on literatures, matrine has a variety of pharmacological effects, including anti-cancer, anti-inflammatory, anti-microbial, detoxification and so on. Nevertheless, there are still some doubts about it due to the toxicity and questionable bioavailability that does exist. CONCLUSIONS Future researches directions probably include elucidate the mechanism of its toxicity and accurately tracing the in vivo behavior of its drug delivery system. Without doubt, integration of toxicity and efficiency and structure modification based on it are also pivotal methods to enhance pharmacological activity and bioavailability.
Collapse
Affiliation(s)
- Xia Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Ziwei Tang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China; Beibei Traditional Chinese Medical Hospital, Chongqing, 400700, China
| | - Li Wen
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Cen Jiang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Quansheng Feng
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
10
|
Guo S, Yan T, Shi L, Liu A, Zhang T, Xu Y, Jiang W, Yang Q, Yang L, Liu L, Zhao R, Zhang S. Matrine, as a CaSR agonist promotes intestinal GLP-1 secretion and improves insulin resistance in diabetes mellitus. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 84:153507. [PMID: 33636577 DOI: 10.1016/j.phymed.2021.153507] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/02/2021] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Matrine (Mat), a bitter tastes compounds of derived from leguminosae such as Sophora flavescens and S. subprostrata, commonly used to improve obesity and diabetes. PURPOSE Our study to demonstrate bitter substances can stimulate the Bitter taste receptors (TAS2Rs) or Calcium-sensing receptor (CaSR) to stimulate the secretion of GLP-1 to promote blood glucose regulation. METHODS The diabetic mice and intestinal secretory cell model were established to evaluate the Mat on glucose metabolism, intestinal insulin secretion and GLP-1 secretion related substances. To clarify the mechanism of Mat in regulating GLP-1 secretion by immunofluorescence, calcium labeling, siRNA, and molecular docking. RESULTS The results showed that Mat could significantly improve glucose metabolism and increased insulin and GLP-1 secretion in diabetic mice and increased trisphosphate inositol (IP3) levels by affecting the expression of phospholipase C β2 (PLCβ2) and promote an increase in intracellular Ca2+ levels in STC-1 cells to subsequently stimulate the secretion of GLP-1. Knockdown of the bitter taste receptors mTas2r108, mTas2r137, and mTas2r138 in STC-1 cells by siRNA did could not affect the role of Mat in regulating GLP-1. However, the secretion of GLP-1 by Mat could be significantly inhibited by administration of a CaSR inhibitor or siRNA CaSR. Molecular docking analysis showed that Mat could embed CaSR protein and bind to the original ligand of the egg white at the same amino acid site to play the role of an agonist. CONCLUSION Matrine is a typical bitter alkaloid could be used as an agonist of CaSR to stimulate the secretion of GLP-1 in the intestine, and it may be used as a potential drug for diabetes treatment.
Collapse
Affiliation(s)
- Shun Guo
- Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, Xi'an, 710038, PR China
| | - Tao Yan
- Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, Xi'an, 710038, PR China
| | - Lei Shi
- Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, Xi'an, 710038, PR China
| | - An Liu
- Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, Xi'an, 710038, PR China
| | - Tian Zhang
- Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, Xi'an, 710038, PR China
| | - Yuan Xu
- Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, Xi'an, 710038, PR China
| | - Wei Jiang
- Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, Xi'an, 710038, PR China
| | - Qi Yang
- Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, Xi'an, 710038, PR China
| | - Le Yang
- Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, Xi'an, 710038, PR China
| | - Linna Liu
- Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, Xi'an, 710038, PR China..
| | - Rong Zhao
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Air Force Medical University, Xi'an 710032, PR China..
| | - Song Zhang
- Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, Xi'an, 710038, PR China..
| |
Collapse
|
11
|
Kaur N, Raja R, Ruiz-Velasco A, Liu W. Cellular Protein Quality Control in Diabetic Cardiomyopathy: From Bench to Bedside. Front Cardiovasc Med 2020; 7:585309. [PMID: 33195472 PMCID: PMC7593653 DOI: 10.3389/fcvm.2020.585309] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/09/2020] [Indexed: 12/14/2022] Open
Abstract
Heart failure is a serious comorbidity and the most common cause of mortality in diabetes patients. Diabetic cardiomyopathy (DCM) features impaired cellular structure and function, culminating in heart failure; however, there is a dearth of specific clinical therapy for treating DCM. Protein homeostasis is pivotal for the maintenance of cellular viability under physiological and pathological conditions, particularly in the irreplaceable cardiomyocytes; therefore, it is tightly regulated by a protein quality control (PQC) system. Three evolutionarily conserved molecular processes, the unfolded protein response (UPR), the ubiquitin-proteasome system (UPS), and autophagy, enhance protein turnover and preserve protein homeostasis by suppressing protein translation, degrading misfolded or unfolded proteins in cytosol or organelles, disposing of damaged and toxic proteins, recycling essential amino acids, and eliminating insoluble protein aggregates. In response to increased cellular protein demand under pathological insults, including the diabetic condition, a coordinated PQC system retains cardiac protein homeostasis and heart performance, on the contrary, inappropriate PQC function exaggerates cardiac proteotoxicity with subsequent heart dysfunction. Further investigation of the PQC mechanisms in diabetes propels a more comprehensive understanding of the molecular pathogenesis of DCM and opens new prospective treatment strategies for heart disease and heart failure in diabetes patients. In this review, the function and regulation of cardiac PQC machinery in diabetes mellitus, and the therapeutic potential for the diabetic heart are discussed.
Collapse
Affiliation(s)
- Namrita Kaur
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester, United Kingdom
| | - Rida Raja
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester, United Kingdom
| | - Andrea Ruiz-Velasco
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester, United Kingdom
| | - Wei Liu
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
12
|
Chen Y, Hua Y, Li X, Arslan IM, Zhang W, Meng G. Distinct Types of Cell Death and the Implication in Diabetic Cardiomyopathy. Front Pharmacol 2020; 11:42. [PMID: 32116717 PMCID: PMC7018666 DOI: 10.3389/fphar.2020.00042] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 01/14/2020] [Indexed: 12/11/2022] Open
Abstract
Diabetic cardiomyopathy (DCM) is a chronic complication of diabetes mellitus, characterized by abnormalities of myocardial structure and function. Researches on the models of type 1 and type 2 diabetes mellitus as well as the application of genetic engineering technology help in understanding the molecular mechanism of DCM. DCM has multiple hallmarks, including hyperglycemia, insulin resistance, increased free radical production, lipid peroxidation, mitochondrial dysfunction, endothelial dysfunction, and cell death. Essentially, cell death is considered to be the terminal pathway of cardiomyocytes during DCM. Morphologically, cell death can be classified into four different forms: apoptosis, autophagy, necrosis, and entosis. Apoptosis, as type I cell death, is the fastest form of cell death and mainly occurs depending on the caspase proteolytic cascade. Autophagy, as type II cell death, is a degradation process to remove damaged proteins, dysfunctional organelles and commences by the formation of autophagosome. Necrosis is type III cell death, which contains a great diversity of cell death processes, such as necroptosis and pyroptosis. Entosis is type IV cell death, displaying “cell-in-cell” cytological features and requires the engulfing cells to execute. There are also some other types of cell death such as ferroptosis, parthanatos, netotic cell death, lysosomal dependent cell death, alkaliptosis or oxeiptosis, which are possibly involved in DCM. Drugs or compounds targeting the signals involved in cell death have been used in clinics or experiments to treat DCM. This review briefly summarizes the mechanisms and implications of cell death in DCM, which is beneficial to improve the understanding of cell death in DCM and may propose novel and ideal strategies in future.
Collapse
Affiliation(s)
- Yun Chen
- Department of Pharmacology, School of Pharmacy, Nantong University, Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, Nantong, China.,School of Medicine, Nantong University, Nantong, China
| | - Yuyun Hua
- Department of Pharmacology, School of Pharmacy, Nantong University, Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, Nantong, China
| | - Xinshuai Li
- Department of Pharmacology, School of Pharmacy, Nantong University, Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, Nantong, China
| | | | - Wei Zhang
- Department of Pharmacology, School of Pharmacy, Nantong University, Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, Nantong, China
| | - Guoliang Meng
- Department of Pharmacology, School of Pharmacy, Nantong University, Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, Nantong, China.,School of Medicine, Nantong University, Nantong, China
| |
Collapse
|
13
|
Kolpakov MA, Sikder K, Sarkar A, Chaki S, Shukla SK, Guo X, Qi Z, Barbery C, Sabri A, Rafiq K. Inflammatory Serine Proteases Play a Critical Role in the Early Pathogenesis of Diabetic Cardiomyopathy. Cell Physiol Biochem 2019; 53:982-998. [PMID: 31829530 PMCID: PMC6956403 DOI: 10.33594/000000190] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2019] [Indexed: 12/13/2022] Open
Abstract
Background/Aims: Diabetic cardiomyopathy (DCM) is characterized by structural and functional alterations that can lead to heart failure. Several mechanisms are known to be involved in the pathogenesis of DCM, however, the molecular mechanism that links inflammation to DCM is incompletely understood. To learn about this mechanism, we investigated the role of inflammatory serine proteases (ISPs) during the development of DCM. Methods: Eight weeks old mice with deletion of dipeptidyl peptidase I (DPPI), an enzyme involved in the maturation of major ISPs, and wild type (WT) mice controls were injected with streptozotocin (50 mg/kg for 5 days intraperitoneally) and studied after 4, 8, 16, and 20 week after induction of type 1 diabetes mellitus (T1DM). Induction of diabetes was followed by echocardiographic measurements, glycemic and hemoglobulin A1c profiling, immunoblot, qPCR, enzyme activity assays, and immunohistochemistry (IHC) analysis of DPPI, ISPs, and inflammatory markers. Fibrosis was determined from left ventricular heart by Serius Red staining and qPCR. Apoptosis was determined by TUNEL assay and immunoblot analysis. Results: In the diabetic WT mice, DPPI expression increased along with ISP activation, and DPPI accumulated abundantly in the left ventricle mainly from infiltrating neutrophils. In diabetic DPPI-knockout (DPPI-KO) mice, significantly decreased activation of ISPs, myocyte apoptosis, fibrosis, and cardiac function was improved compared to diabetic WT mice. In addition, DPPI-KO mice showed a decrease in overall inflammatory status mediated by diabetes induction which was manifested by decreased production of pro-inflammatory cytokines like TNF-α, IL-1β and IL-6. Conclusion: This study elucidates a novel role of ISPs in potentiating the immunological responses that lead to the pathogenesis of DCM in T1DM. To the best of our knowledge, this is the first study to report that DPPI expression and activation promotes the inflammation that enhances myocyte apoptosis and contributes to the adverse cardiac remodeling that subsequently leads to DCM.
Collapse
Affiliation(s)
- Mikhail A Kolpakov
- Cardiovascular Research Center and Department of Physiology, Temple University School of Medicine, Philadelphia, PA, USA
| | - Kunal Sikder
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Amrita Sarkar
- Department of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Shaswati Chaki
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Sanket K Shukla
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Xinji Guo
- Cardiovascular Research Center and Department of Physiology, Temple University School of Medicine, Philadelphia, PA, USA
| | - Zhao Qi
- Cardiovascular Research Center and Department of Physiology, Temple University School of Medicine, Philadelphia, PA, USA
| | - Carlos Barbery
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Abdelkarim Sabri
- Cardiovascular Research Center and Department of Physiology, Temple University School of Medicine, Philadelphia, PA, USA
| | - Khadija Rafiq
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA, USA,
| |
Collapse
|