1
|
Guidugli S, Villegas M, Benegas J, Donati I, Paoletti S. Solvation and expansion of neutral and charged chains of a carbohydrate polyelectrolyte: Galacturonan in water. A critical revisiting. Biophys Chem 2023; 295:106960. [PMID: 36806954 DOI: 10.1016/j.bpc.2023.106960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 02/05/2023]
Abstract
Experimental and theoretical data have been revisited to shed light onto the aspects of hydration and chain expansion of pectic acid (galacturonan) upon charging. The prediction of the variation of the number of solvation water molecules between the two limit ionization states from theoretical calculations was confirmed to a very high accuracy by the corresponding number evaluated form dilatometric measurements. The relevance of hydration to the mechanism of bonding of calcium ions by sodium pectate is discussed. Characterization of polymer expansion has been obtained by calculating the values of the characteristic ratio and/or the persistence length on the respective populations and comparing the theoretical predictions with experimental data. The results show that a charged chain in typical conditions of ionic strength is more expanded than its neutral counterpart, whereas the ideal limit (31 and 21) helical conformations in the uncharged and totally charged conditions, respectively, share the same value of the linear advance of the helical repeat, when the ionic strength tends to infinite. Total divergence between theoretical predictions and experimental evidence rules out the possibility that carboxylate charge reduction by protonation and by methyl esterification are equivalent in determining the solution behavior of galacturonan.
Collapse
Affiliation(s)
- Silvina Guidugli
- Instituto de Matemática Aplicada San Luis (IMASL), Departamento de Física, Universidad Nacional de San Luis, CONICET, Ejército De Los Andes 950, 5700 San Luis, Argentina
| | - Myriam Villegas
- Instituto de Matemática Aplicada San Luis (IMASL), Departamento de Física, Universidad Nacional de San Luis, CONICET, Ejército De Los Andes 950, 5700 San Luis, Argentina
| | - Julio Benegas
- Instituto de Matemática Aplicada San Luis (IMASL), Departamento de Física, Universidad Nacional de San Luis, CONICET, Ejército De Los Andes 950, 5700 San Luis, Argentina
| | - Ivan Donati
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, I-34127 Trieste, Italy.
| | - Sergio Paoletti
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, I-34127 Trieste, Italy
| |
Collapse
|
2
|
Conformational preferences of triantennary and tetraantennary hybrid N-glycans in aqueous solution: Insights from 20 μs long atomistic molecular dynamic simulations. J Biomol Struct Dyn 2022; 41:3305-3320. [PMID: 35262462 DOI: 10.1080/07391102.2022.2047109] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In the current study, we have investigated the conformational dynamics of a triantennary (N-glycan1) and tetraantennary (N-glycan2) hybrid N-glycans found on the surface of the HIV glycoprotein using 20 μs long all-atom molecular dynamics (MD) simulations. The main objective of the present study is to elucidate the influence of adding a complex branch on the overall glycan structural dynamics. Our investigation suggests that the average RMSD value increases when a complex branch is added to N-glycan1. However, the RMSD distribution is relatively wider in the case of N-glycan1 compared to N-glycan2, which indicates that multiple complex branches restrict the conformational variability of glycans. A similar observation is obtained from the principal component analysis of both glycans. All the puckering states (4C1 to 1C4) of each monosaccharide except mannose are sampled in our simulations, although the 4C1 chair form is energetically more favorable than 1C4. In N-glycan1, the 1-6 linkage in the mannose branch [Man(9)-α(1-6)-Man(5)] stays in the gauche-gauche cluster, whereas it moves towards trans-gauche in N-glycan2. For both glycans, mannose branches are more flexible than the complex branches, and adding a complex branch does not influence the dynamics of the mannose branches. We have noticed that the end-to-end distance of the complex branch shortens by ∼ 10 Å in the presence of another complex branch. This suggests that in the presence of an additional complex branch, the other complex branch adopts a close folded structure. All these conformational changes involve the selective formation of inter-residue and water-mediated hydrogen-bond networks.
Collapse
|
3
|
Gabrielli V, Baretta R, Pilot R, Ferrarini A, Frasconi M. Insights into the Gelation Mechanism of Metal-Coordinated Hydrogels by Paramagnetic NMR Spectroscopy and Molecular Dynamics. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c01756] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Valeria Gabrielli
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Roberto Baretta
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Roberto Pilot
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
- Consorzio INSTM, Via G. Giusti 9, I-50121 Firenze, Italy
| | - Alberta Ferrarini
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Marco Frasconi
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
4
|
Calabrese C, Écija P, Compañón I, Vallejo-López M, Cimas Á, Parra M, Basterretxea FJ, Santos JI, Jiménez-Barbero J, Lesarri A, Corzana F, Cocinero EJ. Conformational Behavior of d-Lyxose in Gas and Solution Phases by Rotational and NMR Spectroscopies. J Phys Chem Lett 2019; 10:3339-3345. [PMID: 31141365 DOI: 10.1021/acs.jpclett.9b00978] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Understanding the conformational preferences of carbohydrates is crucial to explain the interactions with their biological targets and to improve their use as therapeutic agents. We present experimental data resolving the conformational landscape of the monosaccharide d-lyxose, for which quantum mechanical (QM) calculations offer model-dependent results. This study compares the structural preferences in the gas phase, determined by rotational spectroscopy, with those in solution, resolved by nuclear magnetic resonance (NMR) and molecular dynamics (MD) simulations. In contrast to QM calculations, d-lyxose adopts only pyranose forms in the gas phase, with the α-anomer exhibiting both the 4C1 and 1C4 chairs (60:40). The predominantly populated β-anomer shows the 4C1 form exclusively, as determined experimentally by isotopic substitution. In aqueous solution, the pyranose forms are also dominant. However, in contrast to the gas phase, the α-anomer as 1C4 chair is the most populated, and its solvation is more effective than for the β derivative. Markedly, the main conformers found in the gas phase and solution are characterized by the lack of the stabilizing anomeric effect. From a mechanistic perspective, both rotational spectroscopy and solid-state nuclear magnetic resonance (NMR) corroborate that α ↔ β or furanose ↔ pyranose interconversions are prevented in the gas phase. Combining microwave (MW) and NMR results provides a powerful method for unraveling the water role in the conformational preferences of challenging molecules, such as flexible monosaccharides.
Collapse
Affiliation(s)
- Camilla Calabrese
- Departamento de Química Física, Facultad de Ciencia y Tecnología , Universidad del País Vasco (UPV/EHU) , 48080 Bilbao , Spain
- Instituto Biofisika (CSIC, UPV/EHU) , 48080 Bilbao , Spain
| | - Patricia Écija
- Departamento de Química Física, Facultad de Ciencia y Tecnología , Universidad del País Vasco (UPV/EHU) , 48080 Bilbao , Spain
| | - Ismael Compañón
- Departamento de Química, Centro de Investigación en Síntesis Química , Universidad de La Rioja , 26006 Logroño , Spain
| | - Montserrat Vallejo-López
- Departamento de Química Física, Facultad de Ciencia y Tecnología , Universidad del País Vasco (UPV/EHU) , 48080 Bilbao , Spain
| | - Álvaro Cimas
- Laboratoire Analyse et Modélisation pour la Biologie et l'Environnement, LAMBE UMR8587 , Université d'Évry val d'Essonne , 91025 Évry , France
| | - Maider Parra
- Departamento de Química Física, Facultad de Ciencia y Tecnología , Universidad del País Vasco (UPV/EHU) , 48080 Bilbao , Spain
- Instituto Biofisika (CSIC, UPV/EHU) , 48080 Bilbao , Spain
| | - Francisco J Basterretxea
- Departamento de Química Física, Facultad de Ciencia y Tecnología , Universidad del País Vasco (UPV/EHU) , 48080 Bilbao , Spain
| | - José I Santos
- SGIker UPV/EHU , Centro Joxe Mari Korta , Tolosa Hiribidea 72 , 20018 Donostia , Spain
| | - Jesús Jiménez-Barbero
- Departamento de Química Orgánica II, Facultad de Ciencia y Tecnología , Universidad del País Vasco (UPV/EHU) , 48080 Bilbao , Spain
- IKERBASQUE, Basque Foundation for Science , 48009 Bilbao , Spain
- Chemical Glycobiology Laboratory, CIC bioGUNE , Bizkaia Technology Park , Building 800, 48160 Derio , Spain
| | - Alberto Lesarri
- Departamento de Química Física y Química Inorgánica-IU CINQUIMA, Facultad de Ciencias , Universidad de Valladolid , 47011 Valladolid , Spain
| | - Francisco Corzana
- Departamento de Química, Centro de Investigación en Síntesis Química , Universidad de La Rioja , 26006 Logroño , Spain
| | - Emilio J Cocinero
- Departamento de Química Física, Facultad de Ciencia y Tecnología , Universidad del País Vasco (UPV/EHU) , 48080 Bilbao , Spain
- Instituto Biofisika (CSIC, UPV/EHU) , 48080 Bilbao , Spain
| |
Collapse
|
5
|
Gebhardt J, Kleist C, Jakobtorweihen S, Hansen N. Validation and Comparison of Force Fields for Native Cyclodextrins in Aqueous Solution. J Phys Chem B 2018; 122:1608-1626. [PMID: 29287148 DOI: 10.1021/acs.jpcb.7b11808] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Molecular dynamics simulations of native α-, β-, and γ-cyclodextrin in aqueous solution have been conducted with the goal to investigate the performance of the CHARMM36 force field, the AMBER-compatible q4md-CD force field, and five variants of the GROMOS force field. The properties analyzed are structural parameters derived from X-ray diffraction and NMR experiments as well as hydrogen bonds and hydration patterns, including hydration free enthalpies. Recent revisions of the torsional-angle parameters for carbohydrate systems within the GROMOS family of force fields lead to a significant improvement of the agreement between simulated and experimental NMR data. Therefore, we recommend using the variant 53A6GLYC instead of 53A6 and 56A6CARBO_R or 2016H66 instead of 56A6CARBO to simulate cyclodextrins in solution. The CHARMM36 and q4md-CD force fields show a similar performance as the three recommended GROMOS parameter sets. A significant difference is the more flexible nature of the cyclodextrins modeled with the CHARMM36 and q4md-CD force fields compared to the three recommended GROMOS parameter sets.
Collapse
Affiliation(s)
- Julia Gebhardt
- Institute of Thermodynamics and Thermal Process Engineering, University of Stuttgart , D-70569 Stuttgart, Germany
| | - Catharina Kleist
- Institute of Thermal Separation Processes, Hamburg University of Technology , D-21073 Hamburg, Germany
| | - Sven Jakobtorweihen
- Institute of Thermal Separation Processes, Hamburg University of Technology , D-21073 Hamburg, Germany
| | - Niels Hansen
- Institute of Thermodynamics and Thermal Process Engineering, University of Stuttgart , D-70569 Stuttgart, Germany
| |
Collapse
|
6
|
Borgohain G, Mandal B, Paul S. Molecular dynamics approach to understand the denaturing effect of a millimolar concentration of dodine on a λ-repressor and counteraction by trehalose. Phys Chem Chem Phys 2017; 19:13160-13171. [DOI: 10.1039/c6cp08289k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Here, we use a molecular dynamics approach to calculate the spatial distribution function of the ternary water–dodine–trehalose (1.0 M) system.
Collapse
Affiliation(s)
- Gargi Borgohain
- Department of Chemistry
- Indian Institute of Technology
- Guwahati
- India
| | | | - Sandip Paul
- Department of Chemistry
- Indian Institute of Technology
- Guwahati
- India
| |
Collapse
|
7
|
Structural characterization and anti-hypoxia activity of an exopolysaccharide isolated from fermentation broth of Lachnum sp. Process Biochem 2016. [DOI: 10.1016/j.procbio.2016.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
8
|
Paul S, Paul S. Influence of temperature on the solvation of N-methylacetamide in aqueous trehalose solution: A molecular dynamics simulation study. J Mol Liq 2015. [DOI: 10.1016/j.molliq.2015.08.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Paul S, Paul S. Investigating the Counteracting Effect of Trehalose on Urea-Induced Protein Denaturation Using Molecular Dynamics Simulation. J Phys Chem B 2015; 119:10975-88. [DOI: 10.1021/acs.jpcb.5b01457] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Subrata Paul
- Department
of Chemistry, Indian Institute of Technology, Guwahati, Assam India-781039
| | - Sandip Paul
- Department
of Chemistry, Indian Institute of Technology, Guwahati, Assam India-781039
| |
Collapse
|
10
|
Paul S, Paul S. Exploring the Counteracting Mechanism of Trehalose on Urea Conferred Protein Denaturation: A Molecular Dynamics Simulation Study. J Phys Chem B 2015; 119:9820-34. [DOI: 10.1021/acs.jpcb.5b01576] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Subrata Paul
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam, India-781039
| | - Sandip Paul
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam, India-781039
| |
Collapse
|
11
|
Arnautova Y, Abagyan R, Totrov M. All-Atom Internal Coordinate Mechanics (ICM) Force Field for Hexopyranoses and Glycoproteins. J Chem Theory Comput 2015; 11:2167-2186. [PMID: 25999804 PMCID: PMC4431507 DOI: 10.1021/ct501138c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Indexed: 01/24/2023]
Abstract
We present an extension of the all-atom internal-coordinate force field, ICMFF, that allows for simulation of heterogeneous systems including hexopyranose saccharides and glycan chains in addition to proteins. A library of standard glycan geometries containing α- and β-anomers of the most common hexapyranoses, i.e., d-galactose, d-glucose, d-mannose, d-xylose, l-fucose, N-acetylglucosamine, N-acetylgalactosamine, sialic, and glucuronic acids, is created based on the analysis of the saccharide structures reported in the Cambridge Structural Database. The new force field parameters include molecular electrostatic potential-derived partial atomic charges and the torsional parameters derived from quantum mechanical data for a collection of minimal molecular fragments and related molecules. The ϕ/ψ torsional parameters for different types of glycosidic linkages are developed using model compounds containing the key atoms in the full carbohydrates, i.e., glycosidic-linked tetrahydropyran-cyclohexane dimers. Target data for parameter optimization include two-dimensional energy surfaces corresponding to the ϕ/ψ glycosidic dihedral angles in the disaccharide analogues, as determined by quantum mechanical MP2/6-31G** single-point energies on HF/6-31G** optimized structures. To achieve better agreement with the observed geometries of glycosidic linkages, the bond angles at the O-linkage atoms are added to the internal variable set and the corresponding bond bending energy term is parametrized using quantum mechanical data. The resulting force field is validated on glycan chains of 1-12 residues from a set of high-resolution X-ray glycoprotein structures based on heavy atom root-mean-square deviations of the lowest-energy glycan conformations generated by the biased probability Monte Carlo (BPMC) molecular mechanics simulations from the native structures. The appropriate BPMC distributions for monosaccharide-monosaccharide and protein-glycan linkages are derived from the extensive analysis of conformational properties of glycoprotein structures reported in the Protein Data Bank. Use of the BPMC search leads to significant improvements in sampling efficiency for glycan simulations. Moreover, good agreement with the X-ray glycoprotein structures is achieved for all glycan chain lengths. Thus, average/median RMSDs are 0.81/0.68 Å for one-residue glycans and 1.32/1.47 Å for three-residue glycans. RMSD from the native structure for the lowest-energy conformation of the 12-residue glycan chain (PDB ID 3og2) is 1.53 Å. Additionally, results obtained for free short oligosaccharides using the new force field are in line with the available experimental data, i.e., the most populated conformations in solution are predicted to be the lowest energy ones. The newly developed parameters allow for the accurate modeling of linear and branched hexopyranose glycosides in heterogeneous systems.
Collapse
Affiliation(s)
- Yelena
A. Arnautova
- Molsoft
L.L.C., 11199 Sorrento
Valley Road, S209, San Diego, California 92121, United States
| | - Ruben Abagyan
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, United States
| | - Maxim Totrov
- Molsoft
L.L.C., 11199 Sorrento
Valley Road, S209, San Diego, California 92121, United States
| |
Collapse
|
12
|
Paul S, Paul S. Molecular Insights into the Role of Aqueous Trehalose Solution on Temperature-Induced Protein Denaturation. J Phys Chem B 2015; 119:1598-610. [DOI: 10.1021/jp510423n] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Subrata Paul
- Department
of Chemistry, Indian Institute of Technology, Guwahati, Assam India-781039
| | - Sandip Paul
- Department
of Chemistry, Indian Institute of Technology, Guwahati, Assam India-781039
| |
Collapse
|
13
|
Paul S, Paul S. Effects of the temperature and trehalose concentration on the hydrophobic interactions of a small nonpolar neopentane solute: a molecular dynamics simulation study. RSC Adv 2014. [DOI: 10.1039/c4ra03678f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
14
|
Paul S, Paul S. Trehalose Induced Modifications in the Solvation Pattern of N-Methylacetamide. J Phys Chem B 2014; 118:1052-63. [DOI: 10.1021/jp407782x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Subrata Paul
- Department
of Chemistry, Indian Institute of Technology, Guwahati, Assam, India-781039
| | - Sandip Paul
- Department
of Chemistry, Indian Institute of Technology, Guwahati, Assam, India-781039
| |
Collapse
|
15
|
Pendrill R, Säwén E, Widmalm G. Conformation and dynamics at a flexible glycosidic linkage revealed by NMR spectroscopy and molecular dynamics simulations: analysis of β-L-Fucp-(1→6)-α-D-Glcp-OMe in water solution. J Phys Chem B 2013; 117:14709-22. [PMID: 24175957 DOI: 10.1021/jp409985h] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The intrinsic flexibility of carbohydrates facilitates different 3D structures in response to altered environments. At glycosidic (1→6)-linkages, three torsion angles are variable, and herein the conformation and dynamics of β-L-Fucp-(1→6)-α-D-Glcp-OMe are investigated using a combination of NMR spectroscopy and molecular dynamics (MD) simulations. The disaccharide shows evidence of conformational averaging for the ψ and ω torsion angles, best explained by a four-state conformational distribution. Notably, there is a significant population of conformations having ψ = 85° (clinal) in addition to those having ψ = 180° (antiperiplanar). Moderate differences in (13)C R1 relaxation rates are found to be best explained by axially symmetric tumbling in combination with minor differences in librational motion for the two residues, whereas the isomerization motions are occurring too slowly to be contributing significantly to the observed relaxation rates. The MD simulation was found to give a reasonably good agreement with experiment, especially with respect to diffusive properties, among which the rotational anisotropy, D∥/D⊥, is found to be 2.35. The force field employed showed too narrow ω torsion angles in the gauche-trans and gauche-gauche states as well as overestimating the population of the gauche-trans conformer. This information can subsequently be used in directing parameter developments and emphasizes the need for refinement of force fields for (1→6)-linked carbohydrates.
Collapse
Affiliation(s)
- Robert Pendrill
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University , S-106 91 Stockholm, Sweden
| | | | | |
Collapse
|
16
|
Taha HA, Richards MR, Lowary TL. Conformational Analysis of Furanoside-Containing Mono- and Oligosaccharides. Chem Rev 2012; 113:1851-76. [DOI: 10.1021/cr300249c] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Hashem A. Taha
- Alberta Glycomics Centre and Department of Chemistry, Gunning−Lemieux Chemistry Centre, University of Alberta, Edmonton, AB, Canada T6G 2G2
| | - Michele R. Richards
- Alberta Glycomics Centre and Department of Chemistry, Gunning−Lemieux Chemistry Centre, University of Alberta, Edmonton, AB, Canada T6G 2G2
| | - Todd L. Lowary
- Alberta Glycomics Centre and Department of Chemistry, Gunning−Lemieux Chemistry Centre, University of Alberta, Edmonton, AB, Canada T6G 2G2
| |
Collapse
|
17
|
Re S, Nishima W, Miyashita N, Sugita Y. Conformational flexibility of N-glycans in solution studied by REMD simulations. Biophys Rev 2012; 4:179-187. [PMID: 28510079 DOI: 10.1007/s12551-012-0090-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 06/21/2012] [Indexed: 01/09/2023] Open
Abstract
Protein-glycan recognition regulates a wide range of biological and pathogenic processes. Conformational diversity of glycans in solution is apparently incompatible with specific binding to their receptor proteins. One possibility is that among the different conformational states of a glycan, only one conformer is utilized for specific binding to a protein. However, the labile nature of glycans makes characterizing their conformational states a challenging issue. All-atom molecular dynamics (MD) simulations provide the atomic details of glycan structures in solution, but fairly extensive sampling is required for simulating the transitions between rotameric states. This difficulty limits application of conventional MD simulations to small fragments like di- and tri-saccharides. Replica-exchange molecular dynamics (REMD) simulation, with extensive sampling of structures in solution, provides a valuable way to identify a family of glycan conformers. This article reviews recent REMD simulations of glycans carried out by us or other research groups and provides new insights into the conformational equilibria of N-glycans and their alteration by chemical modification. We also emphasize the importance of statistical averaging over the multiple conformers of glycans for comparing simulation results with experimental observables. The results support the concept of "conformer selection" in protein-glycan recognition.
Collapse
Affiliation(s)
- Suyong Re
- RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Wataru Nishima
- RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Naoyuki Miyashita
- RIKEN Quantitative Biology Center, IMDA 6F, 1-6-5 Minatojimaminamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Yuji Sugita
- RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan. .,RIKEN Quantitative Biology Center, IMDA 6F, 1-6-5 Minatojimaminamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan. .,RIKEN Advanced Institute for Computational Science, 7-1-26 Minatojimaminamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan.
| |
Collapse
|
18
|
Sattelle BM, Bose-Basu B, Tessier M, Woods RJ, Serianni AS, Almond A. Dependence of pyranose ring puckering on anomeric configuration: methyl idopyranosides. J Phys Chem B 2012; 116:6380-6. [PMID: 22577942 DOI: 10.1021/jp303183y] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In the aldohexopyranose idose, the unique presence of three axial ring hydroxyl groups causes considerable conformational flexibility, rendering it challenging to study experimentally and an excellent model for rationalizing the relationship between puckering and anomeric configuration. Puckering in methyl α- and β-L-idopyranosides was predicted from kinetically rigorous 10 μs simulations using GLYCAM11 and three explicit water models (TIP3P, TIP4P, and TIP4P-EW). In each case, computed pyranose ring three-bond (vicinal) (1)H-(1)H spin couplings ((3)J(H,H)) trended with NMR measurements. These values, calculated puckering exchange rates and free energies, were independent of the water model. The α- and β-anomers were (1)C(4) chairs for 85 and >99% of their respective trajectories and underwent (1)C(4)→(4)C(1) exchange at rates of 20 μs(-1) and 1 μs(-1). Computed α-anomer (1)C(4)↔(4)C(1) puckering rates depended on the exocyclic C6 substituent, comparing hydroxymethyl with carboxyl from previous work. The slower kinetics and restricted pseudorotational profile of the β-anomer were caused by water occupying a cavity bounded by the anomeric 1-O-methyl and the C6 hydroxymethyl groups. This finding rationalizes the different methyl α- and β-L-idopyranoside (3)J(H,H) values. Identifying a relationship between idopyranose anomeric configuration, microsecond puckering, and water structure facilitates engineering of biologically and commercially important derivatives and underpins deciphering presently elusive structure-function relationships in the glycome.
Collapse
Affiliation(s)
- Benedict M Sattelle
- Faculty of Life Sciences, Manchester Interdisciplinary Biocentre, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | | | | | | | | | | |
Collapse
|
19
|
Nishima W, Miyashita N, Yamaguchi Y, Sugita Y, Re S. Effect of bisecting GlcNAc and core fucosylation on conformational properties of biantennary complex-type N-glycans in solution. J Phys Chem B 2012; 116:8504-12. [PMID: 22530754 DOI: 10.1021/jp212550z] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The introduction of bisecting GlcNAc and core fucosylation in N-glycans is essential for fine functional regulation of glycoproteins. In this paper, the effect of these modifications on the conformational properties of N-glycans is examined at the atomic level by performing replica-exchange molecular dynamics (REMD) simulations. We simulate four biantennary complex-type N-glycans, namely, unmodified, two single-substituted with either bisecting GlcNAc or core fucose, and disubstituted forms. By using REMD as an enhanced sampling technique, five distinct conformers in solution, each of which is characterized by its local orientation of the Manα1-6Man glycosidic linkage, are observed for all four N-glycans. The chemical modifications significantly change their conformational equilibria. The number of major conformers is reduced from five to two and from five to four upon the introduction of bisecting GlcNAc and core fucosylation, respectively. The population change is attributed to specific inter-residue hydrogen bonds, including water-mediated ones. The experimental NMR data, including nuclear Overhauser enhancement and scalar J-coupling constants, are well reproduced taking the multiple conformers into account. Our structural model supports the concept of "conformer selection", which emphasizes the conformational flexibility of N-glycans in protein-glycan interactions.
Collapse
Affiliation(s)
- Wataru Nishima
- RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | | | | | | | |
Collapse
|
20
|
Rodríguez F, Somovilla VJ, Corzana F, Busto JH, Avenoza A, Peregrina PJM. Cyclohexane Ring as a Tool to Select the Presentation of the Carbohydrate Moiety in Glycosyl Amino Acids. Chemistry 2012; 18:5096-104. [DOI: 10.1002/chem.201103089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Revised: 01/19/2012] [Indexed: 11/12/2022]
Affiliation(s)
- Fernando Rodríguez
- Departamento de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química, UA‐CSI, Madre de Dios, 51, 26006 Logroño (Spain), Fax: (+34) 941‐299‐621
| | - Víctor J. Somovilla
- Departamento de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química, UA‐CSI, Madre de Dios, 51, 26006 Logroño (Spain), Fax: (+34) 941‐299‐621
| | - Francisco Corzana
- Departamento de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química, UA‐CSI, Madre de Dios, 51, 26006 Logroño (Spain), Fax: (+34) 941‐299‐621
| | - Jesús H. Busto
- Departamento de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química, UA‐CSI, Madre de Dios, 51, 26006 Logroño (Spain), Fax: (+34) 941‐299‐621
| | - Alberto Avenoza
- Departamento de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química, UA‐CSI, Madre de Dios, 51, 26006 Logroño (Spain), Fax: (+34) 941‐299‐621
| | - Prof Jesús M. Peregrina
- Departamento de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química, UA‐CSI, Madre de Dios, 51, 26006 Logroño (Spain), Fax: (+34) 941‐299‐621
| |
Collapse
|
21
|
Burakowski A, Gliński J. Hydration numbers of nonelectrolytes from acoustic methods. Chem Rev 2011; 112:2059-81. [PMID: 22148760 DOI: 10.1021/cr2000948] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Andrzej Burakowski
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland.
| | | |
Collapse
|
22
|
Zhong Y, Bauer BA, Patel S. Solvation properties of N-acetyl-β-glucosamine: molecular dynamics study incorporating electrostatic polarization. J Comput Chem 2011; 32:3339-53. [PMID: 21898464 PMCID: PMC3193586 DOI: 10.1002/jcc.21873] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 04/25/2011] [Accepted: 05/28/2011] [Indexed: 12/13/2022]
Abstract
N-Acetyl-β-glucosamine (NAG) is an important moiety of glycoproteins and is involved in many biological functions. However, conformational and dynamical properties of NAG molecules in aqueous solution, the most common biological environment, remain ambiguous due to limitations of experimental methods. Increasing efforts are made to probe structural properties of NAG and NAG-containing macromolecules, like peptidoglycans and polymeric chitin, at the atomic level using molecular dynamics simulations. In this work, we develop a polarizable carbohydrate force field for NAG and contrast simulation results of various properties using this novel force field and an analogous nonpolarizable (fixed charge) model. Aqueous solutions of NAG and its oligomers are investigated; we explore conformational properties (rotatable bond geometry), electrostatic properties (dipole moment distribution), dynamical properties (self-diffusion coefficient), hydrogen bonding (water bridge structure and dynamics), and free energy of hydration. The fixed-charge carbohydrate force field exhibits deviations from the gas phase relative rotation energy of exocyclic hydroxymethyl side chain and of chair/boat ring distortion. The polarizable force field predicts conformational properties in agreement with corresponding first-principles results. NAG-water hydrogen bonding pattern is studied through radial distribution functions (RDFs) and correlation functions. Intermolecular hydrogen bonding between solute and solvent is found to stabilize NAG solution structures while intramolecular hydrogen bonds define glycosidic linkage geometry of NAG oligomers. The electrostatic component of hydration free energy is highly dependent on force field atomic partial charges, influencing a more favorable free energy of hydration in the fixed-charge model compared to the polarizable model.
Collapse
Affiliation(s)
- Yang Zhong
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| | - Brad A. Bauer
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| | - Sandeep Patel
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| |
Collapse
|
23
|
Boscaino A, Naidoo KJ. The Extent of Conformational Rigidity Determines Hydration in Nonaromatic Hexacyclic Systems. J Phys Chem B 2011; 115:2608-16. [DOI: 10.1021/jp110248j] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Annalisa Boscaino
- Scientific Computing Research Unit and Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Kevin J. Naidoo
- Scientific Computing Research Unit and Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| |
Collapse
|
24
|
Taha HA, Roy PN, Lowary TL. Theoretical Investigations on the Conformation of the β-d-Arabinofuranoside Ring. J Chem Theory Comput 2010; 7:420-32. [DOI: 10.1021/ct100450s] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hashem A. Taha
- Department of Chemistry and Alberta Ingenuity Centre for Carbohydrate Science, Gunning-Lemieux Chemistry Centre, University of Alberta, Edmonton, AB, Canada T6G 2G2 and Department of Chemistry, University of Waterloo, Waterloo, ON, Canada N2L 3G1
| | - Pierre-Nicholas Roy
- Department of Chemistry and Alberta Ingenuity Centre for Carbohydrate Science, Gunning-Lemieux Chemistry Centre, University of Alberta, Edmonton, AB, Canada T6G 2G2 and Department of Chemistry, University of Waterloo, Waterloo, ON, Canada N2L 3G1
| | - Todd L. Lowary
- Department of Chemistry and Alberta Ingenuity Centre for Carbohydrate Science, Gunning-Lemieux Chemistry Centre, University of Alberta, Edmonton, AB, Canada T6G 2G2 and Department of Chemistry, University of Waterloo, Waterloo, ON, Canada N2L 3G1
| |
Collapse
|
25
|
Autieri E, Sega M, Pederiva F, Guella G. Puckering free energy of pyranoses: A NMR and metadynamics-umbrella sampling investigation. J Chem Phys 2010; 133:095104. [DOI: 10.1063/1.3476466] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
26
|
Vacas T, Corzana F, Jiménez-Osés G, González C, Gómez AM, Bastida A, Revuelta J, Asensio JL. Role of Aromatic Rings in the Molecular Recognition of Aminoglycoside Antibiotics: Implications for Drug Design. J Am Chem Soc 2010; 132:12074-90. [DOI: 10.1021/ja1046439] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Tatiana Vacas
- Instituto de Química Orgánica General (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain, Departamento de Química, Universidad de La Rioja, UA-CSIC, Logroño, Spain, Departamento de Química Orgánica y Química Física. Universidad de Zaragoza-CSIC, Zaragoza, Spain, and Instituto de Química Física Rocasolano (CSIC), Madrid, Spain
| | - Francisco Corzana
- Instituto de Química Orgánica General (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain, Departamento de Química, Universidad de La Rioja, UA-CSIC, Logroño, Spain, Departamento de Química Orgánica y Química Física. Universidad de Zaragoza-CSIC, Zaragoza, Spain, and Instituto de Química Física Rocasolano (CSIC), Madrid, Spain
| | - Gonzalo Jiménez-Osés
- Instituto de Química Orgánica General (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain, Departamento de Química, Universidad de La Rioja, UA-CSIC, Logroño, Spain, Departamento de Química Orgánica y Química Física. Universidad de Zaragoza-CSIC, Zaragoza, Spain, and Instituto de Química Física Rocasolano (CSIC), Madrid, Spain
| | - Carlos González
- Instituto de Química Orgánica General (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain, Departamento de Química, Universidad de La Rioja, UA-CSIC, Logroño, Spain, Departamento de Química Orgánica y Química Física. Universidad de Zaragoza-CSIC, Zaragoza, Spain, and Instituto de Química Física Rocasolano (CSIC), Madrid, Spain
| | - Ana M. Gómez
- Instituto de Química Orgánica General (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain, Departamento de Química, Universidad de La Rioja, UA-CSIC, Logroño, Spain, Departamento de Química Orgánica y Química Física. Universidad de Zaragoza-CSIC, Zaragoza, Spain, and Instituto de Química Física Rocasolano (CSIC), Madrid, Spain
| | - Agatha Bastida
- Instituto de Química Orgánica General (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain, Departamento de Química, Universidad de La Rioja, UA-CSIC, Logroño, Spain, Departamento de Química Orgánica y Química Física. Universidad de Zaragoza-CSIC, Zaragoza, Spain, and Instituto de Química Física Rocasolano (CSIC), Madrid, Spain
| | - Julia Revuelta
- Instituto de Química Orgánica General (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain, Departamento de Química, Universidad de La Rioja, UA-CSIC, Logroño, Spain, Departamento de Química Orgánica y Química Física. Universidad de Zaragoza-CSIC, Zaragoza, Spain, and Instituto de Química Física Rocasolano (CSIC), Madrid, Spain
| | - Juan Luis Asensio
- Instituto de Química Orgánica General (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain, Departamento de Química, Universidad de La Rioja, UA-CSIC, Logroño, Spain, Departamento de Química Orgánica y Química Física. Universidad de Zaragoza-CSIC, Zaragoza, Spain, and Instituto de Química Física Rocasolano (CSIC), Madrid, Spain
| |
Collapse
|
27
|
Perić-Hassler L, Hansen HS, Baron R, Hünenberger PH. Conformational properties of glucose-based disaccharides investigated using molecular dynamics simulations with local elevation umbrella sampling. Carbohydr Res 2010; 345:1781-801. [PMID: 20576257 DOI: 10.1016/j.carres.2010.05.026] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Revised: 05/20/2010] [Accepted: 05/22/2010] [Indexed: 10/19/2022]
Abstract
Explicit-solvent molecular dynamics (MD) simulations of the 11 glucose-based disaccharides in water at 300K and 1bar are reported. The simulations were carried out with the GROMOS 45A4 force-field and the sampling along the glycosidic dihedral angles phi and psi was artificially enhanced using the local elevation umbrella sampling (LEUS) method. The trajectories are analyzed in terms of free-energy maps, stable and metastable conformational states (relative free energies and estimated transition timescales), intramolecular H-bonds, single molecule configurational entropies, and agreement with experimental data. All disaccharides considered are found to be characterized either by a single stable (overwhelmingly populated) state ((1-->n)-linked disaccharides with n=1, 2, 3, or 4) or by two stable (comparably populated and differing in the third glycosidic dihedral angle omega ; gg or gt) states with a low interconversion barrier ((1-->6)-linked disaccharides). Metastable (anti-phi or anti-psi) states are also identified with relative free energies in the range of 8-22 kJ mol(-1). The 11 compounds can be classified into four families: (i) the alpha(1-->1)alpha-linked disaccharide trehalose (axial-axial linkage) presents no metastable state, the lowest configurational entropy, and no intramolecular H-bonds; (ii) the four alpha(1-->n)-linked disaccharides (n=1, 2, 3, or 4; axial-equatorial linkage) present one metastable (anti-psi) state, an intermediate configurational entropy, and two alternative intramolecular H-bonds; (iii) the four beta(1-->n)-linked disaccharides (n=1, 2, 3, or 4; equatorial-equatorial linkage) present two metastable (anti-phi and anti-psi) states, an intermediate configurational entropy, and one intramolecular H-bond; (iv) the two (1-->6)-linked disaccharides (additional glycosidic dihedral angle) present no (isomaltose) or a pair of (gentiobiose) metastable (anti-phi) states, the highest configurational entropy, and no intramolecular H-bonds. The observed conformational preferences appear to be dictated by four main driving forces (ring conformational preferences, exo-anomeric effect, steric constraints, and possible presence of a third glycosidic dihedral angle), leaving a secondary role to intramolecular H-bonding and specific solvation effects. In spite of the weak conformational driving force attributed to solvent-exposed H-bonds in water (highly polar protic solvent), intramolecular H-bonds may still have a significant influence on the physico-chemical properties of the disaccharide by decreasing its hydrophilicity. Along with previous work, the results also complete the suggestion of a spectrum of approximate transition timescales for carbohydrates up to the disaccharide level, namely: approximately 30 ps (hydroxyl groups), approximately 1 ns (free lactol group, free hydroxymethyl groups, glycosidic dihedral angleomega in (1-->6)-linked disaccharides), approximately 10 ns to 2 micros (ring conformation, glycosidic dihedral angles phi and psi). The calculated average values of the glycosidic torsional angles agree well with the available experimental data, providing validation for the force-field and simulation methodology employed.
Collapse
Affiliation(s)
- Lovorka Perić-Hassler
- Laboratory of Physical Chemistry, ETH Zürich, ETH Hönggerberg, HCI, CH-8093 Zürich, Switzerland
| | | | | | | |
Collapse
|
28
|
Damager I, Engelsen SB, Blennow A, Lindberg Møller B, Motawia MS. First principles insight into the alpha-glucan structures of starch: their synthesis, conformation, and hydration. Chem Rev 2010; 110:2049-80. [PMID: 20302376 PMCID: PMC2854524 DOI: 10.1021/cr900227t] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Indexed: 12/02/2022]
Affiliation(s)
| | | | | | | | - Mohammed Saddik Motawia
- To whom correspondence should be addressed. E-mail: . Tel: +45 35 33 33 69. Fax: +45 35 33 33 33
| |
Collapse
|
29
|
Schnupf U, Willett JL, Momany FA. 27 ps DFT molecular dynamics simulation of α-maltose: A reduced basis set study. J Comput Chem 2010; 31:2087-97. [DOI: 10.1002/jcc.21495] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
30
|
Taha HA, Castillo N, Sears DN, Wasylishen RE, Lowary TL, Roy PN. Conformational Analysis of Arabinofuranosides: Prediction of 3JH,H Using MD Simulations with DFT-Derived Spin−Spin Coupling Profiles. J Chem Theory Comput 2009; 6:212-22. [DOI: 10.1021/ct900477x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Hashem A. Taha
- Department of Chemistry and Alberta Ingenuity Centre for Carbohydrate Science, Gunning-Lemieux Chemistry Centre, University of Alberta, Edmonton, AB, Canada T6G 2G2, and Department of Chemistry, University of Waterloo, Waterloo, ON, Canada N2L 3G1
| | - Norberto Castillo
- Department of Chemistry and Alberta Ingenuity Centre for Carbohydrate Science, Gunning-Lemieux Chemistry Centre, University of Alberta, Edmonton, AB, Canada T6G 2G2, and Department of Chemistry, University of Waterloo, Waterloo, ON, Canada N2L 3G1
| | - Devin N. Sears
- Department of Chemistry and Alberta Ingenuity Centre for Carbohydrate Science, Gunning-Lemieux Chemistry Centre, University of Alberta, Edmonton, AB, Canada T6G 2G2, and Department of Chemistry, University of Waterloo, Waterloo, ON, Canada N2L 3G1
| | - Roderick E. Wasylishen
- Department of Chemistry and Alberta Ingenuity Centre for Carbohydrate Science, Gunning-Lemieux Chemistry Centre, University of Alberta, Edmonton, AB, Canada T6G 2G2, and Department of Chemistry, University of Waterloo, Waterloo, ON, Canada N2L 3G1
| | - Todd L. Lowary
- Department of Chemistry and Alberta Ingenuity Centre for Carbohydrate Science, Gunning-Lemieux Chemistry Centre, University of Alberta, Edmonton, AB, Canada T6G 2G2, and Department of Chemistry, University of Waterloo, Waterloo, ON, Canada N2L 3G1
| | - Pierre-Nicholas Roy
- Department of Chemistry and Alberta Ingenuity Centre for Carbohydrate Science, Gunning-Lemieux Chemistry Centre, University of Alberta, Edmonton, AB, Canada T6G 2G2, and Department of Chemistry, University of Waterloo, Waterloo, ON, Canada N2L 3G1
| |
Collapse
|
31
|
López CA, Rzepiela AJ, de Vries AH, Dijkhuizen L, Hünenberger PH, Marrink SJ. Martini Coarse-Grained Force Field: Extension to Carbohydrates. J Chem Theory Comput 2009; 5:3195-210. [DOI: 10.1021/ct900313w] [Citation(s) in RCA: 307] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Cesar A. López
- Groningen Biomolecular Sciences and Biotechnology Institute & Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), Centre for Carbohydrate Bioprocessing, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands, and Laboratorium für Physikalische Chemie, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Andrzej J. Rzepiela
- Groningen Biomolecular Sciences and Biotechnology Institute & Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), Centre for Carbohydrate Bioprocessing, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands, and Laboratorium für Physikalische Chemie, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Alex H. de Vries
- Groningen Biomolecular Sciences and Biotechnology Institute & Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), Centre for Carbohydrate Bioprocessing, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands, and Laboratorium für Physikalische Chemie, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Lubbert Dijkhuizen
- Groningen Biomolecular Sciences and Biotechnology Institute & Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), Centre for Carbohydrate Bioprocessing, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands, and Laboratorium für Physikalische Chemie, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Philippe H. Hünenberger
- Groningen Biomolecular Sciences and Biotechnology Institute & Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), Centre for Carbohydrate Bioprocessing, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands, and Laboratorium für Physikalische Chemie, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Siewert J. Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute & Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), Centre for Carbohydrate Bioprocessing, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands, and Laboratorium für Physikalische Chemie, ETH Zürich, CH-8093 Zürich, Switzerland
| |
Collapse
|
32
|
Hansen PI, Spraul M, Dvortsak P, Larsen FH, Blennow A, Motawia MS, Engelsen SB. Starch phosphorylation--maltosidic restrains upon 3'- and 6'-phosphorylation investigated by chemical synthesis, molecular dynamics and NMR spectroscopy. Biopolymers 2009; 91:179-93. [PMID: 18985674 DOI: 10.1002/bip.21111] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Phosphorylation is the only known in vivo substitution of starch, yet no structural evidence has been provided to explain its implications of the amylosidic backbone and its stimulating effects on starch degradation in plants. In this study, we provide evidence for a major influence on the glucosidic bond in starch specifically induced by the 3-O-phosphate. Two phosphorylated maltose model compounds were synthesized and subjected to combined molecular dynamics (MD) studies and 950 MHz NMR studies. The two phosphorylated disaccharides represent the two possible phosphorylation sites observed in natural starches, namely maltose phosphorylated at the 3'- and 6'-position (maltose-3'-O-phosphate and maltose-6'-O-phosphate). When compared with maltose, both of the maltose-phosphates exhibit a restricted conformational space of the alpha(1-->4) glycosidic linkage. When maltose is phosphorylated in the 3'-position, MD and NMR show that the glucosidic space is seriously restricted to one narrow potential energy well which is strongly offset from the global potential energy well of maltose and almost 50 degrees degrees from the Phi angle of the alpha-maltose crystal structure. The driving force is primarily steric, but the configuration of the structural waters is also significantly altered. Both the favored conformation of the maltose-3'-phosphate and the maltose-6'-phosphate align well into the 6-fold double helical structure of amylopectin when the effects on the glucosidic bond are not taken into account. However, the restrained geometry of the glucosidic linkage of maltose-3'-phosphate cannot be accommodated in the helical structure, suggesting a major local disturbing effect, if present in the starch granule semi-crystalline lattice.
Collapse
Affiliation(s)
- Peter I Hansen
- Department of Food Science, Quality and Technology, University of Copenhagen, Rolighedsvej 30, DK-1958 Frederiksberg C, Denmark
| | | | | | | | | | | | | |
Collapse
|
33
|
Pol-Fachin L, Fernandes CL, Verli H. GROMOS96 43a1 performance on the characterization of glycoprotein conformational ensembles through molecular dynamics simulations. Carbohydr Res 2009; 344:491-500. [DOI: 10.1016/j.carres.2008.12.025] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Revised: 12/03/2008] [Accepted: 12/26/2008] [Indexed: 10/21/2022]
|
34
|
Chen X, Weber I, Harrison RW. Hydration water and bulk water in proteins have distinct properties in radial distributions calculated from 105 atomic resolution crystal structures. J Phys Chem B 2008; 112:12073-80. [PMID: 18754631 PMCID: PMC2768875 DOI: 10.1021/jp802795a] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Water plays a critical role in the structure and function of proteins, although the experimental properties of water around protein structures are not well understood. The water can be classified by the separation from the protein surface into bulk water and hydration water. Hydration water interacts closely with the protein and contributes to protein folding, stability, and dynamics, as well as interacting with the bulk water. Water potential functions are often parametrized to fit bulk water properties because of the limited experimental data for hydration water. Therefore, the structural and energetic properties of the hydration water were assessed for 105 atomic resolution (
Collapse
Affiliation(s)
- Xianfeng Chen
- Department of Biology, Georgia State University, Atlanta, Georgia 30302–4010, USA
| | - Irene Weber
- Department of Biology, Georgia State University, Atlanta, Georgia 30302–4010, USA
| | - Robert W. Harrison
- Department of Biology, Georgia State University, Atlanta, Georgia 30302–4010, USA
- Department of Computer Science, Georgia State University, Atlanta, Georgia 30302–4010, USA
| |
Collapse
|
35
|
Hansen PI, Larsen FH, Motawia SM, Blennow A, Spraul M, Dvortsak P, Engelsen SB. Structure and hydration of the amylopectin trisaccharide building blocks-Synthesis, NMR, and molecular dynamics. Biopolymers 2008; 89:1179-93. [DOI: 10.1002/bip.21075] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
36
|
Eriksson M, Lindhorst TK, Hartke B. Differential effects of oligosaccharides on the hydration of simple cations. J Chem Phys 2008; 128:105105. [PMID: 18345929 DOI: 10.1063/1.2873147] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Changed ion hydration properties near surfaces, proteins, and deoxyribose nucleic acid have been reported before in the literature. In the present work, we extend this work to carbohydrates: We have performed classical-mechanical molecular dynamics simulations to study solvation properties of simple cations of biological relevance (Na(+),K(+),Mg(2+),Ca(2+)) in explicit water, near single and multiple oligosaccharides as glycocalyx models. We find that our oligosaccharides prefer direct contact with K(+) over Na(+), but that the Na(+) contacts are longer lived. These interactions also lead to strong but short-lived changes in oligosaccharide conformations, with oligosaccharides wrapping around K(+) with multiple contacts. These findings may have implications for current hypotheses on glycocalyx functions.
Collapse
Affiliation(s)
- Mats Eriksson
- Institut für Physikalische Chemie, Christian-Albrechts-Universität, Olshausenstrasse 40, Kiel, Germany
| | | | | |
Collapse
|
37
|
Rodriguez J, Hernán Rico D, Domenianni L, Laria D. Confinement of Polar Solvents within β-Cyclodextrins. J Phys Chem B 2008; 112:7522-9. [DOI: 10.1021/jp711609q] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Javier Rodriguez
- Departamento de Química Inorgánica, Analítica y Química-Física e INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón II, 1428, Buenos Aires, Argentina, and Departamento de Física, Comisión Nacional de Energía Atómica, Avenida Libertador 8250, 1429, Buenos Aires, Argentina
| | - Daniel Hernán Rico
- Departamento de Química Inorgánica, Analítica y Química-Física e INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón II, 1428, Buenos Aires, Argentina, and Departamento de Física, Comisión Nacional de Energía Atómica, Avenida Libertador 8250, 1429, Buenos Aires, Argentina
| | - Luis Domenianni
- Departamento de Química Inorgánica, Analítica y Química-Física e INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón II, 1428, Buenos Aires, Argentina, and Departamento de Física, Comisión Nacional de Energía Atómica, Avenida Libertador 8250, 1429, Buenos Aires, Argentina
| | - Daniel Laria
- Departamento de Química Inorgánica, Analítica y Química-Física e INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón II, 1428, Buenos Aires, Argentina, and Departamento de Física, Comisión Nacional de Energía Atómica, Avenida Libertador 8250, 1429, Buenos Aires, Argentina
| |
Collapse
|
38
|
Abstract
Oligo- and polysaccharides are infamous for being extremely flexible molecules, populating a series of well-defined rotational isomeric states under physiological conditions. Characterization of this heterogeneous conformational ensemble has been a major obstacle impeding high-resolution structure determination of carbohydrates and acting as a bottleneck in the effort to understand the relationship between the carbohydrate structure and function. This challenge has compelled the field to develop and apply theoretical and experimental methods that can explore conformational ensembles by both capturing and deconvoluting the structural and dynamic properties of carbohydrates. This review focuses on computational approaches that have been successfully used in combination with experiment to detail the three-dimensional structure of carbohydrates in a solution and in a complex with proteins. In addition, emerging experimental techniques for three-dimensional structural characterization of carbohydrate-protein complexes and future challenges in the field of structural glycobiology are discussed. The review is divided into five sections: (1) The complexity and plasticity of carbohydrates, (2) Predicting carbohydrate-protein interactions, (3) Calculating relative and absolute binding free energies for carbohydrate-protein complexes, (4) Emerging and evolving techniques for experimental characterization of carbohydrate-protein structures, and (5) Current challenges in structural glycoscience.
Collapse
Affiliation(s)
- Mari L DeMarco
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602-4712, USA
| | - Robert J Woods
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602-4712, USA
| |
Collapse
|
39
|
Kirschner KN, Yongye AB, Tschampel SM, González-Outeiriño J, Daniels CR, Foley BL, Woods RJ. GLYCAM06: a generalizable biomolecular force field. Carbohydrates. J Comput Chem 2008; 29:622-55. [PMID: 17849372 PMCID: PMC4423547 DOI: 10.1002/jcc.20820] [Citation(s) in RCA: 1632] [Impact Index Per Article: 102.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A new derivation of the GLYCAM06 force field, which removes its previous specificity for carbohydrates, and its dependency on the AMBER force field and parameters, is presented. All pertinent force field terms have been explicitly specified and so no default or generic parameters are employed. The new GLYCAM is no longer limited to any particular class of biomolecules, but is extendible to all molecular classes in the spirit of a small-molecule force field. The torsion terms in the present work were all derived from quantum mechanical data from a collection of minimal molecular fragments and related small molecules. For carbohydrates, there is now a single parameter set applicable to both alpha- and beta-anomers and to all monosaccharide ring sizes and conformations. We demonstrate that deriving dihedral parameters by fitting to QM data for internal rotational energy curves for representative small molecules generally leads to correct rotamer populations in molecular dynamics simulations, and that this approach removes the need for phase corrections in the dihedral terms. However, we note that there are cases where this approach is inadequate. Reported here are the basic components of the new force field as well as an illustration of its extension to carbohydrates. In addition to reproducing the gas-phase properties of an array of small test molecules, condensed-phase simulations employing GLYCAM06 are shown to reproduce rotamer populations for key small molecules and representative biopolymer building blocks in explicit water, as well as crystalline lattice properties, such as unit cell dimensions, and vibrational frequencies.
Collapse
Affiliation(s)
- Karl N Kirschner
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Kräutler V, Müller M, Hünenberger PH. Conformation, dynamics, solvation and relative stabilities of selected β-hexopyranoses in water: a molecular dynamics study with the gromos 45A4 force field. Carbohydr Res 2007; 342:2097-124. [PMID: 17573054 DOI: 10.1016/j.carres.2007.05.011] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2006] [Revised: 04/06/2007] [Accepted: 05/01/2007] [Indexed: 11/23/2022]
Abstract
The present article reports long timescale (200 ns) simulations of four beta-D-hexopyranoses (beta-D-glucose, beta-D-mannose, beta-D-galactose and beta-D-talose) using explicit-solvent (water) molecular dynamics and vacuum stochastic dynamics simulations together with the GROMOS 45A4 force field. Free-energy and solvation free-energy differences between the four compounds are also calculated using thermodynamic integration. Along with previous experimental findings, the present results suggest that the formation of intramolecular hydrogen-bonds in water is an 'opportunistic' consequence of the close proximity of hydrogen-bonding groups, rather than a major conformational driving force promoting this proximity. In particular, the conformational preferences of the hydroxymethyl group in aqueous environment appear to be dominated by 1,3-syn-diaxial repulsion, with gauche and solvation effects being secondary, and intramolecular hydrogen-bonding essentially negligible. The rotational dynamics of the exocyclic hydroxyl groups, which cannot be probed experimentally, is found to be rapid (10-100 ps timescale) and correlated (flip-flop hydrogen-bonds interconverting preferentially through an asynchronous disrotatory pathway). Structured solvent environments are observed between the ring and lactol oxygen atoms, as well as between the 4-OH and hydroxymethyl groups. The calculated stability differences between the four compounds are dominated by intramolecular effects, while the corresponding differences in solvation free energies are small. An inversion of the stereochemistry at either C(2) or C(4) from equatorial to axial is associated with a raise in free energy. Finally, the particularly low hydrophilicity of beta-D-talose appears to be caused by the formation of a high-occurrence hydrogen-bonded bridge between the 1,3-syn-diaxial 2-OH and 4-OH groups. Overall, good agreement is found with available experimental and theoretical data on the structural, dynamical, solvation and energetic properties of these compounds. However, this detailed comparison also reveals some discrepancies, suggesting the need (and providing a solid basis) for further refinement.
Collapse
Affiliation(s)
- Vincent Kräutler
- Laboratory of Physical Chemistry, ETH Zürich, CH-8093 Zürich, Switzerland
| | | | | |
Collapse
|
41
|
Tschampel SM, Kennerty MR, Woods RJ. TIP5P-Consistent Treatment of Electrostatics for Biomolecular Simulations. J Chem Theory Comput 2007; 3:1721-1733. [PMID: 25419191 PMCID: PMC4240008 DOI: 10.1021/ct700046j] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The inclusion of zero-mass point charges around electronegative atoms, such as oxygen, within molecular mechanical force fields is known to improve hydrogen-bonding directionality. In parallel, inclusion of lone-pairs (LPs) in the TIP5P water model increased its ability to reproduce both gas-phase and condensed-phase properties over its non-LP predecessor, TIP3P. Currently, most biomolecular parameter sets compute partial atomic charges via fitting of the classical molecular electrostatic potential (MEP) to the quantum mechanical MEP. Application of this methodology to optimize lone-pair description is therefore consistent with the current approach to modeling electrostatics and is straightforward to implement. Here, we present an atom-type specific lone-pair model, which leads to the most optimal LP placement for each atom type, and, notably, results in reproduction of the lone-pair description present in TIP5P. Carbohydrates are rich in hydroxyl groups, and development of a lone-pair inclusive carbohydrate force field for use with a lone-pair containing water model, such as TIP5P, ensures the compatibility between these two models. Implementation of this lone-pair model improves the geometry and energetics for a series of hydrogen-bonded clusters and the properties of several small molecule crystals over the non-LP containing force field.
Collapse
Affiliation(s)
- Sarah M. Tschampel
- Complex Carbohydrate Research Center, 315 Riverbend Road, Athens, Georgia 30602
| | - Michael R. Kennerty
- Complex Carbohydrate Research Center, 315 Riverbend Road, Athens, Georgia 30602
| | - Robert J. Woods
- Complex Carbohydrate Research Center, 315 Riverbend Road, Athens, Georgia 30602
| |
Collapse
|
42
|
Corzana F, Busto JH, Engelsen SB, Jiménez-Barbero J, Asensio JL, Peregrina JM, Avenoza A. Effect of beta-O-glucosylation on L-Ser and L-Thr diamides: a bias toward alpha-helical conformations. Chemistry 2007; 12:7864-71. [PMID: 16850514 DOI: 10.1002/chem.200600128] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Beta-D-O-glucosylation produces a remarkable effect on the peptide backbone of the model peptides derived from serine and threonine. Consequently, this type of glycosylation is responsible for the experimentally observed shift from extended conformations (model peptides) towards the folded conformations (model glycopeptides). The conclusion has been solidly assessed by a combined NMR/MD protocol. Interestingly, the MD (molecular dynamics) results for the glycopeptides point towards the existence of water-bridging molecules between the sugar and peptide moieties, which could explain the stabilization of the folded conformers in aqueous solution.
Collapse
Affiliation(s)
- Francisco Corzana
- Departamento de Química, Universidad de La Rioja UA-CSIC. 26006 Logroño, Spain
| | | | | | | | | | | | | |
Collapse
|
43
|
Neelov IM, Adolf DB, McLeish TCB, Paci E. Molecular dynamics simulation of dextran extension by constant force in single molecule AFM. Biophys J 2006; 91:3579-88. [PMID: 16950842 PMCID: PMC1630487 DOI: 10.1529/biophysj.105.079236] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2005] [Accepted: 08/07/2006] [Indexed: 11/18/2022] Open
Abstract
The extension of 1-6 polysaccharides has been studied in a series of recent single molecule AFM experiments. For dextran, a key finding was the existence of a plateau in the force-extension curve at forces between 700 and 1000 pN. We studied the extension of the dextran 10-mer under constant force using atomistic simulation with various force fields. All the force fields reproduce the experimental plateau on the force-extension curve. With AMBER94 and AMBER-GLYCAM04 force fields the plateau can be explained by a transition of the glucopyranose rings in the dextran monomers from the chair ((4)C(1)) to the inverted chair ((1)C(4)) conformation while other processes occur at smaller (rotation around C5-C6 bond) or higher (chairs to boat transitions) forces. The CHARMM force field provides a different picture which associates the occurrence of the plateau to chair-boat transitions of the glucopyranose rings.
Collapse
Affiliation(s)
- Igor M Neelov
- Interdisciplinary Research Centre in Polymer Science and Technology and School of Physics and Astronomy, University of Leeds, Leeds, United Kingdom
| | | | | | | |
Collapse
|
44
|
Dimelow RJ, Bryce RA, Masters AJ, Hillier IH, Burton NA. Exploring reaction pathways with transition path and umbrella sampling: Application to methyl maltoside. J Chem Phys 2006; 124:114113. [PMID: 16555880 DOI: 10.1063/1.2172604] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The transition path sampling (TPS) method is a powerful approach to study chemical reactions or transitional properties on complex potential energy landscapes. One of the main advantages of the method over potential of mean force methods is that reaction rates can be directly accessed without knowledge of the exact reaction coordinate. We have investigated the complementary nature of these two differing approaches, comparing transition path sampling with the weighted histogram analysis method to study a conformational change in a small model system. In this case study, the transition paths for a transition between two rotational conformers of a model disaccharide molecule, methyl beta-D-maltoside, were compared with a free energy surface constrained by the two commonly used glycosidic (phi,psi) torsional angles. The TPS method revealed a reaction channel that was not apparent from the potential of mean force method, and the suitability of phi and psi as reaction coordinates to describe the isomerization in vacuo was confirmed by examination of the transition path ensemble. Using both transition state theory and transition path sampling methods, the transition rate was estimated. We have estimated a characteristic time between transitions of approximately 160 ns for this rare isomerization event between the two conformations of the carbohydrate. We conclude that transition path sampling can extract subtle information about the dynamics not apparent from the potential of mean force method. However, in calculating the reaction rate, the transition path sampling method required 27.5 times the computational effort than was needed by the potential of mean force method.
Collapse
Affiliation(s)
- Richard J Dimelow
- School of Chemistry, University of Manchester, Manchester M13 9PL, United Kingdom
| | | | | | | | | |
Collapse
|
45
|
Chong TT, Hashim R, Bryce RA. Molecular Dynamics Simulation of Monoalkyl Glycoside Micelles in Aqueous Solution: Influence of Carbohydrate Headgroup Stereochemistry. J Phys Chem B 2006; 110:4978-84. [PMID: 16526739 DOI: 10.1021/jp056851g] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Comparative molecular dynamics simulations of n-octyl-beta-D-galactopyranoside (beta-C8Gal) and n-octyl-beta-D-glucopyranoside (beta-C8Glc) micelles in aqueous solution have been performed to explore the influence of carbohydrate stereochemistry on glycolipid properties at the atomic level. In particular, we explore the hypothesis that differences in T(m) and T(c) for beta-C8Gal and beta-C8Glc in lyotropic systems arise from a more extensive hydrogen bonding network between beta-C8Gal headgroups relative to beta-C8Glc, due to the axial 4-OH group in beta-C8Gal. Good agreement of the 13 ns micelle-water simulations with available experimental information is found. The micelles exhibit a similar shape, size, and degree of exposed alkyl chain surface area. We find net inter- and intra-headgroup hydrogen bonding is also similar for beta-C8Gal and beta-C8Glc, although n-octyl-beta-D-galactopyranoside micelles do exhibit a slightly greater degree of inter- and intra-headgroup hydrogen bonding. However, the main distinction in the calculated microscopic behavior of beta-C8Glc and beta-C8Gal micelles lies in solvent interactions, where beta-d-glucosyl headgroups are considerably more solvated (mainly at the equatorial O4 oxygen). These results agree with preceding theoretical and experimental studies of monosaccharides in aqueous solution. A number of long water residence times are found for solvent surrounding both micelle types, the largest of which are associated with surface protrusions involving headgroup clusters. Our simulations, therefore, predict differences in hydrogen bonding for the two headgroup stereochemistries, including a small difference in inter-headgroup interactions, which may contribute to the higher T(m) and T(c) values of beta-C8Gal surfactants relative to beta-C8Glc in lyotropic systems.
Collapse
Affiliation(s)
- Teoh T Chong
- Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | | | | |
Collapse
|
46
|
Derecskei B, Derecskei-Kovacs A. Molecular dynamic studies of the compatibility of some cellulose derivatives with selected ionic liquids. MOLECULAR SIMULATION 2006. [DOI: 10.1080/08927020600669627] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
47
|
Suzuki T, Kawashima H, Sota T. Conformational Properties of and a Reorientation Triggered by Sugar−Water Vibrational Resonance in the Hydroxymethyl Group in Hydrated β-Glucopyranose. J Phys Chem B 2006; 110:2405-18. [PMID: 16471832 DOI: 10.1021/jp052993z] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this paper, we discuss the conformational properties of the hydroxymethyl group of beta-glucopyranose in aqueous solution and its reorientation mechanism. First, using the values for the hydroxymethyl torsion (O5-C5-C6-O6) angle obtained by our ab initio simulations, we reestimate the experimental ratio of the hydroxymethyl rotamer populations. The reestimated ratio is found to be in agreement with those previously reported in several computational studies, which probably partly explains the discrepancies between theoretical and experimental studies that have been discussed in the literature. Second, our time-frequency analysis on a reorientation in the hydroxymethyl group in an ab initio molecular dynamics trajectory suggests that, before the reorientation, the O6-H6 stretching mode is vibrationally coupled with a proton-accepting first-hydration-shell water molecule, whereas the C6-O6 stretching mode is vibrationally coupled with a proton-donating one. The amount of the total vibrational energy induced by these vibrational couplings is estimated to be comparable to typical values for the potential barriers between hydroxymethyl rotamers. To elucidate the vibrational couplings, we investigate the hydrogen-bonding properties around the hydroxymethyl group during the pretransition period. The implications, validity, and limitation of a possible reorientation mechanism based on these findings are also discussed.
Collapse
Affiliation(s)
- Teppei Suzuki
- Integrative Bioscience and Biomedical Engineering, Graduate School of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan.
| | | | | |
Collapse
|
48
|
González-Outeiriño J, Kadirvelraj R, Woods RJ. Structural elucidation of type III group B Streptococcus capsular polysaccharide using molecular dynamics simulations: the role of sialic acid. Carbohydr Res 2005; 340:1007-18. [PMID: 15780265 DOI: 10.1016/j.carres.2004.12.034] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2004] [Accepted: 12/16/2004] [Indexed: 11/23/2022]
Abstract
The conformational properties of the capsular polysaccharide (CPS) from group B Streptococcus serotype III (GBS III) are derived from 50 ns explicitly solvated molecular dynamics simulations of a 25-residue fragment of the CPS. The results from the simulations are shown to be consistent with experimental NMR homo- and heteronuclear J-coupling and NOE data for both the sialylated native CPS and for the chemically desialylated polysaccharide. A helical structure is predicted with a diameter of 29.3 A and a pitch 89.5 A, in which the sialylated side chains are arrayed on the exterior surface of the helix. The results provide an explanation for the observation that CPS antigenicity varies with carbohydrate chain length up to approximately 4 pentasaccharide repeat units. The conformation of the immunodominant region is established and shown to be independent of the presence of sialic acid. The data provide an explanation for the observation that the specificity of the determinant, associated with the major population of antibodies raised upon immunization of rabbits with GBS III, is dependent on the presence of sialic acid. In the sialylated native CPS, the antibody response is largely directed against the immunodominant core of the helix. From simulations of the desialylated CPS, a model emerges which suggests that the minor population of antibodies, whose determinant is not sialic acid dependent, recognizes the same immunodominant region, but that in the disordered CPS this region is not presented in a regular repeating motif.
Collapse
Affiliation(s)
- Jorge González-Outeiriño
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
| | | | | |
Collapse
|
49
|
Jaud S, Tobias DJ, Brant DA. Molecular Dynamics Simulations of Aqueous Pullulan Oligomers. Biomacromolecules 2005; 6:1239-51. [PMID: 15877338 DOI: 10.1021/bm049463d] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Molecular dynamics (MD) simulations have been used to model small-angle X-ray scattering (SAXS) data on aqueous solutions of four oligomeric segments of the glucan pullulan: the trimer G(3) (comprising one polymer repeating unit), the hexamer (G(3))(2), the nonamer (G(3))(3), and the dodecamer (G(3))(4). The AMBER force field was used in conjunction with the GB/SA continuum solvation model to calculate both the mean global dimensions of the oligomers from the limiting small angle scattering behavior and the shorter range structural information implicit in the Debye scattering function at larger scattering angles. This same force field and solvation treatment were employed earlier by Liu et al. (Macromolecules 1999, 32, 8611-8620) with apparent success in a rotational isomeric state (RIS) treatment of the same experimental data. The present work discloses that, despite numerical success in modeling the SAXS data, the RIS treatment, which includes only the interactions within dimeric segments of the polymer chain, fails to account accurately for excluded volume effects at the range of 3-12 sugar residues in the polymer backbone. It is suggested that MD simulations using continuum solvation models can be used to circumvent errors inherent in the computationally efficient RIS treatments of polymer nano- and picosecond dynamics while at the same time avoiding the heavy computational requirements of all-atom methods.
Collapse
Affiliation(s)
- Simon Jaud
- Department of Chemistry, University of California, Irvine, California 92697-2025, USA
| | | | | |
Collapse
|
50
|
Motawia MS, Damager I, Olsen CE, Møller BL, Engelsen SB, Hansen S, Øgendal LH, Bauer R. Comparative Study of Small Linear and Branched α-Glucans Using Size Exclusion Chromatography and Static and Dynamic Light Scattering. Biomacromolecules 2004; 6:143-51. [PMID: 15638514 DOI: 10.1021/bm049634e] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A series of synthesized small linear and branched alpha-glucans has been studied by dynamic light scattering and combined size exclusion chromatography, refractive index measurement and static light scattering. The alpha-glucan molecules studied were maltose, maltotriose, maltopentaose, maltohexaose, maltoheptaose, panose, 6'-alpha-maltosyl-maltotriose, methyl 6'-alpha-maltosyl-maltotrioside, 6' '-alpha-maltosyl-maltotetraose, 6' ''-alpha-maltotriosyl-maltohexaose, and 6,6' '' '-bis(alpha-maltosyl)-maltohexaose. The alpha-glucan oligosaccharides appeared to be very flexible molecules having a variety of conformations and self-associating into noncovalent dimers and trimers (referring to the single molecule). The size distributions were narrow (compared to pullulan) indicating that the alpha-glucan oligosaccharides are relatively compact molecules. The branched oligomers that include one or more flexible alpha-(1 --> 6) linkages exhibit size distributions corresponding to more compact conformations than their linear counterparts. This observation may be explained by intermolecular interactions or water bridges facilitated by the additional flexibility of these molecules. For the branched maltohexaose, a significant noncovalent trimer formation was observed, whereas in all other cases, noncovalent dimers were formed. Model calculations suggest that both the linear and branched oligomers containing 5-10 alpha-glucose units exist predominantly in a partial or full single turn helix in agreement with the glycosidic linkage preferences derived for these molecules.
Collapse
Affiliation(s)
- Mohammed Saddik Motawia
- Plant Biochemistry Laboratory, Department of Plant Biology and Center for Molecular Plant Physiology (PlaCe), The Royal Veterinary and Agricultural University, DK-1871 Frederiksberg C, Denmark
| | | | | | | | | | | | | | | |
Collapse
|