1
|
Gogal RA, Nessler AJ, Thiel AC, Bernabe HV, Corrigan Grove RA, Cousineau LM, Litman JM, Miller JM, Qi G, Speranza MJ, Tollefson MR, Fenn TD, Michaelson JJ, Okada O, Piquemal JP, Ponder JW, Shen J, Smith RJH, Yang W, Ren P, Schnieders MJ. Force Field X: A computational microscope to study genetic variation and organic crystals using theory and experiment. J Chem Phys 2024; 161:012501. [PMID: 38958156 PMCID: PMC11223778 DOI: 10.1063/5.0214652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/17/2024] [Indexed: 07/04/2024] Open
Abstract
Force Field X (FFX) is an open-source software package for atomic resolution modeling of genetic variants and organic crystals that leverages advanced potential energy functions and experimental data. FFX currently consists of nine modular packages with novel algorithms that include global optimization via a many-body expansion, acid-base chemistry using polarizable constant-pH molecular dynamics, estimation of free energy differences, generalized Kirkwood implicit solvent models, and many more. Applications of FFX focus on the use and development of a crystal structure prediction pipeline, biomolecular structure refinement against experimental datasets, and estimation of the thermodynamic effects of genetic variants on both proteins and nucleic acids. The use of Parallel Java and OpenMM combines to offer shared memory, message passing, and graphics processing unit parallelization for high performance simulations. Overall, the FFX platform serves as a computational microscope to study systems ranging from organic crystals to solvated biomolecular systems.
Collapse
Affiliation(s)
- Rose A. Gogal
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa 52242, USA
| | - Aaron J. Nessler
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa 52242, USA
| | - Andrew C. Thiel
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa 52242, USA
| | - Hernan V. Bernabe
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa 52242, USA
| | - Rae A. Corrigan Grove
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Leah M. Cousineau
- Department of Biochemistry and Molecular Biology, University of Iowa, Iowa City, Iowa 52242, USA
| | - Jacob M. Litman
- Department of Biochemistry and Molecular Biology, University of Iowa, Iowa City, Iowa 52242, USA
| | - Jacob M. Miller
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa 52242, USA
| | - Guowei Qi
- Department of Biochemistry and Molecular Biology, University of Iowa, Iowa City, Iowa 52242, USA
| | - Matthew J. Speranza
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa 52242, USA
| | - Mallory R. Tollefson
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa 52242, USA
| | - Timothy D. Fenn
- Analytical Development, LEXEO Therapeutics, New York, New York 10010, USA
| | - Jacob J. Michaelson
- Department of Psychiatry, University of Iowa Hospitals and Clinics, Iowa City, Iowa 52242, USA
| | - Okimasa Okada
- Sohyaku Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 1000 Kamoshida-cho, Aoba-ku, Yokohama, Kanagawa 227-0033, Japan
| | | | - Jay W. Ponder
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130, USA
| | - Jana Shen
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, USA
| | - Richard J. H. Smith
- Molecular Otolaryngology and Renal Research Laboratories, Department of Otolaryngology, University of Iowa Hospitals and Clinics, Iowa City, Iowa 52242, USA
| | | | - Pengyu Ren
- Department of Biomedical Engineering, University of Texas, Austin, Texas 78712, USA
| | | |
Collapse
|
2
|
Kirsh J, Weaver JB, Boxer SG, Kozuch J. Critical Evaluation of Polarizable and Nonpolarizable Force Fields for Proteins Using Experimentally Derived Nitrile Electric Fields. J Am Chem Soc 2024; 146:6983-6991. [PMID: 38415598 PMCID: PMC10941190 DOI: 10.1021/jacs.3c14775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/11/2024] [Accepted: 02/15/2024] [Indexed: 02/29/2024]
Abstract
Molecular dynamics (MD) simulations are frequently carried out for proteins to investigate the role of electrostatics in their biological function. The choice of force field (FF) can significantly alter the MD results, as the simulated local electrostatic interactions lack benchmarking in the absence of appropriate experimental methods. We recently reported that the transition dipole moment (TDM) of the popular nitrile vibrational probe varies linearly with the environmental electric field, overcoming well-known hydrogen bonding (H-bonding) issues for the nitrile frequency and, thus, enabling the unambiguous measurement of electric fields in proteins (J. Am. Chem. Soc. 2022, 144 (17), 7562-7567). Herein, we utilize this new strategy to enable comparisons of experimental and simulated electric fields in protein environments. Specifically, previously determined TDM electric fields exerted onto nitrile-containing o-cyanophenylalanine residues in photoactive yellow protein are compared with MD electric fields from the fixed-charge AMBER FF and the polarizable AMOEBA FF. We observe that the electric field distributions for H-bonding nitriles are substantially affected by the choice of FF. As such, AMBER underestimates electric fields for nitriles experiencing moderate field strengths; in contrast, AMOEBA robustly recapitulates the TDM electric fields. The FF dependence of the electric fields can be partly explained by the presence of additional negative charge density along the nitrile bond axis in AMOEBA, which is due to the inclusion of higher-order multipole parameters; this, in turn, begets more head-on nitrile H-bonds. We conclude by discussing the implications of the FF dependence for the simulation of nitriles and proteins in general.
Collapse
Affiliation(s)
- Jacob
M. Kirsh
- Department
of Chemistry, Stanford University, Stanford, California 94305-5012, United
States
| | - Jared Bryce Weaver
- Department
of Chemistry, Stanford University, Stanford, California 94305-5012, United
States
| | - Steven G. Boxer
- Department
of Chemistry, Stanford University, Stanford, California 94305-5012, United
States
| | - Jacek Kozuch
- Experimental
Molecular Biophysics, Department of Physics, Freie Universität Berlin, 14195 Berlin, Germany
| |
Collapse
|
3
|
Khuttan S, Gallicchio E. What to Make of Zero: Resolving the Statistical Noise from Conformational Reorganization in Alchemical Binding Free Energy Estimates with Metadynamics Sampling. J Chem Theory Comput 2024; 20:1489-1501. [PMID: 38252868 PMCID: PMC10867849 DOI: 10.1021/acs.jctc.3c01250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/03/2024] [Accepted: 01/03/2024] [Indexed: 01/24/2024]
Abstract
We introduce the self-relative binding free energy (self-RBFE) approach to evaluate the intrinsic statistical variance of dual-topology alchemical binding free energy estimators. The self-RBFE is the relative binding free energy between a ligand and a copy of the same ligand, and its true value is zero. Nevertheless, because the two copies of the ligand move independently, the self-RBFE value produced by a finite-length simulation fluctuates and can be used to measure the variance of the model. The results of this validation provide evidence that a significant fraction of the errors observed in benchmark studies reflect the statistical fluctuations of unconverged estimates rather than the models' accuracy. Furthermore, we find that ligand reorganization is a significant contributing factor to the statistical variance of binding free energy estimates and that metadynamics-accelerated conformational sampling of the torsional degrees of freedom of the ligand can drastically reduce the time to convergence.
Collapse
Affiliation(s)
- Sheenam Khuttan
- Department
of Chemistry and Biochemistry, Brooklyn
College of the City University of New York, New York, New York 11210, United States
- Ph.D.
Program in Biochemistry, The Graduate Center
of the City University of New York, New York, New York 10016, United States
| | - Emilio Gallicchio
- Department
of Chemistry and Biochemistry, Brooklyn
College of the City University of New York, New York, New York 11210, United States
- Ph.D.
Program in Biochemistry, The Graduate Center
of the City University of New York, New York, New York 10016, United States
- Ph.D.
Program in Chemistry, The Graduate Center
of the City University of New York, New York, New York 10016, United States
| |
Collapse
|
4
|
Ding Y, Huang J. Implementation and Validation of an OpenMM Plugin for the Deep Potential Representation of Potential Energy. Int J Mol Sci 2024; 25:1448. [PMID: 38338727 PMCID: PMC10855459 DOI: 10.3390/ijms25031448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 02/12/2024] Open
Abstract
Machine learning potentials, particularly the deep potential (DP) model, have revolutionized molecular dynamics (MD) simulations, striking a balance between accuracy and computational efficiency. To facilitate the DP model's integration with the popular MD engine OpenMM, we have developed a versatile OpenMM plugin. This plugin supports a range of applications, from conventional MD simulations to alchemical free energy calculations and hybrid DP/MM simulations. Our extensive validation tests encompassed energy conservation in microcanonical ensemble simulations, fidelity in canonical ensemble generation, and the evaluation of the structural, transport, and thermodynamic properties of bulk water. The introduction of this plugin is expected to significantly expand the application scope of DP models within the MD simulation community, representing a major advancement in the field.
Collapse
Affiliation(s)
- Ye Ding
- College of Life Sciences, Zhejiang University, Hangzhou 310027, China;
- School of Life Sciences, Westlake University, Hangzhou 310024, China
- Westlake AI Therapeutics Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China
| | - Jing Huang
- School of Life Sciences, Westlake University, Hangzhou 310024, China
- Westlake AI Therapeutics Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China
| |
Collapse
|
5
|
Chen L, Wu Y, Wu C, Silveira A, Sherman W, Xu H, Gallicchio E. Performance and Analysis of the Alchemical Transfer Method for Binding-Free-Energy Predictions of Diverse Ligands. J Chem Inf Model 2024; 64:250-264. [PMID: 38147877 DOI: 10.1021/acs.jcim.3c01705] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
The Alchemical Transfer Method (ATM) is herein validated against the relative binding-free energies (RBFEs) of a diverse set of protein-ligand complexes. We employed a streamlined setup workflow, a bespoke force field, and AToM-OpenMM software to compute the RBFEs of the benchmark set prepared by Schindler and collaborators at Merck KGaA. This benchmark set includes examples of standard small R-group ligand modifications as well as more challenging scenarios, such as large R-group changes, scaffold hopping, formal charge changes, and charge-shifting transformations. The novel coordinate perturbation scheme and a dual-topology approach of ATM address some of the challenges of single-topology alchemical RBFE methods. Specifically, ATM eliminates the need for splitting electrostatic and Lennard-Jones interactions, atom mapping, defining ligand regions, and postcorrections for charge-changing perturbations. Thus, ATM is simpler and more broadly applicable than conventional alchemical methods, especially for scaffold-hopping and charge-changing transformations. Here, we performed well over 500 RBFE calculations for eight protein targets and found that ATM achieves accuracy comparable to that of existing state-of-the-art methods, albeit with larger statistical fluctuations. We discuss insights into the specific strengths and weaknesses of the ATM method that will inform future deployments. This study confirms that ATM can be applied as a production tool for RBFE predictions across a wide range of perturbation types within a unified, open-source framework.
Collapse
Affiliation(s)
- Lieyang Chen
- Roivant Sciences, 151 W 42nd Street, 15th Floor, New York, New York 10036, United States
| | - Yujie Wu
- Roivant Sciences, 151 W 42nd Street, 15th Floor, New York, New York 10036, United States
- Atommap Corporation, New York, New York 10017, United States
| | - Chuanjie Wu
- Roivant Sciences, 151 W 42nd Street, 15th Floor, New York, New York 10036, United States
| | - Ana Silveira
- Psivant Therapeutics, 451 D Street, Boston, Massachusetts 02210, United States
| | - Woody Sherman
- Psivant Therapeutics, 451 D Street, Boston, Massachusetts 02210, United States
| | - Huafeng Xu
- Roivant Sciences, 151 W 42nd Street, 15th Floor, New York, New York 10036, United States
- Atommap Corporation, New York, New York 10017, United States
| | - Emilio Gallicchio
- Department of Chemistry and Biochemistry, Brooklyn College of the City University of New York, New York, New York 11210, United States
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
| |
Collapse
|
6
|
Baltrukevich H, Bartos P. RNA-protein complexes and force field polarizability. Front Chem 2023; 11:1217506. [PMID: 37426330 PMCID: PMC10323139 DOI: 10.3389/fchem.2023.1217506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 06/14/2023] [Indexed: 07/11/2023] Open
Abstract
Molecular dynamic (MD) simulations offer a way to study biomolecular interactions and their dynamics at the atomistic level. There are only a few studies of RNA-protein complexes in MD simulations, and here we wanted to study how force fields differ when simulating RNA-protein complexes: 1) argonaute 2 with bound guide RNA and a target RNA, 2) CasPhi-2 bound to CRISPR RNA and 3) Retinoic acid-inducible gene I C268F variant in complex with double-stranded RNA. We tested three non-polarizable force fields: Amber protein force fields ff14SB and ff19SB with RNA force field OL3, and the all-atom OPLS4 force field. Due to the highly charged and polar nature of RNA, we also tested the polarizable AMOEBA force field and the ff19SB and OL3 force fields with a polarizable water model O3P. Our results show that the non-polarizable force fields lead to compact and stable complexes. The polarizability in the force field or in the water model allows significantly more movement from the complex, but in some cases, this results in the disintegration of the complex structure, especially if the protein contains longer loop regions. Thus, one should be cautious when running long-scale simulations with polarizability. As a conclusion, all the tested force fields can be used to simulate RNA-protein complexes and the choice of the optimal force field depends on the studied system and research question.
Collapse
Affiliation(s)
| | - Piia Bartos
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
7
|
Arabzadeh H, Sperling JM, Acevedo O, Albrecht-Schönzart TE. Free Energy Calculations and Conformational Analysis of Dibenzo-30-crown-10 with Sm 2+, Eu 2+, and Three Halide Salts in THF Using the AMOEBA Force Field. J Phys Chem B 2023. [PMID: 37311109 DOI: 10.1021/acs.jpcb.3c01800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Crown ether complexes have been tailored for use in industrial separations of lanthanides (Ln) as a part of rare earth mining and refining. Dibenzo-30-crown-10 (DB30C10) is one of the most efficient complexants for the separation of rare earth mixtures based on the cation size. To understand the origin of this complexation, molecular dynamics (MD) simulations of DB30C10 have been performed using different combinations of divalent Sm and Eu and three halide salts Cl-, Br-, and I- in tetrahydrofuran (THF) solvent. DB30C10 was parameterized here for the polarizable atomic multipole optimized energetics for biomolecular simulation (AMOEBA) force field, and the existing parameters of THF, Sm2+, and Eu2+ were employed from our previous efforts. The large conformational fluctuations present in the DB30C10 systems were found to be dependent both on the identity of the lanthanide and halide complexes. For Cl- and Br- systems, there were no observed conformational changes at 200 ns, while in I- systems, there were two conformational changes with Sm2+ and one with Eu2+ within that same timeframe. In SmI2-DB30C10, there were three stages of conformational changes. In the first stage, the molecule is unfolded, in the second stage, the molecule is partly folded, and finally, in the third stage, the molecule is completely folded. Lastly, the Gibbs binding free energies of DB30C10 with SmBr2 and EuBr2 have been computed, which resulted in nearly identical ΔGcomp values for each lanthanide with Sm2+ being slightly more favorable. Considering the folding mechanism of the SmI2 system with DB30C10, the Gibbs binding free energies of DB30C10 and dicyclohexano-18-crown-6 (DCH18C6) with SmI2 were calculated separately and compared to probe their complexation affinities, in which the former was found to be more favorable.
Collapse
Affiliation(s)
- Hesam Arabzadeh
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Joseph M Sperling
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Orlando Acevedo
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Thomas E Albrecht-Schönzart
- Department of Chemistry and Nuclear Science & Engineering Center, Colorado School of Mines, Golden, Colorado 80401, United States
| |
Collapse
|
8
|
Jaffrelot Inizan T, Plé T, Adjoua O, Ren P, Gökcan H, Isayev O, Lagardère L, Piquemal JP. Scalable hybrid deep neural networks/polarizable potentials biomolecular simulations including long-range effects. Chem Sci 2023; 14:5438-5452. [PMID: 37234902 PMCID: PMC10208042 DOI: 10.1039/d2sc04815a] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 04/03/2023] [Indexed: 07/28/2023] Open
Abstract
Deep-HP is a scalable extension of the Tinker-HP multi-GPU molecular dynamics (MD) package enabling the use of Pytorch/TensorFlow Deep Neural Network (DNN) models. Deep-HP increases DNNs' MD capabilities by orders of magnitude offering access to ns simulations for 100k-atom biosystems while offering the possibility of coupling DNNs to any classical (FFs) and many-body polarizable (PFFs) force fields. It allows therefore the introduction of the ANI-2X/AMOEBA hybrid polarizable potential designed for ligand binding studies where solvent-solvent and solvent-solute interactions are computed with the AMOEBA PFF while solute-solute ones are computed by the ANI-2X DNN. ANI-2X/AMOEBA explicitly includes AMOEBA's physical long-range interactions via an efficient Particle Mesh Ewald implementation while preserving ANI-2X's solute short-range quantum mechanical accuracy. The DNN/PFF partition can be user-defined allowing for hybrid simulations to include key ingredients of biosimulation such as polarizable solvents, polarizable counter ions, etc.… ANI-2X/AMOEBA is accelerated using a multiple-timestep strategy focusing on the model's contributions to low-frequency modes of nuclear forces. It primarily evaluates AMOEBA forces while including ANI-2X ones only via correction-steps resulting in an order of magnitude acceleration over standard Velocity Verlet integration. Simulating more than 10 μs, we compute charged/uncharged ligand solvation free energies in 4 solvents, and absolute binding free energies of host-guest complexes from SAMPL challenges. ANI-2X/AMOEBA average errors are discussed in terms of statistical uncertainty and appear in the range of chemical accuracy compared to experiment. The availability of the Deep-HP computational platform opens the path towards large-scale hybrid DNN simulations, at force-field cost, in biophysics and drug discovery.
Collapse
Affiliation(s)
- Théo Jaffrelot Inizan
- Sorbonne Université, Laboratoire de Chimie Théorique UMR 7616 CNRS Paris 75005 France
| | - Thomas Plé
- Sorbonne Université, Laboratoire de Chimie Théorique UMR 7616 CNRS Paris 75005 France
| | - Olivier Adjoua
- Sorbonne Université, Laboratoire de Chimie Théorique UMR 7616 CNRS Paris 75005 France
| | - Pengyu Ren
- Department of Biomedical Engineering, University of Texas at Austin Austin Texas USA
| | - Hatice Gökcan
- Department of Chemistry, Carnegie Mellon University Pittsburgh Pennsylvania USA
| | - Olexandr Isayev
- Department of Chemistry, Carnegie Mellon University Pittsburgh Pennsylvania USA
| | - Louis Lagardère
- Sorbonne Université, Laboratoire de Chimie Théorique UMR 7616 CNRS Paris 75005 France
- Sorbonne Université, Institut Parisien de Chimie Physique et Théorique FR 2622 CNRS Paris France
| | - Jean-Philip Piquemal
- Sorbonne Université, Laboratoire de Chimie Théorique UMR 7616 CNRS Paris 75005 France
- Department of Biomedical Engineering, University of Texas at Austin Austin Texas USA
| |
Collapse
|
9
|
Herman KM, Xantheas SS. An extensive assessment of the performance of pairwise and many-body interaction potentials in reproducing ab initio benchmark binding energies for water clusters n = 2-25. Phys Chem Chem Phys 2023; 25:7120-7143. [PMID: 36853239 DOI: 10.1039/d2cp03241d] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We assess the performance of 7 pairwise additive (TIP3P, TIP4P, TIP4P-ice, TIP5P, OPC, SPC, SPC/E) and 8 families of many-body potentials (q-AQUA, HIPPO, AMOEBA, EFP, TTM, WHBB, MB-pol, MB-UCB) in reproducing high-level ab initio benchmark values, CCSD(T) or MP2 at the complete basis set (CBS) limit for the binding energy and the many-body expansion (MBE) of water clusters n = 2-11, 16-17, 20, 25. By including a large range of cluster sizes having dissimilar hydrogen bonding networks, we obtain an understanding of how these potentials perform for different hydrogen bonding arrangements that are mostly outside of their parameterization range. While it is appropriate to compare the results of ab initio based many-body potentials directly to the electronic binding energies (De's), the pairwise additive ones are compared to the enthalpies at T = 298 K, ΔH(298 K), as the latter class of force fields are parametrized to reproduce enthalpies (implicitly accounting for zero-point energy corrections) rather than binding energies. We find that all pairwise additive potentials considered overestimate the reference ΔH values for the n = 2-25 clusters by >13%. For the water dimer (n = 2) in particular, the errors are in the range 83-119% for the pairwise additive potentials studied since these are based on an effective rather than the true 2-body interaction specifically designed as a means of partially accounting for the missing many-body terms. This stronger 2-body interaction is achieved by an enhanced monomer dipole moment that mimics its increase from the gas phase monomer to the condensed phase value. Indeed, for cluster sizes n ≥ 4 the percent deviations become slightly smaller (albeit all exceeding 13%). In contrast, we find that the many-body potentials perform more accurately in reproducing the electronic binding energies (De's) throughout the entire cluster range (n = 2-25), all reproducing the ab initio benchmark binding energies within ±7% of the respective CBS values. We further assess the ability of a subset of the many-body potentials (MB-UCB, q-AQUA, MB-pol, and TTM2.1-F) to also reproduce the magnitude of the ab initio many-body energy terms for water cluster sizes n = 7, 10, 16 and 17. The potentials show an overall good agreement with the available benchmark values. However, we identify characteristic differences upon comparing the many-body terms at both the ab initio-optimized geometries and the respective potential-optimized geometries to the reference ab initio values. Additionally, by applying this analysis to a wide range of cluster sizes, trends in the MBE of the potentials with increasing cluster size can be identified. Finally, in an attempt to draw a parallel between the pairwise additive and many-body potentials, we report the analysis of the individual molecular dipole moments for water clusters with 1 to ∼4 solvation shells with the TTM2.1-F potential. We find that the internally solvated water molecules have in general a larger molecular dipole moment ranging from 2.6-3.0 D. This justifies the use of an enhanced, with respect to the gas-phase value, molecular dipole moment for the pairwise additive potentials, which is intended to fold in the many body terms into an effective (enhanced) pairwise interaction through the choice of the charges. These results have important implications for the development of future generations of efficient, transferable, and highly accurate classical interaction potentials in both the pairwise additive and many-body categories.
Collapse
Affiliation(s)
- Kristina M Herman
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA.
| | - Sotiris S Xantheas
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA. .,Advanced Computing, Mathematics and Data Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, MS K1-83, WA, 99352, USA.
| |
Collapse
|
10
|
Maghsoud Y, Vázquez-Montelongo EA, Yang X, Liu C, Jing Z, Lee J, Harger M, Smith AK, Espinoza M, Guo HF, Kurie JM, Dalby KN, Ren P, Cisneros GA. Computational Investigation of a Series of Small Molecules as Potential Compounds for Lysyl Hydroxylase-2 (LH2) Inhibition. J Chem Inf Model 2023; 63:986-1001. [PMID: 36779232 PMCID: PMC10233724 DOI: 10.1021/acs.jcim.2c01448] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The catalytic function of lysyl hydroxylase-2 (LH2), a member of the Fe(II)/αKG-dependent oxygenase superfamily, is to catalyze the hydroxylation of lysine to hydroxylysine in collagen, resulting in stable hydroxylysine aldehyde-derived collagen cross-links (HLCCs). Reports show that high amounts of LH2 lead to the accumulation of HLCCs, causing fibrosis and specific types of cancer metastasis. Some members of the Fe(II)/αKG-dependent family have also been reported to have intramolecular O2 tunnels, which aid in transporting one of the required cosubstrates into the active site. While LH2 can be a promising target to combat these diseases, efficacious inhibitors are still lacking. We have used computational simulations to investigate a series of 44 small molecules as lead compounds for LH2 inhibition. Tunneling analyses indicate the existence of several intramolecular tunnels. The lengths of the calculated O2-transporting tunnels in holoenzymes are relatively longer than those in the apoenzyme, suggesting that the ligands may affect the enzyme's structure and possibly block (at least partially) the tunnels. The sequence alignment analysis between LH enzymes from different organisms shows that all of the amino acid residues with the highest occurrence rate in the oxygen tunnels are conserved. Our results suggest that the enolate form of diketone compounds establishes stronger interactions with the Fe(II) in the active site. Branching the enolate compounds with functional groups such as phenyl and pyridinyl enhances the interaction with various residues around the active site. Our results provide information about possible leads for further LH2 inhibition design and development.
Collapse
Affiliation(s)
- Yazdan Maghsoud
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Erik Antonio Vázquez-Montelongo
- Department of Physical Medicine and Rehabilitation, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Xudong Yang
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Chengwen Liu
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Zhifeng Jing
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Juhoon Lee
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Matthew Harger
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Ally K Smith
- Department of Chemistry, University of North Texas, Denton, Texas 76201, United States
| | - Miguel Espinoza
- Department of Chemistry, University of North Texas, Denton, Texas 76201, United States
| | - Hou-Fu Guo
- Department of Molecular and Cellular Biochemistry, College of Medicine, The University of Kentucky, Lexington, Kentucky 40536, United States
| | - Jonathan M Kurie
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77005, United States
| | - Kevin N Dalby
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Pengyu Ren
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - G Andrés Cisneros
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
- Department of Physics, The University of Texas at Dallas, Richardson, Texas 75080, United States
| |
Collapse
|
11
|
Arabzadeh H, Walker B, Sperling JM, Acevedo O, Ren P, Yang W, Albrecht-Schönzart TE. Molecular Dynamics and Free Energy Calculations of Dicyclohexano-18-crown-6 Diastereoisomers with Sm 2+, Eu 2+, Dy 2+, Yb 2+, Cf 2+, and Three Halide Salts in Tetrahydrofuran and Acetonitrile Using the AMOEBA Force Field. J Phys Chem B 2022; 126:10721-10731. [PMID: 36508277 PMCID: PMC9999210 DOI: 10.1021/acs.jpcb.2c04613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
With the continual development of lanthanides (Ln) in current technological devices, an efficient separation process is needed that can recover greater amounts of these rare elements. Dicyclohexano-18-crown-6 (DCH18C6) is a crown ether that may be a promising candidate for Ln separation, but additional research is required. As such, molecular dynamics (MD) simulations have been performed on four divalent lanthanide halide salts (Sm2+, Eu2+, Dy2+, and Yb2+) and one divalent actinide halide salt (Cf2+) bound to three diastereoisomers of DCH18C6. Dy2+, Yb2+, Cf2+, DCH18C6, and tetrahydrofuran (THF) solvent were parameterized for the AMOEBA polarizable force field for the first time, whereas existing parameters for Sm2+ and Eu2+ were utilized from our previous efforts. A coordination number (CN) of six for Ln2+/An2+-O solvated in THF indicated that the cations interacted almost entirely with the oxygens of the polyether ring. A CN of one for Ln2+/An2+-N solvated in acetonitrile for systems containing iodide suggested that the N atom of acetonitrile was competitive with I- for cation interactions. Fluctuation between five and six CNs for Dy2+ and Yb2+ suggested that although the cations remained in the polyether ring, the size of the ring may not be an ideal fit as these cations possess comparatively smaller ionic radii. Gibbs binding free energies of Sm2+ in all DCH18C6 diastereoisomers solvated in THF were calculated. The binding free energy of the cis-syn-cis diastereoisomer was the most favorable, followed by cis-anti-cis, and then trans-anti-trans. Finally, two major types of conformation were observed for each diastereoisomer that were related to the electrostatic interactions and charge density of the cations.
Collapse
Affiliation(s)
- Hesam Arabzadeh
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA
| | - Brandon Walker
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - Joseph M. Sperling
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA
| | - Orlando Acevedo
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA
| | - Pengyu Ren
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - Wei Yang
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
| | | |
Collapse
|
12
|
Heindel JP, Hao H, LaCour RA, Head-Gordon T. Spontaneous Formation of Hydrogen Peroxide in Water Microdroplets. J Phys Chem Lett 2022; 13:10035-10041. [PMID: 36264238 DOI: 10.1021/acs.jpclett.2c01721] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
There is accumulating evidence that many chemical reactions are accelerated by several orders of magnitude in micrometer-sized aqueous or organic liquid droplets compared to their corresponding bulk liquid phase. However, the molecular origin of the enhanced rates remains unclear as in the case of spontaneous appearance of 1 μM hydrogen peroxide in water microdroplets. In this Letter, we consider the range of ionization energies and whether interfacial electric fields of a microdroplet can feasibly overcome the high energy step from hydroxide ions (OH-) to hydroxyl radicals (OH•) in a primary H2O2 mechanism. We find that the vertical ionization energies (VIEs) of partially solvated OH- ions are greatly lowered relative to the average VIE in the bulk liquid, unlike the case of the Cl- anion which shows no reduction in the VIEs regardless of solvation environment. Overall reduced hydrogen-bonding and undercoordination of OH- are structural features that are more readily present at the air-water interface, where the energy scale for ionization can be matched by statistically probable electric field values.
Collapse
Affiliation(s)
- Joseph P Heindel
- Kenneth S. Pitzer Theory Center and Department of Chemistry, University of California, Berkeley, California94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California94720, United States
| | - Hongxia Hao
- Kenneth S. Pitzer Theory Center and Department of Chemistry, University of California, Berkeley, California94720, United States
| | - R Allen LaCour
- Kenneth S. Pitzer Theory Center and Department of Chemistry, University of California, Berkeley, California94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California94720, United States
| | - Teresa Head-Gordon
- Kenneth S. Pitzer Theory Center and Department of Chemistry, University of California, Berkeley, California94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California94720, United States
- Departments of Bioengineering and Chemical and Biomolecular EngineeringUniversity of California, Berkeley, California94720, United States
| |
Collapse
|
13
|
Jing Z, Ren P. Molecular Dynamics Simulations of Protein RNA Complexes by Using an Advanced Electrostatic Model. J Phys Chem B 2022; 126:7343-7353. [PMID: 36107618 PMCID: PMC9530969 DOI: 10.1021/acs.jpcb.2c05278] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protein-RNA interactions are integral to the biological functions of RNA. It is well recognized that molecular dynamics (MD) simulations of protein-RNA complexes are more challenging than those of each component. The difficulty arises from the strong electrostatic interactions and the delicate balance between various types of physical forces at the interface. Previously, MD simulations of protein-RNA complexes have predominantly employed fixed-charge force fields. Although force field modifications have been developed to address problems identified in the simulations, some protein-RNA structures are still hard to reproduce by simulations. Here, we present MD simulations of two representative protein-RNA complexes using the AMOEBA polarizable force field. The van der Waals parameters were refined to reproduce accurate quantum-mechanical data of base-base and base-amino acid interactions. It was found that the refined parameters produced a more stable hydrogen-bond network in the interface. One of the complexes remained stable during the short simulations, whereas it could quickly break down in previous simulations using fixed-charge force fields. There was reversible breaking and formation of hydrogen bonds that are observed in the crystal structure, which may indicate the difference in solution and crystal structures. While further improvement and validation of the force fields are still needed, this work demonstrates that polarizable force fields are promising for the study of protein-RNA complexes.
Collapse
Affiliation(s)
- Zhifeng Jing
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Pengyu Ren
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
14
|
Oshima H, Sugita Y. Modified Hamiltonian in FEP Calculations for Reducing the Computational Cost of Electrostatic Interactions. J Chem Inf Model 2022; 62:2846-2856. [PMID: 35639709 DOI: 10.1021/acs.jcim.1c01532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The free-energy perturbation (FEP) method predicts relative and absolute free-energy changes of biomolecules in solvation and binding with other molecules. FEP is, therefore, one of the most essential tools in in silico drug design. In conventional FEP, to smoothly connect two thermodynamic states, the potential energy is modified as a linear combination of the end-state potential energies by introducing scaling factors. When the particle mesh Ewald is used for electrostatic calculations, conventional FEP requires two reciprocal-space calculations per time step, which largely decreases the computational performance. To overcome this problem, we propose a new FEP scheme by introducing a modified Hamiltonian instead of interpolation of the end-state potential energies. The scheme introduces nonuniform scaling into the electrostatic potential as used in Replica Exchange with Solute Tempering 2 (REST2) and does not require additional reciprocal-space calculations. We tested this modified Hamiltonian in FEP calculations in several biomolecular systems. In all cases, the calculated free-energy changes with the current scheme are in good agreement with those from conventional FEP. The modified Hamiltonian in FEP greatly improves the computational performance, which is particularly marked for large biomolecular systems whose reciprocal-space calculations are the major bottleneck of total computational time.
Collapse
Affiliation(s)
- Hiraku Oshima
- Laboratory for Biomolecular Function Simulation, RIKEN Center for Biosystems Dynamics Research, Integrated Innovation Building 7F, 6-7-1 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Yuji Sugita
- Laboratory for Biomolecular Function Simulation, RIKEN Center for Biosystems Dynamics Research, Integrated Innovation Building 7F, 6-7-1 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,Theoretical Molecular Science Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan.,Computational Biophysics Research Team, RIKEN Center for Computational Science, Integrated Innovation Building 7F, 6-7-1 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| |
Collapse
|
15
|
Puyo-Fourtine J, Juillé M, Hénin J, Clavaguéra C, Duboué-Dijon E. Consistent Picture of Phosphate-Divalent Cation Binding from Models with Implicit and Explicit Electronic Polarization. J Phys Chem B 2022; 126:4022-4034. [PMID: 35608554 DOI: 10.1021/acs.jpcb.2c01158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The binding of divalent cations to the ubiquitous phosphate group is essential for a number of key biological processes, such as DNA compaction, RNA folding, or interactions of some proteins with membranes. Yet, probing their binding sites, modes, and associated binding free energy is a challenge for both experiments and simulations. In simulations, standard force fields strongly overestimate the interaction between phosphate groups and divalent cations. Here, we examine how different strategies to include electronic polarization effects in force fields─implicitly, through the use of scaled charges or pair-specific Lennard-Jones parameters, or explicitly, with the polarizable force fields Drude and AMOEBA─capture the interactions of a model phosphate compound, dimethyl phosphate, with calcium and magnesium divalent cations. We show that both implicit and explicit approaches, when carefully parameterized, are successful in capturing the overall binding free energy and that common trends emerge from the comparison of different simulation approaches. Overall, the binding is very moderate, slightly weaker for Ca2+ than Mg2+, and the solvent-shared ion pair is slightly more stable than the contact monodentate ion pair. The bidentate ion pair is higher in energy (or even fully unstable for Mg2+). Our results thus suggest practical ways to capture the divalent cations with biomolecular phosphate groups in complex biochemical systems. In particular, the computational efficiency of implicit models makes them ideally suited for large-scale simulations of biological assemblies, with improved accuracy compared to state-of-the-art fixed-charge force fields.
Collapse
Affiliation(s)
- Julie Puyo-Fourtine
- CNRS, Université Paris Cité, UPR9080, Laboratoire de Biochimie Théorique, 13 Rue Pierre et Marie Curie, 75005 Paris, France.,Institut de Biologie Physico-Chimique - Fondation Edmond de Rothschild, PSL Research University, 75005 Paris, France
| | - Marie Juillé
- CNRS, Université Paris Cité, UPR9080, Laboratoire de Biochimie Théorique, 13 Rue Pierre et Marie Curie, 75005 Paris, France.,Institut de Biologie Physico-Chimique - Fondation Edmond de Rothschild, PSL Research University, 75005 Paris, France
| | - Jérôme Hénin
- CNRS, Université Paris Cité, UPR9080, Laboratoire de Biochimie Théorique, 13 Rue Pierre et Marie Curie, 75005 Paris, France.,Institut de Biologie Physico-Chimique - Fondation Edmond de Rothschild, PSL Research University, 75005 Paris, France
| | - Carine Clavaguéra
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, UMR8000, 91405 Orsay, France
| | - Elise Duboué-Dijon
- CNRS, Université Paris Cité, UPR9080, Laboratoire de Biochimie Théorique, 13 Rue Pierre et Marie Curie, 75005 Paris, France.,Institut de Biologie Physico-Chimique - Fondation Edmond de Rothschild, PSL Research University, 75005 Paris, France
| |
Collapse
|
16
|
At least three xenon binding sites in the glycine binding domain of the N-methyl D-aspartate receptor. Arch Biochem Biophys 2022; 724:109265. [DOI: 10.1016/j.abb.2022.109265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/19/2022] [Accepted: 04/22/2022] [Indexed: 11/21/2022]
|
17
|
Makshakova O, Zykwinska A, Cuenot S, Colliec-Jouault S, Perez S. Three-dimensional structures, dynamics and calcium-mediated interactions of the exopolysaccharide, Infernan, produced by the deep-sea hydrothermal bacterium Alteromonas infernus. Carbohydr Polym 2022; 276:118732. [PMID: 34823768 DOI: 10.1016/j.carbpol.2021.118732] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 10/01/2021] [Accepted: 10/01/2021] [Indexed: 01/09/2023]
Abstract
The exopolysaccharide Infernan, from the bacterial strain GY785, has a complex repeating unit of nine monosaccharides established on a double-layer of sidechains. A cluster of uronic and sulfated monosaccharides confers to Infernan functional and biological activities. We characterized the 3-dimensional structures and dynamics along Molecular Dynamics trajectories and clustered the conformations in extended two-fold and five-fold helical structures. The electrostatic potential distribution over all the structures revealed negatively charged cavities explored for Ca2+ binding through quantum chemistry computation. The transposition of the model of Ca2+complexation indicates that the five-fold helices are the most favourable for interactions. The ribbon-like shape of two-fold helices brings neighbouring chains in proximity without steric clashes. The cavity chelating the Ca2+ of one chain is completed throughout the interaction of a sulfate group from the neighbouring chain. The resulting is a 'junction zone' based on unique chain-chain interactions governed by a heterotypic binding mode.
Collapse
Affiliation(s)
- Olga Makshakova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky Str., 2/31, 420111 Kazan, Russian Federation.
| | - Agata Zykwinska
- Ifremer, Laboratoire Ecosystèmes Microbiens et Molécules Marines pour les Biotechnologies, 44311 Nantes, France.
| | - Stephane Cuenot
- Université de Nantes, CNRS, Institut des Matériaux Jean Rouxel, IMN, Nantes, France.
| | - Sylvia Colliec-Jouault
- Ifremer, Laboratoire Ecosystèmes Microbiens et Molécules Marines pour les Biotechnologies, 44311 Nantes, France.
| | - Serge Perez
- Centre de Recherches sur les Macromolécules Végétales, Université de Grenoble Alpes, Centre National de la Recherche Scientifique, Grenoble, France.
| |
Collapse
|
18
|
Wu R, Matta M, Paulsen BD, Rivnay J. Operando Characterization of Organic Mixed Ionic/Electronic Conducting Materials. Chem Rev 2022; 122:4493-4551. [PMID: 35026108 DOI: 10.1021/acs.chemrev.1c00597] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Operando characterization plays an important role in revealing the structure-property relationships of organic mixed ionic/electronic conductors (OMIECs), enabling the direct observation of dynamic changes during device operation and thus guiding the development of new materials. This review focuses on the application of different operando characterization techniques in the study of OMIECs, highlighting the time-dependent and bias-dependent structure, composition, and morphology information extracted from these techniques. We first illustrate the needs, requirements, and challenges of operando characterization then provide an overview of relevant experimental techniques, including spectroscopy, scattering, microbalance, microprobe, and electron microscopy. We also compare different in silico methods and discuss the interplay of these computational methods with experimental techniques. Finally, we provide an outlook on the future development of operando for OMIEC-based devices and look toward multimodal operando techniques for more comprehensive and accurate description of OMIECs.
Collapse
Affiliation(s)
- Ruiheng Wu
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Micaela Matta
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, United Kingdom
| | - Bryan D Paulsen
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Jonathan Rivnay
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States.,Simpson Querrey Institute, Northwestern University, Chicago, Illinois 60611, United States
| |
Collapse
|
19
|
Hao H, Leven I, Head-Gordon T. Can electric fields drive chemistry for an aqueous microdroplet? Nat Commun 2022; 13:280. [PMID: 35022410 PMCID: PMC8755715 DOI: 10.1038/s41467-021-27941-x] [Citation(s) in RCA: 111] [Impact Index Per Article: 55.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 12/14/2021] [Indexed: 11/20/2022] Open
Abstract
Reaction rates of common organic reactions have been reported to increase by one to six orders of magnitude in aqueous microdroplets compared to bulk solution, but the reasons for the rate acceleration are poorly understood. Using a coarse-grained electron model that describes structural organization and electron densities for water droplets without the expense of ab initio methods, we investigate the electric field distributions at the air-water interface to understand the origin of surface reactivity. We find that electric field alignments along free O-H bonds at the surface are ~16 MV/cm larger on average than that found for O-H bonds in the interior of the water droplet. Furthermore, electric field distributions can be an order of magnitude larger than the average due to non-linear coupling of intramolecular solvent polarization with intermolecular solvent modes which may contribute to even greater surface reactivity for weakening or breaking chemical bonds at the droplet surface.
Collapse
Affiliation(s)
- Hongxia Hao
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, CA, 94720, USA
- Pitzer Center for Theoretical Chemistry, University of California, Berkeley, CA, 94720, USA
- Departments of Chemistry, University of California, Berkeley, CA, 94720, USA
| | - Itai Leven
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, CA, 94720, USA
- Pitzer Center for Theoretical Chemistry, University of California, Berkeley, CA, 94720, USA
- Departments of Chemistry, University of California, Berkeley, CA, 94720, USA
| | - Teresa Head-Gordon
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, CA, 94720, USA.
- Pitzer Center for Theoretical Chemistry, University of California, Berkeley, CA, 94720, USA.
- Departments of Chemistry, University of California, Berkeley, CA, 94720, USA.
- Departments of Bioengineering, University of California, Berkeley, CA, 94720, USA.
- Departments of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, 94720, USA.
| |
Collapse
|
20
|
Azimi S, Khuttan S, Wu JZ, Pal RK, Gallicchio E. Relative Binding Free Energy Calculations for Ligands with Diverse Scaffolds with the Alchemical Transfer Method. J Chem Inf Model 2022; 62:309-323. [PMID: 34990555 DOI: 10.1021/acs.jcim.1c01129] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We present an extension of the alchemical transfer method (ATM) for the estimation of relative binding free energies of molecular complexes applicable to conventional, as well as scaffold-hopping, alchemical transformations. Named ATM-RBFE, the method is implemented in the free and open-source OpenMM molecular simulation package and aims to provide a simpler and more generally applicable route to the calculation of relative binding free energies than what is currently available. ATM-RBFE is based on sound statistical mechanics theory and a novel coordinate perturbation scheme designed to swap the positions of a pair of ligands such that one is transferred from the bulk solvent to the receptor binding site while the other moves simultaneously in the opposite direction. The calculation is conducted directly in a single solvent box with a system prepared with conventional setup tools, without splitting of electrostatic and nonelectrostatic transformations, and without pairwise soft-core potentials. ATM-RBFE is validated here against the absolute binding free energies of the SAMPL8 GDCC host-guest benchmark set and against protein-ligand benchmark sets that include complexes of the estrogen receptor ERα and those of the methyltransferase EZH2. In each case the method yields self-consistent and converged relative binding free energy estimates in agreement with absolute binding free energies and reference literature values, as well as experimental measurements.
Collapse
Affiliation(s)
- Solmaz Azimi
- Department of Chemistry, Brooklyn College of the City University of New York, Brooklyn, New York 11210, United States.,Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
| | - Sheenam Khuttan
- Department of Chemistry, Brooklyn College of the City University of New York, Brooklyn, New York 11210, United States.,Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
| | - Joe Z Wu
- Department of Chemistry, Brooklyn College of the City University of New York, Brooklyn, New York 11210, United States.,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
| | - Rajat K Pal
- Roivant Sciences, Inc., Boston, Massachusetts 02210, United States
| | - Emilio Gallicchio
- Department of Chemistry, Brooklyn College of the City University of New York, Brooklyn, New York 11210, United States.,Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States.,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
| |
Collapse
|
21
|
KFDP in Molecular Conformation Clustering. CHINESE J CHEM PHYS 2022. [DOI: 10.1063/1674-0068/cjcp2111261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
22
|
Carter-Fenk K, Head-Gordon M. On the choice of reference orbitals for linear-response calculations of solution-phase K-edge X-ray absorption spectra. Phys Chem Chem Phys 2022; 24:26170-26179. [DOI: 10.1039/d2cp04077h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
X-ray absorption spectra of liquids calculated with linear-response theories like TDDFT and CIS are dramatically improved with core-ion reference orbitals.
Collapse
Affiliation(s)
- Kevin Carter-Fenk
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Martin Head-Gordon
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, CA 94720, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
23
|
Rackers JA, Silva RR, Wang Z, Ponder JW. Polarizable Water Potential Derived from a Model Electron Density. J Chem Theory Comput 2021; 17:7056-7084. [PMID: 34699197 DOI: 10.1021/acs.jctc.1c00628] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A new empirical potential for efficient, large scale molecular dynamics simulation of water is presented. The HIPPO (Hydrogen-like Intermolecular Polarizable POtential) force field is based upon the model electron density of a hydrogen-like atom. This framework is used to derive and parametrize individual terms describing charge penetration damped permanent electrostatics, damped polarization, charge transfer, anisotropic Pauli repulsion, and damped dispersion interactions. Initial parameter values were fit to Symmetry Adapted Perturbation Theory (SAPT) energy components for ten water dimer configurations, as well as the radial and angular dependence of the canonical dimer. The SAPT-based parameters were then systematically refined to extend the treatment to water bulk phases. The final HIPPO water model provides a balanced representation of a wide variety of properties of gas phase clusters, liquid water, and ice polymorphs, across a range of temperatures and pressures. This water potential yields a rationalization of water structure, dynamics, and thermodynamics explicitly correlated with an ab initio energy decomposition, while providing a level of accuracy comparable or superior to previous polarizable atomic multipole force fields. The HIPPO water model serves as a cornerstone around which similarly detailed physics-based models can be developed for additional molecular species.
Collapse
Affiliation(s)
- Joshua A Rackers
- Program in Computational & Molecular Biophysics, Washington University School of Medicine, Saint Louis, Missouri 63110, United States.,Center for Computing Research, Sandia National Laboratories, Albuquerque, New Mexico 87123, United States
| | - Roseane R Silva
- Program in Computational & Molecular Biophysics, Washington University School of Medicine, Saint Louis, Missouri 63110, United States
| | - Zhi Wang
- Department of Chemistry, Washington University in Saint Louis, Saint Louis, Missouri 63130, United States
| | - Jay W Ponder
- Department of Chemistry, Washington University in Saint Louis, Saint Louis, Missouri 63130, United States.,Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, Saint Louis, Missouri 63110, United States
| |
Collapse
|
24
|
Li N, Gao Y, Qiu F, Zhu T. Benchmark Force Fields for the Molecular Dynamic Simulation of G-Quadruplexes. Molecules 2021; 26:5379. [PMID: 34500812 PMCID: PMC8434458 DOI: 10.3390/molecules26175379] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 11/29/2022] Open
Abstract
G-quadruplexes have drawn widespread attention for serving as a potential anti-cancer target and their application in material science. Molecular dynamics (MD) simulation is the key theoretical tool in the study of GQ's structure-function relationship. In this article, we systematically benchmarked the five force fields of parmbsc0, parmbsc1, OL15, AMOEBA, and Drude2017 on the MD simulation of G-quadruplex from four aspects: structural stability, central ion channel stability, description of Hoogsteen hydrogen bond network, and description of the main chain dihedral angle. The results show that the overall performance of the Drude force field is the best. Although there may be a certain over-polarization effect, it is still the best choice for the MD simulation of G-quadruplexes.
Collapse
Affiliation(s)
- Na Li
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China;
| | - Ya Gao
- School of Mathematics, Physics and Statistics, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Feng Qiu
- Institute of Artificial Intelligence on Education, Shanghai Normal University, Shanghai 200234, China
| | - Tong Zhu
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China;
- NYU-ECNU Center for Computational Chemistry, New York University Shanghai, Shanghai 200062, China
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| |
Collapse
|
25
|
Walker B, Jing Z, Ren P. Molecular dynamics free energy simulations of ATP:Mg 2+ and ADP:Mg 2+ using the polarizable force field AMOEBA. MOLECULAR SIMULATION 2021; 47:439-448. [PMID: 34421214 DOI: 10.1080/08927022.2020.1725003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
ATPases and GTPases are two important classes of protein that play critical roles in energy transduction, cellular signaling, gene regulation and catalysis. These proteins use cofactors such as nucleoside di and tri-phosphates (NTP, NDP) and can detect the difference between NDP and NTP which then induce different protein conformations. Mechanisms that drive proteins into the NTP or NDP conformation may depend on factors such as ligand structure and how Mg2+ coordinates with the ligand, amino acids in the pocket and water molecules. Here, we have used the advanced electrostatic and polarizable force field AMOEBA and molecular dynamics free energy simulations (MDFE) to examine the various binding mechanisms of ATP:Mg2+ and ADP:Mg2+.We compared the ATP:Mg2+ binding with previous studies using non-polarizable force fields and experimental data on the binding affinity. It was found that the total free energy of binding for ATP:Mg2+ (-7.00 ± 2.13 kcal/mol) is in good agreement with experimental values (-8.6 ± .2 kcal/mol)1. In addition, parameters for relevant protonation states of ATP, ADP, GTP and GDP have been derived. These parameters will allow for researchers to investigate biochemical phenomena involving NTP's and NDP's with greater accuracy than previous studies involving non-polarizable force fields.
Collapse
Affiliation(s)
- Brandon Walker
- Department of Biomedical Engineering at The University of Texas at Austin, Austin, Texas 78712, United States
| | - Zhifeng Jing
- Department of Biomedical Engineering at The University of Texas at Austin, Austin, Texas 78712, United States
| | - Pengyu Ren
- Department of Biomedical Engineering at The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
26
|
King E, Aitchison E, Li H, Luo R. Recent Developments in Free Energy Calculations for Drug Discovery. Front Mol Biosci 2021; 8:712085. [PMID: 34458321 PMCID: PMC8387144 DOI: 10.3389/fmolb.2021.712085] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/27/2021] [Indexed: 01/11/2023] Open
Abstract
The grand challenge in structure-based drug design is achieving accurate prediction of binding free energies. Molecular dynamics (MD) simulations enable modeling of conformational changes critical to the binding process, leading to calculation of thermodynamic quantities involved in estimation of binding affinities. With recent advancements in computing capability and predictive accuracy, MD based virtual screening has progressed from the domain of theoretical attempts to real application in drug development. Approaches including the Molecular Mechanics Poisson Boltzmann Surface Area (MM-PBSA), Linear Interaction Energy (LIE), and alchemical methods have been broadly applied to model molecular recognition for drug discovery and lead optimization. Here we review the varied methodology of these approaches, developments enhancing simulation efficiency and reliability, remaining challenges hindering predictive performance, and applications to problems in the fields of medicine and biochemistry.
Collapse
Affiliation(s)
- Edward King
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, United States
| | - Erick Aitchison
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, United States
| | - Han Li
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA, United States
| | - Ray Luo
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, United States
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA, United States
- Department of Materials Science and Engineering, University of California, Irvine, CA, United States
- Department of Biomedical Engineering, University of California, Irvine, CA, United States
| |
Collapse
|
27
|
Loco D, Lagardère L, Adjoua O, Piquemal JP. Atomistic Polarizable Embeddings: Energy, Dynamics, Spectroscopy, and Reactivity. Acc Chem Res 2021; 54:2812-2822. [PMID: 33961401 PMCID: PMC8264944 DOI: 10.1021/acs.accounts.0c00662] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Indexed: 12/20/2022]
Abstract
The computational modeling of realistic extended systems, relevant in, e.g., Chemistry and Biophysics, is a fundamental problem of paramount importance in contemporary research. Enzymatic catalysis and photoinduced processes in pigment-protein complexes are typical problems targeted by computer-aided approaches, to complement experiments as interpretative tools at a molecular scale. The daunting complexity of this task lies in between the opposite stringent requirements of results' reliability for structural/dynamical properties and related intermolecular interactions, and a mandatory principle of realism in the modeling strategy. Therefore, in practice, a truly realistic computational model of a biologically relevant system can easily fail to meet the accuracy requirement, in order to balance the excessive computational cost necessary to reach the desired precision.To address such an "accuracy vs reality" dualistic requirement, mixed quantum mechanics/classical mechanics approaches within Atomistic (i.e., preserving the discrete particle configuration) Polarizable Embeddings (QM/APEs) methods have been proposed over the years. In this Account, we review recent developments in the design and application of general QM/APE methods, targeting situations where a local intrinsically quantum behavior is coupled to a large molecular system (i.e., an environment), often involving processes with different dynamical time scales, in order to avoid brute-force, unpractical quantum chemistry calculations on the complete system.In the first place, our interest is devoted to the available APEs models presently implemented in computational software, highlighting the quantum chemistry methods that can be used to treat the QM subsystem. We review the coupling strategy between the QM subsystem and the APE, which requires to examine the way the QM/MM mutual interactions are accounted for and how the polarization of the classical environment is considered with respect to (wrt) the quantum variables. Because of the need of reliable molecular and macromolecular structures, a pivotal aspect to address here is the handling of the system dynamics (i.e., gradients wrt nuclear positions are required), especially for large molecular assemblies composed by an overwhelming number of atoms, exploring many conformations on a complex energy landscape.Alongside, we highlight our views on the necessary steps to take toward more accurate general-purposes and transferable explicit embeddings. The main objective to achieve here is to design a more physically grounded multiscale approach. To do so, one should apply advanced new generation classical models to account for refined induction effects that are able to (i) improve the quality of QM/MM interaction energies; (ii) enhance transferability by avoiding the compulsory partial (or total) reparameterization of the classical model. Moreover, the extension of recent developments originating from the field of advanced classical molecular dynamics (MD) to the realm of QM/APE methods is a key direction to improve both speed and efficiency for the phase space exploration of systems of growing size and complexity.Lastly, we point out specific research topics where an advanced QM/APE dynamics can certainly shed some light. For example, we discuss chemical reactions in "harsh" environments and the case of spectroscopic theoretical modeling where the inclusion of refined environment effects is often mandatory.
Collapse
Affiliation(s)
- Daniele Loco
- Laboratoire
de Chimie Théorique, Sorbonne Université,
UMR 7616 CNRS, 75005 Paris, France
| | - Louis Lagardère
- Laboratoire
de Chimie Théorique, Sorbonne Université,
UMR 7616 CNRS, 75005 Paris, France
- Intitut
Parisien de Chimie Physique et Théorique, Sorbonne Université, FR 2622 CNRS, 75005 Paris, France
| | - Olivier Adjoua
- Laboratoire
de Chimie Théorique, Sorbonne Université,
UMR 7616 CNRS, 75005 Paris, France
| | - Jean-Philip Piquemal
- Laboratoire
de Chimie Théorique, Sorbonne Université,
UMR 7616 CNRS, 75005 Paris, France
- Institut
Universitaire de France, F-75005 Paris, France
- Department
of Biomedical Engineering, The University
of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
28
|
Jing Z, Rackers JA, Pratt LR, Liu C, Rempe SB, Ren P. Thermodynamics of ion binding and occupancy in potassium channels. Chem Sci 2021; 12:8920-8930. [PMID: 34257893 PMCID: PMC8246295 DOI: 10.1039/d1sc01887f] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/01/2021] [Indexed: 12/15/2022] Open
Abstract
Potassium channels modulate various cellular functions through efficient and selective conduction of K+ ions. The mechanism of ion conduction in potassium channels has recently emerged as a topic of debate. Crystal structures of potassium channels show four K+ ions bound to adjacent binding sites in the selectivity filter, while chemical intuition and molecular modeling suggest that the direct ion contacts are unstable. Molecular dynamics (MD) simulations have been instrumental in the study of conduction and gating mechanisms of ion channels. Based on MD simulations, two hypotheses have been proposed, in which the four-ion configuration is an artifact due to either averaged structures or low temperature in crystallographic experiments. The two hypotheses have been supported or challenged by different experiments. Here, MD simulations with polarizable force fields validated by ab initio calculations were used to investigate the ion binding thermodynamics. Contrary to previous beliefs, the four-ion configuration was predicted to be thermodynamically stable after accounting for the complex electrostatic interactions and dielectric screening. Polarization plays a critical role in the thermodynamic stabilities. As a result, the ion conduction likely operates through a simple single-vacancy and water-free mechanism. The simulations explained crystal structures, ion binding experiments and recent controversial mutagenesis experiments. This work provides a clear view of the mechanism underlying the efficient ion conduction and demonstrates the importance of polarization in ion channel simulations. Polarization shapes the energy landscape of ion conduction in potassium channels.![]()
Collapse
Affiliation(s)
- Zhifeng Jing
- Department of Biomedical Engineering, The University of Texas at Austin Austin Texas 78712 USA
| | - Joshua A Rackers
- Center for Integrated Nanotechnologies, Sandia National Laboratories Albuquerque New Mexico 87185 USA
| | - Lawrence R Pratt
- Department of Chemical and Biomolecular Engineering, Tulane University New Orleans Louisiana 70118 USA
| | - Chengwen Liu
- Department of Biomedical Engineering, The University of Texas at Austin Austin Texas 78712 USA
| | - Susan B Rempe
- Center for Integrated Nanotechnologies, Sandia National Laboratories Albuquerque New Mexico 87185 USA
| | - Pengyu Ren
- Department of Biomedical Engineering, The University of Texas at Austin Austin Texas 78712 USA
| |
Collapse
|
29
|
Jing Z, Liu C, Ren P. Advanced Electrostatic Model for Monovalent Ions Based on Ab Initio Energy Decomposition. J Chem Inf Model 2021; 61:2806-2817. [PMID: 34096706 PMCID: PMC8323402 DOI: 10.1021/acs.jcim.1c00426] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Ions play important roles in the structures and functions of biomolecules. In biomolecular simulations, ions either directly interact with biomolecules or provide an ionic environment that influences electrostatic interactions of solutes. The AMOEBA+ water model has demonstrated significant advancement of the classical force field for describing molecular interactions due to its improvements on the functional forms to account for essential physics. This work expands the applicability of the AMOEBA+ model toward alkali metal (Li, Na, K, Rb, and Cs) and halogen (F, Cl, Br, and I) ions. Various quantum chemical data on ion-ion and ion-water interactions, experimental ion hydration free energies, and lattice energies of salt crystals are used in the parametrization. The final parameters are verified with other properties outside of the parametrization data, including lattice energies of additional salt crystals and ionic activity coefficients in solution. The new model captures a wide range of ion properties from the gas phase to solution phase and crystals. More importantly, AMOEBA+ provides energy components that are consistent with ab initio energy decomposition. Thus, we expect AMOEBA+ to be more general, transferable, and valuable for the interpretation of intermolecular forces in efficient classical simulations.
Collapse
Affiliation(s)
- Zhifeng Jing
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712
| | - Chengwen Liu
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712
| | - Pengyu Ren
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712
| |
Collapse
|
30
|
Wu JZ, Azimi S, Khuttan S, Deng N, Gallicchio E. Alchemical Transfer Approach to Absolute Binding Free Energy Estimation. J Chem Theory Comput 2021; 17:3309-3319. [PMID: 33983730 DOI: 10.1021/acs.jctc.1c00266] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The alchemical transfer method (ATM) for the calculation of standard binding free energies of noncovalent molecular complexes is presented. The method is based on a coordinate displacement perturbation of the ligand between the receptor binding site and the explicit solvent bulk and a thermodynamic cycle connected by a symmetric intermediate in which the ligand interacts with the receptor and solvent environments with equal strength. While the approach is alchemical, the implementation of the ATM is as straightforward as that for physical pathway methods of binding. The method is applicable, in principle, with any force field, as it does not require splitting the alchemical transformations into electrostatic and nonelectrostatic steps, and it does not require soft-core pair potentials. We have implemented the ATM as a freely available and open-source plugin of the OpenMM molecular dynamics library. The method and its implementation are validated on the SAMPL6 SAMPLing host-guest benchmark set. The work paves the way to streamlined alchemical relative and absolute binding free energy implementations on many molecular simulation packages and with arbitrary energy functions including polarizable, quantum-mechanical, and artificial neural network potentials.
Collapse
Affiliation(s)
- Joe Z Wu
- Department of Chemistry, Brooklyn College of the City University of New York, New York, New York 11210-2889, United States.,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
| | - Solmaz Azimi
- Department of Chemistry, Brooklyn College of the City University of New York, New York, New York 11210-2889, United States.,Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
| | - Sheenam Khuttan
- Department of Chemistry, Brooklyn College of the City University of New York, New York, New York 11210-2889, United States.,Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
| | - Nanjie Deng
- Department of Chemistry and Physical Sciences, Pace University, New York, New York 10038, United States
| | - Emilio Gallicchio
- Department of Chemistry, Brooklyn College of the City University of New York, New York, New York 11210-2889, United States.,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States.,Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
| |
Collapse
|
31
|
Schlick T, Portillo-Ledesma S. Biomolecular modeling thrives in the age of technology. NATURE COMPUTATIONAL SCIENCE 2021; 1:321-331. [PMID: 34423314 PMCID: PMC8378674 DOI: 10.1038/s43588-021-00060-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/22/2021] [Indexed: 12/12/2022]
Abstract
The biomolecular modeling field has flourished since its early days in the 1970s due to the rapid adaptation and tailoring of state-of-the-art technology. The resulting dramatic increase in size and timespan of biomolecular simulations has outpaced Moore's law. Here, we discuss the role of knowledge-based versus physics-based methods and hardware versus software advances in propelling the field forward. This rapid adaptation and outreach suggests a bright future for modeling, where theory, experimentation and simulation define three pillars needed to address future scientific and biomedical challenges.
Collapse
Affiliation(s)
- Tamar Schlick
- Department of Chemistry, New York University, New York, NY, USA
- Courant Institute of Mathematical Sciences, New York University, New York, NY, USA
- New York University–East China Normal University Center for Computational Chemistry at New York University Shanghai, Shanghai, China
| | | |
Collapse
|
32
|
Fossat M, Zeng X, Pappu RV. Uncovering Differences in Hydration Free Energies and Structures for Model Compound Mimics of Charged Side Chains of Amino Acids. J Phys Chem B 2021; 125:4148-4161. [PMID: 33877835 PMCID: PMC8154595 DOI: 10.1021/acs.jpcb.1c01073] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/07/2021] [Indexed: 02/07/2023]
Abstract
Free energies of hydration are of fundamental interest for modeling and understanding conformational and phase equilibria of macromolecular solutes in aqueous phases. Of particular relevance to systems such as intrinsically disordered proteins are the free energies of hydration and hydration structures of model compounds that mimic charged side chains of Arg, Lys, Asp, and Glu. Here, we deploy a Thermodynamic Cycle-based Proton Dissociation (TCPD) approach in conjunction with data from direct measurements to obtain estimates for the free energies of hydration for model compounds that mimic the side chains of Arg+, Lys+, Asp-, and Glu-. Irrespective of the choice made for the hydration free energy of the proton, the TCPD approach reveals clear trends regarding the free energies of hydration for Arg+, Lys+, Asp-, and Glu-. These trends include asymmetries between the hydration free energies of acidic (Asp- and Glu-) and basic (Arg+ and Lys+) residues. Further, the TCPD analysis, which relies on a combination of experimental data, shows that the free energy of hydration of Arg+ is less favorable than that of Lys+. We sought a physical explanation for the TCPD-derived trends in free energies of hydration. To this end, we performed temperature-dependent calculations of free energies of hydration and analyzed hydration structures from simulations that use the polarizable Atomic Multipole Optimized Energetics for Biomolecular Applications (AMOEBA) force field and water model. At 298 K, the AMOEBA model generates estimates of free energies of hydration that are consistent with TCPD values with a free energy of hydration for the proton of ca. -259 kcal/mol. Analysis of temperature-dependent simulations leads to a structural explanation for the observed differences in free energies of hydration of ionizable residues and reveals that the heat capacity of hydration is positive for Arg+ and Lys+ and negative for Asp- and Glu-.
Collapse
Affiliation(s)
| | | | - Rohit V. Pappu
- Department of Biomedical Engineering
and Center for Science & Engineering of Living Systems, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| |
Collapse
|
33
|
Adjoua O, Lagardère L, Jolly LH, Durocher A, Very T, Dupays I, Wang Z, Inizan TJ, Célerse F, Ren P, Ponder JW, Piquemal JP. Tinker-HP: Accelerating Molecular Dynamics Simulations of Large Complex Systems with Advanced Point Dipole Polarizable Force Fields Using GPUs and Multi-GPU Systems. J Chem Theory Comput 2021; 17:2034-2053. [PMID: 33755446 PMCID: PMC8047816 DOI: 10.1021/acs.jctc.0c01164] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Indexed: 11/29/2022]
Abstract
We present the extension of the Tinker-HP package (Lagardère, Chem. Sci. 2018, 9, 956-972) to the use of Graphics Processing Unit (GPU) cards to accelerate molecular dynamics simulations using polarizable many-body force fields. The new high-performance module allows for an efficient use of single- and multiple-GPU architectures ranging from research laboratories to modern supercomputer centers. After detailing an analysis of our general scalable strategy that relies on OpenACC and CUDA, we discuss the various capabilities of the package. Among them, the multiprecision possibilities of the code are discussed. If an efficient double precision implementation is provided to preserve the possibility of fast reference computations, we show that a lower precision arithmetic is preferred providing a similar accuracy for molecular dynamics while exhibiting superior performances. As Tinker-HP is mainly dedicated to accelerate simulations using new generation point dipole polarizable force field, we focus our study on the implementation of the AMOEBA model. Testing various NVIDIA platforms including 2080Ti, 3090, V100, and A100 cards, we provide illustrative benchmarks of the code for single- and multicards simulations on large biosystems encompassing up to millions of atoms. The new code strongly reduces time to solution and offers the best performances to date obtained using the AMOEBA polarizable force field. Perspectives toward the strong-scaling performance of our multinode massive parallelization strategy, unsupervised adaptive sampling and large scale applicability of the Tinker-HP code in biophysics are discussed. The present software has been released in phase advance on GitHub in link with the High Performance Computing community COVID-19 research efforts and is free for Academics (see https://github.com/TinkerTools/tinker-hp).
Collapse
Affiliation(s)
- Olivier Adjoua
- Sorbonne
Université, LCT, UMR 7616
CNRS, F-75005 Paris, France
| | - Louis Lagardère
- Sorbonne
Université, LCT, UMR 7616
CNRS, F-75005 Paris, France
- Sorbonne
Université, IP2CT, FR2622 CNRS, F-75005 Paris, France
| | - Luc-Henri Jolly
- Sorbonne
Université, IP2CT, FR2622 CNRS, F-75005 Paris, France
| | | | | | | | - Zhi Wang
- Department
of Chemistry, Washington University in Saint
Louis, Saint Louis, Missouri 63110, United
States
| | | | - Frédéric Célerse
- Sorbonne
Université, LCT, UMR 7616
CNRS, F-75005 Paris, France
- Sorbonne
Université, CNRS, IPCM, F-75005 Paris, France
| | - Pengyu Ren
- Department
of Biomedical Engineering, The University
of Texas at Austin, Austin, Texas 78712, United States
| | - Jay W. Ponder
- Department
of Chemistry, Washington University in Saint
Louis, Saint Louis, Missouri 63110, United
States
| | - Jean-Philip Piquemal
- Sorbonne
Université, LCT, UMR 7616
CNRS, F-75005 Paris, France
- Department
of Biomedical Engineering, The University
of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
34
|
Liu M, Das AK, Lincoff J, Sasmal S, Cheng SY, Vernon RM, Forman-Kay JD, Head-Gordon T. Configurational Entropy of Folded Proteins and Its Importance for Intrinsically Disordered Proteins. Int J Mol Sci 2021; 22:ijms22073420. [PMID: 33810353 PMCID: PMC8037987 DOI: 10.3390/ijms22073420] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 01/02/2023] Open
Abstract
Many pairwise additive force fields are in active use for intrinsically disordered proteins (IDPs) and regions (IDRs), some of which modify energetic terms to improve the description of IDPs/IDRs but are largely in disagreement with solution experiments for the disordered states. This work considers a new direction-the connection to configurational entropy-and how it might change the nature of our understanding of protein force field development to equally well encompass globular proteins, IDRs/IDPs, and disorder-to-order transitions. We have evaluated representative pairwise and many-body protein and water force fields against experimental data on representative IDPs and IDRs, a peptide that undergoes a disorder-to-order transition, for seven globular proteins ranging in size from 130 to 266 amino acids. We find that force fields with the largest statistical fluctuations consistent with the radius of gyration and universal Lindemann values for folded states simultaneously better describe IDPs and IDRs and disorder-to-order transitions. Hence, the crux of what a force field should exhibit to well describe IDRs/IDPs is not just the balance between protein and water energetics but the balance between energetic effects and configurational entropy of folded states of globular proteins.
Collapse
Affiliation(s)
- Meili Liu
- Department of Chemistry, Beijing Normal University, Beijing 100875, China;
- Pitzer Center for Theoretical Chemistry, University of California, Berkeley, CA 94720, USA; (A.K.D.); (J.L.); (S.S.); (S.Y.C.)
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Akshaya K. Das
- Pitzer Center for Theoretical Chemistry, University of California, Berkeley, CA 94720, USA; (A.K.D.); (J.L.); (S.S.); (S.Y.C.)
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - James Lincoff
- Pitzer Center for Theoretical Chemistry, University of California, Berkeley, CA 94720, USA; (A.K.D.); (J.L.); (S.S.); (S.Y.C.)
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA
| | - Sukanya Sasmal
- Pitzer Center for Theoretical Chemistry, University of California, Berkeley, CA 94720, USA; (A.K.D.); (J.L.); (S.S.); (S.Y.C.)
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA
| | - Sara Y. Cheng
- Pitzer Center for Theoretical Chemistry, University of California, Berkeley, CA 94720, USA; (A.K.D.); (J.L.); (S.S.); (S.Y.C.)
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Robert M. Vernon
- Molecular Medicine Program, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; (R.M.V.); (J.D.F.-K.)
| | - Julie D. Forman-Kay
- Molecular Medicine Program, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; (R.M.V.); (J.D.F.-K.)
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Teresa Head-Gordon
- Pitzer Center for Theoretical Chemistry, University of California, Berkeley, CA 94720, USA; (A.K.D.); (J.L.); (S.S.); (S.Y.C.)
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA
- Department of Bioengineering, University of California, Berkeley, CA 94720, USA
- Correspondence:
| |
Collapse
|
35
|
Zeng X, Liu C, Fossat MJ, Ren P, Chilkoti A, Pappu RV. Design of intrinsically disordered proteins that undergo phase transitions with lower critical solution temperatures. APL MATERIALS 2021; 9:021119. [PMID: 38362050 PMCID: PMC10868716 DOI: 10.1063/5.0037438] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Many naturally occurring elastomers are intrinsically disordered proteins (IDPs) built up of repeating units and they can demonstrate two types of thermoresponsive phase behavior. Systems characterized by lower critical solution temperatures (LCST) undergo phase separation above the LCST whereas systems characterized by upper critical solution temperatures (UCST) undergo phase separation below the UCST. There is congruence between thermoresponsive coil-globule transitions and phase behavior whereby the theta temperatures above or below which the IDPs transition from coils to globules serve as useful proxies for the LCST / UCST values. This implies that one can design sequences with desired values for the theta temperature with either increasing or decreasing radii of gyration above the theta temperature. Here, we show that the Monte Carlo simulations performed in the so-called intrinsic solvation (IS) limit version of the temperature-dependent the ABSINTH (self-Assembly of Biomolecules Studied by an Implicit, Novel, Tunable Hamiltonian) implicit solvation model, yields a useful heuristic for discriminating between sequences with known LCST versus UCST phase behavior. Accordingly, we use this heuristic in a supervised approach, integrate it with a genetic algorithm, combine this with IS limit simulations, and demonstrate that novel sequences can be designed with LCST phase behavior. These calculations are aided by direct estimates of temperature dependent free energies of solvation for model compounds that are derived using the polarizable AMOEBA (atomic multipole optimized energetics for biomolecular applications) forcefield. To demonstrate the validity of our designs, we calculate coil-globule transition profiles using the full ABSINTH model and combine these with Gaussian Cluster Theory calculations to establish the LCST phase behavior of designed IDPs.
Collapse
Affiliation(s)
- Xiangze Zeng
- Department of Biomedical Engineering and Center for Science & Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Chengwen Liu
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Martin J. Fossat
- Department of Biomedical Engineering and Center for Science & Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Pengyu Ren
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Rohit V. Pappu
- Department of Biomedical Engineering and Center for Science & Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, MO 63130, USA
| |
Collapse
|
36
|
Shi Y, Laury ML, Wang Z, Ponder JW. AMOEBA binding free energies for the SAMPL7 TrimerTrip host-guest challenge. J Comput Aided Mol Des 2021; 35:79-93. [PMID: 33140208 PMCID: PMC7867568 DOI: 10.1007/s10822-020-00358-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/28/2020] [Indexed: 12/22/2022]
Abstract
As part of the SAMPL7 host-guest binding challenge, the AMOEBA force field was applied to calculate the absolute binding free energy for 16 charged organic ammonium guests to the TrimerTrip host, a recently reported acyclic cucurbituril-derived clip host structure with triptycene moieties at its termini. Here we report binding free energy calculations for this system using the AMOEBA polarizable atomic multipole force field and double annihilation free energy methodology. Conformational analysis of the host suggests three families of conformations that do not interconvert in solution on a time scale available to nanosecond molecular dynamics (MD) simulations. Two of these host conformers, referred to as the "indent" and "overlap" structures, are capable of binding guest molecules. As a result, the free energies of all 16 guests binding to both conformations were computed separately, and combined to produce values for comparison with experiment. Initial ranked results submitted as part of the SAMPL7 exercise had a mean unsigned error (MUE) from experimental binding data of 2.14 kcal/mol. Subsequently, a rigorous umbrella sampling reference calculation was used to better determine the free energy difference between unligated "indent" and "overlap" host conformations. Revised binding values for the 16 guests pegged to this umbrella sampling reference reduced the MUE to 1.41 kcal/mol, with a correlation coefficient (Pearson R) between calculated and experimental binding values of 0.832 and a rank correlation (Kendall τ) of 0.65. Overall, the AMOEBA results demonstrate no significant systematic error, suggesting the force field provides an accurate energetic description of the TrimerTrip host, and an appropriate balance of solvation and desolvation effects associated with guest binding.
Collapse
Affiliation(s)
- Yuanjun Shi
- Department of Chemistry, Washington University in St. Louis, Saint Louis, MO, 63130, USA
| | - Marie L Laury
- Department of Chemistry, Washington University in St. Louis, Saint Louis, MO, 63130, USA
| | - Zhi Wang
- Department of Chemistry, Washington University in St. Louis, Saint Louis, MO, 63130, USA
| | - Jay W Ponder
- Department of Chemistry, Washington University in St. Louis, Saint Louis, MO, 63130, USA.
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO, 63110, USA.
| |
Collapse
|
37
|
Elber R. Milestoning: An Efficient Approach for Atomically Detailed Simulations of Kinetics in Biophysics. Annu Rev Biophys 2020; 49:69-85. [PMID: 32375019 DOI: 10.1146/annurev-biophys-121219-081528] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recent advances in theory and algorithms for atomically detailed simulations open the way to the study of the kinetics of a wide range of molecular processes in biophysics. The theories propose a shift from the traditionally very long molecular dynamic trajectories, which are exact but may not be efficient in the study of kinetics, to the use of a large number of short trajectories. The short trajectories exploit a mapping to a mesh in coarse space and allow for efficient calculations of kinetics and thermodynamics. In this review, I focus on one theory: Milestoning is a theory and an algorithm that offers a hierarchical calculation of properties of interest, such as the free energy profile and the mean first passage time. Approximations to the true long-time dynamics can be computed efficiently and assessed at different steps of the investigation. The theory is discussed and illustrated using two biophysical examples: ion permeation through a phospholipid membrane and protein translocation through a channel.
Collapse
Affiliation(s)
- Ron Elber
- Oden Institute for Computational Engineering and Sciences, Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, USA;
| |
Collapse
|
38
|
Abreu CRA, Tuckerman ME. Molecular Dynamics with Very Large Time Steps for the Calculation of Solvation Free Energies. J Chem Theory Comput 2020; 16:7314-7327. [PMID: 33197180 DOI: 10.1021/acs.jctc.0c00698] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In multiple time scale molecular dynamics, the use of isokinetic constraints along with massive thermostatting has enabled the adoption of very large integration steps, well beyond the limits imposed by resonance artifacts in standard algorithms. In this work, we present two new contributions to this topic. First, we investigate the velocity distribution and the temperature-kinetic energy relationship associated with the isokinetic Nosé-Hoover family of methods, showing how they depend on the number of thermostats attached to each atomic degree of freedom. Second, we investigate the performance of these methods in the calculation of solvation free energies, the determination of which is often key for understanding the partition of a chemical species among distinct environments. We show how one can extract this property from canonical (constant-NVT) simulations and compare the result to experimental data obtained at a specific pressure. Finally, we demonstrate that large time steps can, in fact, be used to improve the efficiency of these calculations and that attaching multiple thermostats per degree of freedom is beneficial for effectively exploring the configurational space of a molecular system.
Collapse
Affiliation(s)
- Charlles R A Abreu
- Chemical Engineering Department, Escola de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-909, Brazil
| | - Mark E Tuckerman
- Department of Chemistry, New York University, New York, New York 10003, United States.,Courant Institute of Mathematical Sciences, New York University, New York, New York 10012, United States.,NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
| |
Collapse
|
39
|
Schindler CEM, Baumann H, Blum A, Böse D, Buchstaller HP, Burgdorf L, Cappel D, Chekler E, Czodrowski P, Dorsch D, Eguida MKI, Follows B, Fuchß T, Grädler U, Gunera J, Johnson T, Jorand Lebrun C, Karra S, Klein M, Knehans T, Koetzner L, Krier M, Leiendecker M, Leuthner B, Li L, Mochalkin I, Musil D, Neagu C, Rippmann F, Schiemann K, Schulz R, Steinbrecher T, Tanzer EM, Unzue Lopez A, Viacava Follis A, Wegener A, Kuhn D. Large-Scale Assessment of Binding Free Energy Calculations in Active Drug Discovery Projects. J Chem Inf Model 2020; 60:5457-5474. [PMID: 32813975 DOI: 10.1021/acs.jcim.0c00900] [Citation(s) in RCA: 139] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Accurate ranking of compounds with regards to their binding affinity to a protein using computational methods is of great interest to pharmaceutical research. Physics-based free energy calculations are regarded as the most rigorous way to estimate binding affinity. In recent years, many retrospective studies carried out both in academia and industry have demonstrated its potential. Here, we present the results of large-scale prospective application of the FEP+ method in active drug discovery projects in an industry setting at Merck KGaA, Darmstadt, Germany. We compare these prospective data to results obtained on a new diverse, public benchmark of eight pharmaceutically relevant targets. Our results offer insights into the challenges faced when using free energy calculations in real-life drug discovery projects and identify limitations that could be tackled by future method development. The new public data set we provide to the community can support further method development and comparative benchmarking of free energy calculations.
Collapse
Affiliation(s)
| | - Hannah Baumann
- Merck KGaA, Frankfurter Strasse 250, 64293 Darmstadt, Germany
| | - Andreas Blum
- Merck KGaA, Frankfurter Strasse 250, 64293 Darmstadt, Germany
| | - Dietrich Böse
- Merck KGaA, Frankfurter Strasse 250, 64293 Darmstadt, Germany
| | | | - Lars Burgdorf
- Merck KGaA, Frankfurter Strasse 250, 64293 Darmstadt, Germany
| | | | - Eugene Chekler
- EMD Serono Research and Development Institute Inc., 45A Middlesex Turnpike, Billerica, Massachusetts 01821, United States
| | - Paul Czodrowski
- Merck KGaA, Frankfurter Strasse 250, 64293 Darmstadt, Germany
| | - Dieter Dorsch
- Merck KGaA, Frankfurter Strasse 250, 64293 Darmstadt, Germany
| | | | - Bruce Follows
- EMD Serono Research and Development Institute Inc., 45A Middlesex Turnpike, Billerica, Massachusetts 01821, United States
| | - Thomas Fuchß
- Merck KGaA, Frankfurter Strasse 250, 64293 Darmstadt, Germany
| | - Ulrich Grädler
- Merck KGaA, Frankfurter Strasse 250, 64293 Darmstadt, Germany
| | - Jakub Gunera
- Merck KGaA, Frankfurter Strasse 250, 64293 Darmstadt, Germany
| | - Theresa Johnson
- EMD Serono Research and Development Institute Inc., 45A Middlesex Turnpike, Billerica, Massachusetts 01821, United States
| | - Catherine Jorand Lebrun
- EMD Serono Research and Development Institute Inc., 45A Middlesex Turnpike, Billerica, Massachusetts 01821, United States
| | - Srinivasa Karra
- EMD Serono Research and Development Institute Inc., 45A Middlesex Turnpike, Billerica, Massachusetts 01821, United States
| | - Markus Klein
- Merck KGaA, Frankfurter Strasse 250, 64293 Darmstadt, Germany
| | - Tim Knehans
- Merck KGaA, Frankfurter Strasse 250, 64293 Darmstadt, Germany
| | - Lisa Koetzner
- Merck KGaA, Frankfurter Strasse 250, 64293 Darmstadt, Germany
| | - Mireille Krier
- Merck KGaA, Frankfurter Strasse 250, 64293 Darmstadt, Germany
| | | | | | - Liwei Li
- EMD Serono Research and Development Institute Inc., 45A Middlesex Turnpike, Billerica, Massachusetts 01821, United States
| | - Igor Mochalkin
- EMD Serono Research and Development Institute Inc., 45A Middlesex Turnpike, Billerica, Massachusetts 01821, United States
| | - Djordje Musil
- Merck KGaA, Frankfurter Strasse 250, 64293 Darmstadt, Germany
| | - Constantin Neagu
- EMD Serono Research and Development Institute Inc., 45A Middlesex Turnpike, Billerica, Massachusetts 01821, United States
| | | | - Kai Schiemann
- Merck KGaA, Frankfurter Strasse 250, 64293 Darmstadt, Germany
| | - Robert Schulz
- Merck KGaA, Frankfurter Strasse 250, 64293 Darmstadt, Germany.,Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2+4, 14195 Berlin, Germany
| | | | - Eva-Maria Tanzer
- EMD Serono Research and Development Institute Inc., 45A Middlesex Turnpike, Billerica, Massachusetts 01821, United States
| | | | - Ariele Viacava Follis
- EMD Serono Research and Development Institute Inc., 45A Middlesex Turnpike, Billerica, Massachusetts 01821, United States
| | - Ansgar Wegener
- Merck KGaA, Frankfurter Strasse 250, 64293 Darmstadt, Germany
| | - Daniel Kuhn
- Merck KGaA, Frankfurter Strasse 250, 64293 Darmstadt, Germany
| |
Collapse
|
40
|
Chen H, Maia JDC, Radak BK, Hardy DJ, Cai W, Chipot C, Tajkhorshid E. Boosting Free-Energy Perturbation Calculations with GPU-Accelerated NAMD. J Chem Inf Model 2020; 60:5301-5307. [PMID: 32805108 DOI: 10.1021/acs.jcim.0c00745] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Harnessing the power of graphics processing units (GPUs) to accelerate molecular dynamics (MD) simulations in the context of free-energy calculations has been a longstanding effort toward the development of versatile, high-performance MD engines. We report a new GPU-based implementation in NAMD of free-energy perturbation (FEP), one of the oldest, most popular importance-sampling approaches for the determination of free-energy differences that underlie alchemical transformations. Compared to the CPU implementation available since 2001 in NAMD, our benchmarks indicate that the new implementation of FEP in traditional GPU code is about four times faster, without any noticeable loss of accuracy, thereby paving the way toward more affordable free-energy calculations on large biological objects. Moreover, we have extended this new FEP implementation to a code path highly optimized for a single-GPU node, which proves to be up to nearly 30 times faster than the CPU implementation. Through optimized GPU performance, the present developments provide the community with a cost-effective solution for conducting FEP calculations. The new FEP-enabled code has been released with NAMD 3.0.
Collapse
Affiliation(s)
- Haochuan Chen
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Research Center for Analytical Sciences, College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China
| | - Julio D C Maia
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Brian K Radak
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - David J Hardy
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Wensheng Cai
- Research Center for Analytical Sciences, College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China
| | - Christophe Chipot
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Laboratoire International Associé Centre National de la Recherche Scientifique et University of Illinois at Urbana-Champaign, Unité Mixte de Recherche n°7019, Université de Lorraine, B.P. 70239, 54506 Vandoeuvre-lès-Nancy cedex, France.,Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Emad Tajkhorshid
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Department of Biochemistry and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
41
|
Klesse G, Tucker SJ, Sansom MSP. Electric Field Induced Wetting of a Hydrophobic Gate in a Model Nanopore Based on the 5-HT 3 Receptor Channel. ACS NANO 2020; 14:10480-10491. [PMID: 32673478 PMCID: PMC7450702 DOI: 10.1021/acsnano.0c04387] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/16/2020] [Indexed: 05/14/2023]
Abstract
In this study we examined the influence of a transmembrane voltage on the hydrophobic gating of nanopores using molecular dynamics simulations. We observed electric field induced wetting of a hydrophobic gate in a biologically inspired model nanopore based on the 5-HT3 receptor in its closed state, with a field of at least ∼100 mV nm-1 (corresponding to a supra-physiological potential difference of ∼0.85 V across the membrane) required to hydrate the pore. We also found an unequal distribution of charged residues can generate an electric field intrinsic to the nanopore which, depending on its orientation, can alter the effect of the external field, thus making the wetting response asymmetric. This wetting response could be described by a simple model based on water surface tension, the volumetric energy contribution of the electric field, and the influence of charged amino acids lining the pore. Finally, the electric field response was used to determine time constants characterizing the phase transitions of water confined within the nanopore, revealing liquid-vapor oscillations on a time scale of ∼5 ns. This time scale was largely independent of the water model employed and was similar for different sized pores representative of the open and closed states of the pore. Furthermore, our finding that the threshold voltage required for hydrating a hydrophobic gate depends on the orientation of the electric field provides an attractive perspective for the design of rectifying artificial nanopores.
Collapse
Affiliation(s)
- Gianni Klesse
- Department
of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
- Clarendon
Laboratory, Department of Physics, University
of Oxford, Oxford OX1 3PU, United Kingdom
| | - Stephen J. Tucker
- Clarendon
Laboratory, Department of Physics, University
of Oxford, Oxford OX1 3PU, United Kingdom
- OXION
Initiative in Ion Channels and Disease, University of Oxford, Oxford OX1 3PT, United Kingdom
| | - Mark S. P. Sansom
- Department
of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| |
Collapse
|
42
|
Yang X, Liu C, Walker BD, Ren P. Accurate description of molecular dipole surface with charge flux implemented for molecular mechanics. J Chem Phys 2020; 153:064103. [DOI: 10.1063/5.0016376] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Xudong Yang
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, 78712 Texas, USA
| | - Chengwen Liu
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, 78712 Texas, USA
| | - Brandon D. Walker
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, 78712 Texas, USA
| | - Pengyu Ren
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, 78712 Texas, USA
| |
Collapse
|
43
|
Macchiagodena M, Pagliai M, Andreini C, Rosato A, Procacci P. Upgraded AMBER Force Field for Zinc-Binding Residues and Ligands for Predicting Structural Properties and Binding Affinities in Zinc-Proteins. ACS OMEGA 2020; 5:15301-15310. [PMID: 32637803 PMCID: PMC7331063 DOI: 10.1021/acsomega.0c01337] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 05/13/2020] [Indexed: 05/08/2023]
Abstract
We developed a novel force field in the context of AMBER parameterization for glutamate and aspartate zinc(II)-binding residues. The interaction between the zinc ion and the coordinating atoms is represented by a spherical nonbonded parameterization. The polarization effect due to the zinc ion has been taken into account by redefining the atomic charges on the residues through accurate quantum mechanical calculations. The new zinc-binding ASP and GLU residues, along with the CYS and HIS zinc-binding residues, parameterized in a recent work [Macchiagodena M.;J. Chem. Inf. Model.2019, 59, 3803-3816], allow users to reliably simulate 96% of the Zn-proteins available in the Protein Data Bank. The upgraded force field for zinc(II)-bound residues has been tested performing molecular dynamics simulations with an explicit solvent and comparing the structural information with experimental data for five different proteins binding zinc(II) with GLU, ASP, HIS, and CYS. We further validated our approach by evaluating the binding free energy of (R)-2-benzyl-3-nitropropanoic acid to carboxypeptidase A using a recently developed nonequilibrium alchemical method. We demonstrated that in this setting it is crucial to take into account polarization effects also on the metal-bound inhibitor.
Collapse
Affiliation(s)
- Marina Macchiagodena
- Dipartimento
di Chimica “Ugo Schiff”, Università
degli Studi di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Marco Pagliai
- Dipartimento
di Chimica “Ugo Schiff”, Università
degli Studi di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Claudia Andreini
- Dipartimento
di Chimica “Ugo Schiff”, Università
degli Studi di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
- Magnetic
Resonance Center (CERM), Università
degli Studi di Firenze, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Antonio Rosato
- Dipartimento
di Chimica “Ugo Schiff”, Università
degli Studi di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
- Magnetic
Resonance Center (CERM), Università
degli Studi di Firenze, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Piero Procacci
- Dipartimento
di Chimica “Ugo Schiff”, Università
degli Studi di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
44
|
Palomino‐Hernandez O, Margreiter MA, Rossetti G. Challenges in RNA Regulation in Huntington's Disease: Insights from Computational Studies. Isr J Chem 2020. [DOI: 10.1002/ijch.202000021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Oscar Palomino‐Hernandez
- Computational Biomedicine, Institute of Neuroscience and Medicine (INM-9)/Instute for advanced simulations (IAS-5)Forschungszentrum Juelich 52425 Jülich Germany
- Faculty 1RWTH Aachen 52425 Aachen Germany
- Computation-based Science and Technology Research CenterThe Cyprus Institute Nicosia 2121 Cyprus
- Institute of Life ScienceThe Hebrew University of Jerusalem Jerusalem 91904 Israel
| | - Michael A. Margreiter
- Computational Biomedicine, Institute of Neuroscience and Medicine (INM-9)/Instute for advanced simulations (IAS-5)Forschungszentrum Juelich 52425 Jülich Germany
- Faculty 1RWTH Aachen 52425 Aachen Germany
| | - Giulia Rossetti
- Computational Biomedicine, Institute of Neuroscience and Medicine (INM-9)/Instute for advanced simulations (IAS-5)Forschungszentrum Juelich 52425 Jülich Germany
- Jülich Supercomputing Centre (JSC)Forschungszentrum Jülich 52425 Jülich Germany
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation University Hospital AachenRWTH Aachen University Pauwelsstraße 30 52074 Aachen Germany
| |
Collapse
|
45
|
Marcellini M, Nguyen MH, Martin M, Hologne M, Walker O. Accurate Prediction of Protein NMR Spin Relaxation by Means of Polarizable Force Fields. Application to Strongly Anisotropic Rotational Diffusion. J Phys Chem B 2020; 124:5103-5112. [DOI: 10.1021/acs.jpcb.0c01922] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Moreno Marcellini
- Institut des Sciences Analytiques (ISA), Univ Lyon, CNRS, UMR5280, Université Claude Bernard Lyon1, Lyon, France
| | - Minh-Ha Nguyen
- Institut des Sciences Analytiques (ISA), Univ Lyon, CNRS, UMR5280, Université Claude Bernard Lyon1, Lyon, France
| | - Marie Martin
- Institut des Sciences Analytiques (ISA), Univ Lyon, CNRS, UMR5280, Université Claude Bernard Lyon1, Lyon, France
| | - Maggy Hologne
- Institut des Sciences Analytiques (ISA), Univ Lyon, CNRS, UMR5280, Université Claude Bernard Lyon1, Lyon, France
| | - Olivier Walker
- Institut des Sciences Analytiques (ISA), Univ Lyon, CNRS, UMR5280, Université Claude Bernard Lyon1, Lyon, France
| |
Collapse
|
46
|
Dokholyan NV. Experimentally-driven protein structure modeling. J Proteomics 2020; 220:103777. [PMID: 32268219 PMCID: PMC7214187 DOI: 10.1016/j.jprot.2020.103777] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 03/17/2020] [Accepted: 04/02/2020] [Indexed: 11/25/2022]
Abstract
Revolutions in natural and exact sciences started at the dawn of last century have led to the explosion of theoretical, experimental, and computational approaches to determine structures of molecules, complexes, as well as their rich conformational dynamics. Since different experimental methods produce information that is attributed to specific time and length scales, corresponding computational methods have to be tailored to these scales and experiments. These methods can be then combined and integrated in scales, hence producing a fuller picture of molecular structure and motion from the "puzzle pieces" offered by various experiments. Here, we describe a number of computational approaches to utilize experimental data to glance into structure of proteins and understand their dynamics. We will also discuss the limitations and the resolution of the constraints-based modeling approaches. SIGNIFICANCE: Experimentally-driven computational structure modeling and determination is a rapidly evolving alternative to traditional approaches for molecular structure determination. These new hybrid experimental-computational approaches are proving to be a powerful microscope to glance into the structural features of intrinsically or partially disordered proteins, dynamics of molecules and complexes. In this review, we describe various approaches in the field of experimentally-driven computational structure modeling.
Collapse
Affiliation(s)
- Nikolay V Dokholyan
- Department of Pharmacology, Penn State University College of Medicine, Hershey, PA 17033, USA; Department of Biochemistry & Molecular Biology, Penn State College of Medicine, Hershey, PA 17033, USA.; Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA.; Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
47
|
Bradshaw RT, Dziedzic J, Skylaris CK, Essex JW. The Role of Electrostatics in Enzymes: Do Biomolecular Force Fields Reflect Protein Electric Fields? J Chem Inf Model 2020; 60:3131-3144. [DOI: 10.1021/acs.jcim.0c00217] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Richard T. Bradshaw
- School of Chemistry, University of Southampton, Highfield Campus, Southampton, SO17 1BJ, United Kingdom
| | - Jacek Dziedzic
- School of Chemistry, University of Southampton, Highfield Campus, Southampton, SO17 1BJ, United Kingdom
- Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, 80-233 Gdańsk, Poland
| | - Chris-Kriton Skylaris
- School of Chemistry, University of Southampton, Highfield Campus, Southampton, SO17 1BJ, United Kingdom
| | - Jonathan W. Essex
- School of Chemistry, University of Southampton, Highfield Campus, Southampton, SO17 1BJ, United Kingdom
| |
Collapse
|
48
|
Pan C, Liu C, Peng J, Ren P, Huang X. Three-site and five-site fixed-charge water models compatible with AMOEBA force field. J Comput Chem 2020; 41:1034-1044. [PMID: 31976572 DOI: 10.1002/jcc.26151] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 01/01/2020] [Indexed: 11/06/2022]
Abstract
In a typical biomolecular simulation using Atomic Multipole Optimized Energetics for Biomolecular Applications (AMOEBA) force field, the vast majority molecules in the simulation box consist of water, and these water molecules consume the most CPU power due to the explicit mutual induction effect. To improve the computational efficiency, we here develop two new nonpolarizable water models (with flexible bonds and fixed charges) that are compatible with AMOEBA solute: the 3-site AW3C and 5-site AW5C. To derive the force-field parameters for AW3C and AW5C, we fit to six experimental liquid thermodynamic properties: liquid density, enthalpy of vaporization, dielectric constant, isobaric heat capacity, isothermal compressibility and thermal expansion coefficient, at a broad range of temperatures from 261.15 to 353.15 K under 1.0 atm pressure. We further validate our AW3C and AW5C water models by showing that they can well reproduce the radial distribution function g(r), self-diffusion constant D, and hydration free energy from the AMOEBA03 water model and the experimental observations. Furthermore, we show that our AW3C and AW5C water models can greatly accelerate (>5 times) the bulk water as well as biomolecular simulations when compared to AMOEBA water. Specifically, we demonstrate that the applications of AW3C and AW5C water models to simulate a DNA duplex lead to a threefold acceleration, and in the meanwhile well maintain the structural properties as the fully polarizable AMOEBA water. We expect that our AW3C and AW5C water models hold great promise to be widely applied to simulate complex bio-molecules using the AMOEBA force field.
Collapse
Affiliation(s)
- Cong Pan
- Department of Chemistry, The Hong Kong University of Science and Technology, Hong Kong
| | - Chengwen Liu
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas
| | - Junhui Peng
- Department of Chemistry, The Hong Kong University of Science and Technology, Hong Kong
| | - Pengyu Ren
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas
| | - Xuhui Huang
- Department of Chemistry, The Hong Kong University of Science and Technology, Hong Kong.,Center of Systems Biology and Human Health, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| |
Collapse
|
49
|
Goel H, Yu W, Ustach VD, Aytenfisu AH, Sun D, MacKerell AD. Impact of electronic polarizability on protein-functional group interactions. Phys Chem Chem Phys 2020; 22:6848-6860. [PMID: 32195493 PMCID: PMC7194236 DOI: 10.1039/d0cp00088d] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Interactions of proteins with functional groups are key to their biological functions, making it essential that they be accurately modeled. To investigate the impact of the inclusion of explicit treatment of electronic polarizability in force fields on protein-functional group interactions, the additive CHARMM and Drude polarizable force field are compared in the context of the Site-Identification by Ligand Competitive Saturation (SILCS) simulation methodology from which functional group interaction patterns with five proteins for which experimental binding affinities of multiple ligands are available, were obtained. The explicit treatment of polarizability produces significant differences in the functional group interactions in the ligand binding sites including overall enhanced binding of functional groups to the proteins. This is associated with variations of the dipole moments of solutes representative of functional groups in the binding sites relative to aqueous solution with higher dipole moments systematically occurring in the latter, though exceptions occur with positively charged methylammonium. Such variation indicates the complex, heterogeneous nature of the electronic environments of ligand binding sites and emphasizes the inherent limitation of fixed charged, additive force fields for modeling ligand-protein interactions. These effects yield more defined orientation of the functional groups in the binding pockets and a small, but systematic improvement in the ability of the SILCS method to predict the binding orientation and relative affinities of ligands to their target proteins. Overall, these results indicate that the physical model associated with the explicit treatment of polarizability along with the presence of lone pairs in a force field leads to changes in the nature of the interactions of functional groups with proteins versus that occurring with additive force fields, suggesting the utility of polarizable force fields in obtaining a more realistic understanding of protein-ligand interactions.
Collapse
Affiliation(s)
- Himanshu Goel
- Computer Aided Drug Design Center, Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20, Penn St., Baltimore, Maryland 21201, USA.
| | - Wenbo Yu
- Computer Aided Drug Design Center, Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20, Penn St., Baltimore, Maryland 21201, USA.
| | - Vincent D Ustach
- Computer Aided Drug Design Center, Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20, Penn St., Baltimore, Maryland 21201, USA.
| | - Asaminew H Aytenfisu
- Computer Aided Drug Design Center, Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20, Penn St., Baltimore, Maryland 21201, USA.
| | - Delin Sun
- Computer Aided Drug Design Center, Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20, Penn St., Baltimore, Maryland 21201, USA.
| | - Alexander D MacKerell
- Computer Aided Drug Design Center, Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20, Penn St., Baltimore, Maryland 21201, USA.
| |
Collapse
|
50
|
Jones LO, Mosquera MA, Schatz GC, Ratner MA. Embedding Methods for Quantum Chemistry: Applications from Materials to Life Sciences. J Am Chem Soc 2020; 142:3281-3295. [PMID: 31986877 DOI: 10.1021/jacs.9b10780] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Quantum mechanical embedding methods hold the promise to transform not just the way calculations are performed, but to significantly reduce computational costs and improve scaling for macro-molecular systems containing hundreds if not thousands of atoms. The field of embedding has grown increasingly broad with many approaches of different intersecting flavors. In this perspective, we lay out the methods into two streams: QM:MM and QM:QM, showcasing the advantages and disadvantages of both. We provide a review of the literature, the underpinning theories including our contributions, and we highlight current applications with select examples spanning both materials and life sciences. We conclude with prospects and future outlook on embedding, and our view on the use of universal test case scenarios for cross-comparisons of the many available (and future) embedding theories.
Collapse
Affiliation(s)
- Leighton O Jones
- Department of Chemistry , Northwestern University , Evanston , Illinois 60208 , United States
| | - Martín A Mosquera
- Department of Chemistry , Northwestern University , Evanston , Illinois 60208 , United States
| | - George C Schatz
- Department of Chemistry , Northwestern University , Evanston , Illinois 60208 , United States
| | - Mark A Ratner
- Department of Chemistry , Northwestern University , Evanston , Illinois 60208 , United States
| |
Collapse
|