1
|
Peng S, Sun T, Yang D, Zhao H, Lin L, Xia B, Li M, Piao M, Shi Z, Tuo Q. Dipsacoside B ameliorates cognitive impairment in sepsis-associated encephalopathy by reducing Th17 cell infiltration and neuroinflammation. Biochem Pharmacol 2024; 227:116428. [PMID: 39009096 DOI: 10.1016/j.bcp.2024.116428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/24/2024] [Accepted: 07/12/2024] [Indexed: 07/17/2024]
Abstract
Sepsis-associated encephalopathy (SAE) is the main cause of cognitive impairment in patients with sepsis. The infiltration of inflammatory signals into the central nervous system (CNS) via the compromised blood-brain barrier (BBB) represents a crucial step in the pathological progression of SAE. In particular, T-helper 17 cell (Th17 cells) has been suggested to be highly correlated with the activation of central immune responses. Thus, preventing Th17 cell infiltration into the CNS may be a possible strategy to alleviate cognitive decline in SAE. Dipsacoside B (DB) is one of the primary active components in Chuan Xu Duan (Dipsacus asper Wall). We speculate that DB may be a potential candidate for the treatment of SAE-related cognitive deficits. In the present study, we demonstrated that DB could effectively alleviate cognitive impairment in SAE mice. DB significantly suppressed the central inflammatory response induced by repeated lipopolysaccharide (LPS) injection. The mechanism underlying its therapeutic effect should be attributed to the reduction of BBB impairment and pathogenic Th17 cell infiltration into the CNS by inhibition of vascular endothelial growth factor A (VEGFA)/ Vascular endothelial growth factor receptor 2(VEGFR2)/ Endothelial nitric oxide synthase (eNOS) signaling. Our findings suggest that DB is a potential candidate for the treatment of SAE-related cognitive dysfunction.
Collapse
Affiliation(s)
- Sha Peng
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, 410208 Changsha, Hunan, China; Key Laboratory of Vascular Biology and Translational Medicine, Hunan University of Chinese Medicine, 410208 Changsha, Hunan, China
| | - Taoli Sun
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, 410208 Changsha, Hunan, China; Key Laboratory of Vascular Biology and Translational Medicine, Hunan University of Chinese Medicine, 410208 Changsha, Hunan, China
| | - Dongmei Yang
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, 410208 Changsha, Hunan, China; Key Laboratory of Vascular Biology and Translational Medicine, Hunan University of Chinese Medicine, 410208 Changsha, Hunan, China; Basic Research Center of Integrated Chinese and Western medicine on prevention and treatment of vascular diseases, Medical School, Hunan University of Chinese Medicine, 410208 Changsha, Hunan, China
| | - Hongqing Zhao
- Science & Technology Innovation Center, Hunan University of Chinese Medicine, 410208 Changsha, Hunan, China
| | - Limei Lin
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, 410208 Changsha, Hunan, China
| | - Bohou Xia
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, 410208 Changsha, Hunan, China
| | - Minjie Li
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, 410208 Changsha, Hunan, China
| | - Meihong Piao
- Key Laboratory of Vascular Biology and Translational Medicine, Hunan University of Chinese Medicine, 410208 Changsha, Hunan, China; Basic Research Center of Integrated Chinese and Western medicine on prevention and treatment of vascular diseases, Medical School, Hunan University of Chinese Medicine, 410208 Changsha, Hunan, China
| | - Zhe Shi
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, 410208 Changsha, Hunan, China.
| | - Qinhui Tuo
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, 410208 Changsha, Hunan, China; Key Laboratory of Vascular Biology and Translational Medicine, Hunan University of Chinese Medicine, 410208 Changsha, Hunan, China; Basic Research Center of Integrated Chinese and Western medicine on prevention and treatment of vascular diseases, Medical School, Hunan University of Chinese Medicine, 410208 Changsha, Hunan, China.
| |
Collapse
|
2
|
Liao R, Hsu JY, Aboelella NS, McKeever JA, Thomas-Toth AT, Koh AS, LaBelle JL. Venetoclax Induces BCL-2-Dependent Treg to TH17 Plasticity to Enhance the Antitumor Efficacy of Anti-PD-1 Checkpoint Blockade. Cancer Immunol Res 2024; 12:1074-1089. [PMID: 38810242 PMCID: PMC11293981 DOI: 10.1158/2326-6066.cir-23-0344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 03/01/2024] [Accepted: 05/22/2024] [Indexed: 05/31/2024]
Abstract
The specific BCL-2 small molecule inhibitor venetoclax induces apoptosis in a wide range of malignancies, which has led to rapid clinical expansion in its use alone and in combination with chemotherapy and immune-based therapies against a myriad of cancer types. While lymphocytes, and T cells in particular, rely heavily on BCL-2 for survival and function, the effects of small molecule blockade of the BCL-2 family on surviving immune cells is not fully understood. We aimed to better understand the effect of systemic treatment with venetoclax on regulatory T cells (Treg), which are relatively resistant to cell death induced by specific drugging of BCL-2 compared to other T cells. We found that BCL-2 blockade altered Treg transcriptional profiles and mediated Treg plasticity toward a TH17-like Treg phenotype, resulting in increased IL17A production in lymphoid organs and within the tumor microenvironment. Aligned with previously described augmented antitumor effects observed when combining venetoclax with anti-PD-1 checkpoint inhibition, we also demonstrated that Treg-specific genetic BCL-2 knockout combined with anti-PD-1 induced tumor regression and conferred overlapping genetic changes with venetoclax-treated Tregs. As long-term combination therapies using venetoclax gain more traction in the clinic, an improved understanding of the immune-modulatory effects caused by venetoclax may allow expansion of its use against malignancies and immune-related diseases.
Collapse
Affiliation(s)
- Rosy Liao
- Department of Pediatrics, Section of Hematology and Oncology, University of Chicago, Chicago, IL USA
| | - Jocelyn Y. Hsu
- Department of Pediatrics, Section of Hematology and Oncology, University of Chicago, Chicago, IL USA
| | - Nada S. Aboelella
- Department of Pediatrics, Section of Hematology and Oncology, University of Chicago, Chicago, IL USA
| | | | - Anika T. Thomas-Toth
- Department of Pediatrics, Section of Hematology and Oncology, University of Chicago, Chicago, IL USA
| | - Andrew S. Koh
- Department of Pathology, University of Chicago, Chicago, IL USA
| | - James L. LaBelle
- Department of Pediatrics, Section of Hematology and Oncology, University of Chicago, Chicago, IL USA
| |
Collapse
|
3
|
Zhang S, Shan J, Jie Y, Zhang X, Zhu M, Shen J, Mao K, Chen W, Wang Y, Wen Y. Inhibition of PI3K p110δ rebalanced Th17/Treg and reduced macrophages pyroptosis in LPS-induced sepsis. Mol Immunol 2024; 170:110-118. [PMID: 38653076 DOI: 10.1016/j.molimm.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/13/2024] [Accepted: 04/09/2024] [Indexed: 04/25/2024]
Abstract
Sepsis is a systemic inflammatory response syndrome caused by trauma or infection, which can lead to multiple organ dysfunction. In severe cases, sepsis can also progress to septic shock and even death. Effective treatments for sepsis are still under development. This study aimed to determine if targeting the PI3K/Akt signaling with CAL-101, a PI3K p110δ inhibitor, could alleviate lipopolysaccharide (LPS)-induced sepsis and contribute to immune tolerance. Our findings indicated that CAL-101 treatment improved survival rates and alleviated the progression of LPS-induced sepsis. Compared to antibiotics, CAL-101 not only restored the Th17/regulatory T cells (Treg) balance but also enhanced Treg cell function. Additionally, CAL-101 promoted type 2 macrophage (M2) polarization, inhibited TNF-α secretion, and increased IL-10 secretion. Moreover, CAL-101 treatment reduced pyroptosis in peritoneal macrophages by inhibiting caspase-1/gasdermin D (GSDMD) activation. This study provides a mechanistic basis for future clinical exploration of targeted therapeutics and immunomodulatory strategies in the treatment of sepsis.
Collapse
Affiliation(s)
- Shiyun Zhang
- State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular Medicine, The Affiliated Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210093, PR China
| | - Jiajia Shan
- State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular Medicine, The Affiliated Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210093, PR China
| | - Yiyang Jie
- State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular Medicine, The Affiliated Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210093, PR China
| | - Xian Zhang
- State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular Medicine, The Affiliated Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210093, PR China
| | - Minyi Zhu
- State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular Medicine, The Affiliated Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210093, PR China
| | - Jingwen Shen
- State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular Medicine, The Affiliated Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210093, PR China
| | - Kefan Mao
- State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular Medicine, The Affiliated Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210093, PR China
| | - Wenhao Chen
- State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular Medicine, The Affiliated Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210093, PR China
| | - Yong Wang
- State Key Laboratory of Analytical Chemistry for Life Science and Jiangsu Key Laboratory of Molecular Medicine, The Affiliated Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210093, PR China.
| | - Yanting Wen
- State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular Medicine, The Affiliated Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210093, PR China.
| |
Collapse
|
4
|
Liu X, Chen L, Peng W, Deng H, Ni H, Tong H, Hu H, Wang S, Qian J, Liang A, Chen K. Th17/Treg balance: the bloom and wane in the pathophysiology of sepsis. Front Immunol 2024; 15:1356869. [PMID: 38558800 PMCID: PMC10978743 DOI: 10.3389/fimmu.2024.1356869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 02/20/2024] [Indexed: 04/04/2024] Open
Abstract
Sepsis is a multi-organ dysfunction characterized by an unregulated host response to infection. It is associated with high morbidity, rapid disease progression, and high mortality. Current therapies mainly focus on symptomatic treatment, such as blood volume supplementation and antibiotic use, but their effectiveness is limited. Th17/Treg balance, based on its inflammatory property, plays a crucial role in determining the direction of the inflammatory response and the regression of organ damage in sepsis patients. This review provides a summary of the changes in T-helper (Th) 17 cell and regulatory T (Treg) cell differentiation and function during sepsis, the heterogeneity of Th17/Treg balance in the inflammatory response, and the relationship between Th17/Treg balance and organ damage. Th17/Treg balance exerts significant control over the bloom and wanes in host inflammatory response throughout sepsis.
Collapse
Affiliation(s)
- Xinyong Liu
- Department of Critical Care Medicine, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Longwang Chen
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wei Peng
- Department of Critical Care Medicine, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Hongsheng Deng
- Department of Critical Care Medicine, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Hongying Ni
- Department of Critical Care Medicine, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Hongjie Tong
- Department of Critical Care Medicine, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Hangbo Hu
- Department of Critical Care Medicine, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Shengchao Wang
- Department of Critical Care Medicine, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Jin Qian
- Department of Critical Care Medicine, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Andong Liang
- Nursing Faculty, School of Medicine, Jinhua Polytechnic, Jinhua, China
| | - Kun Chen
- Department of Critical Care Medicine, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| |
Collapse
|
5
|
Oami T, Abtahi S, Shimazui T, Chen CW, Sweat YY, Liang Z, Burd EM, Farris AB, Roland JT, Tsukita S, Ford ML, Turner JR, Coopersmith CM. Claudin-2 upregulation enhances intestinal permeability, immune activation, dysbiosis, and mortality in sepsis. Proc Natl Acad Sci U S A 2024; 121:e2217877121. [PMID: 38412124 PMCID: PMC10927519 DOI: 10.1073/pnas.2217877121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/16/2024] [Indexed: 02/29/2024] Open
Abstract
Intestinal epithelial expression of the tight junction protein claudin-2, which forms paracellular cation and water channels, is precisely regulated during development and in disease. Here, we show that small intestinal epithelial claudin-2 expression is selectively upregulated in septic patients. Similar changes occurred in septic mice, where claudin-2 upregulation coincided with increased flux across the paracellular pore pathway. In order to define the significance of these changes, sepsis was induced in claudin-2 knockout (KO) and wild-type (WT) mice. Sepsis-induced increases in pore pathway permeability were prevented by claudin-2 KO. Moreover, claudin-2 deletion reduced interleukin-17 production and T cell activation and limited intestinal damage. These effects were associated with reduced numbers of neutrophils, macrophages, dendritic cells, and bacteria within the peritoneal fluid of septic claudin-2 KO mice. Most strikingly, claudin-2 deletion dramatically enhanced survival in sepsis. Finally, the microbial changes induced by sepsis were less pathogenic in claudin-2 KO mice as survival of healthy WT mice injected with cecal slurry collected from WT mice 24 h after sepsis was far worse than that of healthy WT mice injected with cecal slurry collected from claudin-2 KO mice 24 h after sepsis. Claudin-2 upregulation and increased pore pathway permeability are, therefore, key intermediates that contribute to development of dysbiosis, intestinal damage, inflammation, ineffective pathogen control, and increased mortality in sepsis. The striking impact of claudin-2 deletion on progression of the lethal cascade activated during sepsis suggests that claudin-2 may be an attractive therapeutic target in septic patients.
Collapse
Affiliation(s)
- Takehiko Oami
- Department of Surgery and Emory Critical Care Center, Emory University School of Medicine, Atlanta, GA30322
- Department of Emergency and Critical Care Medicine, Chiba University Graduate School of Medicine, Chiba260-8670, Japan
| | - Shabnam Abtahi
- Laboratory of Mucosal Pathobiology, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA02115
| | - Takashi Shimazui
- Department of Surgery and Emory Critical Care Center, Emory University School of Medicine, Atlanta, GA30322
- Department of Emergency and Critical Care Medicine, Chiba University Graduate School of Medicine, Chiba260-8670, Japan
| | - Ching-Wen Chen
- Department of Surgery and Emory Critical Care Center, Emory University School of Medicine, Atlanta, GA30322
| | - Yan Y. Sweat
- Laboratory of Mucosal Pathobiology, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA02115
| | - Zhe Liang
- Department of Surgery and Emory Critical Care Center, Emory University School of Medicine, Atlanta, GA30322
| | - Eileen M. Burd
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA30322
| | - Alton B. Farris
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA30322
| | - Joe T. Roland
- Epithelial Biology Center, Department of Surgery, Vanderbilt University Medical Center, Nashville, TN37240
| | - Sachiko Tsukita
- Advanced Comprehensive Research Organization, Teikyo University, Tokyo173-0003, Japan
| | - Mandy L. Ford
- Department of Surgery and Emory Transplant Center, Emory University School of Medicine, Atlanta, GA30322
| | - Jerrold R. Turner
- Laboratory of Mucosal Pathobiology, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA02115
| | - Craig M. Coopersmith
- Department of Surgery and Emory Critical Care Center, Emory University School of Medicine, Atlanta, GA30322
| |
Collapse
|
6
|
Jin H, Wei W, Zhao Y, Ma A, Sun K, Lin X, Liu Q, Shou S, Zhang Y. The roles of interleukin-17A in risk stratification and prognosis of patients with sepsis-associated acute kidney injury. Kidney Res Clin Pract 2023; 42:742-750. [PMID: 37448288 DOI: 10.23876/j.krcp.22.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 07/01/2022] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND The aim of this study was to evaluate the roles of interleukin (IL)-17A in risk stratification and prognosis of patients with sepsis-associated acute kidney injury (SAKI). METHODS We enrolled 146 sepsis patients (84 non-SAKI and 62 SAKI patients) admitted to the emergency department from November 2020 to November 2021. Patients with SAKI were differentiated based on the severity of acute kidney injury. All clinical parameters were evaluated upon admission before administering antibiotic treatment. Inflammatory cytokines were assessed using flow cytometry and the Pylon 3D automated immunoassay system (ET Healthcare). In addition, a receiver operating characteristic (ROC) curve was utilized to determine the prognostic values of IL-17A in SAKI. RESULTS The levels of creatinine, IL-2, IL-4, IL-6, IL-17A, tumor necrosis factor alpha, C-reactive protein, and procalcitonin (PCT) were significantly higher in the SAKI group than in the non-SAKI group (p < 0.05). The level of IL-17A revealed significant differences among stages 1, 2, and 3 in SAKI patients (p < 0.05). The mean levels of PCT, IL-4, and IL-17A were significantly higher in the non-survival group than in the survival group in SAKI patients (p < 0.05). In addition, the area under the ROC curve of IL-17A was 0.811. Moreover, the IL-17A cutoff for differentiating survivors from non-survivors was 4.7 pg/mL, of which the sensitivity and specificity were 77.4% and 71.0%, respectively. CONCLUSION Elevated levels of IL-17A could predict that SAKI patients are significantly prone to worsening kidney injury with higher mortality. The usefulness of IL-17A in treating SAKI requires further research.
Collapse
Affiliation(s)
- Heng Jin
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Wei Wei
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Yibo Zhao
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Ai Ma
- Department of Clinical Laboratory, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Keke Sun
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaoxi Lin
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Qihui Liu
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Songtao Shou
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Yan Zhang
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
7
|
Ma SR, Ma Q, Ma YN, Zhou WJ. Comprehensive analysis of ceRNA network composed of circRNA, miRNA, and mRNA in septic acute kidney injury patients based on RNA-seq. Front Genet 2023; 14:1209042. [PMID: 37779910 PMCID: PMC10538531 DOI: 10.3389/fgene.2023.1209042] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/30/2023] [Indexed: 10/03/2023] Open
Abstract
Background: Sepsis is a complex, life-threatening clinical syndrome that can cause other related diseases, such as acute kidney injury (AKI). Circular RNA (circRNA) is a type of non-coding RNA with a diverse range of functions, and it plays essential roles in miRNA sponge. CircRNA plays a huge part in the development of various diseases. CircRNA and the competing endogenous RNA (ceRNA) regulatory network are unknown factors in the onset and progression of septic AKI (SAKI). This study aimed to clarify the complex circRNA-associated regulatory mechanism of circRNAs in SAKI. Methods: We collected 40 samples of whole blood of adults, including 20 cases of SAKI and 20 cases of healthy controls. Moreover, five cases were each analyzed by RNA sequencing, and we identified differentially expressed circRNA, miRNA, and mRNA (DEcircRNAs, DEmiRNAs, and DEmRNAs, respectively). All samples were from SAKI patients with intraperitoneal infection. Results: As a result, we screened out 236 DEcircRNAs, 105 DEmiRNAs, and 4065 DEmRNAs. Then, we constructed two co-expression networks based on RNA-RNA interaction, including circRNA-miRNA and miRNA-mRNA co-expression networks. We finally created a circRNA-miRNA-mRNA regulation network by combining the two co-expression networks. Functional and pathway analyses indicated that DEmRNAs in ceRNA were mostly concentrated in T cell activation, neutrophils and their responses, and cytokines. The protein-protein interaction network was established to screen out the key genes participating in the regulatory network of SAKI. The hub genes identified as the top 10 nodes included the following: ZNF727, MDFIC, IFITM2, FOXD4L6, CIITA, KCNE1B, BAGE2, PPIAL4A, USP17L7, and PRSS2. Conclusion: To our knowledge, this research is the first study to describe changes in the expression profiles of circRNAs, miRNAs, and mRNAs in patients with SAKI. These findings provide a new treatment target for SAKI treatment and novel ideas for its pathogenesis.
Collapse
Affiliation(s)
- Si-Rong Ma
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Qi Ma
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Ya-Nan Ma
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Wen-Jie Zhou
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
- Department of Critical Care Medicine, General Hospital of Ningxia Medical University, Yinchuan, China
| |
Collapse
|
8
|
Tuerxun K, Eklund D, Wallgren U, Dannenberg K, Repsilber D, Kruse R, Särndahl E, Kurland L. Predicting sepsis using a combination of clinical information and molecular immune markers sampled in the ambulance. Sci Rep 2023; 13:14917. [PMID: 37691028 PMCID: PMC10493220 DOI: 10.1038/s41598-023-42081-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/05/2023] [Indexed: 09/12/2023] Open
Abstract
Sepsis is a time dependent condition. Screening tools based on clinical parameters have been shown to increase the identification of sepsis. The aim of current study was to evaluate the additional predictive value of immunological molecular markers to our previously developed prehospital screening tools. This is a prospective cohort study of 551 adult patients with suspected infection in the ambulance setting of Stockholm, Sweden between 2017 and 2018. Initially, 74 molecules and 15 genes related to inflammation were evaluated in a screening cohort of 46 patients with outcome sepsis and 50 patients with outcome infection no sepsis. Next, 12 selected molecules, as potentially synergistic predictors, were evaluated in combination with our previously developed screening tools based on clinical parameters in a prediction cohort (n = 455). Seven different algorithms with nested cross-validation were used in the machine learning of the prediction models. Model performances were compared using posterior distributions of average area under the receiver operating characteristic (ROC) curve (AUC) and difference in AUCs. Model variable importance was assessed by permutation of variable values, scoring loss of classification as metric and with model-specific weights when applicable. When comparing the screening tools with and without added molecular variables, and their interactions, the molecules per se did not increase the predictive values. Prediction models based on the molecular variables alone showed a performance in terms of AUCs between 0.65 and 0.70. Among the molecular variables, IL-1Ra, IL-17A, CCL19, CX3CL1 and TNF were significantly higher in septic patients compared to the infection non-sepsis group. Combing immunological molecular markers with clinical parameters did not increase the predictive values of the screening tools, most likely due to the high multicollinearity of temperature and some of the markers. A group of sepsis patients was consistently miss-classified in our prediction models, due to milder symptoms as well as lower expression levels of the investigated immune mediators. This indicates a need of stratifying septic patients with a priori knowledge of certain clinical and molecular parameters in order to improve prediction for early sepsis diagnosis.Trial registration: NCT03249597. Registered 15 August 2017.
Collapse
Affiliation(s)
- Kedeye Tuerxun
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden.
- Inflammatory Response and Infection Susceptibility Centre, (iRiSC), Faculty of Medicine and Health, Örebro University, Örebro, Sweden.
| | - Daniel Eklund
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- Inflammatory Response and Infection Susceptibility Centre, (iRiSC), Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | | | - Katharina Dannenberg
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Dirk Repsilber
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Robert Kruse
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- Inflammatory Response and Infection Susceptibility Centre, (iRiSC), Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- Department of Clinical Research Laboratory, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Eva Särndahl
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- Inflammatory Response and Infection Susceptibility Centre, (iRiSC), Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Lisa Kurland
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- Inflammatory Response and Infection Susceptibility Centre, (iRiSC), Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- Department of Emergency Medicine, Örebro University Hospital, Örebro, Sweden
| |
Collapse
|
9
|
Liu P, Xiao Z, Lu X, Zhang X, Huang J, Li C. Fasudil and SR1001 synergistically protect against sepsis-associated pancreatic injury by inhibiting RhoA/ROCK pathway and Th17/IL-17 response. Heliyon 2023; 9:e20118. [PMID: 37809525 PMCID: PMC10559842 DOI: 10.1016/j.heliyon.2023.e20118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 09/12/2023] [Accepted: 09/12/2023] [Indexed: 10/10/2023] Open
Abstract
Sepsis is defined as a dysregulated host response to infection that can result in organ dysfunction and high mortality, which needs more effective treatment urgently. Pancreas is one of the most vulnerable organs in sepsis, resulting in sepsis-associated pancreatic injury, which is a fatal complication of sepsis. The aim of this study was to investigate the effect of combination of fasudil and SR1001 on sepsis-associated pancreatic injury and to explore the underlying mechanisms. The model of sepsis-associated pancreatic injury was induced by cecal ligation and puncture. Pancreatic injury was evaluated by HE staining, histopathological scores and amylase activity. The frequency of Th17 cells was analyzed by flow cytometry. Serum IL-17 level was determined by ELISA. Protein levels of RORγt, p-STAT3, GEF-H1, RhoA and ROCK1 were determined by Western blot. The apoptosis of pancreatic cells was examined by TUNEL analysis and Hoechst33342/PI staining. Compared to the sham group, the model group showed significant pathological injury including edema, hyperemia, vacuolization and necrosis. After treatment with fasudil, model mice showed an obvious reduction of Th17 cells and IL-17. SR1001 significantly reduced the expressions of GEF-H1, RhoA and ROCK1 in the model mice. The combination treatment with fasudil and SR1001 significantly inhibited the differentiation of Th17 cells, expressions of IL-17, GEF-H1, RhoA and ROCK1, which were more effective than each mono-treatment. In addition, our data revealed a remarkable decrease of apoptosis in pancreatic acinar cells culturing with fasudil or SR1001, which was further inhibited by their combination culture. Lipopolysaccharide remarkably upregulated the differentiation of Th17 cells in vitro, which could be significantly downregulated by fasudil or SR1001, and further downregulated by their combination treatment. Taken together, the combination of fasudil with SR1001 has a synergistic effect on protecting against sepsis-associated pancreatic injury in C57BL/6 mice.
Collapse
Affiliation(s)
- Pingping Liu
- Department of Emergency, Key Laboratory of Pediatric Emergency Medicine of Hunan Province, Hunan Children's Hospital, Changsha, 410007, Hunan, PR China
| | - Zhenghui Xiao
- Department of Emergency, Key Laboratory of Pediatric Emergency Medicine of Hunan Province, Hunan Children's Hospital, Changsha, 410007, Hunan, PR China
| | - Xiulan Lu
- Department of Emergency, Key Laboratory of Pediatric Emergency Medicine of Hunan Province, Hunan Children's Hospital, Changsha, 410007, Hunan, PR China
| | - Xinping Zhang
- Department of Emergency, Key Laboratory of Pediatric Emergency Medicine of Hunan Province, Hunan Children's Hospital, Changsha, 410007, Hunan, PR China
| | - Jiaotian Huang
- Department of Emergency, Key Laboratory of Pediatric Emergency Medicine of Hunan Province, Hunan Children's Hospital, Changsha, 410007, Hunan, PR China
| | - Cheng Li
- Department of Respiratory and Critical Care Medicine, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, Hunan, PR China
| |
Collapse
|
10
|
Zhou J, Zhang Y, Zhuang Q. IL2RB affects Th1/Th2 and Th17 responses of peripheral blood mononuclear cells from septic patients. Allergol Immunopathol (Madr) 2023; 51:1-7. [PMID: 37169553 DOI: 10.15586/aei.v51i3.757] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 08/30/2022] [Indexed: 05/13/2023]
Abstract
BACKGROUND Immune dysfunction is a common and serious complication of sepsis. This study finds key genes linked to immunity in sepsis. METHODS The "Limma package" was used to analyze GSE154918 datasets for differentially expressed genes. The differentially expressed genes were then enriched for Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, and interleukin 2 receptor subunit Beta (IL2RB) protein coding gene was chosen for investigation. IL2RB expression in peripheral blood mononuclear cells (PBMC) was assessed by polymerase chain reaction. White blood cells of septic patients and healthy controls were collected from hospitals and linked with acute physiology and chronic health evaluation (APACHE) II, sequential organ failure assessment (SOFA), C-reactive protein (CRP), and procalcitonin (PCT) of septic patients using Pearson's correlation analysis. PBMC cells were transfected with IL2RB, and the effect of transfection was observed on cellular interferon gamma (IFN-γ), interleukin (IL)-12, IL-4, IL-10, and IL-17A. RESULTS A total of 686 differential genes, comprising 446 upregulated and 240 down regulated genes, were identified. The enrichment of KEGG pathway revealed that the majority of differential genes were enriched in the T helper (Th1)/Th2 cell and Th17 cell differentiation pathways. In patients with sepsis, correlation analysis revealed a negative correlation between IL2RB and APACHE II score, SOFA score, CRP, and PCT. IFN-γ and IL-12 levels were elevated in PBMC of septic patients after IL2RB transfection, but IL-4, IL-10, and IL-17A levels were lowered. CONCLUSION Sepsis-induced immunological dysfunction is improved by IL2RB, which also balances Th1/Th2 responses and prevents Th17 activation. © 2023 Codon Publications. Published by Codon Publications.
Collapse
Affiliation(s)
- Jiaqian Zhou
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Zhang
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China;
| | - Qing Zhuang
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China;
| |
Collapse
|
11
|
Li J, Sun G, Ma H, Wu X, Li C, Ding P, Lu S, Li Y, Yang P, Li C, Yang J, Peng Y, Meng Z, Wang L. Identification of immune-related hub genes and miRNA-mRNA pairs involved in immune infiltration in human septic cardiomyopathy by bioinformatics analysis. Front Cardiovasc Med 2022; 9:971543. [PMID: 36204577 PMCID: PMC9530044 DOI: 10.3389/fcvm.2022.971543] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Abstract Septic cardiomyopathy (SCM) is a serious complication caused by sepsis that will further exacerbate the patient's prognosis. However, immune-related genes (IRGs) and their molecular mechanism during septic cardiomyopathy are largely unknown. Therefore, our study aims to explore the immune-related hub genes (IRHGs) and immune-related miRNA-mRNA pairs with potential biological regulation in SCM by means of bioinformatics analysis and experimental validation. Method Firstly, screen differentially expressed mRNAs (DE-mRNAs) from the dataset GSE79962, and construct a PPI network of DE-mRNAs. Secondly, the hub genes of SCM were identified from the PPI network and the hub genes were overlapped with immune cell marker genes (ICMGs) to further obtain IRHGs in SCM. In addition, receiver operating characteristic (ROC) curve analysis was also performed in this process to determine the disease diagnostic capability of IRHGs. Finally, the crucial miRNA-IRHG regulatory network of IRHGs was predicted and constructed by bioinformatic methods. Real-time quantitative reverse transcription-PCR (qRT-PCR) and dataset GSE72380 were used to validate the expression of the key miRNA-IRHG axis. Result The results of immune infiltration showed that neutrophils, Th17 cells, Tfh cells, and central memory cells in SCM had more infiltration than the control group; A total of 2 IRHGs were obtained by crossing the hub gene with the ICMGs, and the IRHGs were validated by dataset and qRT-PCR. Ultimately, we obtained the IRHG in SCM: THBS1. The ROC curve results of THBS1 showed that the area under the curve (AUC) was 0.909. Finally, the miR-222-3p/THBS1 axis regulatory network was constructed. Conclusion In summary, we propose that THBS1 may be a key IRHG, and can serve as a biomarker for the diagnosis of SCM; in addition, the immune-related regulatory network miR-222-3p/THBS1 may be involved in the regulation of the pathogenesis of SCM and may serve as a promising candidate for SCM therapy.
Collapse
Affiliation(s)
- Jingru Li
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Guihu Sun
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Haocheng Ma
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xinyu Wu
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Chaozhong Li
- Department of Emergency, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Peng Ding
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Si Lu
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yanyan Li
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ping Yang
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Chaguo Li
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jun Yang
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yunzhu Peng
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Zhaohui Meng
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
- *Correspondence: Zhaohui Meng
| | - Luqiao Wang
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
- Luqiao Wang
| |
Collapse
|
12
|
Klingensmith NJ, Fay KT, Swift DA, Bazzano JM, Lyons JD, Chen CW, Meng M, Ramonell KM, Liang Z, Burd EM, Parkos CA, Ford ML, Coopersmith CM. Junctional adhesion molecule-A deletion increases phagocytosis and improves survival in a murine model of sepsis. JCI Insight 2022; 7:156255. [PMID: 35819838 PMCID: PMC9462501 DOI: 10.1172/jci.insight.156255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 07/07/2022] [Indexed: 11/28/2022] Open
Abstract
Expression of the tight junction–associated protein junctional adhesion molecule-A (JAM-A) is increased in sepsis, although the significance of this is unknown. Here, we show that septic JAM-A –/– mice have increased gut permeability, yet paradoxically have decreased bacteremia and systemic TNF and IL-1β expression. Survival is improved in JAM-A–/– mice. However, intestine-specific JAM-A–/– deletion does not alter mortality, suggesting that the mortality benefit conferred in mice lacking JAM-A is independent of the intestine. Septic JAM-A–/– mice have increased numbers of splenic CD44hiCD4+ T cells, decreased frequency of TNF+CD4+ cells, and elevated frequency of IL-2+CD4+ cells. Septic JAM-A–/– mice have increased numbers of B cells in mesenteric lymph nodes with elevated serum IgA and intraepithelial lymphocyte IgA production. JAM-A–/– × RAG–/– mice have improved survival compared with RAG–/– mice and identical mortality as WT mice. Gut neutrophil infiltration and neutrophil phagocytosis are increased in JAM-A–/– mice, while septic JAM-A–/– mice depleted of neutrophils lose their survival advantage. Therefore, increased bacterial clearance via neutrophils and an altered systemic inflammatory response with increased opsonizing IgA produced through the adaptive immune system results in improved survival in septic JAM-A–/– mice. JAM-A may be a therapeutic target in sepsis via immune mechanisms not related to its role in permeability.
Collapse
Affiliation(s)
- Nathan J Klingensmith
- Department of Surgery and Emory Critical Care Center, Emory University School of Medicine, Atlanta, United States of America
| | - Katherine T Fay
- Department of Surgery and Emory Critical Care Center, Emory University School of Medicine, Atlanta, United States of America
| | - David A Swift
- Department of Surgery and Emory Critical Care Center, Emory University School of Medicine, Atlanta, United States of America
| | - Julia Mr Bazzano
- Department of Surgery and Emory Critical Care Center, Emory Univerisity School of Medicine, Atlanta, United States of America
| | - John D Lyons
- Department of Surgery and Emory Critical Care Center, Emory Univerisity School of Medicine, Atlanta, United States of America
| | - Ching-Wen Chen
- Department of Surgery and Emory Critical Care Center, Emory Univerisity School of Medicine, Atlanta, United States of America
| | - Mei Meng
- Department of Surgery and Emory Critical Care Center, Emory Univerisity School of Medicine, Atlanta, United States of America
| | - Kimberly M Ramonell
- Department of Surgery and Emory Critical Care Center, Emory Univerisity School of Medicine, Atlanta, United States of America
| | - Zhe Liang
- Department of Surgery and Emory Critical Care Center, Emory Univerisity School of Medicine, Atlanta, United States of America
| | - Eileen M Burd
- Department of Pathology and Laboratory Medicine, Emory Univerisity School of Medicine, Atlanta, United States of America
| | - Charles A Parkos
- Department of Pathology, University of Michigan, Ann Arbor, United States of America
| | - Mandy L Ford
- Department of Surgery and Emory Critical Care Center, Emory Univerisity School of Medicine, Atlanta, United States of America
| | - Craig M Coopersmith
- Department of Surgery and Emory Critical Care Center, Emory Univerisity School of Medicine, Atlanta, United States of America
| |
Collapse
|
13
|
Wang Y, Huang Q, He F. Aberrant blood MALT1 and its relevance with multiple organic dysfunctions, T helper cells, inflammation, and mortality risk of sepsis patients. J Clin Lab Anal 2022; 36:e24331. [PMID: 35262976 PMCID: PMC8993658 DOI: 10.1002/jcla.24331] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/16/2022] [Accepted: 02/23/2022] [Indexed: 11/06/2022] Open
Abstract
Background MALT1 is linked with multiple organic dysfunctions, inflammatory storm, and T helper (Th) cell differentiation. Herein, the current study aimed to investigate the correlation of peripheral blood mononuclear cell (PBMC) MALT1 with Th1 cells, Th17 cells, and prognosis of sepsis patients. Methods In general, 78 sepsis patients and 40 health controls (HCs) were enrolled. MALT1 expression was detected in PBMCs from all subjects by RT‐qPCR. Besides, Th1 and Th17 cells were measured in PBMCs from sepsis patients by flow cytometry; interleukin 17A (IL‐17A) and interferon gamma (IFN‐γ) were determined in serum from sepsis patients by ELISA. Results MALT1 expression was higher in sepsis patients than HCs (p < 0.001). MALT1 expression was positively correlated with Th17 cells (rs = 0.291, p = 0.038) and IL‐17A (rs = 0.383, p = 0.001), but not with Th1 cells (rs = 0.204, p = 0.151) or IFN‐γ (rs = 0.175, p = 0.125) in sepsis patients. MALT1 expression was positively correlated with APACHE II score (rs = 0.275, p = 0.015), C‐reactive protein (CRP) (rs = 0.257, p = 0.023), and sequential organ failure assessment (SOFA) score (rs = 0.306, p = 0.006) (MALT1 expression was positively correlated with SOFA respiratory system score (rs = 0.348, p = 0.002), and SOFA liver score (rs = 0.260, p = 0.021), but not with SOFA scores in nervous system, cardio vascular system, coagulation, and renal system (all p > 0.05)). MALT1 expression (p = 0.010), Th1 cells (p = 0.010), Th17 cells (p = 0.038), and IL‐17A (p = 0.012), except for IFN‐γ (p = 0.102), elevated in sepsis deaths compared with sepsis survivors. Conclusion PBMC MALT1 is highly expressed in sepsis patients with its overexpression associated with multiple organic dysfunctions, elevated Th17 cells, and increased mortality risk.
Collapse
Affiliation(s)
- Yibin Wang
- Department of Central Intensive Care Unit, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, China
| | - Qinghe Huang
- Department of Central Intensive Care Unit, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, China
| | - Fuyun He
- Department of Central Intensive Care Unit, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, China
| |
Collapse
|