1
|
Hurwitz SJ, Asif G, Schinazi RF. Development of a population simulation model for HIV monotherapy virological outcomes using lamivudine. Antivir Chem Chemother 2008; 18:329-41. [PMID: 18320937 DOI: 10.1177/095632020701800605] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Current highly active antiretroviral therapy (HAART) requires the use of combinations of three drugs to minimize the early emergence of drug-resistant HIV strains. Therefore, long-term monotherapy data with new agents are unavailable. However, the development of computer models for Monte-Carlo-type simulations of antiviral monotherapy, which incorporate HIV infection dynamic distributions from previously studied populations, together with pharmacokinetics and pharmacodynamic parameters of the new agent, could serve as an important tool. The nucleoside lamivudine (3TC) was used as a representative drug to standardize an improved pharmacodynamic and infection dynamic monotherapy model. 3TC plasma concentration versus time profiles was used to drive the cellular accumulation of 3TC-triphosphate (TP) in primary human lymphocytes in the model, over a 16 week period. The fraction of HIV reverse transcription inhibited was calculated using the median inhibitory concentration and intracellular 3TC-TP levels. Virus loads and activated CD4+ T-cell counts were generated for 2,200 theoretical individuals and compared with the outcomes of an actual 3TC monotherapy trial at the same dose. Pharmacokinetic variance alone did not account for the interindividual HIV-load variability. However, selection of appropriate distributions of the various pharmacokinetic and infection dynamics parameters produced a similar range of virus load reductions to actual observations. Therefore, once parameter and variance distributions are standardized, this modelling approach could be helpful in planning clinical trials and predicting the antiviral contribution of each agent in a HAART modality.
Collapse
Affiliation(s)
- Selwyn J Hurwitz
- Center for AIDS Research and Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA.
| | | | | |
Collapse
|
2
|
Recht PA, Tepedino GJ, Siecke NW, Buckley MT, Mandeville JT, Maxfield FR, Levin RI. Oxalic acid alters intracellular calcium in endothelial cells. Atherosclerosis 2004; 173:321-8. [PMID: 15064109 DOI: 10.1016/j.atherosclerosis.2003.11.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2002] [Revised: 09/16/2003] [Accepted: 11/21/2003] [Indexed: 10/26/2022]
Abstract
Patients with chronic renal failure (CRF) who undergo hemodialysis experience accelerated atherosclerosis and premature death. While the cause of uremic atherogenesis is unknown, we reported that uremic levels of oxalate, an excretory metabolite, severely inhibit proliferation and migration of human endothelial cells (EC) without affecting other cell types. Since the physical, cellular and molecular events of endothelial injury are clearly established as key factors in the development of plaque, and since inhibition of proliferation and migration would enhance endothelial injury, we have proposed that oxalate is an atherogenic toxin of uremia. In the current study, we used in situ cell counting and total DNA measurement to show that the inhibitory effect of oxalate on proliferation is exclusive to endothelial cells among human cell lines tested (endothelial cells, fibroblasts, aortic smooth muscle cells (SMC), glioblastoma and embryonic kidney cells). Using the fluorescent calcium indicators fura-2 and fluo-3, we correlated the inhibition of proliferation with a prolonged elevation in intracellular free calcium levels. We also demonstrated that all cells tested internalize 14C-oxalic acid. We conclude that plasma oxalate exerts its atherogenic effects by elevating intracellular calcium exclusively in endothelial cells and preventing re-endothelialization.
Collapse
Affiliation(s)
- Phoebe A Recht
- Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, NY, USA
| | | | | | | | | | | | | |
Collapse
|
3
|
Lightcap ES, McCormack TA, Pien CS, Chau V, Adams J, Elliott PJ. Proteasome Inhibition Measurements: Clinical Application. Clin Chem 2000. [DOI: 10.1093/clinchem/46.5.673] [Citation(s) in RCA: 229] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
AbstractBackground: PS-341, a selective inhibitor of the proteasome, currently is under evaluation as an anticancer agent in multiple phase I clinical trials. In animal-model studies, PS-341 was rapidly removed from the vascular compartment and distributed widely, quickly approaching the limits of detection. An accurate pharmacodynamic assay has been developed as an alternative or complement to pharmacokinetic measurements.Methods: Fluorogenic kinetic assays for both the chymotryptic and tryptic activities of the proteasome have been optimized for both whole blood and blood cells. Using the ratio of these activities and the catalytic mechanism of the proteasome, we developed a novel method of calculating percentage of inhibition, using two structurally unrelated inhibitors (PS-341 and lactacystin).Results: This ratio method was demonstrated to be sensitive (detection limit of 13% inhibition with 10 μg of cell lysate), specific to the proteasome (PS-341 provides >98% inhibition), accurate (112% analyte recovery), and precise (0% ± 5% inhibition at 0 nmol/L PS-341 and 74.5% ± 1.7% inhibition at 200 nmol/L PS-341). Using these assays, we found that both erythrocytes and leukocytes contain proteasome at 3 μmol/L. Pharmacodynamic results for PS-341 obtained from the whole-blood ratio method were comparable to those using leukocytes determined by another method.Conclusions: The described assay provides a reliable method for studying the pharmacodynamics of proteasome inhibitors and is now in use in concurrent phase I clinical trials with PS-341.
Collapse
Affiliation(s)
| | | | | | | | | | - Peter J Elliott
- Millennium Pharmaceuticals, Inc., 38 Sidney St., Cambridge, MA 02139
| |
Collapse
|
4
|
Abstract
We used patch clamp techniques to identify and characterize a variety of K+ channels in primary human peripheral T lymphocytes. The most common channel observed in cell-attached configuration was voltage gated and inactivating. In ensemble averages, the kinetics of its activation and inactivation were similar to those of the whole-cell, voltage-gated K+ current described previously (Cahalan, M. D., K. G. Chandy, T. E. DeCoursey, and S. Gupta. 1985. J. Physiol. [Lond.]. 358:197-237; Deutsch, C., D. Krause, and S. C. Lee. 1986. J. Physiol. [Lond.]. 372:405-423), suggesting that this channel underlies the major portion of the outward current in lymphocytes. A small fraction of the time, this or another very similar channel was observed to inactivate significantly more slowly. Another channel type observed in cell-attached recording was seen less frequently and was transient in its appearance. This channel has a unitary conductance of approximately 10 pS, similar to the voltage-gated channel, but its voltage-independent gating, lack of inactivation, and different kinetic parameters showed it to be distinct. In whole-cell recording there is often a significant plateau current during sustained depolarization. Experiments using whole-cell and excised outside-out configurations indicate that at least part of this residual current is carried by K+ and, as opposed to the predominant voltage-gated current, is charybdotoxin insensitive. These findings are consistent with evidence that implicates charybdotoxin-sensitive and -insensitive components in T lymphocyte proliferation and volume regulation.
Collapse
Affiliation(s)
- S C Lee
- Department of Physiology, University of Pennsylvania, Philadelphia 19104-6085
| | | | | |
Collapse
|
5
|
Wilcock C, Hickman JA. Characterisation of a Na+/K+/Cl- cotransporter in alkylating agent-sensitive L1210 murine leukemia cells. BIOCHIMICA ET BIOPHYSICA ACTA 1988; 946:359-67. [PMID: 3207751 DOI: 10.1016/0005-2736(88)90411-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The mode of influx of 86Rb+, a K+ congener, to exponentially proliferating L1210 murine leukemia cells, incubated in a Krebs-Ringer buffer, has been characterised. The influx was composed of a ouabain-sensitive fraction (approx. 40%), a loop diuretic-sensitive fraction (approx. 40%) and a fraction which was insensitive to both types of inhibitor (approx. 15%). The fraction of ouabain-insensitive 86Rb+ influx, which was fully inhibited by furosemide (1 mM) or bumetanide (100 microM), was completely inhibited when Cl- was completely substituted by nitrate or gluconate ions, but was slightly (29 +/- 12%) stimulated if the Cl- was substituted by Br-. The substitution of Na+ by Li+, choline or tetramethylammonium ions inhibited the loop diuretic-sensitive fraction of 86Rb+ uptake. These results suggested that a component of 86Rb+ influx to L1210 cells was mediated via a Na+/K+/Cl- cotransporter. 86Rb+ efflux from L1210 cells which had been equilibrated with 86Rb+ and incubated in the presence or absence of 1 mM ouabain, was insensitive to the loop diuretics. Additionally, efflux rates were found to be independent of the external concentration of K+, suggesting that efflux was not mediated by K+-K+ exchange. The initial rate of 86Rb+ influx to L1210 cells in the plateau phase of growth was reduced to 44% of that of exponentially dividing cells, the reduction being accounted for by significant decreases in both ouabain- and loop diuretic-sensitive influx; these cells were reduced in volume compared to cells in the exponential phase of cell growth. In cells which had been deprived of serum for 18 h, and which showed an increase of the proportion of cells in the G1 phase of the cell cycle, the addition of serum stimulated an immediate increase in the furosemide-sensitive component of 86Rb+ influx. Diuretic-sensitive 86Rb+ influx was not altered by the incubation of the cells with 100 microM dibutyryl cyclic AMP, but was inhibited by 10 microM of the cross-linking agent nitrogen mustard (bis(2-chloro-ethyl)methylamine, HN2).
Collapse
Affiliation(s)
- C Wilcock
- Cancer Research Campaign Experimental Chemotherapy Group, Aston University, Birmingham, U.K
| | | |
Collapse
|
6
|
Ince C, Thio B, van Duijn B, van Dissel JT, Ypey DL, Leijh PC. Intracellular K+, Na+ and Cl- concentrations and membrane potential in human monocytes. BIOCHIMICA ET BIOPHYSICA ACTA 1987; 905:195-204. [PMID: 3676310 DOI: 10.1016/0005-2736(87)90023-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The relationship between the resting membrane potential and the intracellular ionic concentrations in human monocytes was investigated. Cell volume, cell water content, and amount of intracellular K+, Na+, and Cl- were measured to determine the intracellular concentrations of K+ (Ki), Na+ (Nai) and Cl- (Cli) of monocytes, and of lymphocytes and neutrophils. Values found for monocytes were similar to those for neutrophils, i.e., cell volumes were 346 and 345 micron3, respectively, cell water content 78%, and Ki, 128 and 125, Nai, 24 and 26, and Cli, 102 and 103 mmol/l cell water, respectively. Lymphocytes, however, had different values: 181 micron3 cell volume, 77% cell water content, and for Ki, Nai, and Cli, 165, 37, and 91 mmol/l cell water, respectively. The resting membrane potential of cultured human monocytes (range -30 to -40 mV), determined by measurement of the peak potential occurring within the first milliseconds after microelectrode entry, was most dependent on extracellular K+, followed by Cl-, and Na+. The membrane permeability ratio of Cl- to K+ was estimated by use of the constant field equation to be 0.23 (range 0.22 to 0.30).
Collapse
Affiliation(s)
- C Ince
- Department of Infectious Diseases, University Hospital, Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
7
|
Barankiewicz J, Cohen A. Purine nucleotide metabolism in phytohemagglutinin-induced human T lymphocytes. Arch Biochem Biophys 1987; 258:167-75. [PMID: 2444162 DOI: 10.1016/0003-9861(87)90333-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The comprehensive studies of purine nucleotide metabolism were done in nonstimulated and phytohemagglutinin (PHA)-stimulated human peripheral blood T lymphocytes. Nonstimulated lymphocytes synthesize nucleotides in two alternative pathways: via biosynthesis de novo and salvage pathways. Although synthesis of triphosphonucleosides in unstimulated lymphocytes was the predominant pathway, interconversion of monophosphonucleosides was also active. Exposure of cells to PHA affects differently various pathways of nucleotide metabolism. The most marked changes observed were rapid activation of purine salvage within minutes after exposure to PHA, and significant increase of 5-phosphoribosyl-1-pyrophosphate levels. In addition, significant increases were found in de novo purine biosynthesis, nucleotide interconversions, and RNA and DNA synthesis, whereas catabolism of nucleotides remained unchanged. These results indicate that PHA activation of T lymphocytes causes a rapid synthesis of nucleotides which may be required immediately for increases in energy metabolism and later as the precursors of nucleic acid synthesis.
Collapse
Affiliation(s)
- J Barankiewicz
- Department of Paediatrics, Hospital for Sick Children, Toronto, Ontario, Canada
| | | |
Collapse
|
8
|
Basilion JP, Stickle DF, Holian A. Extracellular hydrolysis of formyl peptides and subsequent uptake of liberated amino acids by alveolar macrophages. BIOCHIMICA ET BIOPHYSICA ACTA 1986; 886:255-66. [PMID: 2870740 DOI: 10.1016/0167-4889(86)90143-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The mechanism of accumulation of radioactive label from fNle-Leu-[3H]Phe by guinea pig alveolar macrophages was investigated. The binding of fNle-Leu-[3H]Phe to macrophages reached equilibrium within 5 min at 4 degrees C, but equilibrium could not be achieved at temperatures where fNle-Leu-Phe stimulated superoxide anion production is observed (e.g., 21-23 degrees C). At this temperature a rapid phase of initial binding of fNle-Leu-[3H]Phe to its receptor was followed by continued accumulation of cell-associated radioactivity which was linear and was dependent on the extracellular pH, i.e., the rate increased as the pH was lowered from pH 8 to pH 6. Examination for possible intracellular hydrolysis of fNle-Leu-[3H]Phe revealed the presence of extensive amounts of [3H]phenylalanine, both cell-associated and in the medium. The increases in cell-associated [3H]phenylalanine correlated in time and pH with cell-associated radioactivity that was accumulated after stimulation with fNle-Leu-[3H]Phe. The addition of 1 mM unlabelled phenylalanine blocked the long term accumulation of label from fNle-Leu-[3H]Phe by macrophages. 1 mM phenylalanine had no measureable effect on fNle-Leu-Phe stimulated O2- production, fNle-Leu-[3H]Phe hydrolysis or on fNle-Leu-[3H]Phe binding to its receptor. These results indicated that the long term accumulation of radioactivity by alveolar macrophages was due to extracellular hydrolysis of fNle-Leu-[3H]Phe followed by transport of liberated [3H]phenylalanine into the cells. A high affinity (Km = 3.56 X 10(-8) M) transport system for phenylalanine was measured in alveolar macrophages, which was not stimulated by the addition of fNle-Leu-Phe. The extracellular hydrolysis of fNle-Leu-[3H]Phe could not be attributed to release of macrophage enzymes into the medium. The responsible proteinase appears to be membrane bound and has a Km for the hydrolysis of fNle-Leu-[3H]Phe of 2.6 X 10(-7) M which is similar to the Kd (1.5 X 10(-7) M) for fNle-Leu-Phe binding. Taken together, these data suggest that for the alveolar macrophage: (1) formyl peptides are not internalized by a receptor-mediated process; (2) a surface proteinase can catalyze the hydrolysis of formyl peptides; and (3) [3H]phenylalanine formed by fNle-Leu-[3H]Phe hydrolysis is transported into the interior of the macrophage.
Collapse
|
9
|
Lee SC, Sabath DE, Deutsch C, Prystowsky MB. Increased voltage-gated potassium conductance during interleukin 2-stimulated proliferation of a mouse helper T lymphocyte clone. J Biophys Biochem Cytol 1986; 102:1200-8. [PMID: 2420805 PMCID: PMC2114188 DOI: 10.1083/jcb.102.4.1200] [Citation(s) in RCA: 88] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Recent work has demonstrated the presence of voltage-gated potassium channels in human peripheral blood T lymphocytes (Matteson, R., and C. Deutsch, 1984, Nature (Lond.), 307:468-471; DeCoursey T. E., T. G. Chandy, S. Gupta, and M. D. Cahalan, 1984, Nature (Lond.), 307:465-468) and a murine cytolytic T-cell clone (Fukushima, Y., S. Hagiwara, and M. Henkart, 1984, J. Physiol., 351:645-656). Using the whole cell patch clamp, we have found a potassium conductance with similar properties in a murine noncytolytic T lymphocyte clone, L2. Under voltage clamp, a step from a holding potential of -70 mV to +50 mV produces an average outward current of 100-150 pA in "quiescent" L2 cells at the end of their weekly maintenance cycle. When these cells are stimulated with human recombinant interleukin 2 (rIL2, 100 U/ml), they grow in size and initiate DNA synthesis at approximately 24 h. Potassium conductance is increased as early as 8 h after stimulation with rIL2 and rises to a level 3-4 times that of excipient controls by 24 h. The level remains elevated through 72 h, but as the cells begin to leave the cell cycle at 72-96 h, the conductance decreases quickly to a value only slightly higher than the initial one. Quinine, a blocker of this conductance, markedly reduces the rate at which L2 cells traverse the cell cycle, while also reducing the rate of stimulated protein synthesis. The regulation of potassium conductance in L2 cells during rIL2-stimulated proliferation suggests that potassium channel function may play a role in support of the proliferative response.
Collapse
|
10
|
Diamond MS, Holian A. Biochemical properties of macrophage fractions and their relation to the mechanism of superoxide production. FEBS Lett 1986; 197:21-6. [PMID: 3005041 DOI: 10.1016/0014-5793(86)80290-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Guinea pig alveolar macrophages are separable by density gradient centrifugation into three subpopulations whose capacity for biological activity (e.g. O2- production and chemotaxis) varies directly with buoyant density [(1983) J. Reticuloendothel. Soc. 33, 157-164]. This study demonstrates that the activity per cell of various other enzymes remains constant among the subpopulations. When normalized for cell volume, enzyme activity diminishes with decreasing buoyant density. Intracellular calcium mobilization, linked to formyl peptide and concanavalin A-stimulated O2- production, similarly diminishes. Formyl peptide receptor distribution and affinity remain constant. Decreased responsiveness of lower density cells is probably due to lower concentration of enzyme(s) involved in the transduction of signal distal to ligand recognition (or binding).
Collapse
|
11
|
Stickle DF, Daniele RP, Holian A. Cytosolic calcium, calcium fluxes, and regulation of alveolar macrophage superoxide anion production. J Cell Physiol 1984; 121:458-66. [PMID: 6094596 DOI: 10.1002/jcp.1041210303] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The recently available compound quin-2, which acts as a high affinity fluorescent indicator for calcium in the cytosol, was used to examine the role of calcium mobilization in the alveolar macrophage during the stimulation of 0-2 production by the tripeptide N-formyl norleucyl leucyl phenylalanine (FNLLP). After preloading with quin-2, the production of 0-2 was measured in conjunction with the transfer of 45Ca+2 and changes in quin-2 fluorescence upon stimulation with FNLLP. When cells were maintained in low (10 microM) extracellular calcium medium the presence of 1.5 mM quin-2 in the cytosolic space partially inhibited the rate of 0-2 production upon stimulation by FNLLP. Addition of 1 mM Ca+2 to the medium prior to stimulation rapidly restored the cell's capability to produce 0-2 upon stimulation at rates equal to control and extended the duration of stimulated 0-2 production as well. Quin-2 fluorescence measurements indicated an increase in cytosolic Ca+2 upon stimulation with FNLLP. This increase was lowest under conditions in which 0-2 production was inhibited. The addition of 1 mM Ca+2 to the medium caused by itself a rapid but transient increase in cytosolic Ca+2 as measured with quin-2 without stimulating 0-2 production. This intracellularly redistributed calcium was determined to be the source of the greater increase in cytosolic calcium during stimulation in the presence of high extracellular calcium. Measurements of 45Ca+2 transfer demonstrated a buffering of cytosolic Ca+2 changes by quin-2, which in low calcium medium could deplete calcium stores. It is suggested that this effect, prior to stimulation, was responsible for the mitigated 0-2 response for those cells maintained in low calcium medium, wherein calcium stores could not be replenished. These results suggested that the cell's mechanism for regulating cytosolic and bound calcium concentrations may also play an integral role in its normal mechanism for stimulated 0-2 production. They further support the postulate that the commonly observed rise in the concentration of calcium in the cytosol upon formyl peptide stimulation is a concomitant but nonregulatory event only.
Collapse
|
12
|
Toback FG, Ekelman KB, Ordóñez NG. Stimulation of DNA synthesis in kidney epithelial cells in culture by potassium. THE AMERICAN JOURNAL OF PHYSIOLOGY 1984; 247:C14-9. [PMID: 6742180 DOI: 10.1152/ajpcell.1984.247.1.c14] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The hypothesis that the K+ concentration of extracellular fluid is a determinant of renal DNA synthesis was examined in quiescent, high-density cultures of monkey kidney epithelial cells of the BSC-1 line. The addition of KCl to the medium increased the number of cells engaged in DNA synthesis in a concentration-dependent manner. The capacity of K+ to stimulate DNA synthesis in a greater number of cells was additive with exogenous NaCl and calf serum and was associated with an increment in the steady-state cell K+ content. Studies with other monovalent cations indicated that the stimulatory effect of K+ on DNA synthesis was not mediated by increments in the chloride concentration or osmotic pressure of the medium. The addition of K+ to confluent cultures was associated with a concentration-dependent increase in cell multiplication. The commitment of cells to increased multiplication required exposure of the culture to added KCl for longer than 3 but not more than 6 h. Addition of KCl to cultures of mouse fibroblasts did not alter DNA synthesis, multiplication, or cell K+ content. These observations indicate that increased availability of K+ in the extracellular fluid can stimulate DNA synthesis in kidney epithelial cells in culture.
Collapse
|
13
|
Deutsch C, Taylor JS, Price M. pH homeostasis in human lymphocytes: modulation by ions and mitogen. J Biophys Biochem Cytol 1984; 98:885-93. [PMID: 6699091 PMCID: PMC2113162 DOI: 10.1083/jcb.98.3.885] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Quiescent human peripheral blood lymphocytes have been shown to maintain a relatively constant intracellular pH of 7.0-7.2 over an extracellular pH range of 6.9-7.4. Two methods of measuring intracellular pH were used in these studies, 19F nuclear magnetic resonance and [14C]5,5-dimethyloxazolidine-2,4-dione (DMO) equilibrium distributions. When ATP levels were decreased in these cells, actively maintained pH regulation was abolished and cells exhibited a constant pH gradient of 0.2 pH unit (acid inside relative to outside). Possible mechanisms for pH regulation are discussed. The effects of the Na+ and K+ composition of the medium on pH regulation showed no correlation with their effects on mitogen-induced proliferative response, which we have previously determined (Deutsch, C., and M. Price, 1982, J. Cell. Physiol., 111:73-79). In low-Na+ mannitol medium, pH regulation was similar to that observed for lymphocytes in normal medium, whereas mitogen-induced proliferation was severely inhibited in low-Na+ mannitol. In contrast, high-K+, low Na+ medium caused loss of pH homeostasis, whereas it restored the proliferative response. Loss of pH homeostasis was also observed on prolonged exposure of lymphocytes to mitogen (greater than 6 h in culture). However, mitogen stimulation led to little or no change in intracellular pH in the first few hours of cell culture. Therefore, a shift in intracellular pH is not a necessary or general event in mitogen-stimulated proliferation of lymphocytes.
Collapse
|
14
|
Chan PH, Kerlan R, Fishman RA. Reductions of gamma-aminobutyric acid and glutamate uptake and (Na+ + K+)-ATPase activity in brain slices and synaptosomes by arachidonic acid. J Neurochem 1983; 40:309-16. [PMID: 6130123 DOI: 10.1111/j.1471-4159.1983.tb11284.x] [Citation(s) in RCA: 172] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Arachidonic acid, a major polyunsaturated fatty acid of membrane phospholipids in the CNS, reduced the high-affinity uptake of glutamate and gamma-aminobutyric acid (GABA) in both rat brain cortical slices and synaptosomes. alpha-Aminoisobutyric acid uptake was not affected. Intrasynaptosomal sodium was increased concomitant with decreased (Na+ + K+)-ATPase activity in synaptosomal membranes. The reduction of GABA uptake in synaptosomes could be partially reversed by alpha-tocopherol. The inhibition of membrane-bound (Na+ + K+)-ATPase by arachidonic acid was not due to a simple detergent-like action on membranes, since sodium dodecyl sulfate stimulated the sodium pump activity in synaptosomes. These data indicate that arachidonic acid selectively modifies membrane stability and integrity associated with reductions of GABA and glutamate uptake and of (Na+ + K+)-ATPase activity.
Collapse
|
15
|
Holian A, Daniele RP. Formyl peptide stimulation of superoxide anion release from lung macrophages: sodium and potassium involvement. J Cell Physiol 1982; 113:413-9. [PMID: 6294126 DOI: 10.1002/jcp.1041130309] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We examined the role of the monovalent cations Na+ and K+ in the events encompassing the release of O-2 by alveolar macrophages after stimulation with formyl methionyl phenylalanine (FMP). This was accomplished by determining the effect of changing the extracellular [Na+] and/or [K+] on FMP-stimulated O-2 production; and measuring 22Na+, 42K+ and 86Rb+ influx and efflux and intracellular [K+] for control and FMP-stimulated alveolar macrophages. Stimulated O-2 production was relatively insensitive to changes in extracellular K+ or Na+ concentrations until the [Na+] was decreased below 35 mM. At 4 mM [Na+], the rate of O-2 production remained at 75% of the maximal rate observed at physiological concentrations of [Na+]. Both influx and efflux of 22Na+ were stimulated above control rates by FMP. The increased rates of fluxes lasted for a few minutes suggesting a transient increase in membrane permeability to Na+. Ouabain partially inhibited 22Na+ efflux but had no effect on O-2 release. The influx of 86Rb+ and 42K+ was not altered by the addition of FMP but was virtually abolished in the presence of 10 microM ouabain or 1 mM quinine. In the presence of extracellular calcium, FMP-stimulated a prolonged (greater than 20 minutes) increase in 86Rb+ or 42K+ efflux which was inhibitable by 1 mM quinine. In the absence of extracellular calcium, FMP stimulation of K+ efflux was greatly diminished and was not affected by quinine, although quinine still inhibited O-2 production under these conditions. It was also observed that there was a loss of intracellular K+ when cells were stimulated by FMP in the presence of Ca+2, but not in the absence of Ca+2. Taken together, these results suggest a minimal direct role, if any, for K+ in the events that lead to FMP-stimulated O-2 release by alveolar macrophages.
Collapse
|
16
|
Holian A, Daniele RP. The role of calcium in the initiation of superoxide release from alveolar macrophages. J Cell Physiol 1982; 113:87-93. [PMID: 6290514 DOI: 10.1002/jcp.1041130115] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The role of calcium in the release of superoxide anion (O2-) was examined in alveolar macrophages after stimulation with the soluble stimuli: concanavalin A (Con A), N-formyl methionyl phenylalanine (FMP), and the calcium ionophore. A23187. The release of O2- by Con A was unaffected over a wide range of extracellular calcium concentrations (20 microM to 3 mM), whereas increasing the extracellular calcium above 2 mM inhibited FMP-stimulated O2- release. In contrast, A23187 did not stimulate O2- release in calcium-free medium (less than or equal to 30 microM). The addition of EGTA (50 microM) to calcium-free medium had no effect on Con A stimulation of O2- release or FMP-stimulated O2- release. These results suggest that, for the three soluble stimuli, there are different roles for Ca+2 in the activation and transmission of stimulatory signals across the cell membrane. Con A- or FMP-stimulated calcium efflux from calcium-loaded cells in either calcium-free medium or 0.5 mM calcium-containing medium. In calcium-free medium, FMP transiently retarded 45Ca+2 uptake, while in 0.5 mM calcium-containing medium, FMP transiently stimulated 45Ca+2 uptake. For either Con A or FMP, calcium efflux preceded O2- release by 30-45 sec. Quinine, an agent that blocks membrane hyperpolarization in macrophages, completely blocked O2- release by concanavalin A or FMP and inhibited 45CA+2 efflux by 50% or more for both agents. These results support the hypothesis that redistribution of cellular Ca+2 is one of the initial steps leading to the release of O2-.
Collapse
|
17
|
Deutsch C, Price MA. Cell calcium in human peripheral blood lymphocytes and the effect of mitogen. BIOCHIMICA ET BIOPHYSICA ACTA 1982; 687:211-8. [PMID: 7093251 DOI: 10.1016/0005-2736(82)90548-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The apparent cell concentration of calcium in human peripheral blood lymphocytes is 143.3 +/- 17.7 microM, as measured by two different techniques using 45Ca. The steady-state level of accumulation, and possibly the rate of uptake, are increased in the presence of succinyl-concanavalin A. Initiation of the mitogen-induced alteration of cell calcium occurs within 1-2 min and the change is complete within 5-10 min. Determinations of cell calcium in cells suspended in low Na media indicate that (1) there is no difference in cell calcium between cells incubated in 142 mM extracellular Na and cells incubated in 63 mM extracellular Na, and (2) the mitogen-induced increase in cell calcium is unaffected by a decrease in extracellular sodium concentration (to 63 mM).
Collapse
|
18
|
Abstract
The intracellular volume of neoplastic brain cells was investigated with regard to the effects of hypo-osmolality and hyperosmolality utilizing double isotopic labeling with 3-0-methyl-D-glucose or tritiated water to measure the total volume of the pellet and inulin or polyethyleneglycol to measure the extracellular volume of the pellet. The cellular pellets were rapidly separated from the incubation medium by centrifugation after addition of an oil mixture. After 60 minutes incubation in Hanks balanced salt medium, the intracellular volume was 7.50 +/- 0.64, 8.48 +/- 0.19, and 2.97 +/- 0.18 ml H2O per 10(6) packed cells for C-6 glioma cells, N18TG-2 neuroblastoma cells, and NG108-15 neuroblastoma X glioma hybrid cells, respectively. The extracellular trapped space of these cultured cells was about one third of the intracellular volume. The intracellular volume of C-6 glioma cells was increased in hypotonic environment, whereas it was decreased with hyperosmolality. Both intracellular sodium and potassium were increased with increased osmolality of the incubation media. These data indicate iso-osmotic regulation by tumor cells, i.e., there is a good correlation between the intracellular volume, intracellular cations and lactate levels of C-6 glioma cells under various osmotic conditions.
Collapse
|
19
|
Cooper H, Braverman R. Close correlation between initiator methionyl-tRNA level and rate of protein synthesis during human lymphocyte growth cycle. J Biol Chem 1981. [DOI: 10.1016/s0021-9258(19)68985-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
20
|
Frantz CN, Nathan DG, Scher CD. Intracellular univalent cations and the regulation of the BALB/c-3T3 cell cycle. J Cell Biol 1981; 88:51-6. [PMID: 7204489 PMCID: PMC2111729 DOI: 10.1083/jcb.88.1.51] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Addition of serum to density-arrested BALB/c-3T3 cells causes a rapid increase in uptake of Na+ and K+, followed 12 h later by the onset of DNA synthesis. We explored the role of intracellular univalent cation concentrations in the regulation of BALB/c-3T3 cell growth by serum growth factors. As cells grew to confluence, intracellular Na+ and K+ concentrations ([Na+]i and [K+]i) fell from 40 and 180 to 15 and 90 mmol/liter, respectively. Stimulation of growth of density-inhibited cells by the addition of serum growth factors increased [Na]i by 30% and [K+]i by 13-25% in early G0/G1, resulting in an increase in total univalent cation concentration. Addition of ouabain to stimulated cells resulted in a concentration-dependent steady decrease in [K+]i and increase in [Na+]i. Ouabain (100 microM) decreased [K+]i to approximately 60 mmol/liter by 12 h, and also prevented the serum-stimulated increase in 86Rb+ uptake. However, 100 microM ouabain did not inhibit DNA synthesis. A time-course experiment was done to determine the effect of 100 microM ouabain on [K+]i throughout G0/G1 and S phase. The addition of serum growth factors to density-inhibited cells stimulated equal rates of entry into the S phase in the presence or absence of 100 microM ouabain. However, in the presence of ouabain, there was a decrease in [K+]i. Therefore, an increase in [K+]i is not required for entry into S phase; serum growth factors do not regulate cell growth by altering [K+]i. The significance of increased total univalent cation concentration is discussed.
Collapse
|
21
|
|
22
|
Mikkelsen RB, Freerksen DL. Calcium binding to plasma membranes from normal and SV40 transformed hamster lymphocytes. JOURNAL OF RECEPTOR RESEARCH 1980; 1:239-60. [PMID: 6271953 DOI: 10.3109/10799898009044100] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The calcium binding properties of isolated plasma membranes from normal and SV40 transformed hamster lymphocytes were compared over the Ca2+ concentration range of 10(-5)M to 5 x 10(-3)M and at physiological ionic strength. At all Ca2+ concentrations, normal membranes bound more Ca2+ than tumor membranes; at blood Ca2+ levels (1-2 mM) plasma membranes of normal cells bind twice as much as membranes from tumor cells. Normal plasma membranes demonstrated positive cooperative Ca2+ binding whereas tumor membranes displayed non-interacting Ca2+ binding sites. Ca2+ binding to both membranes was insensitive to Mg2+ (0.1 to 2.5 mM). A pH shift from 7 to 6 resulted in a 70% decrease of normal membrane-bound Ca2+ compared to a 40% decrease observed with tumor membranes. Extracellular surface Ca2+ binding to intact cells was also studied after a 72-hour equilibration of cells with 45 Ca2+ and with ethyleneglycol-bis-(beta-amino-ethyl ether) N,N'-tetraacetate chelation as marker for surface Ca2+. Tumor cell surface Ca2+ binding was only 10% of that observed with quiescent lymphocytes. Normal lymphocytes stimulated to divide with phytohemagglutinin also showed a decreased level of surface Ca2+ (50%). However, plasma membranes isolated from non-dividing and phytohemagglutinin-stimulated lymphocytes exhibited equivalent Ca2+ binding.
Collapse
|
23
|
|
24
|
Cameron IL, Pool TB, Smith NK. An X-ray microanalysis survey of the concentration of elements in the cytoplasm of different mammalian cell types. J Cell Physiol 1979; 101:493-501. [PMID: 528574 DOI: 10.1002/jcp.1041010315] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Electron probe energy dispersive X-ray microanalysis was performed on freeze-dried tissue sections. The dry weight concentration of elements (mmole/kg dry weight) was measured in the cytoplasm of several cell types from adult mice and rats. This comparative investigation showed: (1) That the energy dispersive X-ray spectrum of element concentration from the cytoplasm of a specific cell type allows one to distinguish this specific cell type from other cell types with considerable accuracy. (2) That there is a relationship between the concentration of the various elements and the ultrastructural features of the cytoplasmic regions being analyzed. For example, areas rich in ribosomes are also rich in P, K and Mg. (3) These data support the idea that K is directly involved in the control of protein synthesis. The catalog of element concentrations in the cytoplasm of 13 cell types from both mice and rats should be of value to others who seek to answer various questions about these cell types.
Collapse
|