1
|
Williams BN, Draper A, Lang PF, Lewis TR, Smith AL, Mayerl SJ, Rougié M, Simon JM, Arshavsky VY, Greenwald SH, Gamm DM, Pinilla I, Philpot BD. Heterogeneity in the progression of retinal pathologies in mice harboring patient mimicking Impg2 mutations. Hum Mol Genet 2024; 33:448-464. [PMID: 37975905 PMCID: PMC10877459 DOI: 10.1093/hmg/ddad199] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023] Open
Abstract
Biallelic mutations in interphotoreceptor matrix proteoglycan 2 (IMPG2) in humans cause retinitis pigmentosa (RP) with early macular involvement, albeit the disease progression varies widely due to genetic heterogeneity and IMPG2 mutation type. There are currently no treatments for IMPG2-RP. To aid preclinical studies toward eventual treatments, there is a need to better understand the progression of disease pathology in appropriate animal models. Toward this goal, we developed mouse models with patient mimicking homozygous frameshift (T807Ter) or missense (Y250C) Impg2 mutations, as well as mice with a homozygous frameshift mutation (Q244Ter) designed to completely prevent IMPG2 protein expression, and characterized the trajectory of their retinal pathologies across postnatal development until late adulthood. We found that the Impg2T807Ter/T807Ter and Impg2Q244Ter/Q244Ter mice exhibited early onset gliosis, impaired photoreceptor outer segment maintenance, appearance of subretinal deposits near the optic disc, disruption of the outer retina, and neurosensorial detachment, whereas the Impg2Y250C/Y250C mice exhibited minimal retinal pathology. These results demonstrate the importance of mutation type in disease progression in IMPG2-RP and provide a toolkit and preclinical data for advancing therapeutic approaches.
Collapse
Affiliation(s)
- Brittany N Williams
- Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, United States
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, United States
- Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Adam Draper
- Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, United States
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Patrick F Lang
- Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, United States
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Tylor R Lewis
- Department of Ophthalmology, Duke University, Durham, NC 27705, United States
| | - Audrey L Smith
- Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, United States
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Steven J Mayerl
- Department of Ophthalmology and Visual Sciences, McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI 53705, United States
| | - Marie Rougié
- Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, United States
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Jeremy M Simon
- Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, United States
- Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Vadim Y Arshavsky
- Department of Ophthalmology, Duke University, Durham, NC 27705, United States
| | | | - David M Gamm
- Department of Ophthalmology and Visual Sciences, McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI 53705, United States
| | - Isabel Pinilla
- Department of Ophthalmology, Lozano Blesa University Hospital, Zaragoza 50009, Spain
- Aragón Health Research Institute (IIS Aragón), Zaragoza 50009, Spain
- Department of Surgery, University of Zaragoza, Zaragoza 50009, Spain
| | - Benjamin D Philpot
- Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, United States
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, United States
- Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, NC 27599, United States
| |
Collapse
|
2
|
Dosmar E, Walsh J, Doyel M, Bussett K, Oladipupo A, Amer S, Goebel K. Targeting Ocular Drug Delivery: An Examination of Local Anatomy and Current Approaches. Bioengineering (Basel) 2022; 9:41. [PMID: 35049750 PMCID: PMC8772869 DOI: 10.3390/bioengineering9010041] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/03/2022] [Accepted: 01/10/2022] [Indexed: 01/23/2023] Open
Abstract
Ocular drug delivery remains the focus of much modern research. Primary routes of administration include the surface, the intravitreal space, the subretinal space, and the subconjunctival space, each with its own series of unique challenges, limitations, and advantages. Each of these approaches requires careful consideration of the local anatomy, physical barriers, and key cells as well as the interface between the anatomy and the drug or drug system being delivered. While least invasive, the topical route poses a challenge with the many physical barriers that prevent drug penetration into the eye; while injection into the intravitreal, subretinal, and subconjunctival spaces are direct and targeted but limited due to the many internal clearance mechanisms and potential for damage to the eye. Polymeric-based, sustained-release drug delivery systems have been identified as a potential solution to many of these challenges; however, the design and successful implementation of a sustained-release system that is well-tolerated, bioactive, biocompatible, and degradable remains, in many cases, only in the early stages. The drugs and biomaterials in question also require special attention as small chemical changes could result in vastly different outcomes. This paper explores the anatomy and key cells of these four primary drug delivery routes as well as the interface between drug and drug delivery systems and the anatomy, reviewing the recent developments and current state of research in each area. Finally, this paper also examines the frequently used drugs and biomaterials found in ocular drug delivery and summarizes the primary interactions observed.
Collapse
Affiliation(s)
- Emily Dosmar
- Department of Biology and Biomedical Engineering, Rose-Hulman Institute of Technology, Terre Haute, IN 47803, USA; (J.W.); (M.D.); (K.B.); (A.O.); (S.A.); (K.G.)
| | | | | | | | | | | | | |
Collapse
|
3
|
Dhurandhar D, Sahoo NK, Mariappan I, Narayanan R. Gene therapy in retinal diseases: A review. Indian J Ophthalmol 2021; 69:2257-2265. [PMID: 34427196 PMCID: PMC8544052 DOI: 10.4103/ijo.ijo_3117_20] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Over 2 million people worldwide are suffering from gene-related retinal diseases, inherited or acquired, and over 270 genes have been identified which are found to be responsible for these conditions. This review article touches upon the mechanisms of gene therapy, various enzymes of the visual cycle responsible for different genetic diseases, Luxturna—the first US Food and Drug Administration (FDA)-approved therapeutic gene product, and several ongoing trials of gene therapy for age-related macular degeneration. Gene therapy has tremendous potential for retinal conditions due to its ease of accessibility, immune-privileged status, and tight blood-retinal barriers, limiting systemic side effects of the drug. In recent years, advances in gene therapy in retinal conditions have increasing significantly, with progress in cell-specific targeting and transduction efficiency of gene products through the use of adeno-associated viral vectors (AAVs), suggesting that even greater success in future clinical trials is possible.
Collapse
Affiliation(s)
- Deven Dhurandhar
- Retina and Uveitis Department, GMR Varalakshmi Campus, LV Prasad Eye Institute, Visakhapatnam, Andhra Pradesh, India
| | - Niroj Kumar Sahoo
- Smt. Kanuri Santhamma Centre for Vitreo-Retinal Diseases, Kallam Anji Reddy Campus, L V Prasad Eye Institute, Hyderabad, Telangana, India
| | - Indumathi Mariappan
- Centre for Ocular Regeneration, Hyderabad Eye Research Foundation, Kallam Anji Reddy Campus, L.V. Prasad Eye Institute, Hyderabad, Telangana, India
| | - Raja Narayanan
- Smt. Kanuri Santhamma Centre for Vitreo-Retinal Diseases, Kallam Anji Reddy Campus, L V Prasad Eye Institute, Hyderabad, Telangana, India
| |
Collapse
|
4
|
Chen J, Shao Y, Sasore T, Moiseyev G, Zhou K, Ma X, Du Y, Ma JX. Interphotoreceptor Retinol-Binding Protein Ameliorates Diabetes-Induced Retinal Dysfunction and Neurodegeneration Through Rhodopsin. Diabetes 2021; 70:788-799. [PMID: 33334874 PMCID: PMC7897347 DOI: 10.2337/db20-0609] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022]
Abstract
Patients with diabetes often experience visual defects before any retinal pathologies are detected. The molecular mechanism for the visual defects in early diabetes has not been elucidated. Our previous study reported that in early diabetic retinopathy (DR), rhodopsin levels were reduced due to impaired 11-cis-retinal regeneration. Interphotoreceptor retinol-binding protein (IRBP) is a visual cycle protein and important for 11-cis-retinal generation. IRBP levels are decreased in the vitreous and retina of DR patients and animal models. To determine the role of IRBP downregulation in the visual defects in early DR, we induced diabetes in transgenic mice overexpressing IRBP in the retina. IRBP overexpression prevented diabetes-induced decline of retinal function. Furthermore, IRBP overexpression also prevented decreases of rhodopsin levels and 11-cis-retinal generation in diabetic mice. Diabetic IRBP transgenic mice also showed ameliorated retinal oxidative stress, inflammation, apoptosis, and retinal degeneration compared with diabetic wild-type mice. These findings suggest that diabetes-induced IRBP downregulation impairs the regeneration of 11-cis-retinal and rhodopsin, leading to retinal dysfunction in early DR. Furthermore, increased 11-cis-retinal-free opsin constitutively activates the phototransduction pathway, leading to increased oxidative stress and retinal neurodegeneration. Therefore, restored IRBP expression in the diabetic retina may confer a protective effect against retinal degeneration in DR.
Collapse
Affiliation(s)
- Jianglei Chen
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Yan Shao
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
- Tianjin Medical University Eye Hospital, Eye Institute & School of Optometry and Ophthalmology, Tianjin, China
| | - Temmy Sasore
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Gennadiy Moiseyev
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Kelu Zhou
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Xiang Ma
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Yanhong Du
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Jian-Xing Ma
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| |
Collapse
|
5
|
Sears AE, Albiez S, Gulati S, Wang B, Kiser P, Kovacik L, Engel A, Stahlberg H, Palczewski K. Single particle cryo-EM of the complex between interphotoreceptor retinoid-binding protein and a monoclonal antibody. FASEB J 2020; 34:13918-13934. [PMID: 32860273 PMCID: PMC7589273 DOI: 10.1096/fj.202000796rr] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 01/08/2023]
Abstract
Interphotoreceptor retinoid‐binding protein (IRBP) is a highly expressed protein secreted by rod and cone photoreceptors that has major roles in photoreceptor homeostasis as well as retinoid and polyunsaturated fatty acid transport between the neural retina and retinal pigment epithelium. Despite two crystal structures reported on fragments of IRBP and decades of research, the overall structure of IRBP and function within the visual cycle remain unsolved. Here, we studied the structure of native bovine IRBP in complex with a monoclonal antibody (mAb5) by cryo‐electron microscopy, revealing the tertiary and quaternary structure at sufficient resolution to clearly identify the complex components. Complementary mass spectrometry experiments revealed the structure and locations of N‐linked carbohydrate post‐translational modifications. This work provides insight into the structure of IRBP, displaying an elongated, flexible three‐dimensional architecture not seen among other retinoid‐binding proteins. This work is the first step in elucidation of the function of this enigmatic protein.
Collapse
Affiliation(s)
- Avery E Sears
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.,Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, Cleveland, OH, USA.,Department of Ophthalmology, Gavin Herbert Eye Institute, University of California-Irvine, Irvine, CA, USA
| | - Stefan Albiez
- Center for Cellular Imaging and NanoAnalytics, Biozentrum, University of Basel, Basel, Switzerland
| | | | - Benlian Wang
- Center for Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, OH, USA
| | - Philip Kiser
- Department of Physiology & Biophysics, School of Medicine, University of California-Irvine, Irvine, CA, USA.,Research Service, VA Long Beach Healthcare System, Long Beach, CA, USA
| | - Lubomir Kovacik
- Center for Cellular Imaging and NanoAnalytics, Biozentrum, University of Basel, Basel, Switzerland
| | - Andreas Engel
- Center for Cellular Imaging and NanoAnalytics, Biozentrum, University of Basel, Basel, Switzerland
| | - Henning Stahlberg
- Center for Cellular Imaging and NanoAnalytics, Biozentrum, University of Basel, Basel, Switzerland
| | - Krzysztof Palczewski
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California-Irvine, Irvine, CA, USA.,Department of Physiology & Biophysics, School of Medicine, University of California-Irvine, Irvine, CA, USA.,Department of Chemistry, University of California-Irvine, Irvine, CA, USA
| |
Collapse
|
6
|
Baino F, Kargozar S. Regulation of the Ocular Cell/Tissue Response by Implantable Biomaterials and Drug Delivery Systems. Bioengineering (Basel) 2020; 7:E65. [PMID: 32629806 PMCID: PMC7552708 DOI: 10.3390/bioengineering7030065] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 06/26/2020] [Accepted: 06/28/2020] [Indexed: 01/31/2023] Open
Abstract
Therapeutic advancements in the treatment of various ocular diseases is often linked to the development of efficient drug delivery systems (DDSs), which would allow a sustained release while maintaining therapeutic drug levels in the target tissues. In this way, ocular tissue/cell response can be properly modulated and designed in order to produce a therapeutic effect. An ideal ocular DDS should encapsulate and release the appropriate drug concentration to the target tissue (therapeutic but non-toxic level) while preserving drug functionality. Furthermore, a constant release is usually preferred, keeping the initial burst to a minimum. Different materials are used, modified, and combined in order to achieve a sustained drug release in both the anterior and posterior segments of the eye. After giving a picture of the different strategies adopted for ocular drug release, this review article provides an overview of the biomaterials that are used as drug carriers in the eye, including micro- and nanospheres, liposomes, hydrogels, and multi-material implants; the advantages and limitations of these DDSs are discussed in reference to the major ocular applications.
Collapse
Affiliation(s)
- Francesco Baino
- Department of Applied Science and Technology, Institute of Materials Physics and Engineering, Politecnico di Torino, 10129 Turin, Italy
| | - Saeid Kargozar
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad 917794-8564, Iran;
| |
Collapse
|
7
|
Ishikawa M, Sawada Y, Yoshitomi T. Structure and function of the interphotoreceptor matrix surrounding retinal photoreceptor cells. Exp Eye Res 2015; 133:3-18. [DOI: 10.1016/j.exer.2015.02.017] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 02/20/2015] [Accepted: 02/20/2015] [Indexed: 12/21/2022]
|
8
|
Identification of the 11-cis-specific retinyl-ester synthase in retinal Müller cells as multifunctional O-acyltransferase (MFAT). Proc Natl Acad Sci U S A 2014; 111:7302-7. [PMID: 24799687 DOI: 10.1073/pnas.1319142111] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Absorption of a photon by a rhodopsin or cone-opsin pigment isomerizes its 11-cis-retinaldehyde (11-cis-RAL) chromophore to all-trans-retinaldehyde (all-trans-RAL), which dissociates after a brief period of activation. Light sensitivity is restored to the resulting apo-opsin when it recombines with another 11-cis-RAL. Conversion of all-trans-RAL to 11-cis-RAL is carried out by an enzyme pathway called the visual cycle in cells of the retinal pigment epithelium. A second visual cycle is present in Müller cells of the retina. The retinol isomerase for this noncanonical pathway is dihydroceramide desaturase (DES1), which catalyzes equilibrium isomerization of retinol. Because 11-cis-retinol (11-cis-ROL) constitutes only a small fraction of total retinols in an equilibrium mixture, a subsequent step involving selective removal of 11-cis-ROL is required to drive synthesis of 11-cis-retinoids for production of visual chromophore. Selective esterification of 11-cis-ROL is one possibility. Crude homogenates of chicken retinas rapidly convert all-trans-ROL to 11-cis-retinyl esters (11-cis-REs) with minimal formation of other retinyl-ester isomers. This enzymatic activity implies the existence of an 11-cis-specific retinyl-ester synthase in Müller cells. Here, we evaluated multifunctional O-acyltransferase (MFAT) as a candidate for this 11-cis-RE-synthase. MFAT exhibited much higher catalytic efficiency as a synthase of 11-cis-REs versus other retinyl-ester isomers. Further, we show that MFAT is expressed in Müller cells. Finally, homogenates of cells coexpressing DES1 and MFAT catalyzed the conversion of all-trans-ROL to 11-cis-RP, similar to what we observed with chicken-retina homogenates. MFAT is therefore an excellent candidate for the retinyl-ester synthase that cooperates with DES1 to drive synthesis of 11-cis-retinoids by mass action.
Collapse
|
9
|
Abstract
Ocular injection (intravitreal, subretinal, or into the anterior space) is an efficient approach to deliver many classes of drugs, cells, and other treatments to various cell types of the eye. In particular, subretinal injection is efficient since delivered agents accumulate as there is no dilution due to transport processes or diffusion and the volume of the interphotoreceptor space (IPS) is minimal (10-20 μl in the human eye, less than 1 μl in the mouse eye). We previously reported methods using subretinal injection and electroporation to deliver DNA to photoreceptor and retinal pigment epithelium cells in retinas of live mice (Johnson et al., 14:2211-2226; Nickerson et al. 884:53-69, 2012; Andrieu-Soler et al. 13:692-706, 2007). Here we detail further optimization of that approach and additionally report its use in delivering DNA expression plasmids to the corneal endothelium.
Collapse
|
10
|
Garlipp MA, Gonzalez-Fernandez F. Cone outer segment and Müller microvilli pericellular matrices provide binding domains for interphotoreceptor retinoid-binding protein (IRBP). Exp Eye Res 2013; 113:192-202. [DOI: 10.1016/j.exer.2013.02.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 01/24/2013] [Accepted: 02/04/2013] [Indexed: 10/27/2022]
|
11
|
Garlipp MA, Nowak KR, Gonzalez-Fernandez F. Cone outer segment extracellular matrix as binding domain for interphotoreceptor retinoid-binding protein. J Comp Neurol 2012; 520:756-69. [PMID: 21935947 DOI: 10.1002/cne.22773] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Cones are critically dependent on interphotoreceptor retinoid-binding protein (IRBP) for retinoid delivery in the visual cycle. Cone-dominant vertebrates offer an opportunity to uncover the molecular basis of IRBP's role in this process. Here, we explore the association of IRBP with the interphotoreceptor matrix (IPM) of cones vs. rods in cone dominant retinas from chicken (Gallus domesticus), turkey (Meleagris gallopavo), and pig (Sus scrofa). Retinas were detached and fixed directly or washed in saline prior to fixation. Disassociated photoreceptors with adherent matrix were also prepared. Under 2 mM CaCl(2) , insoluble matrix was delaminated from saline washed retinas. The distribution of IRBP, as well as glycans binding peanut agglutinin (cone matrix) and wheat germ agglutinin (rod/cone matrix), was defined by confocal microscopy. Retina flat mounts showed IRBP diffusely distributed in an interconnecting, lattice-like pattern throughout the entire matrix. Saline wash replaced this pattern with fluorescent annuli surrounding individual cone outer segments. In isolated cones and matrix sheets, IRBP colocalized with the peanut agglutinin binding matrix glycans. Our results reveal a wash-resistant association of IRBP with a matrix domain immediately surrounding cone outer segments. The cone matrix sheath may be responsible for IRBP-mediated cone targeting of 11-cis retinoids.
Collapse
Affiliation(s)
- Mary Alice Garlipp
- Graduate Program in Neuroscience, School of Medicine and Biomedical Sciences, State University of New York, Buffalo, New York 14209, USA
| | | | | |
Collapse
|
12
|
Nickerson JM, Goodman P, Chrenek MA, Bernal CJ, Berglin L, Redmond TM, Boatright JH. Subretinal delivery and electroporation in pigmented and nonpigmented adult mouse eyes. Methods Mol Biol 2012; 884:53-69. [PMID: 22688698 DOI: 10.1007/978-1-61779-848-1_4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Subretinal injection offers one of the best ways to deliver many classes of drugs, reagents, cells and treatments to the photoreceptor, Müller, and retinal pigment epithelium (RPE) cells of the retina. Agents delivered to this space are placed within microns of the intended target cell, accumulating to high concentrations because there is no dilution due to transport processes or diffusion. Dilution in the interphotoreceptor space (IPS) is minimal because the IPS volume is only 10-20 μl in the human eye and less than 1 μl in the mouse eye. For gene delivery purposes, we wished to transfect the cells adjacent to the IPS in adult mouse eyes. Others transfect these cells in neonatal rats to study the development of the retina. In both neonates and adults, electroporation is found to be effective. Here we describe the optimization of electroporation conditions for RPE cells in the adult mouse eye with naked plasmids. However, both techniques, subretinal injection and electroporation, present some technical challenges that require skill on the part of the surgeon to prevent untoward damage to the eye. Here we describe methods that we have used for the past 10 years (Johnson et al. Mol Vis 14: 2211-2226, 2008).
Collapse
Affiliation(s)
- John M Nickerson
- Department of Ophthalmology, Emory University, Atlanta, GA, USA.
| | | | | | | | | | | | | |
Collapse
|
13
|
The mammalian cone visual cycle promotes rapid M/L-cone pigment regeneration independently of the interphotoreceptor retinoid-binding protein. J Neurosci 2011; 31:7900-9. [PMID: 21613504 DOI: 10.1523/jneurosci.0438-11.2011] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Rapid regeneration of the visual pigment following its photoactivation is critical for the function of cone photoreceptors throughout the day. Though the reactions of the visual cycle in the retinal pigment epithelium (RPE) that recycle chromophore for rod pigment regeneration are well characterized, the corresponding mechanisms that enable rapid regeneration of cone pigment are poorly understood. A key remaining question is the relative contribution of the recently discovered cone-specific retina visual cycle and the classic RPE-dependent visual cycle to mammalian cone pigment regeneration. In addition, it is not clear what role, if any, the abundant interphotoreceptor retinoid-binding protein (IRBP) presumed to facilitate the traffic of chromophore, plays in accelerating mammalian cone pigment regeneration. To address these issues, we used transretinal recordings to evaluate M/L-cone pigment regeneration in isolated retinas and eyecups from control and IRBP-deficient mice. Remarkably, the mouse retina promoted M/L-cone dark adaptation eightfold faster than the RPE. However, complete cone recovery required both visual cycles. We conclude that the retina visual cycle is critical for the initial rapid regeneration of mouse M/L-cone pigment during dark adaptation, whereas the slower RPE visual cycle is required to complete the process. While the deletion of IRBP reduced the amplitude and slowed the kinetics of mouse M/L-cone photoresponses, cone adaptation in bright, steady light and the kinetics of cone dark adaptation were not affected in isolated retina or in intact eyecup. Thus, IRBP does not accelerate cone pigment regeneration and is not critical for the function of mouse M/L-cones in bright light.
Collapse
|
14
|
Wisard J, Faulkner A, Chrenek MA, Waxweiler T, Waxweiler W, Donmoyer C, Liou GI, Craft CM, Schmid GF, Boatright JH, Pardue MT, Nickerson JM. Exaggerated eye growth in IRBP-deficient mice in early development. Invest Ophthalmol Vis Sci 2011; 52:5804-11. [PMID: 21642628 DOI: 10.1167/iovs.10-7129] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Because interphotoreceptor retinoid-binding protein (IRBP) is expressed before being needed in its presumptive role in the visual cycle, we tested whether it controls eye growth during development. METHODS The eyes of congenic IRBP knockout (KO) and C57BL/6J wild-type (WT) mice ranging in age from postnatal day (P)2 to P440 were compared by histology, laser micrometry, cycloplegic photorefractions, and partial coherence interferometry. RESULTS The size and weight of IRBP KO mouse eyes were greater than those of the WT mouse, even before eye-opening. Excessive ocular enlargement started between P7 and P10, with KO retinal arc lengths becoming greater compared with WT from P10 through P30 (18%; P < 0.01). The outer nuclear layer (ONL) of KO retinas became 20% thinner between P12 to P25, and progressed to 38% thinner at P30. At P30, there were 30% fewer cones per vertical section in KO than in WT retinas. Bromodeoxyuridine (BrdU) labeling indicated the same number of retinal cells were born in KO and WT mice. A spike in apoptosis was observed in KO outer nuclear layer at P25. These changes in size were accompanied by a large decrease in hyperopic refractive error, which reached -4.56 ± 0.70 diopters (D) versus +9.98 ± 0.993 D (mean ± SD) in WT, by postnatal day 60 (P60). CONCLUSIONS; In addition to its role in the visual cycle, IRBP is needed for normal eye development. How IRBP mediates ocular development is unknown.
Collapse
Affiliation(s)
- Jeffrey Wisard
- Department of Ophthalmology, Emory University, Atlanta, Georgia 30322, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
den Hollander AI, McGee TL, Ziviello C, Banfi S, Dryja TP, Gonzalez-Fernandez F, Ghosh D, Berson EL. A homozygous missense mutation in the IRBP gene (RBP3) associated with autosomal recessive retinitis pigmentosa. Invest Ophthalmol Vis Sci 2008; 50:1864-72. [PMID: 19074801 DOI: 10.1167/iovs.08-2497] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Interphotoreceptor retinoid-binding protein (IRBP) has been considered essential for normal rod and cone function, as it mediates the transport of retinoids between the photoreceptors and the retinal pigment epithelium. This study was performed to determine whether mutations in the IRBP gene (RBP3) are associated with photoreceptor degeneration. METHODS A consanguineous family was ascertained in which four children had autosomal recessive retinitis pigmentosa (RP). Homozygosity mapping performed with SNP microarrays revealed only one homozygous region shared by all four affected siblings. Sequencing of RBP3, contained in this region, was performed in this family and others with recessive RP. Screening was also performed on patients with various other forms of retinal degeneration or malfunction. RESULTS Sequence analysis of RBP3 revealed a homozygous missense mutation (p.Asp1080Asn) in the four affected siblings. The mutation affects a residue that is completely conserved in all four homologous modules of the IRBP protein of vertebrate species and in C-terminal-processing proteases, photosynthesis enzymes found in bacteria, algae, and plants. Based on the previously reported crystal structure of Xenopus IRBP, the authors predict that the Asp1080-mediated conserved salt bridge that appears to participate in scaffolding of the retinol-binding domain is abolished by the mutation. No RBP3 mutations were detected in 395 unrelated patients with recessive or isolate RP or in 680 patients with other forms of hereditary retinal degeneration. CONCLUSIONS Mutations in RBP3 are an infrequent cause of autosomal recessive RP. The mutation Asp1080Asn may alter the conformation of the IRBP protein by disrupting a conserved salt bridge.
Collapse
Affiliation(s)
- Anneke I den Hollander
- Berman-Gund Laboratory for the Study of Retinal Degenerations, Harvard Medical School, Massachusetts Eye and Ear Infirmary, Massachusetts 02114, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Gonzalez-Fernandez F, Baer CA, Ghosh D. Module structure of interphotoreceptor retinoid-binding protein (IRBP) may provide bases for its complex role in the visual cycle - structure/function study of Xenopus IRBP. BMC BIOCHEMISTRY 2007; 8:15. [PMID: 17683573 PMCID: PMC2000878 DOI: 10.1186/1471-2091-8-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Accepted: 08/04/2007] [Indexed: 11/10/2022]
Abstract
BACKGROUND Interphotoreceptor retinoid-binding protein's (IRBP) remarkable module structure may be critical to its role in mediating the transport of all-trans and 11-cis retinol, and 11-cis retinal between rods, cones, RPE and Müller cells during the visual cycle. We isolated cDNAs for Xenopus IRBP, and expressed and purified its individual modules, module combinations, and the full-length polypeptide. Binding of all-trans retinol, 11-cis retinal and 9-(9-anthroyloxy) stearic acid were characterized by fluorescence spectroscopy monitoring ligand-fluorescence enhancement, quenching of endogenous protein fluorescence, and energy transfer. Finally, the X-ray crystal structure of module-2 was used to predict the location of the ligand-binding sites, and compare their structures among modules using homology modeling. RESULTS The full-length Xenopus IRBP cDNA codes for a polypeptide of 1,197 amino acid residues beginning with a signal peptide followed by four homologous modules each approximately 300 amino acid residues in length. Modules 1 and 3 are more closely related to each other than either is to modules 2 and 4. Modules 1 and 4 are most similar to the N- and C-terminal modules of the two module IRBP of teleosts. Our data are consistent with the model that vertebrate IRBPs arose through two genetic duplication events, but that the middle two modules were lost during the evolution of the ray finned fish. The sequence of the expressed full-length IRBP was confirmed by liquid chromatography-tandem mass spectrometry. The recombinant full-length Xenopus IRBP bound all-trans retinol and 11-cis retinaldehyde at 3 to 4 sites with Kd's of 0.2 to 0.3 microM, and was active in protecting all-trans retinol from degradation. Module 2 showed selectivity for all-trans retinol over 11-cis retinaldehyde. The binding data are correlated to the results of docking of all-trans-retinol to the crystal structure of Xenopus module 2 suggesting two ligand-binding sites. However, homology modeling of modules 1, 3 and 4 indicate that both sites may not be available for binding of ligands in all four modules. CONCLUSION Although its four modules are homologous and each capable of supporting ligand-binding activity, structural differences between their ligand-binding domains, and interactions between the modules themselves will be critical to understanding IRBP's complex role in the visual cycle.
Collapse
Affiliation(s)
- Federico Gonzalez-Fernandez
- Ross Eye Institute, Department of Ophthalmology, State University of New York, Medical Research Service, Veterans Affairs Medical Center, Buffalo, New York, USA.
| | | | | |
Collapse
|
17
|
Hauck SM, Schoeffmann S, Deeg CA, Gloeckner CJ, Swiatek-de Lange M, Ueffing M. Proteomic analysis of the porcine interphotoreceptor matrix. Proteomics 2005; 5:3623-36. [PMID: 16127731 DOI: 10.1002/pmic.200401223] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The interphotoreceptor matrix (IPM) is located between photoreceptors and pigment epithelium in the retina and is involved in fundamental functions of the visual cycle. These include visual pigment chromophore exchange, retinal adhesion, metabolite trafficking, and growth factor presentation. In general, IPM preparations are contaminated with intracellular proteins, as has also been described for other body fluids. This study aimed at identifying new components of the IPM by discriminating between truly secreted proteins and proteins that are part of the IPM for secondary reasons. "Soluble" porcine IPM was extracted from retina and pigment epithelium with PBS by two different procedures, followed by extraction with water alone that released "insoluble" IPM matrix sheets. Samples from all preparations were separated by 2-DE and a total of 140 protein spots were identified by MALDI-TOF and/or CapLC Q-TOF MS. Although identified proteins included several already known in the IPM, the majority had not been previously described in this structure. Gene ontology classifications allocated the identified proteins into nine different functional networks. The IPM preparations also included intracellular proteins from cells adjacent to the IPM, which may have resulted from cell disruption. This underlines the experimental difficulties of a biochemical analysis of the IPM as an intact compartment. We show here a strategy for predicting the probability of identified IPM proteins occurring in vivo by combined high-resolution protein separation methods with computational prediction methods. Thus, a set of potentially neuroprotective proteins could be extracted, including PEA-15, peroxiredoxin 5, alpha-B-crystallin, macrophage migration inhibitory factor, 78 kDa glucose-regulated protein (GRP78), protein disulfide-isomerase, and PEP-19, which have not been previously associated with the IPM. Furthermore, with immunohistochemical staining we could confirm the localization of GRP78 in the IPM on porcine eye sections, thus validating the proposed prediction method.
Collapse
Affiliation(s)
- Stefanie M Hauck
- GSF-National Research Centre for Environment and Health, Institute of Human Genetics, Neuherberg, Germany
| | | | | | | | | | | |
Collapse
|
18
|
Gonzalez-Fernandez F. Interphotoreceptor retinoid-binding protein--an old gene for new eyes. Vision Res 2004; 43:3021-36. [PMID: 14611938 DOI: 10.1016/j.visres.2003.09.019] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Evolving 40 times independently, eyes are striking examples of convergent evolution in that 11-cis retinaldehyde is always used for photon capture, yet the mechanism for its regeneration may be dramatically different in between systems. In particular, insects, cephalopods and vertebrates show varying physical separation of the cis-->trans photoisomerization and chromphore reisomerization. In the vertebrate retina, these two processes are actually distributed between different cells. This compartmentalization is made possible by the phylogenetic innovation of the two-layered optic cup of the vertebrate retina. This unprecedented design created the subretinal space as a novel anatomical compartment allowing photoreceptors access to the retinal pigment epithelium (RPE) and Müller cells, the two cell types which share the burden of 11-cis retinoid regeneration. To take advantage of this arrangement, early vertebrates appear to have recruited for retinoid binding, the betabetaalpha-spiral fold proven useful in enoyl-CoA isomerase/hydratases, and the carboxy-terminal proteases for stabilizing hydrophobic ligands. Quadruplication of this functional domain within a single polypeptide lead to the emergence of interphotoreceptor retinoid-binding protein (IRBP). IRBP is the main soluble component of the IPM, and is prevented from diffusing out of the subretinal space because its large size excludes it from the photoreceptor/Müller cell zonulae adheretes. Despite this physical entrapment, IRBP is rapidly turned over within the IPM through a process that coordinates secretion of the protein by the photoreceptors, and its removal from the matrix by RPE and photoreceptor endocytosis. The present review will summarize what is known about the structure and function of IRBP to anticipate future avenues of research.
Collapse
Affiliation(s)
- Federico Gonzalez-Fernandez
- Department of Ophthalmology, State University of New York at Buffalo and Medical Research Service, Veteran's Affairs Medical Center, 3495 Bailey Avenue, Buffalo, NY 14215, USA.
| |
Collapse
|
19
|
Becerra SP, Fariss RN, Wu YQ, Montuenga LM, Wong P, Pfeffer BA. Pigment epithelium-derived factor in the monkey retinal pigment epithelium and interphotoreceptor matrix: apical secretion and distribution. Exp Eye Res 2004; 78:223-34. [PMID: 14729355 DOI: 10.1016/j.exer.2003.10.013] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Pigment epithelium-derived factor (PEDF) is an extracellular protein derived from the retinal pigment epithelium (RPE), a tissue formed by polarized cells that release growth and trophic factors in a directional fashion. We have investigated the distribution and directional release of PEDF protein by the monkey RPE. We established primary cultures of monkey RPE cells that expressed the PEDF gene, and that synthesized and secreted the PEDF protein. Northern analysis of RPE cultures and monkey ocular tissues showed that PEDF transcripts were highly expressed in RPE as compared with several other monkey ocular tissues, being even more abundant in cultured cells than they were in the native RPE. The differentiated RPE cells in culture secreted protein that shared the immunological, biochemical and biological characteristics of PEDF. The overall PEDF levels in the RPE conditioned media reached 6.5 mg ml- after 8 days in culture (i.e. 1.1 pg of PEDF per RPE cell). RPE cells were cultivated on permeable supports as monolayers forming a barrier between apical and basal compartments. Apical and basal culture media were sampled at three or four-day intervals for 18 cycles, and the PEDF content was quantified. Most of the PEDF protein was significantly higher in the apical than in the basal medium (>4 times) at the initial recovery intervals, to be detected only in the apical medium at the latter intervals. In the native monkey eye, the concentration of soluble PEDF in the interphotoreceptor matrix (144 nM) was 7-fold and 25-fold greater than in vitreous and aqueous, respectively. PEDF was abundant in the interphotoreceptor matrix surrounding rod and cone outer segments, and was detectable at lower levels in the RPE as visualized by confocal microscopy. We concluded that PEDF synthesized by the RPE is secreted preferentially from the apical surface and is distributed apically to the RPE bordering the outer segments of photoreceptors. PEDF can be a useful marker for RPE polarization and differentiation. The polarization of RPE may be an important mechanism to control PEDF secretion and our results offer interesting possibilities on regulation of PEDF.
Collapse
Affiliation(s)
- S Patricia Becerra
- Laboratory of Retinal Cell and Molecular Biology, NEI, NIH, Building 6, room 308, 6 Center Drive, MSC 2740, Bethesda, MD 20892-0706, USA.
| | | | | | | | | | | |
Collapse
|
20
|
Cunningham LL, Gonzalez-Fernandez F. Internalization of interphotoreceptor retinoid-binding protein by theXenopus retinal pigment epithelium. J Comp Neurol 2003; 466:331-42. [PMID: 14556291 DOI: 10.1002/cne.10861] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Xenopus rods and cones secrete into the interphotoreceptor matrix (IPM) a 124-kDa glycoprotein termed interphotoreceptor retinoid-binding protein (IRBP; Hessler et al. [1996] J. Comp. Neurol. 367:329-341). IRBP is confined to the IPM, being too large to diffuse through the zonulae adherentes between adjacent photoreceptor and Müller cells. Despite this physical entrapment within the subretinal space, IRBP is rapidly cleared from the IPM by an unknown mechanism. Immunohistochemistry and immunoelectron microscopy were used to localize IRBP in intact and detached retina-retinal pigment epithelium (RPE) eyecups. The effects of light, dark, and time of day on the compartmentalization of IRBP were characterized by quantitative Western blot analysis and by immunoprecipitation of IRBP labeled in vivo by intraocular injection of [(35)S]methionine. Immunohistochemistry showed that the apparent intercellular IRBP in both the RPE and the photoreceptors is resistant to saline extraction, in contrast to that in the IPM. In the RPE, IRBP was associated with matrix material within phagosomes and endosomes. The IPM, RPE, and retina contained 75%, 18%, and 7% of the total IRBP in the eye, respectively. The IPM and RPE contain 130 +/- 14 pmoles and 34 +/- 4 pmoles of IRBP, respectively. The amounts of IRBP in the RPE at middark and midlight were the same. Furthermore, the in vivo uptake of [(35)S]methionine-labeled IRBP was light independent. Our studies suggest that IRBP is not strictly confined to the subretinal space but rather that significant amounts are present intracellularly, particularly within the RPE, which does not synthesize IRBP. Furthermore, IRBP secreted by the photoreceptors is taken up from the IPM mainly through a light-independent endocytic pathway separate from outer segment phagocytosis. The role of RPE endocytosis should be explored in relation to the function of IRBP.
Collapse
Affiliation(s)
- Lisa L Cunningham
- Virginia Merrill Bloedel Hearing Research Center and Department of Otolaryngology-HNS, University of Washington, Seattle, Washington 98195, USA
| | | |
Collapse
|
21
|
Bok D, Yasumura D, Matthes MT, Ruiz A, Duncan JL, Chappelow AV, Zolutukhin S, Hauswirth W, LaVail MM. Effects of adeno-associated virus-vectored ciliary neurotrophic factor on retinal structure and function in mice with a P216L rds/peripherin mutation. Exp Eye Res 2002; 74:719-35. [PMID: 12126945 DOI: 10.1006/exer.2002.1176] [Citation(s) in RCA: 160] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Past studies have shown that acute administration of ciliary neurotrophic factor (CNTF) can prolong the survival of retinal photoreceptor cells that have undergone phototoxic injury or that express gene mutations. Adenovirus-vectored CNTF has also been effective but for all of these treatments, the effect has been transient. On the other hand, adeno-associated virus-vectored minigenes offer considerable promise for long-term survival. The authors sought to provide long-term, CNTF-based protection of mouse photoreceptors expressing a dominant-negative point mutation in the rds gene by using recombinant adeno-associated virus (rAAV) to deliver minigenes that code for a secreted form of CNTF.Secreted CNTF, under control of a cytomegalovirus (CMV) or chick beta actin (CBA) promoter provided long-term, panretinal rescue of photoreceptors following single injections of rAAV vectors into the subretinal compartment. Rescue was much less effective and less reproducible when the vectors were placed in the vitreous compartment. However, there were unexpected side effects that appeared to be dose-related. One side effect was a change in rod photoreceptor nucleus phenotype, featuring an increase in euchromatin and an increase in nuclear size following subretinal injections but not intravitreal injections. These nuclear changes were panretinal when the putatively stronger CBA promoter was used but not panretinal when the CMV promoter was used. In the latter case, the nuclear changes were much more pronounced at the site of injection. Thus, chronic hyperstimulation of retinal cells with CNTF may up-regulate gene expression in photoreceptors. Based on current knowledge of retinal cell targets for CNTF, this effect may be indirect and may not represent direct stimulation of photoreceptors by CNTF.A second side effect was a paradoxical decrease in scotopic a- and b-wave amplitudes and a decrease in photopic b-wave amplitudes in the injected, rescued retina when compared to its contralateral, uninjected counterpart, in spite of the fact that these retinas had more photoreceptors than their untreated mates. The basis for these decreased ERG amplitudes may be related to changes in gene expression. The mechanisms for these side effects and proper doses of CNTF administration should be determined before human clinical trials are considered for the amelioration of inherited retinal degenerations with CNTF.
Collapse
Affiliation(s)
- Dean Bok
- Department of Neurobiology, University of California, Los Angeles, CA 90095, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
PURPOSE To understand the structure of the mouse interphotoreceptor retinoid-binding protein (IRBP) gene and to compare the predicted primary structure within each repeat of IRBP with its relatives. To compare the levels of expression of IRBP RNA in normal and knockout mice. METHODS The DNA sequence was determined by sub-cloning restriction fragments of the IRBP gene from 129/Sv P1 clones. Primers were designed to utilize the walking approach. Additional sequences were obtained by PCR amplification from genomic DNA and direct sequencing of products. Mouse retina RNA was subjected to reverse transcription coupled to PCR and the accumulation of double stranded DNA product was monitored with SYBR Green. The PCR primers flanked Intron C, to avoid the analysis of contaminating genomic DNA. RESULTS Altogether a contig was assembled with a final length of about 14.4 kb. The mouse gene structure is similar to the pattern of exons and introns in the bovine and human genes, with a long first exon encoding most of the protein. The splice site boundaries closely match consensus sequences and the exons appear to be identically placed among the three species (bovine, human, and mouse). A region containing a repeated sequence of low complexity is located about 1.75 to 1.4 kb upstream of the transcription start site. A second region containing another low complexity repeat is found in Intron C close to the end of Exon 3. A limited number of weak consensus polyadenylation signals in the 3' region suggest at least three different transcription terminators that apparently give rise to the previously known mouse IRBP mRNAs. The mRNA for IRBP was detected in normal and part of the mRNA was detected in the IRBP knockout mouse, consistent with previous observations. The level of the IRBP mRNA remnant was reduced about 10 fold in the knockout mouse, also consistent with the previously reported absence of Repeat 4 immunoreactivity. CONCLUSIONS The strong conservation in intron-exon positions, gene structure, and protein sequence among mammals supports an important biological role for these signals and for the IRBP protein in vision. Low levels of aberrant IRBP mRNA in the knockout mouse are consistent with no immunologically detectable Repeat 4 protein in this mouse.
Collapse
Affiliation(s)
- R Keith Shuler
- Department of Ophthalmology, Emory University, Atlanta, GA 30322, USA
| | | | | | | | | |
Collapse
|
23
|
Abstract
PURPOSE Diffusion coefficients of various retinoids have not been measured previously. It is important to know the diffusion coefficients of the retinoids because this property might be rate-limiting in dark adaptation. Also, retinoid diffusion is important to explore given that rhodopsin regeneration is not impaired in IRBP knockout mice. METHODS Measurements of lateral diffusion coefficients (D) of 9-cis-retinal, all-trans-retinal, and all-trans-retinol were made by Fourier transform pulsed-gradient spin-echo NMR measurements (FT-PGSE NMR) in several solvents. Also,(3)H-all-trans-retinoic acid was used to measure diffusion from an aqueous agarose matrix and absorption into a toluene based scintillation fluid in a biphase assay. RESULTS In a 1:1 mixture of CD(3)OD:D(2)O the D's of the retinoids were, 2.4 to 3.0 x 10(-6)cm( 2)/s. In the biphase assay,(3)H-all trans-retinoic acid exhibited a diffusion coefficient of 2.3 x 10(-6)cm(2)/s. CONCLUSIONS The lower than expected D for retinoids and our calculations suggest that mechanisms in addition to pure aqueous diffusion may be needed to account for normal rhodopsin regeneration rates in the mammalian retina.
Collapse
|
24
|
Affiliation(s)
- H Ripps
- Department of Ophthalmology and Visual Sciences, University of Illinois College of Medicine, 1855 West Taylor Street, Chicago, IL 60612, USA.
| |
Collapse
|
25
|
Borst DE, Boatright JH, Si JS, Stodulkova E, Remaley N, Pallansch LA, Nickerson JM. Structural characterization and comparison of promoter activity of mouse and bovine interphotoreceptor retinoid-binding protein (IRBP) gene 5' flanking regions in WERI, Y79, chick retina cells, and transgenic mice. Curr Eye Res 2001; 23:20-32. [PMID: 11821982 DOI: 10.1076/ceyr.23.1.20.5419] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
PURPOSE To determine the sequences of the mouse and bovine interphotoreceptor retinoid-binding protein (IRBP) 5' flanking regions and whether these 5' flanking regions contain functional IRBP promoter activity in multiple cell types using both quantitative and statistical analyses. METHODS We sequenced the bovine and mouse 5' flanking regions of the IRBP gene and compared these sequences to the human gene sequence. To test for functional activity of this region, we used the same DNA construct, p1783, in four different cell types. Mobility shift, DNase footprints, and southwestern blots were used to determine where nuclear protein complexes bind the IRBP 5' flanking region. RESULTS The 5' flanking regions of the bovine, human, and mouse IRBP genes exhibit sequence similarity in regions immediately adjacent to the start of transcription (roughly 350 bases in length) and also over a 220 base sequence about 1.25 to 1.50 kb upstream of the transcription start site. Two different statistical approaches showed that the IRBP 5' flanking region possesses promoter activity in four different cell types. By using mobility shift, DNase I-protection experiments, and southwestern blotting, a region of about 45 bases at position -300 was identified that specifically binds a protein from the nuclei of bovine retina and Y79 cells. CONCLUSIONS Specific DNA binding events are an essential part of IRBP promoter activity. The conservation of sequences far upstream of the transcription start suggest that unknown physiological processes remain to be understood in IRBP transcriptional regulation.
Collapse
Affiliation(s)
- D E Borst
- Department of Anatomy, Physiology, and Genetics, Uniformed University of the Health Sciences, Rockville, MD, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Dodson CS, Rengarajan K, Gewant HD, Stodulkova E, Nguyen HT, Boatright JH, Nickerson JM. Extra-hepatic expression of serum albumin mRNA in mouse retina. Curr Eye Res 2001; 22:182-9. [PMID: 11462154 DOI: 10.1076/ceyr.22.3.182.5512] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
PURPOSE In some mammals, serum albumin protein exists in the interphotoreceptor space (IPS), the space between photoreceptor cells and the retinal pigment epithelium. Serum albumin is synthesized largely in the liver, though low levels of extra-hepatic expression have been documented in several other tissues, including fetal rat kidney, pancreas, lung, and heart. The purpose of this study was to investigate whether serum albumin protein and mRNA are found in mouse retina. METHODS Using albumin rabbit antibodies and HRP goat anti-(rabbit IgG), we performed immunoassays on mouse IPS washes to detect the presence of serum albumin protein. Protein extracts from IPS washes were subjected to Affigel Blue chromatography. This resin has an affinity for serum albumin. Reverse transcription-polymerase chain reaction (RT-PCR) of retina total RNA was performed to search for albumin mRNA. Also, real-time reverse transcription polymerase chain reaction (RT-RT-PCR) was employed to look at the levels of expression in different age groups. RESULTS A constituent of the IPS washes specifically bound and eluted from Affigel Blue column, suggesting that the washes contained serum albumin. SDS PAGE revealed that the size of the constituent was 67 kDa, the size of serum albumin. This 67 kDa band reacted with mouse serum antibody. An RT-PCR amplified fragment of serum albumin mRNA from retina displayed the expected size. The sequence of this fragment is identical to authentic serum albumin cDNA sequence. RPE and choroid were negative for serum albumin mRNA. However, rd1(-)/rd1(-) retina was positive, suggesting that at least some serum albumin is synthesized in the inner layers of the retina. RT-RT-PCR showed that serum albumin mRNA levels in whole retina reached a maximum at about postnatal day 15 and gradually decreased to about one-sixth of maximum at 12 months age. CONCLUSIONS Serum albumin protein and mRNA were found in mouse IPS and retina, suggesting that the protein is synthesized in the retina. The previously demonstrated ability of serum albumin to bind fatty acids and retinoids and its presence in the mouse IPS suggest a role for serum albumin in transporting retinoids in the retina or IPS, especially at young ages when concentrations appear greatest.
Collapse
Affiliation(s)
- C S Dodson
- Department of Ophthalmology, Emory University, Atlanta, Georgia 30322, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Adler AJ, Edwards RB. Human interphotoreceptor matrix contains serum albumin and retinol-binding protein. Exp Eye Res 2000; 70:227-34. [PMID: 10655149 DOI: 10.1006/exer.1999.0780] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It is usually assumed that IRBP (interphotoreceptor retinoid-binding protein) is the only protein present in the interphotoreceptor matrix (IPM) capable of shuttling visual-cycle retinoids between photoreceptors and the retinal pigment epithelium. However, this laboratory previously presented qualitative evidence (Western blots) that serum albumin is present in human IPM. Furthermore, Ong and coworkers (1994) found that cultured RPE cells synthesize serum retinol-binding protein (RBP) and secrete it, mainly into the apical culture medium, which would correspond to the IPM in intact eyes. As both of these proteins can bind all- trans -retinol and 11- cis -retinal, it was of interest to quantify the amounts of albumin and RBP in human IPM. We used radial immunodiffusion to accomplish this. The average molar ratio of serum albumin to IRBP in these samples was 1.9; that of RBP to IRBP was 0.015. The presence of a high concentration of serum albumin in the IPM in situ was confirmed by the intense immunohistochemical staining seen in sections of fresh human eyes. The human case is not unique; various concentrations of albumin were found in the IPM of all vertebrate species examined (by gel electrophoresis). These results indicate that both serum albumin, because of its very high concentration in the IPM, and RBP, because of its comparatively tight binding to retinoids, need to be considered, along with IRBP, as proteins that may participate in visual-cycle transport. The accompanying paper addresses this concern.
Collapse
Affiliation(s)
- A J Adler
- Schepens Eye Research Institute, Harvard Medical School, Boston, MA 01701, USA
| | | |
Collapse
|
28
|
Palczewski K, Van Hooser JP, Garwin GG, Chen J, Liou GI, Saari JC. Kinetics of visual pigment regeneration in excised mouse eyes and in mice with a targeted disruption of the gene encoding interphotoreceptor retinoid-binding protein or arrestin. Biochemistry 1999; 38:12012-9. [PMID: 10508404 DOI: 10.1021/bi990504d] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Photoisomerization of 11-cis-retinal to all-trans-retinal and reduction to all-trans-retinol occur in photoreceptor outer segments whereas enzymatic esterification of all-trans-retinol, isomerization to 11-cis-retinol, and oxidation to 11-cis-retinal occur in adjacent cells. The processes are linked into a visual cycle by intercellular diffusion of retinoids. Knowledge of the mechanistic aspects of the visual cycle is very limited. In this study, we utilize chemical analysis of visual cycle retinoids to assess physiological roles for components inferred from in vitro experiments and to understand why excised mouse eyes fail to regenerate their bleached visual pigment. Flash illumination of excised mouse eyes or eyecups, in which regeneration of rhodopsin does not occur, produced a block in the visual cycle after all-trans-retinal formation; constant illumination of eyecups produced a block in the cycle after all-trans-retinol formation; and constant illumination of whole excised eyes resulted in a block of the cycle after formation of all-trans-retinyl ester. These blocks emphasize the role of cellular metabolism in the visual cycle. Interphotoreceptor retinoid-binding protein (IRBP) has been postulated to play a role in intercellular retinoid transfer in the retina; however, the rates of recovery of 11-cis-retinal and of regeneration of rhodopsin in the dark in IRBP-/- mice were very similar to those found with wild-type (wt) mice. Thus, IRBP is necessary for photoreceptor survival but is not essential for a normal rate of visual pigment turnover. Arrestin forms a complex with activated rhodopsin, quenches its activity, and affects the release of all-trans-retinal in vitro. The rate of recovery of 11-cis-retinal in arrestin-/- mice was modestly delayed relative to wt, and the rate of rhodopsin recovery was approximately 80% of that observed with wt mice. Thus, the absence of arrestin appeared to have a minor effect on the kinetics of the visual cycle.
Collapse
Affiliation(s)
- K Palczewski
- Department of Ophthalmology, University of Washington, Seattle 98195, USA.
| | | | | | | | | | | |
Collapse
|
29
|
Hollyfield JG, Rayborn ME, Midura RJ, Shadrach KG, Acharya S. Chondroitin sulfate proteoglycan core proteins in the interphotoreceptor matrix: a comparative study using biochemical and immunohistochemical analysis. Exp Eye Res 1999; 69:311-22. [PMID: 10471339 DOI: 10.1006/exer.1999.0707] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study characterizes the core proteins of chondroitin sulfate-type glycosaminoglycans located in the interphotoreceptor matrix and establishes the tissue distribution of chondroitin immunoreactivity in human, bovine, mouse and rat retinas. Monoclonal antibodies specific to unsulfated (DeltaDiOS), 4-sulfated (DeltaDi4S) and 6-sulfated (DeltaDi6S) chondroitin were employed. Retinal sections and IPM samples were either (a) digested with chondroitinase ABC to expose antibody specific epitopes, (b) double digested with chondroitinase ABC and chondroitinase AC II to remove specific epitopes, or (c) left undigested to evaluate mimotope labeling. In tissue sections from each species studied, positive immunoreactivity to the DeltaDi6S antibody was present in the IPM surrounding both rods and cones. In human and bovine, DeltaDi6S labeling of the cone matrix compartments was more intense than labeling of the matrix surrounding rods. Intense DeltaDi6S immunoreactivity was present surrounding the foveal cones. In mouse and rat, no differences in labeling intensity of IPM surrounding rod and cone photoreceptors were evident, although labeling of the IPM near the apical surface of the retinal pigment epithelium and around the photoreceptor inner segments was more pronounced than that surrounding the outer segments. All DeltaDi6S antibody labeling was eliminated with chondroitinase AC II digestion. No IPM immunoreactivity in tissue sections was observed when the DeltaDi0S or DeltaDi4S antibodies were used. In Western blots of IPM extracts treated with chondroitinase ABC, prominent DeltaDi6S immunoreactive bands were present at approximately 230 kD and 150 kD in each species studied, with the exception of the human, where the 150 kD component is not a chondroitin proteoglycan. Each of the prominent DeltaDi6S immunoreactive bands showed minor immunoreactivity to the DeltaDi4S antibody. No DeltaDi0S immunoreactivity was noted in Western blots of IPM samples from any species. All immunoreactivity was lost following chondroitinase AC II digestion. These observations document similarities in the electrophoretic mobility of IPM proteoglycan core proteins released following chondroitinase ABC digestion in the four species studied, but reveal pronounced differences in the tissue distribution. Bovine and human IPM show greater concentrations of DeltaDi6S immunoreactivity surrounding cones than rods, whereas rodent tissues show higher concentrations near the retinal pigment epithelium and around the photoreceptor inner segments than around the outer segments. The pattern of distribution of these proteoglycan molecules is highly conserved in these species, suggesting a common role in IPM structure and function.
Collapse
Affiliation(s)
- J G Hollyfield
- The Cole Eye Institute, The Cleveland Clinic Foundation, Cleveland, OH, 44195, USA
| | | | | | | | | |
Collapse
|
30
|
Paffenholz R, Kuhn C, Grund C, Stehr S, Franke WW. The arm-repeat protein NPRAP (neurojungin) is a constituent of the plaques of the outer limiting zone in the retina, defining a novel type of adhering junction. Exp Cell Res 1999; 250:452-64. [PMID: 10413599 DOI: 10.1006/excr.1999.4534] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the retina, special plaque-bearing adhering junctions are aligned to form a planar system (the "outer limiting zone," OLZ) of heterotypic connections between the photoreceptor cells and the surrounding glial cells ("Müller cells"), together with homotypic junctions. In the plaques of these junctions, which contain N-cadherin-and possibly also related cadherins-we have identified, by immunolocalization techniques, a recently discovered neural tissue-specific protein, neurojungin, a member of the plakoglobin/armadillo protein family. In these plaques we have also detected other adherens plaque proteins, such as alpha- and beta-catenin, protein p120, and vinculin, as well as proteins known as constituents of tight junction plaques, such as symplekin and protein ZO-1, and the desmosomal plaque protein plakophilin 2. This unusual combination of proteins and the demonstrated absence of plakoglobin define the OLZ junctions as a new and distinct category of adhering junction, which probably has special architectural functions.
Collapse
Affiliation(s)
- R Paffenholz
- Division of Cell Biology, German Cancer Research Center, Heidelberg, Germany
| | | | | | | | | |
Collapse
|
31
|
Li Z, Zhuang J, Corson DW. Delivery of 9-Cis Retinal to Photoreceptors from Bovine Serum Albumin. Photochem Photobiol 1999. [DOI: 10.1111/j.1751-1097.1999.tb03319.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
32
|
Gonzalez-Fernandez F, Baer CA, Baker E, Okajima TI, Wiggert B, Braiman MS, Pepperberg DR. Fourth module of Xenopus interphotoreceptor retinoid-binding protein: activity in retinoid transfer between the retinal pigment epithelium and rod photoreceptors. Curr Eye Res 1998; 17:1150-7. [PMID: 9872537 DOI: 10.1076/ceyr.17.12.1150.5129] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
PURPOSE Interphotoreceptor retinoid-binding protein (IRBP), an extracellular protein believed to support the exchange of retinoids between the neural retina and retinal pigment epithelium (RPE) in the vertebrate eye, exhibits a modular, i.e., repeat, structure. The present study was undertaken to determine whether an individual module of IRBP has activity in retinoid transfer between the RPE and rod photoreceptors. METHODS The retinoid transfer activity of a recombinant protein corresponding to the fourth module of Xenopus laevis IRBP (X4IRBP) was examined in two ways. First, X4IRBP was tested for its ability to support the regeneration of porphyropsin in detached/reattached Xenopus retina/RPE-eyecups. Following illumination and removal of native IRBP, Xenopus eyecups supplemented with 42 microM X4IRBP or (as a control) Ringer's solution were incubated in darkness and then analyzed for regenerated porphyropsin. Second, toad (Bufo marinus) RPE-eyecup preparations were used to evaluate X4IRBP's ability to promote the release of 11-cis retinal from the RPE. RESULTS The regeneration of porphyropsin in X4IRBP-supplemented Xenopus retina/RPE-eyecups (0.45 +/- 0.04 nmol; mean +/- SEM, n = 11) exceeded that in controls (0.13 +/- 0.02 nmol, n = 11). For promoting the release of 11-cis retinal from the toad RPE, 42 microM X4IRBP was more effective than equimolar bovine serum albumin although considerably less than that of 26 microM native bovine IRBP. CONCLUSIONS The results indicate a low but significant activity of IRBP's fourth module in reactions relevant to retinoid exchange.
Collapse
Affiliation(s)
- F Gonzalez-Fernandez
- Department of Ophthalmology, University of Virginia Health Sciences Center, Charlottesville 22908, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Sharma RK, Ehinger B. Retinal cell transplants: how close to clinical application? ACTA OPHTHALMOLOGICA SCANDINAVICA 1997; 75:355-63. [PMID: 9374240 DOI: 10.1111/j.1600-0420.1997.tb00390.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- R K Sharma
- Department of Ophthalmology, Lund University Hospital, Sweden
| | | |
Collapse
|
34
|
Bobola N, Hirsch E, Albini A, Altruda F, Noonan D, Ravazzolo R. A single cis-acting element in a short promoter segment of the gene encoding the interphotoreceptor retinoid-binding protein confers tissue-specific expression. J Biol Chem 1995; 270:1289-94. [PMID: 7836393 DOI: 10.1074/jbc.270.3.1289] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Interphotoreceptor retinoid-binding protein (IRBP) is the major protein component of the interphotoreceptor matrix. IRBP has a highly restricted tissue-specific expression in retinal photoreceptor cells and in a subgroup of pinealocytes. With the purpose of understanding how transcriptional regulation contributes to the expression of human IRBP, we have studied a short promoter fragment (from -123 to +18, relative to the transcription start site). We demonstrate, by analysis of the expression of the lacZ reporter gene fused to this short promoter fragment in transgenic mice, that it is sufficient to confer tissue-specific expression in retinal photoreceptors and in pinealocytes. DNA/protein binding assays, performed to identify binding sites for tissue-specific trans-acting factors, have shown that an element between -45 and -58 binds a factor present only in nuclear extracts of retinoblastoma-derived cell lines, which express IRBP. An element further upstream, between -86 and -106, binds apparently ubiquitous factors. Site-directed mutagenesis was performed to disrupt a GATTAA motif included in the -45 to -58 binding site and a second inverted GATTAA motif present shortly upstream. In transgenic mice bearing the mutated version of the promoter fragment, the expression of the reporter gene was completely abolished, thus suggesting that this element is essential for tissue-specific expression. A GATTAA motif appears in the 5'-flanking regions of several photoreceptor-specific genes, suggesting that this could be the recognition site for a photoreceptor-specific factor.
Collapse
Affiliation(s)
- N Bobola
- Institute of Biology and Genetics, University of Genova, Italy
| | | | | | | | | | | |
Collapse
|
35
|
|
36
|
Wiggert B, van Veen T, Kutty G, Lee L, Nickerson J, Si JS, Nilsson SE, Chader GJ, Narfström K. An early decrease in interphotoreceptor retinoid-binding protein gene expression in Abyssinian cats homozygous for hereditary rod-cone degeneration. Cell Tissue Res 1994; 278:291-8. [PMID: 8001085 DOI: 10.1007/bf00414173] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Levels of interphotoreceptor retinoid-binding protein (IRBP) protein and message in retinas of Abyssinian cats homozygous for progressive rod-cone degeneration were determined at early ages, well before the onset of clinical retinal degeneration. IRBP gene expression was assessed by immunochemical quantitation of IRBP protein, and by Northern blotting and slot-blotting of total RNA using a human IRBP cDNA probe. Morphology was assessed by electron microscopy and immunocytochemistry. Levels of both IRBP protein and message in affected Abyssinian cat retinas were significantly reduced below normal as early as 4 weeks of age at the earliest stage of retinal disorientation. Opsin mRNA was more abundant in affected Abyssinian cat retinas than in control retinas. This was at least 1 year before the onset of clinical symptoms. The reduction in IRBP gene expression to levels significantly below normal well before the onset of retinal degeneration in affected Abyssinian cat retinas indicates that this represents a primary defect or at least an early problem that could itself cause adverse effects.
Collapse
Affiliation(s)
- B Wiggert
- National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
|
38
|
Rajagopalan S, Rodrigues MM, Wiggert B, Advani SH, Nair CN, Nickerson JM. Retinoblastoma. Interphotoreceptor retinoid binding protein mRNA analysis by polymerase chain reaction. OPHTHALMIC PAEDIATRICS AND GENETICS 1993; 14:117-25. [PMID: 8115118 DOI: 10.3109/13816819309087627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The authors used the polymerase chain reaction (PCR) to detect the mRNA for interphotoreceptor retinoid-binding protein (IRBP/RBP3), a photoreceptor specific protein, in small samples. They carried out these experiments to assess the feasibility of applying this technique to small tumor samples. Surgically excised tumor samples from four enucleations were analyzed. Messenger RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction was followed by phenol-chloroform purification, reverse-transcription and amplification. The primers used were 5' TGATGACTCTGTCAGTG 3' in exon 3 (sense) and 5' TTGTGCTGGAGCATCTC 3' in exon 4 (antisense). Controls included an IRBP cDNA pIRBP 20-700 and RNA from normal human retina. All samples amplified the same size band if detected. Three tumor samples contained IRBP mRNA as indicated by amplified 234 bp band. These three samples showed a high IRBP protein level by slot blot and RNA for IRBP detected by northern blot. Hematoxylin-eosin staining of one of these samples revealed a well differentiated tumor with numerous Flexner-Wintersteiner rosettes. In the fourth tumor, a poorly differentiated neoplasm, no IRBP mRNA was detected. The authors' results showed a qualitative variation of IRBP mRNA levels, usually related to the histologic differentiation, with IRBP expressed in well differentiated tumors as well as in the normal human retina in contrast to a poorly differentiated tumor with no detectable IRBP. The feasibility of the reverse transcriptase-PCR (RT-PCR) technique to detect IRBP mRNA in small retinoblastoma tumors, was demonstrated.
Collapse
Affiliation(s)
- S Rajagopalan
- Laboratory of Ophthalmic Pathology, University of Maryland, Baltimore
| | | | | | | | | | | |
Collapse
|
39
|
Tien L, Rayborn ME, Hollyfield JG. Characterization of the interphotoreceptor matrix surrounding rod photoreceptors in the human retina. Exp Eye Res 1992; 55:297-306. [PMID: 1426062 DOI: 10.1016/0014-4835(92)90194-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Previous studies have documented the presence of specific lectin-binding domains in the insoluble interphotoreceptor matrix (IPM) isolated from human retina. Peanut agglutinin (PNA) selectively binds to cone matrix domains whereas wheat germ agglutinin (WGA) binds to matrix domains surrounding rods. In the present study, the rod-associated WGA-binding domains are further characterized using lectin-based cytochemistry and polyacrylamide gel electrophoresis in combination with neuraminidase digestion. The lectin-binding patterns of non-neuraminidase-treated samples are similar to those described in previous reports. After neuraminidase treatment, both rod and cone matrix domains demonstrate PNA binding while the binding of WGA to rod matrix domains is reduced. However, the binding of WGA to photoreceptor outer segments is not affected by neuraminidase. Blots of IPM proteins probed with lectins indicate that the WGA-binding macromolecules are represented as a group of high molecular weight glycoproteins, whereas the PNA-binding components are represented as a group of lower molecular weight glycoproteins. The major WGA-binding glycoprotein (147 kDa) shows reduced binding affinity to WGA and increased binding affinity to PNA following neuraminidase treatment. Further, this 147-kDa glycoprotein, although similar in molecular weight to IRBP (interphotoreceptor retinol-binding protein) (141 kDa), is not recognized by the lectin, concanavalin A (Con A), or by an anti-IRBP antibody. Our data suggest that: (1) the major component of the WGA-binding domain demonstrated by polyacrylamide gel analysis is a glycoprotein with a molecular weight of 147 kDa containing galactose residues that are masked by terminal sialic acid residues; and (2) the binding of WGA to photoreceptor outer segments is resistant to neuraminidase, consistent with the earlier reports that WGA-binding domains of photoreceptor outer segments may not be sialyl-containing glycoconjugates.
Collapse
Affiliation(s)
- L Tien
- Cullen Eye Institute, Baylor College of Medicine, Houston, TX 77030
| | | | | |
Collapse
|
40
|
Smith SB, Lee L, Nickerson J, Si JS, Chader GJ, Wiggert B. Synthesis and secretion of interphotoreceptor retinoid-binding protein (IRBP) and developmental expression of IRBP mRNA in normal and rd mouse retinas. Exp Eye Res 1992; 54:957-63. [PMID: 1521586 DOI: 10.1016/0014-4835(92)90160-t] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The synthesis and secretion of interphotoreceptor retinoid-binding protein (IRBP) was quantitatively assessed in retinas of normal and rd mutant mice using short-term organ culture with [35S]methionine. Retinas were studied at ages P9-P12, time points prior to and immediately after the onset of the degeneration of the rd retina. Soluble proteins of the retinal pellet and the incubation medium were subjected to SDS-polyacrylamide gel electrophoresis. Analysis of labeled protein bands utilized a radioactivity scanning system to quantify [35S]methionine incorporation into newly synthesized IRBP. The synthesis and secretion into the incubation medium of IRBP by rd mouse retinas was comparable to normal retinas at P9-P10 but decreased by more than 50% by P12. IRBP mRNA levels were evaluated in retinas of normal and rd mice ages P7-P14. Although IRBP mRNA expression increased in the rd mouse through P10, it decreased markedly thereafter. Previously reported immunocytochemical studies suggested that IRBP was not secreted in the rd mouse retina. The results of this study indicate, however, that rd mouse retinas, when removed from the eye, have the capacity to synthesize and secrete IRBP.
Collapse
Affiliation(s)
- S B Smith
- Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892
| | | | | | | | | | | |
Collapse
|
41
|
Korf HW, Korf B, Schachenmayr W, Chader GJ, Wiggert B. Immunocytochemical demonstration of interphotoreceptor retinoid-binding protein in cerebellar medulloblastoma. Acta Neuropathol 1992; 83:482-7. [PMID: 1377856 DOI: 10.1007/bf00310024] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Previously, immunoreactive rod-opsin and S-antigen (arrestin), two highly characteristic markers of retinal photoreceptors and pinealocytes, were shown to be present in certain medulloblastoma cells. It, thus, has been suggested that such cells differentiate along the photoreceptor lineage. This is corroborated in the present immunocytochemical investigation using antibodies against another photoreceptor-cell marker, the interphotoreceptor retinoid-binding protein (IRBP). As shown in preparations of human retina and pineal organ, IRBP can be successfully demonstrated in formalin-fixed and paraffin-embedded tissue: the IRBP immunoreaction is located to the outer and inner segments of retinal photoreceptor cells and to perikarya of certain pinealocytes. Examination of formalin-fixed, paraffin-embedded biopsy specimens of 66 cerebellar medullo-blastomas revealed varying numbers of IRBP-immuno-reactive tumor cells in 19 cases that were formerly shown to contain rod-opsin and S-antigen immunoreaction. IRBP-immunoreactive tumor cells were also found in a retinoblastoma and a pineocytoma, but not in neuroblastoma, ganglioneuroblastoma, glioblastoma, oligodendroglioma and astrocytoma. The results indicate: (1) cerebellar medulloblastomas are heterogeneous in their differentiation potential; (2) one type of medulloblastoma displays photoreceptor characteristics; (3) this type appears to be closely related to retinoblastoma and pineal cell tumors; and (4) all three types of tumors may display additional common features to be explored in future studies.
Collapse
Affiliation(s)
- H W Korf
- Abteilung für Neurobiologie, Johann Wolfgang Goethe-Universität, Frankfurt/Main, Federal Republic of Germany
| | | | | | | | | |
Collapse
|
42
|
Tombran-Tink J, Li A, Johnson MA, Johnson LV, Chader GJ. Neurotrophic activity of interphotoreceptor matrix on human Y79 retinoblastoma cells. J Comp Neurol 1992; 317:175-86. [PMID: 1573062 DOI: 10.1002/cne.903170206] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A neurotrophic activity of adult monkey and bovine interphotoreceptor matrix (IPM) was examined by using cultured human Y79 retinoblastoma cells as a model system. The cells were stimulated for 7 days in suspension culture with soluble IPM components and then attached to poly-D-lysine substratum. IPMs from both species induced greater than 80% neuronal differentiation of Y79 cell aggregates after 11 days of attachment as adjudged morphologically by the extension of lengthy, neurite-like processes. Immunocytochemical studies indicate that differentiated Y79 cells had an increased level of expression of neuron-specific enolase and a concomitant decreased expression of glial fibrillary acidic protein. This neurotrophic activity cannot be ascribed to nerve growth factor, platelet-derived growth factor, fibroblast growth factor, epidermal growth factor, or transforming growth factor beta. Although the nature of the factor and its cellular source have yet to be characterized, it may be related to a recently described neurotrophic protein secreted by human fetal retinal pigment epithelial cells in culture. Our findings provide evidence supporting the neuroblastic potential of the Y79 cell line and indicate that the IPM contains a potent neurotrophic activity. Such factors may be important to normal differentiation and maintenance of function of the neural retina.
Collapse
Affiliation(s)
- J Tombran-Tink
- Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892
| | | | | | | | | |
Collapse
|
43
|
Adler AJ, Spencer SA. Effect of light on endogenous ligands carried by interphotoreceptor retinoid-binding protein. Exp Eye Res 1991; 53:337-46. [PMID: 1936170 DOI: 10.1016/0014-4835(91)90239-b] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Interphotoreceptor retinoid-binding protein (IRBP) is a vitamin A carrier present only in the extracellular material lying between the neural retina and the retinal pigment epithelium of vertebrate eyes. The amount of retinol bound endogenously by IRBP in this interphotoreceptor space is known to increase upon illumination. This finding led to the hypothesis that IRBP may act as a shuttle for vitamin A during the visual cycle that regenerates rhodopsin. In the present work, we separated IRBP from other retinoid-binding proteins in bovine interphotoreceptor matrix preparations by means of size-exclusion chromatography. IRBP's endogenous ligands were retained during this procedure and were then extracted into hexane and analysed by normal-phase HPCL. We found that IRBP carries, in a light-dependent manner, all the retinoid isomers involved in the visual cycle. For dark-adapted eyes the amounts of bound ligands are (in nmol per eye) 0.09 all-trans retinol, 0.11 11-cis retinol, 0.04 all-trans retinal, 0.16 11-cis retinal, and 0.07 retinyl esters. For light-adapted eyes the amount of all-trans retinol was found to increase by a factor of five, and that of 11-cis retinal to decrease by a factor of four. (These eyes contain 3.1 nmol of IRBP, which does not change in amount with lighting conditions). Thus, the major endogenous ligand of IRBP is 11-cis retinaldehyde in the dark and all-trans retinol in the light. The data are consistent with a role for IRBP as a non-selective scavenger and stabilizer of retinoids released from photoreceptors and pigment epithelial cells. However, it cannot be concluded from these data that IRBP is involved in directed transport of retinoids across the interphotoreceptor matrix, since there is no evidence for the appropriate spatial gradients in the ligands bound to the protein.
Collapse
Affiliation(s)
- A J Adler
- Eye Research Institute, Boston, MA 02114
| | | |
Collapse
|
44
|
Wiggert B, Kutty G, Long KO, Inouye L, Gery I, Chader GJ, Aguirre GD. Interphotoreceptor retinoid-binding protein (IRBP) in progressive rod-cone degeneration (prcd)--biochemical, immunocytochemical and immunologic studies. Exp Eye Res 1991; 53:389-98. [PMID: 1936175 DOI: 10.1016/0014-4835(91)90245-a] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Interphotoreceptor retinoid-binding protein (IRBP) is synthesized and secreted by photoreceptor cells and is thought to facilitate the transport of retinoids during the visual cycle as well as fatty acids essential to the maintenance of normal outer segment membranes. Proteins such as IRBP, which are unique to the photoreceptor cells in the retina, are prime candidates in the consideration of biochemical defects which could contribute to photoreceptor cell degeneration in man and animals. In this study, the association between IRBP and retinal degeneration was examined using the progressive rod-cone degeneration (prcd) mutant retina in dogs as an animal model. This study shows that loss of IRBP is not an early occurrence in prcd. IRBP is present in relatively normal amounts and distribution even at 1.7 years of age, a time when there is extensive visual cell disease and degeneration. By 2.7-3.0 years of age, IRBP loss correlates with the severity of the disease and concomitant loss of photoreceptor cells. IRBP immunoreactivity was present in the interphotoreceptor matrix (IPM) as long as inner segments were present to a significant degree. The late loss of IRBP immunoreactivity seems to be, therefore, the result of advanced degeneration and end-stage atrophy of the retina. In addition, immunological studies were carried out in order to examine the possible role of an autoimmune response against IRBP in the disease cascade. Normal, heterozygote and prcd-affected dogs had measurable antibody titers to IRBP, but there was no correlation between disease state and antibody levels.
Collapse
Affiliation(s)
- B Wiggert
- Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, NIH, Bethesda, MD 20892
| | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
The key step in the visual pigment regeneration process is an enzyme-catalyzed trans to cis retinoid isomerization reaction. This reaction is of substantial general interest, because it requires the input of metabolic energy. The energy is needed because the 11-cis-retinoid reaction products are approximately 4 kcal/mol higher in energy than their all-trans congeners. In the retinal pigment epithelium a novel enzymatic system has been discovered which is capable of converting all-trans-retinol into all-trans retinyl esters, by means of a lecithin retinol acyl transferase (LRAT), followed by the direct processing of the ester into 11-cis-retinol. In this process the free energy of hydrolysis of a retinyl ester, estimated to be approximately -5 kcal/mol, is coupled to the endothermic (+4 kcal/mol) isomerization reaction, resulting in an overall exothermic process. The overall process is analogous to ATP-dependent group transfer reactions, but here the energy is provided by the membrane phospholipids. This process illustrates a new role for membranes: they can serve as an energy source.
Collapse
Affiliation(s)
- R R Rando
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
46
|
Chapter 9 Structure, composition and function of the retinal interphotoreceptor matrix. ACTA ACUST UNITED AC 1991. [DOI: 10.1016/0278-4327(91)90014-s] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
47
|
|
48
|
Gonzalez-Fernandez F, Healy JI. Early expression of the gene for interphotoreceptor retinol-binding protein during photoreceptor differentiation suggests a critical role for the interphotoreceptor matrix in retinal development. J Biophys Biochem Cytol 1990; 111:2775-84. [PMID: 1703544 PMCID: PMC2116398 DOI: 10.1083/jcb.111.6.2775] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Interphotoreceptor retinol-binding protein (IRBP), the major protein component of the subretinal space, is in a strategic position to mediate cellular interactions between the retinal pigmented epithelium (RPE) and the neural retina. While IRBP appears to be involved in vitamin A transport during the visual cycle in the adult, the role of this protein during eye development has not been determined. As a first step to understanding the role of IRBP during retinal development, we have studied the expression of the mRNA for this glycolipoprotein during photoreceptor differentiation in the rat. A rat neural retina cDNA library was prepared from which an IRBP clone was isolated. The clone contains an open reading frame followed by a 3' noncoding sequence ending in 10 adenosine residues. The coding region has an identity of 83.9 and 82.5% with the nucleotide sequence of human and bovine IRBP, respectively. Rats (Sprague-Dawley, Wistar, and Royal College of Surgeon pink-eyed controls) have a 6.4 and a 5.2-kb mRNA for IRBP which are present in a 1:4 ratio and thus are the only vertebrate known to definitely have more than one major form of the IRBP message. Genomic Southern blots are consistent with the hypothesis that there is only one allele of the IRBP gene, suggesting that the two forms are produced by alternative processing of the mRNA. To generate an antisense RNA probe for use in molecular titration assays and Northern blots, an Eco RI-Bam HI fragment from the coding region was subcloned in between flanking Sp6 and T7 promoters. Total RNA was prepared from undissected rat globes from postnatal days p0-p22. The expression of the mRNA for IRBP was studied by Northern blots and the level of the transcripts determined by solution hybridization assays. Approximately 10(5) IRBP mRNA transcripts/micrograms total eye RNA are present at birth. This increases to a final level of 3.1 X 10(6) transcripts/micrograms total RNA by p9. The one-half maximal level of the mRNA occurs at p4.2 which is 2 wk before the one-half maximal level of IRBP is reached in the subretinal space (Gonzalez-Fernandez, F., R. A. Landers, P. A. Glazebrook, S.-L. Fong, G. I. Liou, D. M. K. Lam, and C. D. B. Bridges. 1984. J. Cell Biol. 99:2092-2098). The expression of the mRNA for IRBP reflects the developmental emergence of the interphotoreceptor matrix as an important structure within the retina.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- F Gonzalez-Fernandez
- Department of Pathology, University of Virginia Medical Center, Charlottesville 22908
| | | |
Collapse
|
49
|
Flannery JG, O'Day W, Pfeffer BA, Horwitz J, Bok D. Uptake, processing and release of retinoids by cultured human retinal pigment epithelium. Exp Eye Res 1990; 51:717-28. [PMID: 2265683 DOI: 10.1016/0014-4835(90)90057-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Upon absorption of a photon, the 11-cis retinaldehyde chromophore of rhodopsin is isomerized and reduced to all-trans retinol (vitamin A) in the photoreceptor outer segments, whereupon it leaves the photoreceptors, and moves to the retinal pigment epithelium (RPE). To clarify the function of the RPE in the regeneration of 11-cis retinaldehyde, we delivered all-trans retinol to monolayer cultures of human RPE. During delivery the retinol was associated with its putative natural carrier, interphotoreceptor retinoid binding protein (IRBP). IRBP has been proposed as a carrier protein involved in the exchange of retinoids between the photoreceptors and the retinal pigment epithelium. The retinoid composition of RPE cells and culture medium was analyzed by HPLC following several incubation periods. The RPE monolayer was found to process all-trans retinol into two distinct end-products: all-trans retinyl palmitate, which remained within the RPE monolayer: and 11-cis retinaldehyde which was released into the culture medium. These results demonstrate retinoid isomerase, retinol oxidoreductase and retinyl ester synthetase activity in human RPE cells cultured under the appropriate conditions. They show that IRBP can serve as a carrier of retinol through an aqueous medium to the RPE, and they illustrate that the visual cycle can be studied in vitro.
Collapse
Affiliation(s)
- J G Flannery
- Jules Stein Eye Institute UCLA School of Medicine 90024
| | | | | | | | | |
Collapse
|
50
|
Okajima TI, Pepperberg DR, Ripps H, Wiggert B, Chader GJ. Interphotoreceptor retinoid-binding protein promotes rhodopsin regeneration in toad photoreceptors. Proc Natl Acad Sci U S A 1990; 87:6907-11. [PMID: 2118660 PMCID: PMC54647 DOI: 10.1073/pnas.87.17.6907] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Interphotoreceptor retinoid-binding protein (IRBP) has been hypothesized to function as an intercellular shuttle in the vertebrate eye, serving to transport retinoids between the retinal pigment epithelium (RPE) and photoreceptors in the process by which visual pigment is regenerated after photolysis. This hypothesis was tested in preparations utilizing the toad (Bufo marinus) eye and purified, initially ligand-free IRBP obtained from the bovine eye. Rod outer segments (ROS) or neural retinas were isolated and bleached, then incubated with native RPE (RPE-eyecup) in the presence or absence of IRBP. The amount of rhodopsin present after incubation was determined by spectrophotometric analysis and compared with that in control preparations receiving bovine serum albumin or Ringer's solution only. Supplementation with IRBP enhanced the formation of rhodopsin in both the ROS/RPE-eyecup and retina/RPE-eyecup preparations. Regeneration in ROS/RPE-eyecups receiving IRBP (1.8 nmol) increased in a roughly linear manner with the period of incubation (0-4 hr), at a rate of 0.44 nmol/hr. The extent of regeneration was graded with the quantities of IRBP and opsin introduced into the RPE-eyecup. With increasing amounts of IRBP (up to 5.2 nmol) or of initially available opsin (up to 15.6 nmol), the amount of rhodopsin formed (3-hr incubation) approached the same plateau value, about 2.5 nmol. Analysis of IRBP-supplemented Ringer's solution incubated in the RPE-eyecup showed 11-cis-retinal to be virtually the only retinoid withdrawn from the RPE. With large quantities of IRBP (3.2-9.2 nmol), the amount of 11-cis-retinal (2.7 +/- 0.5 nmol) withdrawn from the RPE during a 3-hr incubation was similar to the plateau value of rhodopsin formed in the ROS/RPE-eyecup. No 11-cis-retinal was observed in albumin-supplemented Ringer's solution (0.4-11.2 nmol of bovine serum albumin) or in Ringer's alone after similar incubation in the RPE-eyecup. The results suggest that an IRBP-mediated transfer of 11-cis-retinal from the RPE to the rods supports rhodopsin regeneration in vivo.
Collapse
Affiliation(s)
- T I Okajima
- Lions of Illinois Eye Research Institute, Department of Ophthalmology, Chicago, IL
| | | | | | | | | |
Collapse
|