1
|
Petty HR. Frontiers of Complex Disease Mechanisms: Membrane Surface Tension May Link Genotype to Phenotype in Glaucoma. Front Cell Dev Biol 2018; 6:32. [PMID: 29682502 PMCID: PMC5897435 DOI: 10.3389/fcell.2018.00032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 03/13/2018] [Indexed: 12/19/2022] Open
Abstract
Although many monogenic diseases are understood based upon structural changes of gene products, less progress has been made concerning polygenic disease mechanisms. This article presents a new interdisciplinary approach to understand complex diseases, especially their genetic polymorphisms. I focus upon primary open angle glaucoma (POAG). Although elevated intraocular pressure (IOP) and oxidative stress are glaucoma hallmarks, the linkages between these factors and cell death are obscure. Reactive oxygen species (ROS) promote the formation of oxidatively truncated phosphoglycerides (OTP), free fatty acids, lysophosphoglycerides, oxysterols, and other chemical species that promote membrane disruption and decrease membrane surface tension. Several POAG-linked gene polymorphisms identify proteins that manage damaged lipids and/or influence membrane surface tension. POAG-related genes expected to participate in these processes include: ELOVL5, ABCA1, APOE4, GST, CYP46A1, MYOC, and CAV. POAG-related gene products are expected to influence membrane surface tension, strength, and repair. I propose that heightened IOP overcomes retinal ganglion cell (RGC) membrane compressive strength, weakened by damaged lipid accumulation, to form pores. The ensuing structural failure promotes apoptosis and blindness. The linkage between glaucoma genotype and phenotype is mediated by physical events. Force balancing between the IOP and compressive strength regulates pore nucleation; force balancing between pore line tension and membrane surface tension regulates pore growth. Similar events may contribute to traumatic brain injury, Alzheimer's disease, and macular degeneration.
Collapse
Affiliation(s)
- Howard R Petty
- Department of Ophthalmology and Visual Sciences, The University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
2
|
Tlili A, Dupré-Crochet S, Erard M, Nüsse O. Kinetic analysis of phagosomal production of reactive oxygen species. Free Radic Biol Med 2011; 50:438-47. [PMID: 21111807 DOI: 10.1016/j.freeradbiomed.2010.11.024] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 11/09/2010] [Accepted: 11/17/2010] [Indexed: 01/23/2023]
Abstract
Phagocytes produce large quantities of reactive oxygen species for pathogen killing; however, the kinetics and amplitude of ROS production on the level of individual phagosomes are poorly understood. This is mainly due to the lack of appropriate methods for quantitative ROS detection with microscopic resolution. We covalently attached the ROS-sensitive dye dichlorodihydrofluorescein (DCFH(2)) to yeast particles and investigated their fluorescence due to oxidation in vitro and in live phagocytes. In vitro, the dye was oxidized by H(2)O(2) plus horseradish peroxidase but also by HOCl. The latter produced a previously unrecognized oxidation product with red-shifted excitation and emission spectra and a characteristic difference in the shape of the excitation spectrum near 480 nm. Millimolar HOCl bleached the DCFH(2) oxidation products. Inside phagosomes, DCFH(2)-labeled yeast were oxidized for several minutes in a strictly NADPH oxidase-dependent manner as shown by video microscopy. Inhibition of the NADPH oxidase rapidly stopped the fluorescence increase of the particles. At least two characteristic kinetics of oxidation were distinguished and the variability of DCFH(2) oxidation in phagosomes was much larger than the variability upon oxidation in vitro. We conclude that DCFH(2)-yeast is a valuable tool to investigate the kinetics and amplitude of ROS production in individual phagosomes.
Collapse
|
3
|
Kindzelskii AL, Petty HR. Apparent role of traveling metabolic waves in oxidant release by living neutrophils. Proc Natl Acad Sci U S A 2002; 99:9207-12. [PMID: 12082178 PMCID: PMC123119 DOI: 10.1073/pnas.132630999] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2001] [Indexed: 11/18/2022] Open
Abstract
Cell metabolism self-organizes into two types of dissipative structures: chemical oscillations and traveling metabolic waves. In the present study we test the hypothesis that traveling NAD(P)H waves within neutrophils are associated spatially and temporally with the release of reactive oxygen metabolites (ROMs). Using high-speed optical microscopy and taking advantage of the autofluorescence of NAD(P)H, we have observed the propagation of NAD(P)H waves within cells. When NAD(P)H waves reach the lamellipodium of morphologically polarized neutrophils, a diffusing plume of superoxide is released as evidenced by the conversion of hydroethidine in the extracellular environment to ethidium bromide. Parallel results were obtained by using high-speed emission microspectrophotometry. These experiments indicate that the spatial and temporal properties of NAD(P)H waves are transformed into ROM pulses in the extracellular environment. Propagating NAD(P)H waves allow neutrophils to specifically deliver substrate to the lamellipodium at high concentrations, thus facilitating the local and periodic release of ROMs in the direction of cell movement and/or a target.
Collapse
Affiliation(s)
- Andrei L Kindzelskii
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| | | |
Collapse
|
4
|
Kindzelskii AL, Petty HR. Early Membrane Rupture Events During Neutrophil-Mediated Antibody-Dependent Tumor Cell Cytolysis. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.6.3188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
Although cell-mediated cytolysis is a fundamental immune effector response, its mechanism remains poorly understood at the cellular level. In this report, we image for the first time transient ruptures, as inferred by cytoplasmic marker release, in tumor cell membranes during Ab-dependent cellular cytolysis. The cytosol of IgG-opsonized YAC tumor cells was labeled with tetramethylrhodamine diacetate followed by the formation of tumor cell-neutrophil conjugates. We hypothesized that tumor cell cytolysis proceeds via a series of discrete membrane rupture/resealing events that contribute to marker release. To test this hypothesis, we occluded the fluorescence image of the labeled tumor cells by passing an opaque disk into a field-conjugated plane between the light source and the sample. Multiple small bursts of fluorescent label release from tumor cells could be detected using a photomultiplier tube. Similarly, multiple fluorescent plumes were observed at various sites around the perimeter of a target. These findings support a multihit model of target cytolysis and suggest that cytolytic release is not focused at specific sites. Cytolytic bursts were generally observed at 20-s intervals, which match the previously described reduced nicotinamide-adenine dinucleotide phosphate and superoxide release oscillation periods for neutrophils; we speculate that metabolic oscillations of the effector cell drive the membrane damage of the target.
Collapse
Affiliation(s)
| | - Howard R. Petty
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202
| |
Collapse
|
5
|
Adachi Y, Kindzelskii AL, Cookingham G, Shaya S, Moore EC, Todd RF, Petty HR. Aberrant neutrophil trafficking and metabolic oscillations in severe pyoderma gangrenosum. J Invest Dermatol 1998; 111:259-68. [PMID: 9699727 DOI: 10.1046/j.1523-1747.1998.00311.x] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Having previously associated metabolic oscillations with cell locomotion, we hypothesized that patients with abnormalities in neutrophil trafficking may display aberrant intracellular oscillations. A pyoderma gangrenosum patient exhibiting aberrant leukocyte trafficking in vivo and skin ulceration without infection was identified. This patient's neutrophils constitutively overexpressed and clustered the leukocyte integrins CR3 and CR4 and failed to display appropriate integrin-to-GPI receptor interactions. Increased levels of tyrosine phosphorylation were observed. NAD(P)H oscillations, which are sinusoidal in normals, were chaotic with multiple frequency components in this patient's neutrophils. Normal cell shape and sinusoidal NAD(P)H oscillations were restored by providing a pulsed electric field to drive metabolic oscillations and by temperature reduction. N-acetyl-D-glucosamine disrupted CR3 clusters and sinusoidal NAD(P)H oscillations returned. Anecdotal reports suggest that local hypothermia is clinically useful for this patient. These data define the first metabolic oscillation-associated disease and suggest that pyoderma gangrenosum can be classified as a dynamical disease at the cellular level.
Collapse
Affiliation(s)
- Y Adachi
- Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202, USA
| | | | | | | | | | | | | |
Collapse
|
6
|
Robinson JM, Badwey JA. The NADPH oxidase complex of phagocytic leukocytes: a biochemical and cytochemical view. Histochem Cell Biol 1995; 103:163-80. [PMID: 7553130 DOI: 10.1007/bf01454021] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The NADPH oxidase complex catalyzes the formation of superoxide (O2.-) in phagocytic leukocytes. This paper reviews recent advances in our understanding of this enzyme system. Recent studies have defined conditions for reconstitution of this enzymatic activity with purified proteins in a cell-free system. The role of the individual proteins that make up the active complex, their regulation and the effects of mutations in these proteins are discussed. While these studies represent major achievements, it is clear from cytochemical investigations that additional levels of complexity exist in the modulation of the NADPH oxidase complex in vivo. A major role for cytochemical analysis in understanding the cell biological aspects of the generation of reactive oxygen species is discussed.
Collapse
Affiliation(s)
- J M Robinson
- Department of Cell Biology, Neurobiology, and Anatomy, Columbus 43210, USA
| | | |
Collapse
|
7
|
Von Schroeder HP, Hashimoto Y, Heersche JN. The effects of natural and synthetic retinoids on the differentiation of RCJ C5.18 chondrogenic cells. TERATOLOGY 1994; 50:54-62. [PMID: 7974255 DOI: 10.1002/tera.1420500108] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
RCJ C 5.18 (C 5.18) is a chondrogenic clonal cell line which, under standard culture conditions, develops chondroblastic features including the production of a cartilagenous matrix. Retinoic acid (RA) is known to inhibit the chondrogenic differentiation of C 5.18 cells and this may parallel the teratogenic effects of retinoids in vivo; however, the question as to which of the 3 retinoic acid receptors (RAR alpha, beta, gamma) or the 3 retinoid X receptors (RXR alpha, beta, gamma) mediate this RA-induced inhibition remains unanswered. We tested several retinoids with different receptor binding characteristics. Cartilage formation in C 5.18 cultures was evaluated by counting the number of cartilage nodules formed, and by quantitating the glycosaminoglycan content of the cultures using alcian blue staining. All of the retinoids prevented cartilage formation in a dose-dependent manner. Treatment with the retinoids did not affect cell number, thereby ruling out any toxic effects. RA, which binds to all 3 RARs with similar affinity, produced a 50% inhibition (IC50) of cartilage formation at 4 x 10(-10) M. We also tested Ch55, which also binds to all 3 RARs, but with higher affinity than RA. This compound was approximately 10 times more potent than RA (IC50 2 x 10(-11) M). 9-cis RA, which binds to the 3 RARs with affinities similar to RA and also binds to the 3 RXRs, was less active (IC50 8 x 10(-9) M), suggesting that RXR binding interferes with the inhibitory effect of ligand-activated RARs. 9-cis retinal, for which the binding characteristics are unknown, had the same effect as 9-cis RA.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- H P Von Schroeder
- MRC Group in Periodontal Physiology, Faculty of Dentistry, University of Toronto, Ontario, Canada
| | | | | |
Collapse
|
8
|
Zhou MJ, Petty HR. Superoxide-mediated lysis of erythrocytes: the role of colloid-osmotic forces. J Cell Physiol 1993; 157:555-61. [PMID: 8253867 DOI: 10.1002/jcp.1041570315] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Although superoxide anions are a well-known mediator of cytotoxicity, their mechanism of target cell lysis is not clearly understood. In the present study we have used an exogenous source of superoxide to study erythrocyte cytolysis. RBC lysis was studied in buffers containing the cations Li+, Na+, K+, Rb+, and Cs+; superoxide anions were produced and available in these buffers. During this model superoxide-dependent cytolytic process, erythrocytes underwent a shape change from biconcave disk to sphere as shown by scanning electron microscopy. Soret band transmitted light microscopy has confirmed this shape change and shown that it precedes cytosolic oxidation. This evidence is consistent with a colloid-osmotic type lytic mechanism. Erythrocyte lysis was studied by 51Cr-release and light scattering methods. Superoxide-mediated target cytolysis was characterized by: 1) a sigmoidal dose-response curve and 2) a lag time in cytolysis after superoxide addition in kinetic light scattering experiments. The efficacy of cytolysis followed the rank order Cs+ > Rb+ > Na+, Li+ > sucrose = raffinose, which provides additional support for a colloid-osmotic lytic mechanism. Furthermore, the rank order potency correlates with the cations' hydration numbers. We suggest that oxidative events trigger the formation of colloid-osmotic pores approximately 1 nm in diameter.
Collapse
Affiliation(s)
- M J Zhou
- Department of Biological Sciences, Wayne State University, Detroit, Michigan
| | | |
Collapse
|
9
|
Cao D, Boxer LA, Petty HR. Deposition of reactive oxygen metabolites onto and within living tumor cells during neutrophil-mediated antibody-dependent cellular cytotoxicity. J Cell Physiol 1993; 156:428-36. [PMID: 8344997 DOI: 10.1002/jcp.1041560227] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
In this study we test the hypothesis that reactive oxygen metabolites are delivered from neutrophils to simultaneously both the cell surface and cytosol of opsonized YAC erythroleukemic target cells. Using 5' (or 6') carboxyl-2',7'-dichlorodihydrofluorescein (H2-CDCF) diacetate as starting material, we synthesized its succinimidyl ester derivative. H2-CDCF-conjugated IgG prepared from the succinimidyl ester derivative was used to opsonize targets. In vitro studies have shown that H2-CDCF becomes fluorescent upon exposure to reactive oxygen metabolites, including hydrogen peroxide. Using video intensified epifluorescence microscopy, we observed that reactive oxygen metabolites are deposited on tumor cell membranes during neutrophil-mediated antibody-dependent cellular cytotoxicity (ADCC). This deposition process is catalase sensitive. The role of reactive oxygen metabolites produced by neutrophils in triggering the oxidation of H2-CDCF is further supported by the observation that neutrophils from chronic granulomatous disease (CGD) patients did not affect target fluorescence. YAC tumor cells were also labeled with dihydrorhodamine 123 or dihydrotetramethylrosamine. The oxidized forms of these reagents were found within the cytoplasm of YAC cells. During ADCC normal neutrophils, but not neutrophils obtained from CGD patients, triggered the oxidation of dihydrorhodamine 123 and dihydrotetramethylrosamine within tumor cells. Using two-color automated epifluorescence microscopy, we could not detect temporal intermediates with fluorescence in only one compartment, i.e., either solely on the plasma membrane or in the cytoplasm. These observations suggest that reactive oxygen metabolites cross target membranes (< 12 sec. These studies show that reactive oxygen metabolites are deposited both onto and into tumor cells during ADCC, wherein both compartments could become vulnerable to oxidant-mediated damage.
Collapse
Affiliation(s)
- D Cao
- Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202
| | | | | |
Collapse
|
10
|
Maher RJ, Cao D, Boxer LA, Petty HR. Simultaneous calcium-dependent delivery of neutrophil lactoferrin and reactive oxygen metabolites to erythrocyte targets: evidence supporting granule-dependent triggering of superoxide deposition. J Cell Physiol 1993; 156:226-34. [PMID: 8393877 DOI: 10.1002/jcp.1041560203] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Optical microscopic techniques have been utilized to study the deposition of lactoferrin, a specific granule marker, and superoxide anions into target erythrocytes during antibody-dependent phagocytosis. Previous studies from this laboratory have shown that the entry of superoxide anions into erythrocytes can be sensitively monitored with Soret band transmitted light microscopy. When neutrophils were incubated with BAPTA/AM, an intracellular Ca2+ chelator, they phagocytosed IgG-opsonized sheep red blood cells (SRBC) but did not affect the microscopically detected absorption of their Soret band. When these same erythrocytes were observed after the infusion of 20 microM ionomycin, a Ca2+ ionophore, 58% of the cell-bound SRBC targets were destroyed immediately. However, neutrophils from chronic granulomatous disease (CGD) patients were unable to affect the Soret absorption of erythrocyte targets under any conditions. These results suggest that a Ca2+ signal can participate in triggering superoxide deposition in targets. Since Ca2+ signals are known to participate in the exocytic release of granules, we tested the hypothesis that specific lactoferrin-bearing granules are delivered to targets in parallel with superoxide anions. Lactoferrin delivery to phagosomes was monitored using resonance energy transfer (r.e.t.) microscopy. SRBCs were opsonized with both unconjugated and rhodamine B isothiocyanate (RBITC)-conjugated rabbit anti-SRBC IgG. After incubation with adherent neutrophils, the samples were washed, fixed with 3.7% paraformaldehyde, then labeled with fluorescein isothiocyanate (FITC)-conjugated antilactoferrin IgG. Energy transfer between FITC and RBITC was imaged microscopically and quantitated by photon counting. Significant levels of r.e.t. between antilactoferrin and anti-SRBC labels were observed after phagocytosis, but not in the absence of acceptor fluorochromes. To control for r.e.t. specificity, neutrophil membranes were labeled with FITC-conjugated, anti-HLA IgG after internalization of rhodamine B-tagged SRBCs (RSRBCs). Although r.e.t. between lactoferrin and RSRBCs labels was observed, no r.e.t. between HLA and RSRBC labels could be found. Further studies showed that treatment of neutrophils with BAPTA inhibited r.e.t. between anti-lactoferrin and RSRBCs. However, addition of ionomycin relieved this inhibition of energy transfer. These experiments show that both lactoferrin and superoxide delivery to targets are regulated in parallel by a Ca(2+)-dependent pathway. Furthermore, by combining Soret microscopy with r.e.t. microscopy, we have shown that superoxide anions and lactoferrin are delivered to the same phagosomes. We speculate that the NADPH oxidase, which produces superoxide anions, is assembled on specific granule membranes, thus accounting for their parallel Ca(2+)-dependence, activation, and delivery.
Collapse
Affiliation(s)
- R J Maher
- Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202
| | | | | | | |
Collapse
|
11
|
Liang B, Petty HR. Imaging neutrophil activation: analysis of the translocation and utilization of NAD(P)H-associated autofluorescence during antibody-dependent target oxidation. J Cell Physiol 1992; 152:145-56. [PMID: 1618916 DOI: 10.1002/jcp.1041520119] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Fluorescence intensified/enhanced microscopy has been used to study the metabolic activation of living human neutrophils in time-lapse sequences. The autofluorescence associated with NAD(P)H's emission band was studied within individual quiescent and stimulated cells. Excitation of NAD(P)H-associated autofluorescence was provided by a high-intensity Hg-vapor lamp. The background-subtracted autofluorescence signals were computer enhanced. In some cases the ratio image of NAD(P)H-associated autofluorescence to tetramethyl-rhodamine methyl ester (TRME) fluorescence, which was found to be uniformly distributed within neutrophils, was calculated to normalize autofluorescence intensities for cell thickness. Activation of the NADPH oxidase by phorbol myristate acetate, F-, N-formyl-methionyl-leucyl-phenylalanine (FMLP), or tumor necrosis factor (TNF) dramatically reduced autofluorescence levels. Membrane solubilization with sodium dodecyl sulfate eliminated autofluorescence. Thus, control experiments indicated that most or all of the detectable NAD(P)H-associated autofluorescence was due to NAD(P)H, consistent with previous non-microscopic studies. To understand the metabolic events surrounding the internalization and oxidative destruction of targets, we have imaged the NAD(P)H-associated autofluorescence of neutrophils and the Soret band of antibody coated target erythrocytes during cell-mediated cytotoxicity. Absorption contrast microscopy of the erythrocyte's Soret band is an especially sensitive indicator of the entry of reactive oxygen metabolites into this target's cytosol. Thus, it is possible to spectroscopically dissect and image the substrate (NADPH) and product (O2-) reactions of the NADPH oxidase in living unlabeled neutrophils. During real-time experiments at 37 degrees C, the level of NAD(P)H-associated autofluorescence surrounding phagosomes greatly increases before the disappearance of the target's Soret band. NAD(P)H-associated autofluorescence in the vicinity of phagocytosed erythrocytes is greatly diminished after target oxidation. This suggests that NAD(P)H is translocated to the vicinity of phagosomes prior to the oxidation of targets. The apparent cytosolic redistribution of NAD(P)H was confirmed by ratio imaging microscopy to control for cell thickness. We suggest that NADPH including its sources and/or carriers accumulate near phagosomes prior to target oxidation and that local NADPH molecules are consumed during target oxidation.
Collapse
Affiliation(s)
- B Liang
- Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202
| | | |
Collapse
|
12
|
Petty HR, Liang B, Maher RJ. Mapping the entry of reactive oxygen metabolites into target erythrocytes during neutrophil-mediated antibody-dependent cellular cytotoxicity. J Cell Physiol 1992; 150:447-50. [PMID: 1537877 DOI: 10.1002/jcp.1041500303] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Transmitted Soret band optical microscopy has been used to image the entry and passage of reactive oxygen metabolites across target erythrocytes. Due to the rapid cytosolic diffusion of hemoglobin in comparison to video rates, it was necessary to use erythrocytes with relatively immobilized hemoglobin. To achieve this, erythrocytes from patients with sickle cell anemia were used. The movement of reactive oxygen metabolites across rabbit IgG-opsonized sickle cells was observed in real time. These observations indicate that reactive oxygen metabolites can enter and cross targets in an asymmetric fashion.
Collapse
Affiliation(s)
- H R Petty
- Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202
| | | | | |
Collapse
|
13
|
Petty HR, Zhou MJ, Zheng Z. Oxidative damage by phenylhydrazine diminishes erythrocyte anion transport. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1064:308-14. [PMID: 2036446 DOI: 10.1016/0005-2736(91)90316-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Human erythrocytes were exposed to oxidative stress by treatment with the slowly hemolytic drug phenylhydrazine. Phenylhydrazine has been previously shown to trigger the production of toxic oxygen metabolites including O-2 and H2O2 and the formation of Heinz bodies. The concentration-dependent formation of Heinz bodies was confirmed using optical microscopy. Heinz body formation was accompanied by surface protuberances as shown by scanning electron microscopy. The formation of Heinz bodies was accompanied by inhibition of anion translocation. Anion translocation was measured using the anionic fluorescent substrate analog N-(2-aminoethylsulfonate)-7-nitrobenz-2-oxa-1,3-diazole (NBD-taurine). The efflux of NBD-taurine was measured by continuous monitoring of transport by fluorescence (CMTF). The mean value of the kinetic rate constant for transport, k, was found to be -0.090 +/- 0.017 min-1. Phenylhydrazine was found to decrease k to less than one-half of control values in a dose-dependent fashion. The disruption of anion translocation may be related to the oxidative effects of phenylhydrazine and to the generation of Heinz bodies, which bind to the N-terminal domain of band 3.
Collapse
Affiliation(s)
- H R Petty
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202
| | | | | |
Collapse
|
14
|
Zhou MJ, Todd RF, Petty HR. Detection of transmembrane linkages between immunoglobulin or complement receptors and the neutrophil's cortical microfilaments by resonance energy transfer microscopy. J Mol Biol 1991; 218:263-8. [PMID: 2010910 DOI: 10.1016/0022-2836(91)90709-f] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
By exploiting the 1/r4 (where r is the separation distance between fluorochromes) dependence of energy transfer between parallel lamellae, we have observed transmembrane energy transfer between membrane receptors and cortical microfilaments. Receptors were labeled with donor- or acceptor-conjugated Fab fragments, whereas microfilaments were labeled with acceptor- or donor-conjugated phalloidin reagents. Energy transfer was imaged by optical microscopy. We report that cell surface receptors can be constitutively unlinked, linked or inducibly linked to microfilaments.
Collapse
Affiliation(s)
- M J Zhou
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202
| | | | | |
Collapse
|
15
|
Rifkind JM, Zhang L, Levy A, Manoharan PT. The hypoxic stress on erythrocytes associated with superoxide formation. FREE RADICAL RESEARCH COMMUNICATIONS 1991; 12-13 Pt 2:645-52. [PMID: 1648015 DOI: 10.3109/10715769109145842] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Superoxide is produced during the autoxidation of hemoglobin. Autoxidation of hemoglobin is, however, facilitated under hypoxic conditions where hemoglobin is only partially oxygenated. We have recently found that the erythrocyte superoxide dismutase does not fully react with the additional superoxide produced under hypoxic conditions. A leakage of superoxide from the erythrocyte is thus detected, resulting in a potential source for oxyradical damage to tissues. Detailed studies on intact erythrocytes as a function of oxygen pressure have now been performed. These studies further delineate the hypoxic stress on erythrocytes and the mechanism for the leakage of superoxide. By centrifugation of samples under various oxygen pressures it was possible to show an enhanced rate of lysis at reduced oxygen pressures with a maximum rate in the region of 25 mm Hg. At much lower pressures where the hemoglobin is mostly deoxygenated the rate of lysis was dramatically decreased with almost no lysis detected even after three days. Lysis is shown to be associated with superoxide membrane damage. The formation of superoxide which does not react with endogenous SOD reaches a maximum value at much lower pressures where most of the hemoglobin is deoxygenated. It is suggested that the leakage at low pressure is associated with the formation of superoxide by oxidation of hemoglobin associated with the membrane.
Collapse
Affiliation(s)
- J M Rifkind
- Laboratory of Cellular and Molecular Biology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224
| | | | | | | |
Collapse
|
16
|
Boxer LA. The role of antioxidants in modulating neutrophil functional responses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1990; 262:19-33. [PMID: 2181822 DOI: 10.1007/978-1-4613-0553-8_3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- L A Boxer
- Division of Pediatric Hematology/Oncology, CS Mott Childrens Hospital, University of Michigan, Ann Arbor 48109
| |
Collapse
|
17
|
Petty HR, Francis JW, Anderson CL. Cell surface distribution of Fc receptors II and III on living human neutrophils before and during antibody dependent cellular cytotoxicity. J Cell Physiol 1989; 141:598-605. [PMID: 2687299 DOI: 10.1002/jcp.1041410319] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Microscopic techniques have been employed to study the cell surface distributions of the immunoglobulin Fc receptors (FcR) II and III on living human neutrophils. Fluorescein-or rhodamine-conjugated monoclonal IgG or Fab fragments directed against FcRII (CDw32) and FcRIII (CD16) were employed to label receptors. FcRII and III were found to be uniformly distributed at neutrophil surfaces during resting conditions. During neutrophil polarization and migration FcRII but not FcRIII preferentially accumulated at the uropod. Sheep erythrocytes (SRBCs) were opsonized with IgG and then incubated with neutrophils. When neutrophils were labeled prior to target addition, FcRII but not FcRIII were found to cluster at the target-effector interface. Little or no clustering of FcRs was observed if labeling was performed after target binding. SRBC oxidation was observed using Soret band illumination during transmitted light microscopy. Time-lapse studies of FcRII distribution and target oxidation were performed. FcRII formed clusters at target effector interfaces prior to target oxidation. Three lines of evidence suggest that clustering is not a general plasma membrane response. Firstly, FcRIII do not cluster lannic acid-modified erythrocytes avidly bound to neutrophils but did not trigger clustering of FcRII. Furthermore, irrelevant neutrophil membrane labels were unaffected by the presence of IgG-opsonized erythrocytes. We suggest that FcRII clustering is one important component leading to the oxidative destruction of target cells.
Collapse
Affiliation(s)
- H R Petty
- Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202
| | | | | |
Collapse
|
18
|
Taub ML, Yang IS, Wang Y. Primary rabbit kidney proximal tubule cell cultures maintain differentiated functions when cultured in a hormonally defined serum-free medium. IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY : JOURNAL OF THE TISSUE CULTURE ASSOCIATION 1989; 25:770-5. [PMID: 2551882 DOI: 10.1007/bf02623659] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A primary rabbit kidney epithelial cell culture system has been developed which retains differentiated functions of the renal proximal tubule. In addition, the cells have a distinctive metabolism and spectrum of hormone responses. The primary cells were observed to retain in vitro a Na+-dependent sugar transport system (distinctive of the proximal segment of the nephron) and a Na+-dependent phosphate transport system. Both of these transport processes are localized on the apical membrane of proximal tubule cells in vivo. In addition, probenicid-sensitive p-aminohippurate (PAH) uptake was observed in basolateral membranes of the primary tubule cells, and the PAH uptake by these vesicles occurred at a rate that was very similar to that observed with membranes derived from the original tissue. Several other characteristics of the primary cells were examined, including hormone-sensitive cyclic AMP production and phosphoenolpyruvate carboxykinase (PEPCK) activity. Like the cells in vivo, the primary proximal tubule cells were observed to produce significant cyclic AMP in response to parathyroid hormone, but not in response to arginine vasopressin or salmon calcitonin. Significant PEPCK activity was observed in the particulate fraction derived from a homogenate of primary rabbit kidney proximal tubule cells.
Collapse
Affiliation(s)
- M L Taub
- Biochemistry Department, State University of New York, Buffalo 14214
| | | | | |
Collapse
|
19
|
Petty HR, Martin SM. Combinative ligand-receptor interactions: effects of cAMP, epinephrine, and met-enkephalin on RAW264 macrophage morphology, spreading, adherence, and microfilaments. J Cell Physiol 1989; 138:247-56. [PMID: 2537324 DOI: 10.1002/jcp.1041380205] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cell surface ligand-receptor interactions play a central role in the regulation and expression of macrophage function. Included among these macrophage membrane receptors are the beta-adrenergic and opioid receptors. We studied the abilities of epinephrine, met-enkephalin, forskolin, and adenosine 3':5' cyclic monophosphate (cAMP) analogues to affect macrophage morphology, spreading, and adherence. Cell spreading was quantitated by measuring the perimeters of adherent cell images recorded by videomicroscopy. Epinephrine induced a dose-dependent decrease in macrophage spreading; at 10(-5) M epinephrine the mean perimeter was 10.4 +/- 0.3 microns in comparison to 15.0 +/- 1.0 microns for controls. The inhibition of spreading can be blocked by the antagonist propranolol. On the other hand, met-enkephalin induced a dose-dependent increase in macrophage spreading, with a perimeter of 18.5 +/- 1.0 microns at 10(-8) M. Since catecholamines and opioids are simultaneously released from chromaffin cells of the adrenal, we examined the combinative effects due to treatment with both ligands. When macrophages were exposed to 10(-5) M epinephrine and 10(-8) M met-enkephalin, cell morphology and spreading were indistinguishable from that due to 10(-5) M epinephrine alone. The epinephrine dose-response curve in the presence of 10(-8) M met-enkephalin was similar to that of epinephrine alone. The beta-adrenergic receptor is apparently capable of diminishing or abrogating the opioid receptor signal(s). These combinative and epinephrine-mediated effects may be at least partially accounted for by the action of cAMP. Forskolin and the cAMP analogues N6-2'-O-dibutyryladenosine 3':5' cyclic monophosphate (dbcAMP) and 8-bromoadenosine 3':5' cyclic monophosphate (Br-cAMP) affected cell morphology and spreading in the same fashion as epinephrine. These differences in morphology and spreading behavior were accompanied by changes in the distribution of F-actin, as judged by phalladicin staining and fluorescence microscopy. We suggest that cAMP and microfilaments play important roles in receptor-mediated neuroregulation of macrophage function.
Collapse
Affiliation(s)
- H R Petty
- Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202
| | | |
Collapse
|
20
|
Kagechika H, Hashimoto Y, Kawachi E, Shudo K. Affinity gels for purification of retinoid-specific binding protein (RSBP). Biochem Biophys Res Commun 1988; 155:503-8. [PMID: 2843186 DOI: 10.1016/s0006-291x(88)81115-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Retinoids are defined as compounds which elicit specific biological effects such as control of cell growth and cell differentiation by binding to a specific receptor. Recently, we demonstrated the presence of a protein (RSBP) which satisfies the criteria for the retinoid receptor. For purification of RSBP, we prepared two types of affinity gels with retinoidal ligands (Gel-Am and Gel-Ch) based on synthetic retinobenzoic acids which possess very potent retinoidal activities. RSBP in the crude fraction extracted from cultured cells could be purified about 300-fold by affinity column chromatography using these affinity gels.
Collapse
Affiliation(s)
- H Kagechika
- Faculty of Pharmaceutical Sciences, University of Tokyo, Japan
| | | | | | | |
Collapse
|
21
|
Sato M, Hiragun A. Demonstration of 1 alpha,25-dihydroxyvitamin D3 receptor-like molecule in ST 13 and 3T3 L1 preadipocytes and its inhibitory effects on preadipocyte differentiation. J Cell Physiol 1988; 135:545-50. [PMID: 2840436 DOI: 10.1002/jcp.1041350326] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The active metabolite of vitamin D3, 1 alpha,25-dihydroxyvitamin D3 (1,25(OH)2D3), inhibited morphologic and enzymatic expression during differentiation of preadipocyte to adipocyte. In the presence of approximately 6.4-20 X 10(-10) M 1,25(OH)2D3, the triacylglycerol accumulation was only 50% of that of fully differentiated control cells. High-affinity binding sites for 1,25-dihydroxyvitamin D3 were detected in two preadipose cell lines. The 1,25(OH)2D3 binding component sediments at 3.3 S in 4-24% (w/v) sucrose gradients prepared in hypertonic buffer. Binding assay revealed that Nmax was 70 fmol/mg protein and 90 fmol/mg protein, and Kd value was 170 pM and 37 pM in cell lines ST 13 and 3T3 L1, respectively. We also found that differentiated adipocytes did not contain specific receptors for 1,25(OH)2D3. 1,25(OH)2D3, 1(OH)D3, 24,25(OH)2D3, and 24(OH)D3 all suppressed differentiation of preadipocytes to adipocytes, and the dose required closely reflected the affinities of the various metabolites and the synthetic derivative for 1,25(OH)2D3 receptor. It is suggested that the action of vitamin D3 on preadipocyte differentiation may result from a receptor-mediated event.
Collapse
Affiliation(s)
- M Sato
- Department of Oncology, Tokyo Metropolitan Institute of Medical Science, Japan
| | | |
Collapse
|