1
|
Organotypic three-dimensional cancer cell cultures mirror drug responses in vivo: lessons learned from the inhibition of EGFR signaling. Oncotarget 2017; 8:107423-107440. [PMID: 29296175 PMCID: PMC5746077 DOI: 10.18632/oncotarget.22475] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 10/27/2017] [Indexed: 01/07/2023] Open
Abstract
Complex three-dimensional (3D) in vitro models that recapitulate human tumor biology are essential to understand the pathophysiology of the disease and to aid in the discovery of novel anti-cancer therapies. 3D organotypic cultures exhibit intercellular communication, nutrient and oxygen gradients, and cell polarity that is lacking in two-dimensional (2D) monolayer cultures. In the present study, we demonstrate that 2D and 3D cancer models exhibit different drug sensitivities towards both targeted inhibitors of EGFR signaling and broad acting cytotoxic agents. Changes in the kinase activities of ErbB family members and differential expression of apoptosis- and survival-associated genes before and after drug treatment may account for the differential drug sensitivities. Importantly, EGFR oncoprotein addiction was evident only in the 3D cultures mirroring the effect of EGFR inhibition in the clinic. Furthermore, targeted drug efficacy was strongly increased when incorporating cancer-associated fibroblasts into the 3D cultures. Taken together, we provide conclusive evidence that complex 3D cultures are more predictive of the clinical outcome than their 2D counterparts. In the future, 3D cultures will be instrumental for understanding the mode of action of drugs, identifying genotype-drug response relationships and developing patient-specific and personalized cancer treatments.
Collapse
|
2
|
Koshkin V, Ailles LE, Liu G, Krylov SN. Preservation of the 3D Phenotype Upon Dispersal of Cultured Cell Spheroids Into Monolayer Cultures. J Cell Biochem 2016; 118:154-162. [DOI: 10.1002/jcb.25621] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 06/08/2016] [Indexed: 12/21/2022]
Affiliation(s)
- Vasilij Koshkin
- Department of Chemistry and Centre for Research on Biomolecular Interactions; York University; Toronto Ontario Canada M3J 1P3
| | - Laurie E. Ailles
- Department of Medical Biophysics; University of Toronto; Toronto Ontario Canada N5G 1L7
| | - Geoffrey Liu
- Department of Medicine, Medical Oncology and Haematology; Princess Margaret Hospital; Toronto Ontario Canada M5G 2C4
| | - Sergey N. Krylov
- Department of Chemistry and Centre for Research on Biomolecular Interactions; York University; Toronto Ontario Canada M3J 1P3
| |
Collapse
|
3
|
Paiva LR, Silva HS, Ferreira SC, Martins ML. Multiscale model for the effects of adaptive immunity suppression on the viral therapy of cancer. Phys Biol 2013; 10:025005. [DOI: 10.1088/1478-3975/10/2/025005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
4
|
Mandujano-Tinoco EA, Gallardo-Pérez JC, Marín-Hernández A, Moreno-Sánchez R, Rodríguez-Enríquez S. Anti-mitochondrial therapy in human breast cancer multi-cellular spheroids. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013. [DOI: 10.1016/j.bbamcr.2012.11.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
5
|
Paiva LR, Martins ML, Ferreira SC. Questing for an optimal, universal viral agent for oncolytic virotherapy. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 84:041918. [PMID: 22181186 DOI: 10.1103/physreve.84.041918] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 09/07/2011] [Indexed: 05/31/2023]
Abstract
One of the most promising strategies to treat cancer is attacking it with viruses designed to exploit specific altered pathways. Here, the effects of oncolytic virotherapy on tumors having compact, papillary, and disconnected morphologies are investigated through computer simulations of a multiscale model coupling macroscopic reaction-diffusion equations for the nutrients with microscopic stochastic rules for the actions of individual cells and viruses. The interaction among viruses and tumor cells involves cell infection, intracellular virus replication, and the release of new viruses in the tissue after cell lysis. The evolution over time of both the viral load and cancer cell population, as well as the probabilities for tumor eradication, were evaluated for a range of multiplicities of infection, viral entries, and burst sizes. It was found that in immunosuppressed hosts, the antitumor efficacy of a virus is primarily determined by its entry efficiency, its replicative capacity within the tumor, and its ability to spread over the tissue. However, the optimal traits for oncolytic viruses depend critically on the tumor growth dynamics and do not necessarily include rapid replication, cytolysis, or spreading, currently assumed as necessary conditions for a successful therapeutic outcome. Our findings have potential implications on the design of new vectors for the viral therapy of cancer.
Collapse
Affiliation(s)
- L R Paiva
- Departamento de Física, Universidade Federal de Viçosa, 36570-000 Viçosa, Minas Gerais, Brazil.
| | | | | |
Collapse
|
6
|
Ingram M, Techy GB, Ward BR, Imam SA, Atkinson R, Ho H, Taylor CR. Tissue engineered tumor models. Biotech Histochem 2010; 85:213-29. [PMID: 20482463 DOI: 10.3109/10520295.2010.483655] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Many research programs use well-characterized tumor cell lines as tumor models for in vitro studies. Because tumor cells grown as three-dimensional (3-D) structures have been shown to behave more like tumors in vivo than do cells growing in monolayer culture, a growing number of investigators now use tumor cell spheroids as models. Single cell type spheroids, however, do not model the stromal-epithelial interactions that have an important role in controlling tumor growth and development in vivo. We describe here a method for generating, reproducibly, more realistic 3-D tumor models that contain both stromal and malignant epithelial cells with an architecture that closely resembles that of tumor microlesions in vivo. Because they are so tissue-like we refer to them as tumor histoids. They can be generated reproducibly in substantial quantities. The bioreactor developed to generate histoid constructs is described and illustrated. It accommodates disposable culture chambers that have filled volumes of either 10 or 64 ml, each culture yielding on the order of 100 or 600 histoid particles, respectively. Each particle is a few tenths of a millimeter in diameter. Examples of histological sections of tumor histoids representing cancers of breast, prostate, colon, pancreas and urinary bladder are presented. Potential applications of tumor histoids include, but are not limited to, use as surrogate tumors for pre-screening anti-solid tumor pharmaceutical agents, as reference specimens for immunostaining in the surgical pathology laboratory and use in studies of invasive properties of cells or other aspects of tumor development and progression. Histoids containing nonmalignant cells also may have potential as "seeds" in tissue engineering. For drug testing, histoids probably will have to meet certain criteria of size and tumor cell content. Using a COPAS Plus flow cytometer, histoids containing fluorescent tumor cells were analyzed successfully and sorted using such criteria.
Collapse
Affiliation(s)
- M Ingram
- Huntington Medical Research Institutes, 99 North El Molino Avenue, Pasadena, CA 91101-1830, USA
| | | | | | | | | | | | | |
Collapse
|
7
|
Gliozzi AS, Guiot C, Chignola R, Delsanto PP. Oscillations in growth of multicellular tumour spheroids: a revisited quantitative analysis. Cell Prolif 2010; 43:344-53. [PMID: 20590659 DOI: 10.1111/j.1365-2184.2010.00683.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVES Multicellular tumour spheroids (MTS) provide an important tool for study of the microscopic properties of solid tumours and their responses to therapy. Thus, observation of large-scale volume oscillations in MTS, reported several years ago by two independent groups (1,2), in our opinion represent a remarkable discovery, particularly if this could promote careful investigation of the possible occurrence of volume oscillations of tumours 'in vivo'. MATERIALS AND METHODS Because of high background noise, quantitative analysis of properties of observed oscillations has not been possible in previous studies. Such an analysis can be now performed, thanks to a recently proposed approach, based on formalism of phenomenological universalities (PUN). RESULTS Results have provided unambiguous confirmation of the existence of MTS volume oscillations, and quantitative evaluation of their properties, for two tumour cell lines. Proof is based not only on quality of fitting of the experimental datasets, but also on determination of well-defined values of frequency and amplitude of the oscillations for each line investigated, which would not be consistent with random fluctuation. CONCLUSIONS Biological mechanisms, which can be directly responsible for observed oscillations, are proposed, which relates also to recent work on related topics. Further investigations, both at experimental and at modelling levels, are also suggested. Finally, from a methodological point of view, results obtained represent further confirmation of applicability and usefulness of the PUN approach.
Collapse
Affiliation(s)
- A S Gliozzi
- Department of Physics, Polytechnic University of Turin, Turin, Italy.
| | | | | | | |
Collapse
|
8
|
Lin YF, Nagasawa H, Peng Y, Chuang EY, Bedford JS. Comparison of several radiation effects in human MCF10A mammary epithelial cells cultured as 2D monolayers or 3D acinar stuctures in matrigel. Radiat Res 2009; 171:708-15. [PMID: 19580477 DOI: 10.1667/rr1554.1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
It has been argued that the cell-cell and cell-matrix interaction networks in normal tissues are disrupted by radiation and that this largely controls many of the most important cellular radiation responses. This has led to the broader assertion that individual cells in normal tissue or a 3D normal-tissue-like culture will respond to radiation very differently than the same cells in a 2D monolayer culture. While many studies have shown that, in some cases, cell-cell contact in spheroids of transformed or tumor cell lines can alter radiation responses relative to those for the same cells in monolayer cultures, a question remains regarding the possible effect of the above-mentioned disruption of signaling networks that operate more specifically for cells in normal tissues or in a 3D tissue-like context. To test the generality of this notion, we used human MCF-10A cells, an immortalized mammary epithelial cell line that produces acinar structures in culture with many properties of human mammary ducts. We compared the dose responses for these cells in the 2D monolayer and in 3D ductal or acinar structures. The responses examined were reproductive cell death, induction of chromosomal aberrations, and the levels of gamma-H2AX foci in cells after single acute gamma-ray doses and immediately after 20 h of irradiation at a dose rate of 0.0017 Gy/min. We found no significant differences in the dose responses of these cells in 2D or 3D growth conditions. While this does not mean that such differences cannot occur in other situations, it does mean that they do not generally or necessarily occur.
Collapse
Affiliation(s)
- Yu-Fen Lin
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado 80523, USA
| | | | | | | | | |
Collapse
|
9
|
Friedrich J, Ebner R, Kunz-Schughart LA. Experimental anti-tumor therapy in 3-D: spheroids--old hat or new challenge? Int J Radiat Biol 2008; 83:849-71. [PMID: 18058370 DOI: 10.1080/09553000701727531] [Citation(s) in RCA: 325] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE To give a state-of-the-art overview on the promise of three-dimensional (3-D) culture systems for anticancer drug development, with particular emphasis on multicellular tumor spheroids (MCTS). RESULTS AND CONCLUSIONS Cell-based assays have become an integral component in many stages of routine anti-tumor drug testing. However, they are almost always based on homogenous monolayer or suspension cultures and thus represent a rather artificial cellular environment. 3-D cultures--such as the well established spheroid culture system--better reflect the in vivo behavior of cells in tumor tissues and are increasingly recognized as valuable advanced tools for evaluating the efficacy of therapeutic intervention. The present article summarizes past and current applications and particularly discusses technological challenges, required improvements and recent progress with the use of the spheroid model in experimental therapeutics, as a basis for sophisticated drug/therapy screening. A brief overview is given focusing on the nomenclature of spherical 3-D cultures, their potential to mimic many aspects of the pathophysiological situation in tumors, and currently available protocols for culturing and analysis. A list of spheroid-forming epithelial cancer cell lines of different origin is provided and the recent trend to use spheroids for testing combination treatment strategies is highlighted. Finally, various spheroid co-culture approaches are presented that have been established to study heterologous cell interactions in solid tumors and thereby are able to reflect the cellular tumor environment with increasing accuracy. The intriguing observation that in order to retain certain tumor initiating cell properties, some primary tumor cell populations must be maintained exclusively in 3-D culture is mentioned, adding a new but fascinating challenge for future therapeutic campaigns.
Collapse
|
10
|
Integrating cell-cycle progression, drug penetration and energy metabolism to identify improved cancer therapeutic strategies. J Theor Biol 2008; 253:98-117. [PMID: 18402980 DOI: 10.1016/j.jtbi.2008.02.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2007] [Revised: 02/12/2008] [Accepted: 02/12/2008] [Indexed: 12/26/2022]
Abstract
The effectiveness of chemotherapeutic drugs in tumors is reduced by multiple effects including drug diffusion and variable susceptibility of local cell populations. We hypothesized that quantifying the interactions between drugs and tumor microenvironments could be used to identify more effective anti-cancer strategies. To test this hypothesis we created a mathematical model that integrated intracellular metabolism, nutrient and drug diffusion, cell-cycle progression, cellular drug effects, and drug pharmacokinetics. To our knowledge, this is the first model that combines these elements and has coupled them to experimentally derived parameters. Drug cytotoxicity was assumed to be cell-cycle phase specific, and progression through the cell cycle was assumed to be dependent on ATP generation. The model consisted of a coupled set of nonlinear partial differential, ordinary differential and algebraic equations with an outer free boundary, which was solved using orthogonal collocation on a moving grid of finite elements. Model simulations showed the existence of an optimum drug diffusion coefficient: a low diffusivity prevents effective penetration before the drug is cleared from the blood and a high diffusivity limits drug retention. This result suggests that increasing the molecular weight of the anti-cancer drug paclitaxel from 854 to approximately 20,000 by nanoparticle conjugation would improve its efficacy. The simulations also showed that fast growing tumors are less responsive to therapy than are slower tumors with more quiescent cells, demonstrating the competing effects of regrowth and cytotoxicity. The therapeutic implications of the simulation results are that (1) monolayer cultures are inadequate for accurately determining therapeutic effects in vitro, (2) decreasing the diffusivity of paclitaxel could increase its efficacy, and (3) measuring the proliferation fraction in tumors could enhance the prediction of therapeutic efficacy.
Collapse
|
11
|
Bertuzzi A, Fasano A, Filidoro L, Gandolfi A, Sinisgalli C. Dynamics of tumour cords following changes in oxygen availability: A model including a delayed exit from quiescence. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/j.mcm.2005.05.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Deisboeck TS, Mansury Y, Guiot C, Degiorgis PG, Delsanto PP. Insights from a novel tumor model: Indications for a quantitative link between tumor growth and invasion. Med Hypotheses 2005; 65:785-90. [PMID: 15961253 DOI: 10.1016/j.mehy.2005.04.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2005] [Accepted: 04/03/2005] [Indexed: 11/19/2022]
Abstract
Both the lack of nutrient supply and rising mechanical stress exerted by the microenvironment appear to be able to cause discrepancies between the actual, observed tumor mass and that predicted by West et al.'s [A general model for ontogenetic growth. Nature 2001;413:628-31] universal growth model. Using our previously developed model we hypothesize here, that (1) solid tumor growth and cell invasion are linked, not only qualitatively but also quantitatively, that (2) the onset of invasion marks the time point when the tumor's cell density reaches a compaction maximum, and that (3) tumor cell invasion, reduction of mechanical confinement and angiogenesis can all contribute to an increase in the actual tumor mass m towards the level m(W) predicted by West et al.'s universal growth curve. These novel insights contribute to our understanding of tumorigenesis and thus may have important implications not only for experimental cancer research but also be of value for clinical purposes such as for predictions of tumor growth dynamics and treatment impact.
Collapse
Affiliation(s)
- Thomas S Deisboeck
- Complex Biosystems Modeling Laboratory, Harvard-MIT (HST) Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital-East, Bldg. 149, 13th Street, Charlestown, MA 02129, USA.
| | | | | | | | | |
Collapse
|
13
|
Kunz-Schughart LA, Freyer JP, Hofstaedter F, Ebner R. The use of 3-D cultures for high-throughput screening: the multicellular spheroid model. ACTA ACUST UNITED AC 2004; 9:273-85. [PMID: 15191644 DOI: 10.1177/1087057104265040] [Citation(s) in RCA: 536] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Over the past few years, establishment and adaptation of cell-based assays for drug development and testing has become an important topic in high-throughput screening (HTS). Most new assays are designed to rapidly detect specific cellular effects reflecting action at various targets. However, although more complex than cell-free biochemical test systems, HTS assays using monolayer or suspension cultures still reflect a highly artificial cellular environment and may thus have limited predictive value for the clinical efficacy of a compound. Today's strategies for drug discovery and development, be they hypothesis free or mechanism based, require facile, HTS-amenable test systems that mimic the human tissue environment with increasing accuracy in order to optimize preclinical and preanimal selection of the most active molecules from a large pool of potential effectors, for example, against solid tumors. Indeed, it is recognized that 3-dimensional cell culture systems better reflect the in vivo behavior of most cell types. However, these 3-D test systems have not yet been incorporated into mainstream drug development operations. This article addresses the relevance and potential of 3-D in vitro systems for drug development, with a focus on screening for novel antitumor drugs. Examples of 3-D cell models used in cancer research are given, and the advantages and limitations of these systems of intermediate complexity are discussed in comparison with both 2-D culture and in vivo models. The most commonly used 3-D cell culture systems, multicellular spheroids, are emphasized due to their advantages and potential for rapid development as HTS systems. Thus, multicellular tumor spheroids are an ideal basis for the next step in creating HTS assays, which are predictive of in vivo antitumor efficacy.
Collapse
Affiliation(s)
- Leoni A Kunz-Schughart
- Institute of Pathology, University of Regensburg, Franz-Josef-Strauss Allee 11, D-93042 Regensburg, Germany.
| | | | | | | |
Collapse
|
14
|
LaRue KEA, Khalil M, Freyer JP. Microenvironmental regulation of proliferation in multicellular spheroids is mediated through differential expression of cyclin-dependent kinase inhibitors. Cancer Res 2004; 64:1621-31. [PMID: 14996720 DOI: 10.1158/0008-5472.can-2902-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Multicellular spheroids composed of transformed cells are known to mimic the growth characteristics of tumors and to develop gradients in proliferation with increasing size. This progressive accumulation of quiescent cells is presumably an active process that occurs in response to the microenvironmental stresses that develop within the three-dimensional structure, and, yet, little is known regarding either the signals that induce the cell cycle arrest or the molecular basis for the halt in proliferation. We have previously reported that regulation of cyclin-dependent kinase (CDK) inhibitors (CKIs) differs in monolayer versus spheroid cell culture. In this study, we have examined the expression of three CKIs in EMT6 mouse mammary carcinoma and MEL28 human melanoma spheroids, as a function both of spheroid size and of location within the spheroid. We report that expression of the CKIs p18(INK4c), p21(waf1/cip1), and p27(Kip1) all increase as the spheroid grows and develops a quiescent cell fraction. However, by examining protein expression in discrete regions of the spheroid, we have found that only p18(INK4c) and p27(Kip1) expression positively correlate with growth arrest, whereas p21(waf1/cip1) is expressed predominantly in proliferating cells. Further analysis indicated that, in the quiescent cells, p18(INK4c) is found in increasing association with CDK6, whereas p27(Kip1) associates predominantly with CDK2. In MEL28 cells, CDK2 activity is completely abrogated in the inner regions of the spheroid, whereas in EMT6 cells, CDK2 activity decreases in accordance with a decrease in expression. We also observed a decrease in all cell cycle regulatory proteins in the innermost spheroid fraction, including CDKs, CKIs, and cyclins. Induction of CKIs from separate families, as well as their association with distinct target CDKs, suggests that there may be multiple checkpoints activated to ensure cell cycle arrest in non-growth-conducive environments. Furthermore, because very similar observations were made in both a human melanoma cell line and a mouse mammary carcinoma cell line, our results indicate that these checkpoints, as well as the signal transduction pathways that activate them, are highly conserved.
Collapse
Affiliation(s)
- Karen E A LaRue
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | | | | |
Collapse
|
15
|
Bellomo N, Preziosi L. Modelling and mathematical problems related to tumor evolution and its interaction with the immune system. ACTA ACUST UNITED AC 2000. [DOI: 10.1016/s0895-7177(00)00143-6] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
16
|
Pawlik TM, Souba WW, Sweeney TJ, Bode BP. Amino acid uptake and regulation in multicellular hepatoma spheroids. J Surg Res 2000; 91:15-25. [PMID: 10816344 DOI: 10.1006/jsre.2000.5888] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND Cancer cells maintained in monolayer tissue culture are frequently used to study tumor biology and nutrient uptake, but there is a concern that this system may not fully reflect clinical tumor physiology. Because cells grown in a 3-D configuration more closely resemble an in vivo environment, a model was developed and characterized for the growth of SK-Hep human hepatoma cells in suspension as multicellular tumor spheroids (MTS). The measurement of nutrient uptake in such a system has never been established. MATERIALS AND METHODS SK-Hep cultures were initiated as single cell suspensions and grown as MTS in siliconized spinner flasks. The transport of several individual amino acids (arginine, glutamate, leucine, alpha-(N-methylamino)isobutyric acid (MeAIB), and glutamine (GLN)) was measured in SK-Hep single cell suspensions and MTS (0. 50-0.60 mm diameter) by a radiotracer/rapid filtration technique, as was the regulation of glutamine uptake by phorbol esters. l-[(3)H]GLN uptake was also measured in larger spheroids (0.85-1.5 mm diameter). MTS cellularity was evaluated by histological examination, and single cell integrity after the transport assay was confirmed by scanning electron microscopy (SEM). RESULTS SK-Hep MTS displayed gradients of cellular morphology and staining, with central necrosis visible at diameters >0.8 mm. Single cell suspensions endured the rapid filtration technique based on functional Na(+)-dependent uptake rates and SEM analysis. Of all amino acids tested, only GLN transport rates were visibly affected by growth format. In small MTS, Na(+)-dependent GLN uptake was diminished by 40%, but was 40-53% higher in MTS >1 mm displaying central necrosis, when compared to single cell suspensions. Likewise, slight parallel changes in glutamine transporter ATB(0) mRNA levels were observed in Northern blot analysis. Finally, phorbol ester-dependent GLN transport down-regulation (by 40-50%), previously established in SK-Hep monolayers, remained operative in all cell formats tested. CONCLUSIONS The data suggest that the tumor microenvironment differentially impacts the uptake of specific nutrients despite the conservation of key regulatory pathways. This MTS technique may prove useful for further studies on the role of nutrient transport in nascent tumor growth.
Collapse
Affiliation(s)
- T M Pawlik
- Surgical Oncology Research Laboratories, Massachusetts General Hospital, Boston, Massachusetts 02114-2696, USA
| | | | | | | |
Collapse
|
17
|
Kansal AR, Torquato S, Harsh GR IV, Chiocca EA, Deisboeck TS. Simulated brain tumor growth dynamics using a three-dimensional cellular automaton. J Theor Biol 2000; 203:367-82. [PMID: 10736214 DOI: 10.1006/jtbi.2000.2000] [Citation(s) in RCA: 185] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have developed a novel and versatile three-dimensional cellular automaton model of brain tumor growth. We show that macroscopic tumor behavior can be realistically modeled using microscopic parameters. Using only four parameters, this model simulates Gompertzian growth for a tumor growing over nearly three orders of magnitude in radius. It also predicts the composition and dynamics of the tumor at selected time points in agreement with medical literature. We also demonstrate the flexibility of the model by showing the emergence, and eventual dominance, of a second tumor clone with a different genotype. The model incorporates several important and novel features, both in the rules governing the model and in the underlying structure of the model. Among these are a new definition of how to model proliferative and non-proliferative cells, an isotropic lattice, and an adaptive grid lattice.
Collapse
Affiliation(s)
- A R Kansal
- Department of Chemical Engineering, Princeton Materials Institute, Princeton, NJ 08544, USA
| | | | | | | | | |
Collapse
|
18
|
Walenta S, Doetsch J, Mueller-Klieser W, Kunz-Schughart LA. Metabolic imaging in multicellular spheroids of oncogene-transfected fibroblasts. J Histochem Cytochem 2000; 48:509-22. [PMID: 10727293 DOI: 10.1177/002215540004800409] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Four rat embryo fibroblast (REF) cell lines with defined oncogenic transformation were used to study the relationship between tumorigenic conversion, metabolism, and development of cell death in a 3D spheroid system. Rat1 (spontaneously immortalized) and M1 (myc-transfected) fibroblasts represent early nontumorigenic transformation stages, whereas Rat1-T1 (T24Ha-ras-transfected Rat1) and MR1 (myc/T24Ha-ras-co-transfected REF) cells express a highly tumorigenic phenotype. Localized ATP, glucose, and lactate concentrations in spheroid median sections were determined by imaging bioluminescence. ATP concentrations were low in the nonproliferating Rat1 aggregates despite sufficient oxygen and glucose availability and lack of lactate accumulation. In MR1 spheroids, a 50% decrease in central ATP preceded the development of central necrosis at a spheroid diameter of around 800 micrometer. In contrast, the histomorphological emergence of cell death at a diameter of around 500 micrometer in Rat1-T1 spheroids coincided with an initial steep drop in ATP. Concomitantly, reduction in central glucose and increase in lactate before cell death were recorded in MR1 but not in Rat1-T1 spheroids. As shown earlier, myc transfection confers a considerable resistance to hypoxia of MR1 cells in the center of spheroids, which is reflected by their capability to maintain cell integrity and ATP content in a hypoxic environment. The data obtained suggest that small alterations in the genotype of tumor cell lines, such as differences in the immortalization process, lead to substantial differences in morphological structure, metabolism, occurrence of cell death, and tolerance to hypoxia in spheroid culture.
Collapse
Affiliation(s)
- S Walenta
- Institute of Physiology and Pathophysiology, University of Mainz, Mainz, Germany
| | | | | | | |
Collapse
|
19
|
Kansal AR, Torquato S, Harsh IV GR, Chiocca EA, Deisboeck TS. Cellular automaton of idealized brain tumor growth dynamics. Biosystems 2000; 55:119-27. [PMID: 10745115 DOI: 10.1016/s0303-2647(99)00089-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A novel cellular automaton model of proliferative brain tumor growth has been developed. This model is able to simulate Gompertzian tumor growth over nearly three orders of magnitude in radius using only four microscopic parameters. The predicted composition and growth rates are in agreement with a test case pooled from the available medical literature. The model incorporates several new features, improving previous models, and also allows ready extension to study other important properties of tumor growth, such as clonal competition.
Collapse
Affiliation(s)
- A R Kansal
- Department of Chemical Engineering, Princeton University, Princeton, NJ, USA
| | | | | | | | | |
Collapse
|
20
|
Abstract
Multicellular spheroids (MCS) have been used as an in vitro model system of micrometastases and avascular tumor regions for studying cell adhesion-dependent resistance to cytotoxic drugs and possible reversal by chemosensitizers and adhesion-reversing agents. Multicellular drug resistance has been linked to limited accessibility of cell subpopulations, active drug efflux, quiescence of cells in deeper layers due to cell contact inhibition and adverse microenvironmental conditions like acidic extracellular pH, hypoxia and nutritional depletion. The shortcomings of MCS as a tumor model include limited knowledge of the mechanisms leading to necrosis/apoptosis of core cells, the production of an extracellular matrix (ECM) by tumor cells instead of intratumoral normal cell populations and the complex relationship of MCS parameters like size, growth regulation, synthesis of ECM components and others on the origin and pretreatment of the tumor cells and specific culture conditions.
Collapse
Affiliation(s)
- G Hamilton
- Ludwig Boltzmann Institute of Clinical Oncology, KH Lainz, Vienna, Austria.
| |
Collapse
|
21
|
Abstract
Cells in the inner region of multicellular spheroids markedly reduce their oxygen consumption rate, presumably in response to their stressful microenvironment. To determine the mechanism behind this metabolic adaptation, we have investigated relative mitochondrial mass and mitochondrial function in cells isolated from different regions of tumor spheroids by using a combination of mitochondrial-specific fluorescent stains and flow cytometric analysis. Uptake of rhodamine 123 (R123) is driven by the mitochondrial membrane potential and thus reflects mitochondrial activity. Uptake of 10-nonyl-acridine orange (NAO) reflects total mitochondrial mass independently of activity because this compound binds to cardiolipin in the inner mitochondrial membrane. NAO fluorescence per unit cell volume only decreased 10-20% for cells from the inner spheroid region compared with those near the surface. There was greater than a twofold reduction in R123 fluorescence in the inner region cells, however. Thus, tumor cells in spheroids alter their rate of respiration predominately by downregulating mitochondrial function as opposed to degradation of mitochondria. There was a correlation between R123 staining per unit cell volume and the growth fraction of the cells from spheroids, but not for monolayer cultures. We also show a linear correlation between R123 staining and the rate of oxygen consumption for both monolayer- and spheroid-derived cells. After separating the inner region cells from the spheroid and replating them in monolayer culture, the R123 uptake recovered to normal levels prior to entry of the cells into S-phase. This reduction in mitochondrial function in quiescent cells from spheroids can explain the long period required for these cells to re-enter the cell cycle and may have important implications for the regulation of tumor cell oxygenation in vivo.
Collapse
Affiliation(s)
- J P Freyer
- Cell and Molecular Biology Group, Life Sciences Division, Los Alamos National Laboratory, New Mexico 87545, USA
| |
Collapse
|
22
|
Kunz-Schughart LA, Habbersett RC, Freyer JP. Mitochondrial function in oncogene-transfected rat fibroblasts isolated from multicellular spheroids. THE AMERICAN JOURNAL OF PHYSIOLOGY 1997; 273:C1487-95. [PMID: 9374633 DOI: 10.1152/ajpcell.1997.273.5.c1487] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Two mitochondrion-specific fluorochromes, 10-N-nonyl acridine orange (NAO) and rhodamine 123 (Rh123), were used to determine the mechanism responsible for alterations in energy metabolism of transformed rat embryo fibroblast cells isolated from different locations within multicellular spheroids. Accumulation of Rh123 depends on intact mitochondrial membrane potential, whereas NAO is taken up by mitochondria independently of their function and thus represents mitochondrial distribution only. A reproducible selective dissociation procedure was used to isolate cells from different locations within the spheroids. After isolation, cells were simultaneously stained with one mitochondrial stain and the DNA dye Hoechst 33342, and several parameters, including cell volume, were monitored via multilaser-multiparameter flow cytometry. Our data clearly show a decrease in the uptake of Rh123 in cells from the periphery to the inner regions of the tumor spheroids, reflecting a persistent alteration in mitochondrial function. However, NAO staining experiments showed no reduction in the total mitochondrial mass per unit cell volume. Because cells were exposed to stain under uniform conditions after isolation from the spheroid, these data indicate the downregulation of mitochondrial function is associated with cell quiescence rather than a transient effect of reduced nutrient availability. This result, which is in accordance with data from two other cell lines (EMT6 and 9L), might reflect a general phenomenon in multicellular spheroids, supporting the hypothesis that quiescent cells in the innermost viable spheroid layer stably reduce their mitochondrial function, presumably to compensate for lower nutrient supply and/or decreased energy demand.
Collapse
Affiliation(s)
- L A Kunz-Schughart
- Life Sciences Division, Los Alamos National Laboratory, New Mexico 87545, USA
| | | | | |
Collapse
|
23
|
Helmlinger G, Netti PA, Lichtenbeld HC, Melder RJ, Jain RK. Solid stress inhibits the growth of multicellular tumor spheroids. Nat Biotechnol 1997; 15:778-83. [PMID: 9255794 DOI: 10.1038/nbt0897-778] [Citation(s) in RCA: 475] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In normal tissues, the processes of growth, remodeling, and morphogenesis are tightly regulated by the stress field; conversely, stress may be generated by these processes. We demonstrate that solid stress inhibits tumor growth in vitro, regardless of host species, tissue of origin, or differentiation state. The inhibiting stress for multicellular tumor spheroid growth in agarose matrices was 45 to 120 mm Hg. This stress, which greatly exceeds blood pressure in tumor vessels, is sufficient to induce the collapse of vascular or lymphatic vessels in tumors in vivo and can explain impaired blood flow, poor lymphatic drainage, and suboptimal drug delivery previously reported in solid tumors. The stress-induced growth inhibition of plateau-phase spheroids was accompanied, at the cellular level, by decreased apoptosis with no significant changes in proliferation. A concomitant increase in the cellular packing density was observed, which may prevent cells from undergoing apoptosis via a cell-volume or cell-shape transduction mechanism. These results suggest that solid stress controls tumor growth at both the macroscopic and cellular levels, and thus influences tumor progression and delivery of therapeutic agents.
Collapse
Affiliation(s)
- G Helmlinger
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston 02114, USA
| | | | | | | | | |
Collapse
|
24
|
Marusić M, Bajzer Z, Freyer JP, Vuk-Pavlović S. Analysis of growth of multicellular tumour spheroids by mathematical models. Cell Prolif 1994; 27:73-94. [PMID: 10465028 DOI: 10.1111/j.1365-2184.1994.tb01407.x] [Citation(s) in RCA: 143] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
We wished to determine the applicability of previously proposed deterministic mathematical models to description of growth of multicellular tumour spheroids. The models were placed into three general classes: empirical, functional and structural. From these classes, 17 models were applied systematically to growth curves of multicellular tumour spheroids used as paradigms of prevascular and microregional tumour growth. The spheroid growth curves were determined with uniquely high density of measurements and high precision. The theoretical growth curves obtained from the models were fitted by the weighted least-squares method to the 15 measured growth curves, each corresponding to a different cell line. The classical growth models such as von Bertalanffy, logistic and Gompertz were considered as nested within more general models. Our results demonstrate that most models fitted the data fairly well and that criteria other than statistical had to be used for final selection. The Gompertz, the autostimulation and the simple spheroid models were the most appropriate for spheroid growth in the empirical, functional and structural classes of models, respectively. We also showed that some models (e.g. logistic, von Bertalanffy) were clearly inadequate. Thus, contrary to the widely held belief, the sigmoid character of a three or more parameter growth function is not sufficient for adequate fits.
Collapse
Affiliation(s)
- M Marusić
- Division of Developmental Oncology Research, Mayo Clinic and Mayo Foundation, Rochester, MN 55905, USA
| | | | | | | |
Collapse
|
25
|
Freyer JP. Rates of oxygen consumption for proliferating and quiescent cells isolated from multicellular tumor spheroids. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1994; 345:335-42. [PMID: 8079727 DOI: 10.1007/978-1-4615-2468-7_44] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- J P Freyer
- Life Sciences Division, Los Alamos National Laboratory, NM 87545
| |
Collapse
|
26
|
Gonzalez A, Oberley TD, Schultz JL, Ostrom J, Li JJ. In vitro characterization of estrogen induced Syrian hamster renal tumors: comparison with an immortalized cell line derived from diethylstilbestrol-treated adult hamster kidney. In Vitro Cell Dev Biol Anim 1993; 29A:562-73. [PMID: 7689078 DOI: 10.1007/bf02634150] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Primary diethylstilbestrol-induced kidney tumors from Syrian hamsters were grown in vitro and maintained in culture for 6 mo. Combined immunohistochemical studies using antibodies to intermediate filaments and ultrastructural studies of tumor cells in culture exhibited characteristics similar to tumor cells in vivo. Furthermore, the cells manifested transformed properties in culture; they grew both as multilayered colonies attached to the tissue culture substrate and as floating multicellular colonies (spheroids). When cultured cells were injected into diethylstilbestrol-treated recipient hamsters, tumors developed at the injection sites. In contrast, renal tubules or whole kidney cortex from control hamsters cultured in the same medium underwent only short-term growth, with senescence developing after approximately 1 mo. However, cell cultures of kidney cortex from animals treated in vivo for 5 mo. with diethylstilbestrol formed a cell line. This diethylstilbestrol-induced cell line has been maintained in culture for 1.5 yr and has the following characteristics: a) it is anchorage-dependent, b) it is negative in in vivo tumorigenicity tests, and c) cultured cells are histochemically and ultrastructurally similar to cultured tumor cells. This culture system should prove to be of use in studying hormonal carcinogenesis in vitro.
Collapse
Affiliation(s)
- A Gonzalez
- Department of Pathology, University of Utah School of Medicine, Salt Lake City
| | | | | | | | | |
Collapse
|