1
|
Lobo D, Solano M, Bubenik GA, Levin M. A linear-encoding model explains the variability of the target morphology in regeneration. J R Soc Interface 2014; 11:20130918. [PMID: 24402915 PMCID: PMC3899861 DOI: 10.1098/rsif.2013.0918] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 12/12/2013] [Indexed: 12/17/2022] Open
Abstract
A fundamental assumption of today's molecular genetics paradigm is that complex morphology emerges from the combined activity of low-level processes involving proteins and nucleic acids. An inherent characteristic of such nonlinear encodings is the difficulty of creating the genetic and epigenetic information that will produce a given self-assembling complex morphology. This 'inverse problem' is vital not only for understanding the evolution, development and regeneration of bodyplans, but also for synthetic biology efforts that seek to engineer biological shapes. Importantly, the regenerative mechanisms in deer antlers, planarian worms and fiddler crabs can solve an inverse problem: their target morphology can be altered specifically and stably by injuries in particular locations. Here, we discuss the class of models that use pre-specified morphological goal states and propose the existence of a linear encoding of the target morphology, making the inverse problem easy for these organisms to solve. Indeed, many model organisms such as Drosophila, hydra and Xenopus also develop according to nonlinear encodings producing linear encodings of their final morphologies. We propose the development of testable models of regeneration regulation that combine emergence with a top-down specification of shape by linear encodings of target morphology, driving transformative applications in biomedicine and synthetic bioengineering.
Collapse
Affiliation(s)
- Daniel Lobo
- Department of Biology, Center for Regenerative and Developmental Biology, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155, USA
| | - Mauricio Solano
- Cummings School of Veterinary Medicine, Tufts University, 200 Westboro Road, North Grafton, MA 01536, USA
| | - George A. Bubenik
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Michael Levin
- Department of Biology, Center for Regenerative and Developmental Biology, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155, USA
| |
Collapse
|
2
|
Gášková D, Plášek J, Zahumenský J, Benešová I, Buriánková L, Sigler K. Alcohols are inhibitors of Saccharomyces cerevisiae multidrug-resistance pumps Pdr5p and Snq2p. FEMS Yeast Res 2013; 13:782-95. [PMID: 24028576 DOI: 10.1111/1567-1364.12088] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 08/20/2013] [Accepted: 09/01/2013] [Indexed: 11/30/2022] Open
Abstract
The effect of alcohols on cell membrane proteins has originally been assumed to be mediated by their primary action on membrane lipid matrix. Many studies carried out later on both animal and yeast cells have revealed that ethanol and other alcohols inhibit the functions of various membrane channels, receptors and solute transport proteins, and a direct interaction of alcohols with these membrane proteins has been proposed. Using our fluorescence diS-C3 (3) diagnostic assay for multidrug-resistance pump inhibitors in a set of isogenic yeast Pdr5p and Snq2p mutants, we found that n-alcohols (from ethanol to hexanol) variously affect the activity of both pumps. Beginning with propanol, these alcohols have an inhibitory effect that increases with increasing length of the alcohol acyl chain. While ethanol does not exert any inhibitory effect at any of the concentration used (up to 3%), hexanol exerts a strong inhibition at 0.1%. The alcohol-induced inhibition of MDR pumps was detected even in cells whose membrane functional and structural integrity were not compromised. This supports a notion that the inhibitory action does not necessarily involve only changes in the lipid matrix of the membrane but may entail a direct interaction of the alcohols with the pump proteins.
Collapse
Affiliation(s)
- Dana Gášková
- Faculty of Mathematics and Physics, Institute of Physics, Charles University, Prague 2, Czech Republic
| | | | | | | | | | | |
Collapse
|
3
|
Marandykina A, Palacios-Prado N, Rimkutė L, Skeberdis VA, Bukauskas FF. Regulation of connexin36 gap junction channels by n-alkanols and arachidonic acid. J Physiol 2013; 591:2087-101. [PMID: 23420660 PMCID: PMC3634521 DOI: 10.1113/jphysiol.2013.250910] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 02/13/2013] [Indexed: 12/18/2022] Open
Abstract
We examined junctional conductance (gj) and its dependence on transjunctional voltage in gap junction (GJ) channels formed of wild-type connexin36 (Cx36) or its fusion form with green fluorescent protein (Cx36-EGFP) transfected in HeLa cells or endogenously expressed in primary culture of pancreatic β-cells. Only a very small fraction (∼0.8%) of Cx36-EGFP channels assembled into junctional plaques of GJs were open under control conditions. We found that short carbon chain n-alkanols (SCCAs) increased gj, while long carbon chain n-alkanols resulted in full uncoupling; cutoff is between heptanol and octanol. The fraction of functional channels and gj increased several fold under an exposure to SCCAs, or during reduction of endogenous levels of arachidonic acid (AA) by exposure to fatty acid-free BSA or cytosolic phospholipase A2 inhibitors. Moreover, uncoupling caused by exogenously applied AA can be rescued by BSA, which binds AA and other polyunsaturated fatty acids (PUFAs), but not by BSA modified with 1,2-cyclohexanedione, which does not bind AA and other PUFAs. We propose that under control conditions, Cx36 GJ channels in HeLa transfectants and β-cells are inhibited by endogenous AA, which stabilizes a closed conformational state of the channel that leads to extremely low fraction of functional channels. In addition, SCCAs increase gj by interfering with endogenous AA-dependent inhibition, increasing open probability and the fraction of functional channels.
Collapse
Affiliation(s)
- Alina Marandykina
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | |
Collapse
|
4
|
Hall AC, Griffith TN, Tsikolia M, Kotey FO, Gill N, Humbert DJ, Watt EE, Yermolina YA, Goel S, El-Ghendy B, Hall CD. Cyclohexanol analogues are positive modulators of GABA(A) receptor currents and act as general anaesthetics in vivo. Eur J Pharmacol 2011; 667:175-81. [PMID: 21658385 DOI: 10.1016/j.ejphar.2011.05.058] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 05/18/2011] [Accepted: 05/22/2011] [Indexed: 11/16/2022]
Abstract
GABA(A) receptors meet all the pharmacological criteria required to be considered important general anaesthetic targets. In the following study, the modulatory effects of various commercially available and novel cyclohexanols were investigated on recombinant human γ-aminobutyric acid (GABA(A), α(1)β(2)γ(2s)) receptors expressed in Xenopus oocytes, and compared to the modulatory effects on GABA currents observed with exposures to the intravenous anaesthetic agent, propofol. Submaximal EC(20) GABA currents were typically enhanced by co-applications of 3-300 μM cyclohexanols. For instance, at 30 μM 2,6-diisopropylcyclohexanol (a novel compound) GABA responses were increased ~3-fold (although similar enhancements were achieved at 3 μM propofol). As regards rank order for modulation by the cyclohexanol analogues at 30 μM, the % enhancements for 2,6-dimethylcyclohexanol~2,6-diethylcyclohexanol~2,6-diisopropylcyclohexanol~2,6-di-sec-butylcyclohexanol ≫2,6-di-tert-butylcyclohexanol~4-tert-butylcyclohexanol>cyclohexanol~cyclopentanol~2-methylcyclohexanol. We further tested the potencies of the cyclohexanol analogues as general anaesthetics using a tadpole in vivo assay. Both 2,6-diisopropylcyclohexanol and 2,6-dimethylcyclohexanol were effective as anaesthetics with EC(50)s of 14.0 μM and 13.1 μM respectively, while other cyclohexanols with bulkier side chains were less potent. In conclusion, our data indicate that cyclohexanols are both positive modulators of GABA(A) receptors currents and anaesthetics. The positioning and size of the alkyl groups at the 2 and 6 positions on the cyclohexanol ring were critical determinants of activity.
Collapse
Affiliation(s)
- Adam C Hall
- Neuroscience Program, Department of Biological Sciences, Smith College, Northampton, MA 01063, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Grasso D, Ropolo A, Lo Ré A, Boggio V, Molejón MI, Iovanna JL, Gonzalez CD, Urrutia R, Vaccaro MI. Zymophagy, a novel selective autophagy pathway mediated by VMP1-USP9x-p62, prevents pancreatic cell death. J Biol Chem 2010; 286:8308-8324. [PMID: 21173155 DOI: 10.1074/jbc.m110.197301] [Citation(s) in RCA: 158] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Autophagy has recently elicited significant attention as a mechanism that either protects or promotes cell death, although different autophagy pathways, and the cellular context in which they occur, remain to be elucidated. We report a thorough cellular and biochemical characterization of a novel selective autophagy that works as a protective cell response. This new selective autophagy is activated in pancreatic acinar cells during pancreatitis-induced vesicular transport alteration to sequester and degrade potentially deleterious activated zymogen granules. We have coined the term "zymophagy" to refer to this process. The autophagy-related protein VMP1, the ubiquitin-protease USP9x, and the ubiquitin-binding protein p62 mediate zymophagy. Moreover, VMP1 interacts with USP9x, indicating that there is a close cooperation between the autophagy pathway and the ubiquitin recognition machinery required for selective autophagosome formation. Zymophagy is activated by experimental pancreatitis in genetically engineered mice and cultured pancreatic acinar cells and by acute pancreatitis in humans. Furthermore, zymophagy has pathophysiological relevance by controlling pancreatitis-induced intracellular zymogen activation and helping to prevent cell death. Together, these data reveal a novel selective form of autophagy mediated by the VMP1-USP9x-p62 pathway, as a cellular protective response.
Collapse
Affiliation(s)
- Daniel Grasso
- From the Department of Pathophysiology, School of Pharmacy and Biochemistry, University of Buenos Aires, C1113AAD Buenos Aires, Argentina
| | - Alejandro Ropolo
- From the Department of Pathophysiology, School of Pharmacy and Biochemistry, University of Buenos Aires, C1113AAD Buenos Aires, Argentina
| | - Andrea Lo Ré
- From the Department of Pathophysiology, School of Pharmacy and Biochemistry, University of Buenos Aires, C1113AAD Buenos Aires, Argentina
| | - Verónica Boggio
- From the Department of Pathophysiology, School of Pharmacy and Biochemistry, University of Buenos Aires, C1113AAD Buenos Aires, Argentina
| | - María I Molejón
- From the Department of Pathophysiology, School of Pharmacy and Biochemistry, University of Buenos Aires, C1113AAD Buenos Aires, Argentina
| | | | - Claudio D Gonzalez
- From the Department of Pathophysiology, School of Pharmacy and Biochemistry, University of Buenos Aires, C1113AAD Buenos Aires, Argentina
| | - Raúl Urrutia
- the Chromatin Dynamics and Epigenetic Laboratory, Mayo Clinic, Rochester, Minnesota 55905
| | - María I Vaccaro
- From the Department of Pathophysiology, School of Pharmacy and Biochemistry, University of Buenos Aires, C1113AAD Buenos Aires, Argentina,.
| |
Collapse
|
6
|
Oviedo NJ, Morokuma J, Walentek P, Kema IP, Gu MB, Ahn JM, Hwang JS, Gojobori T, Levin M. Long-range neural and gap junction protein-mediated cues control polarity during planarian regeneration. Dev Biol 2010; 339:188-99. [PMID: 20026026 PMCID: PMC2823934 DOI: 10.1016/j.ydbio.2009.12.012] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Revised: 11/11/2009] [Accepted: 12/09/2009] [Indexed: 01/24/2023]
Abstract
Having the ability to coordinate the behavior of stem cells to induce regeneration of specific large-scale structures would have far-reaching consequences in the treatment of degenerative diseases, acute injury, and aging. Thus, identifying and learning to manipulate the sequential steps that determine the fate of new tissue within the overall morphogenetic program of the organism is fundamental. We identified novel early signals, mediated by the central nervous system and 3 innexin proteins, which determine the fate and axial polarity of regenerated tissue in planarians. Modulation of gap junction-dependent and neural signals specifically induces ectopic anterior regeneration blastemas in posterior and lateral wounds. These ectopic anterior blastemas differentiate new brains that establish permanent primary axes re-established during subsequent rounds of unperturbed regeneration. These data reveal powerful novel controls of pattern formation and suggest a constructive model linking nervous inputs and polarity determination in early stages of regeneration.
Collapse
Affiliation(s)
- Néstor J. Oviedo
- Center for Regenerative and Developmental Biology and Department of Biology, Tufts University. Suite 4600, 200 Boston Avenue, Medford. MA 02155, USA
| | - Junji Morokuma
- Center for Regenerative and Developmental Biology and Department of Biology, Tufts University. Suite 4600, 200 Boston Avenue, Medford. MA 02155, USA
| | - Peter Walentek
- Center for Regenerative and Developmental Biology and Department of Biology, Tufts University. Suite 4600, 200 Boston Avenue, Medford. MA 02155, USA
| | - Ido P. Kema
- Department of Pathology and Laboratory Medicine University Medical Center Groningen, University of Groningen The Netherlands
| | - Man Bock Gu
- College of Life Science and Biotechnology, Korea University. Seoul, Republic of Korea
| | - Joo-Myung Ahn
- College of Life Science and Biotechnology, Korea University. Seoul, Republic of Korea
| | - Jung Shan Hwang
- Center for Information Biology and DNA Data Bank of Japan National Institute of Genetics. Yata 1111, Mishima Shizuoka 411-8540. Japan
| | - Takashi Gojobori
- Center for Information Biology and DNA Data Bank of Japan National Institute of Genetics. Yata 1111, Mishima Shizuoka 411-8540. Japan
| | - Michael Levin
- Center for Regenerative and Developmental Biology and Department of Biology, Tufts University. Suite 4600, 200 Boston Avenue, Medford. MA 02155, USA
| |
Collapse
|
7
|
Serre-Beinier V, Bosco D, Zulianello L, Charollais A, Caille D, Charpantier E, Gauthier BR, Diaferia GR, Giepmans BN, Lupi R, Marchetti P, Deng S, Buhler L, Berney T, Cirulli V, Meda P. Cx36 makes channels coupling human pancreatic beta-cells, and correlates with insulin expression. Hum Mol Genet 2009; 18:428-39. [PMID: 19000992 PMCID: PMC2638800 DOI: 10.1093/hmg/ddn370] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Previous studies have documented that the insulin-producing beta-cells of laboratory rodents are coupled by gap junction channels made solely of the connexin36 (Cx36) protein, and have shown that loss of this protein desynchronizes beta-cells, leading to secretory defects reminiscent of those observed in type 2 diabetes. Since human islets differ in several respects from those of laboratory rodents, we have now screened human pancreas, and islets isolated thereof, for expression of a variety of connexin genes, tested whether the cognate proteins form functional channels for islet cell exchanges, and assessed whether this expression changes with beta-cell function in islets of control and type 2 diabetics. Here, we show that (i) different connexin isoforms are differentially distributed in the exocrine and endocrine parts of the human pancreas; (ii) human islets express at the transcript level different connexin isoforms; (iii) the membrane of beta-cells harbors detectable levels of gap junctions made of Cx36; (iv) this protein is concentrated in lipid raft domains of the beta-cell membrane where it forms gap junctions; (v) Cx36 channels allow for the preferential exchange of cationic molecules between human beta-cells; (vi) the levels of Cx36 mRNA correlated with the expression of the insulin gene in the islets of both control and type 2 diabetics. The data show that Cx36 is a native protein of human pancreatic islets, which mediates the coupling of the insulin-producing beta-cells, and contributes to control beta-cell function by modulating gene expression.
Collapse
Affiliation(s)
| | - Domenico Bosco
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals, Geneva, Switzerland
| | - Laurence Zulianello
- Department of Cell Physiology and Metabolism, University of Geneva School of Medicine, CMU 1, rue Michel-Servet, 1211 Geneva 4, CH, Switzerland
| | - Anne Charollais
- Department of Cell Physiology and Metabolism, University of Geneva School of Medicine, CMU 1, rue Michel-Servet, 1211 Geneva 4, CH, Switzerland
| | - Dorothée Caille
- Department of Cell Physiology and Metabolism, University of Geneva School of Medicine, CMU 1, rue Michel-Servet, 1211 Geneva 4, CH, Switzerland
| | - Eric Charpantier
- Department of Cell Physiology and Metabolism, University of Geneva School of Medicine, CMU 1, rue Michel-Servet, 1211 Geneva 4, CH, Switzerland
| | - Benoit R. Gauthier
- Department of Cell Physiology and Metabolism, University of Geneva School of Medicine, CMU 1, rue Michel-Servet, 1211 Geneva 4, CH, Switzerland
| | - Giuseppe R. Diaferia
- Islet Research Laboratory, The Whittier Institute for Diabetes, University of California San Diego, La Jolla, CA, USA
| | - Ben N. Giepmans
- Department of Cell Biology, University of Groningen, Groningen, The Netherlands
| | - Roberto Lupi
- Department of Endocrinology and Metabolism, University of Pisa, Pisa, Italy
| | - Piero Marchetti
- Department of Endocrinology and Metabolism, University of Pisa, Pisa, Italy
| | - Shaoping Deng
- Department of Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Léo Buhler
- Surgical Research Unit, Department of Surgery
| | - Thierry Berney
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals, Geneva, Switzerland
| | - Vincenzo Cirulli
- Islet Research Laboratory, The Whittier Institute for Diabetes, University of California San Diego, La Jolla, CA, USA
| | - Paolo Meda
- Department of Cell Physiology and Metabolism, University of Geneva School of Medicine, CMU 1, rue Michel-Servet, 1211 Geneva 4, CH, Switzerland
| |
Collapse
|
8
|
Knabb MT, Danielsen CA, McShane-Kay K, Mbuy GKN, Woodruff RI. Herpes simplex virus-type 2 infectivity and agents that block gap junctional intercellular communication. Virus Res 2006; 124:212-9. [PMID: 17157406 PMCID: PMC1852498 DOI: 10.1016/j.virusres.2006.11.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2006] [Revised: 11/09/2006] [Accepted: 11/09/2006] [Indexed: 01/19/2023]
Abstract
In rat liver epithelial (WB) cells, the protein kinase C inhibitor H7 blocked gap junctional intercellular communication (GJIC) and reduced virus infectivity. Octanol, 18-beta-glycyrrhetinic acid, and staurosporine, agents that reduce GJIC, had no effect upon virus infectivity. Previous studies demonstrated that herpes simplex virus-type 2 (HSV-2) infection was accompanied by attenuated GJIC. Of agents tested, only H7 reduced plaque forming unit (pfu) ability in a dose-dependent manner with 100% plaque reduction at 40 microM without evidence of cytotoxicity. Dye transfer indicated that H7 decreased GJIC, although Western blotting revealed that it did not alter phosphorylation of the gap junction protein, connexin 43 (Cx43). Using indirect immunofluorescence, Cx43 was found to localize in membrane plaques in uninfected cells and H7 did not alter this distribution. However, Cx43 was lost from the membrane at 24h in both H7-treated and untreated cells infected with HSV-2. Viral infection increased serine phosphorylation, particularly in the nuclear region, and this effect was reduced following H7 treatment. Thus, H7 attenuated both GJIC and infectivity of HSV-2 in WB cells but the anti-viral effects were due to reduced nuclear protein phosphorylation rather than alterations in phosphorylation or localization of Cx43.
Collapse
Affiliation(s)
- Maureen T Knabb
- Department of Biology, West Chester University, West Chester, PA 19383-8102, USA.
| | | | | | | | | |
Collapse
|
9
|
Nogi T, Levin M. Characterization of innexin gene expression and functional roles of gap-junctional communication in planarian regeneration. Dev Biol 2005; 287:314-35. [PMID: 16243308 DOI: 10.1016/j.ydbio.2005.09.002] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2005] [Revised: 08/20/2005] [Accepted: 09/01/2005] [Indexed: 10/25/2022]
Abstract
Planaria possess remarkable powers of regeneration. After bisection, one blastema regenerates a head, while the other forms a tail. The ability of previously-adjacent cells to adopt radically different fates could be due to long-range signaling allowing determination of position relative to, and the identity of, remaining tissue. However, this process is not understood at the molecular level. Following the hypothesis that gap-junctional communication (GJC) may underlie this signaling, we cloned and characterized the expression of the Innexin gene family during planarian regeneration. Planarian innexins fall into 3 groups according to both sequence and expression. The concordance between expression-based and phylogenetic grouping suggests diversification of 3 ancestral innexin genes into the large family of planarian innexins. Innexin expression was detected throughout the animal, as well as specifically in regeneration blastemas, consistent with a role in long-range signaling relevant to specification of blastema positional identity. Exposure to a GJC-blocking reagent which does not distinguish among gap junctions composed of different Innexin proteins (is not subject to compensation or redundancy) often resulted in bipolar (2-headed) animals. Taken together, the expression data and the respecification of the posterior blastema to an anteriorized fate by GJC loss-of-function suggest that innexin-based GJC mediates instructive signaling during regeneration.
Collapse
Affiliation(s)
- Taisaku Nogi
- Department of Cytokine Biology, The Forsyth Institute, 140 The Fenway, Boston, MA 02115, USA
| | | |
Collapse
|
10
|
Chifflet S, Hernández JA, Grasso S. A possible role for membrane depolarization in epithelial wound healing. Am J Physiol Cell Physiol 2005; 288:C1420-30. [PMID: 15897322 DOI: 10.1152/ajpcell.00259.2004] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Linear narrow wounds produced on cultured bovine corneal endothelial monolayers heal by actin cable formation at the wound border and lamellar crawling of cells into the injured area. We report the novel finding that membrane potential depolarization occurs at the leading edge of wounds and gradually extends inward toward the neighboring cells. We have determined that the replacement of extracellular Na+by choline and the incorporation of phenamil, an inhibitor of the epithelial Na+channel (ENaC), provoke a decrease in the actin cable and depolarization areas and in the lamellar activity of the wound edges. To the contrary, extracellular Li+can successfully replace Na+in the determination of the depolarization and cytoskeletal responses. This finding supports the idea that membrane depolarization, not the increase in intracellular Na+concentration, is responsible for the formation of the actin cable, a result that is in agreement with previous evidence showing that nonspecific depolarization of the plasma membrane potential (PMP) of epithelial cells may promote characteristic cytoskeletal rearrangements per se (Chifflet S, Hernández JA, Grasso S, and Cirillo A. Exp Cell Res 282: 1–13, 2003). We suggest that spontaneous depolarization of the PMP of the cells at the wound borders determined by a rise in the ENaC activity of these cells constitutes an additional factor in the intermediate cellular processes leading to wound healing in some epithelia.
Collapse
Affiliation(s)
- Silvia Chifflet
- Departomento de Bioquímica, Facultad de Medicina, Universidad de la República, Gral Flores 2125, 11800 Montevideo, Uruguay.
| | | | | |
Collapse
|
11
|
Lupia E, Goffi A, De Giuli P, Azzolino O, Bosco O, Patrucco E, Vivaldo MC, Ricca M, Wymann MP, Hirsch E, Montrucchio G, Emanuelli G. Ablation of phosphoinositide 3-kinase-gamma reduces the severity of acute pancreatitis. THE AMERICAN JOURNAL OF PATHOLOGY 2005; 165:2003-11. [PMID: 15579443 PMCID: PMC1618701 DOI: 10.1016/s0002-9440(10)63251-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In pancreatic acini, the G-protein-activated phosphoinositide 3-kinase-gamma (PI3K gamma) regulates several key pathological responses to cholecystokinin hyperstimulation in vitro. Thus, using mice lacking PI3K gamma, we studied the function of this enzyme in vivo in two different models of acute pancreatitis. The disease was induced by supramaximal concentrations of cerulein and by feeding mice a choline-deficient/ethionine-supplemented diet. Although the secretive function of isolated pancreatic acini was identical in mutant and control samples, in both models, genetic ablation of PI3K gamma significantly reduced the extent of acinar cell injury/necrosis. In agreement with a protective role of apoptosis in pancreatitis, PI3K gamma-deficient pancreata showed an increased number of apoptotic acinar cells, as determined by terminal dUTP nick-end labeling and caspase-3 activity. In addition, neutrophil infiltration within the pancreatic tissue was also reduced, suggesting a dual action of PI3K gamma, both in the triggering events within acinar cells and in the subsequent neutrophil recruitment and activation. Finally, the lethality of the choline-deficient/ethionine-supplemented diet-induced pancreatitis was significantly reduced in mice lacking PI3K gamma. Our results thus suggest that inhibition of PI3K gamma may be of therapeutic value in acute pancreatitis.
Collapse
Affiliation(s)
- Enrico Lupia
- Dipartimento di Fisiopatologia Clinica, Università di Torino, Via Genova 3, 10126 Torino, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
The participation of fibroblasts in wound repair is a coordinated effort requiring sequential cellular modulations to behavior including migration (entering), proliferation (increasing cell numbers), synthesis (depositing a collagen matrix), remodeling (organizing collagen), transformation into myofibroblasts, apoptosis, and elimination. Disruptions in that orderly sequence of behaviors will alter repair. Insights into controlling wound repair have focused on soluble factors such as cytokines and growth factors. Here we examine the direct communications between coupled cells through gap junctional intercellular communications. Molecules of less than 1000 MW pass directly between cells through gated gap junction channels. Sugars, amino acids, and oxygen, as well as second messengers such as cAMP, inositol phosphates, and calcium can pass directly between coupled cells. Does gap junctional intercellular communication affect fibroblast phenotype progression in granulation tissue maturation? In rats gap junctional intercellular communication uncouplers heptanol and endosulfan were injected daily into polyvinyl alcohol sponge implants. At 7 days, uncoupler-treated implants had capsules with increased fibroblast density, reduced cell penetration into the sponge, and diminished numbers of myofibroblasts. By polarized light, the uncouplers reduced the deposition and organization of collagen and thereby disrupted the coordinated phenotypic changes seen in fibroblasts during the repair process. It is proposed that gap junctional intercellular communication is critical for fibroblast progression from migratory cell to apoptosis as granulation tissue matures into scar.
Collapse
Affiliation(s)
- H Paul Ehrlich
- Department of Surgery, Milton S. Hershey Medical Center, Hershey, Pennsylvania 17033, USA.
| | | |
Collapse
|
13
|
Cronier L, Frendo JL, Defamie N, Pidoux G, Bertin G, Guibourdenche J, Pointis G, Malassine A. Requirement of gap junctional intercellular communication for human villous trophoblast differentiation. Biol Reprod 2003; 69:1472-80. [PMID: 12826585 DOI: 10.1095/biolreprod.103.016360] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
During pregnancy, the villous trophoblast develops from the fusion of cytotrophoblastic cells (CT) into a syncytiotrophoblast (ST), supporting the main physiological functions of the human placenta. Connexin43 (Cx43) is demonstrated in situ and in vitro in the villous trophoblast between CT and between CT and ST. Moreover, the presence of a gap junctional intercellular communication (GJIC) during in vitro trophoblast differentiation was previously demonstrated. Because the exchange of molecules through gap junctions is considered to play a major role in the control of cell and tissue differentiation, we studied the effects of a gap junctional uncoupler, heptanol, on morphological and functional trophoblast differentiation and on GJIC measured by the fluorescence recovery after photobleaching method. We found that when the GJIC was interrupted, CT still aggregated but fused poorly. This morphological effect was associated with a significant decrease of trophoblastic-specific gene expression (beta human chorionic gonadotropin and human chorionic somatomammotropin). This blocking action was reversible as demonstrated by recovery of GJIC and trophoblast differentiation process after heptanol removal. Moreover, the inhibition of the trophoblast differentiation did not affect Cx43 transcript expression and Cx43 protein expression. These data suggest that the molecular exchanges through gap junctions preceding cellular fusion are essential for trophoblast differentiation generating the multifunctional syncytiotrophoblast.
Collapse
Affiliation(s)
- Laurent Cronier
- Laboratoire de Biomembranes et Signalisation cellulaire, Université de Poitiers, 86022 Poitiers cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Frendo JL, Cronier L, Bertin G, Guibourdenche J, Vidaud M, Evain-Brion D, Malassine A. Involvement of connexin 43 in human trophoblast cell fusion and differentiation. J Cell Sci 2003; 116:3413-21. [PMID: 12840075 DOI: 10.1242/jcs.00648] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The syncytiotrophoblast is the principal component of the human placenta involved in feto-maternal exchanges and hormone secretion. The syncytiotrophoblast arises from the fusion of villous cytotrophoblasts. We recently showed that functional gap junctional intercellular communication (GJIC) is an important prerequisite for syncytiotrophoblast formation and that connexin 43 (Cx43) is present in cytotrophoblasts and in the syncytiotrophoblast. To determine whether Cx43 is directly involved in trophoblast fusion, we used an antisense strategy in primary cultures of human villous cytotrophoblasts that spontaneously differentiate into the syncytiotrophoblast by cell fusion. We assessed the morphological and functional differentiation of trophoblasts by desmoplakin immunostaining, by quantifying hCG (human chorionic gonadotropin) production and by measuring the expression of specific trophoblast genes (hCG and HERV-W). Furthermore, we used the gap-FRAP (fluorescence recovery after photobleaching) method to investigate functional GJIC. Cytotrophoblasts treated with Cx43 antisense aggregated and fused poorly. Furthermore, less HERV-W env mRNA, hCGbeta mRNA and hCG secretion were detected in Cx43 antisense-treated cytotrophoblasts than in cells treated with scrambled antisense. Treatment with Cx43 antisense dramatically reduced the percentage of coupled trophoblast cells. Taken together, these results suggest that Cx43 is directly involved in human trophoblast cell-cell communication, fusion and differentiation.
Collapse
Affiliation(s)
- Jean-Louis Frendo
- Institut National de la Santé et de la Recherche Médicale, U427, Paris, France
| | | | | | | | | | | | | |
Collapse
|
15
|
Méduri G, Charnaux N, Driancourt MA, Combettes L, Granet P, Vannier B, Loosfelt H, Milgrom E. Follicle-stimulating hormone receptors in oocytes? J Clin Endocrinol Metab 2002; 87:2266-76. [PMID: 11994374 DOI: 10.1210/jcem.87.5.8502] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The regulatory mechanisms of oocyte maturation remain poorly understood. Although gonadotropins play a major role in these processes, they have generally been considered to act on somatic supportive cells, but not directly on germ cells. We have raised high affinity monoclonal antibodies against LH and FSH receptors. When using the latter to study receptor distribution in human and pig ovaries we have observed the presence of FSH (but not LH) receptors in the oocytes. FSH receptors appeared in the oocytes of primary follicles during follicular development and persisted up to the preovulatory stage. In denuded human preovulatory oocytes, FSH receptor mRNA was detected at a concentration per cell exceeding by about 20-fold that present in granulosa cells. Saturable binding of [(125)I]FSH to the membrane of oocytes was demonstrated by autoradiography. When incubated with FSH, denuded oocytes responded by a mobilization of Ca(2+). These observations concur to demonstrate the presence of functional FSH receptors in oocytes and raise the possibility of direct control of oocyte development by FSH.
Collapse
Affiliation(s)
- Geri Méduri
- Unité de Recherches, INSERM, U-135, Hormones, Gènes, et Reproduction, Hôpital Bicêtre, 94275 Le Kremlin-Bicêtre, France
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Rudkin GH, Carlsen BT, Chung CY, Huang W, Ishida K, Anvar B, Yamaguchi DT, Miller TA. Retinoids inhibit squamous cell carcinoma growth and intercellular communication. J Surg Res 2002; 103:183-9. [PMID: 11922733 DOI: 10.1006/jsre.2001.6346] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND Retinoids have been shown to inhibit the growth of squamous cell carcinoma and other malignancies. They have also been shown to alter gap junctional intercellular communication (GJIC) and the expression of connexins, the protein subunits of gap junctions. We report in this study that the alteration of GJIC by retinoids may be directly related to inhibitory effects on cell growth. MATERIALS AND METHODS SCC-13 cells were treated with all-trans retinoic acid (tRA) and 13-cis retinoic acid (cRA) at 10(-7) and 10(-6) M concentrations in culture. No treatment and ethanol vehicle controls were included for each experiment. Serial cell counts of parallel cultures were performed to determine cell growth. The parachute technique was performed in combination with fluorescence activated cell sorting (FACS) analysis to determine GJIC. Northern and Western blot analysis were performed to assess connexin mRNA and protein expression. RESULTS The growth rate was inhibited for cells treated with tRA (10(-6) M) (P < 0.05) and cRA (10(-6) M) (P = 0.068) vs. vehicle control. GJIC was significantly inhibited with both tRA (10(-7) and 10(-6) M) (P < 0.001) and cRA (10(-7) and 10(-6) M) (P < 0.001) at 24, 48, and 96 h as determined by FACS analysis. To correlate GJIC with cell growth, we studied the effect of glycyrrhetinic acid, a known inhibitor of GJIC. Glycyrrhetinic acid also significantly inhibited cell growth (P < 0.05) vs. control. Connexin 26 and connexin 43 mRNA and protein expression were not significantly altered after retinoid treatment. CONCLUSION Retinoic acids inhibit both cell growth and GJIC in SCC-13 cells. Retinoids may inhibit cell growth through alteration of GJIC in SCC-13 cells.
Collapse
Affiliation(s)
- George H Rudkin
- Plastic Surgery Section, VA Greater Los Angeles Healthcare System, Los Angeles, California 90073, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Campos-Toimil M, Edwardson JM, Thomas P. Acetylcholine-induced zymogen granule exocytosis: comparison between acini and single pancreatic acinar cells. Pancreas 2002; 24:179-83. [PMID: 11854623 DOI: 10.1097/00006676-200203000-00009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
INTRODUCTION Numerous studies have been carried out on the agonist-evoked calcium responses of single pancreatic acinar cells; however, several reports have shown that dissociation of the exocrine pancreas into predominantly single cells has an adverse effect on agonist-evoked amylase secretion. AIMS AND METHODOLOGY To determine whether single acinar cells behave in an anomalous manner compared with cells within an intact acinus, we measured exocytosis in both single acinar cells and acini (2-5 cells) present in the same preparation. Exocytosis of individual zymogen granules was quantified in real-time by using the technique of continuous time-differential analysis of brightfield digital images. RESULTS Basal rates of exocytosis were low in both single cells and intact acini. Application of 10 microM acetylcholine for 6 minutes stimulated a biphasic secretory response in acinar cells. Additionally, we found that exocytotic events occur repetitively in specific locations within the apical domain; i.e., there are exocytotic "hot spots." There were no statistically significant differences between the exocytotic rates, nor were there any differences in the characteristics of the exocytotic hot spots of single cells compared with those of acini. CONCLUSION We conclude that time-differential analysis of brightfield images appears to be a useful tool for the investigation of the role of gap junctions in zymogen granule exocytosis and that single acinar cells provide a reasonable model for studies of acinar cell signaling and secretion.
Collapse
|
18
|
Bokkala S, Reis HM, Rubin E, Joseph SK. Effect of angiotensin II and ethanol on the expression of connexin 43 in WB rat liver epithelial cells. Biochem J 2001; 357:769-77. [PMID: 11463347 PMCID: PMC1222006 DOI: 10.1042/0264-6021:3570769] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The turnover of connexin 43 (Cx43) is very rapid in many cells and involves both the lysosomal and proteasomal protease pathways. Here we show that Ca(2+)-mobilizing agonists such as angiotensin II (Ang II) can up-regulate the expression of Cx43 in WB rat liver epithelial cells. Vasopressin had the same effect in A7R5 smooth-muscle cells. The effect of Ang II was not prevented by pretreatment with proteasomal or lysosomal inhibitors and was associated with an enhanced biosynthesis of Cx43 as measured by metabolic labelling experiments. The accumulation of Cx43 occurred in intracellular compartments and at the cell surface, as determined by confocal immunofluorescence studies and by immunoblotting of fractions soluble and insoluble in Triton X-100. Chronic treatment of WB cells with ethanol inhibited Cx43 expression; this was associated with decreased biosynthesis of Cx43. Neither treatment with Ang II nor treatment with ethanol altered the levels of Cx43 mRNA. Incubation of WB cells with Ang II did not alter gap-junctional communication as judged by a dye-coupling assay. However, treatment with ethanol markedly decreased gap-junctional communication and this effect was diminished in Ang-II-treated cells, demonstrating that gap-junctional communication is linked to the level of Cx43 expression. We conclude that Cx43 biosynthesis is regulated by Ca(2+)-mobilizing agonists and ethanol in WB cells. The changes in Cx43 expression might have a role in modifying the conduction of metabolites and second messengers between cells.
Collapse
Affiliation(s)
- S Bokkala
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| | | | | | | |
Collapse
|
19
|
Abstract
Connexins are a family of proteins that assemble to form gap junction channels. Cell-cell communication through gap junctions mediates many important events in embryogenesis, including limb patterning, lens physiology, neuronal function, left-right asymmetry, and secretion from gland tissue. We studied the expression of connexin 30 (Cx30) in the Xenopus embryo and find that it is expressed in the developing hatching gland and pronephros. To determine whether its expression plays a functional role in the activity of the hatching gland, we exposed pre-hatching embryos to drugs that block gap junctional communication. This resulted in a continuation of normal growth and development but specifically abolished hatching. The treatment did not affect Cx30 or Xenopus hatching enzyme transcription, suggesting a post-transcriptional effect on Cx30 gap junctions. We conclude that junctional communication, possibly mediated by Cx30, is involved in secretion of hatching enzyme in Xenopus.
Collapse
Affiliation(s)
- M Levin
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
20
|
Abstract
Cultured dermal fibroblasts become notably elongated when incorporated into a fibroblast-populated collagen lattice (FPCL). With time these fibroblasts reorganize the collagen responsible for reduction in lattice size. In monolayer the microinjection of Lucifer Yellow (LY) into cultured human fibroblasts shows cell coupling through gap junctions. Human fibroblasts residing on the periphery of a FPCL are at high density and the microinjection of LY into one of those fibroblasts demonstrates cell coupling. Cells within the center of an FPCL are at low density and appear to be independent of one another; however, the microinjection of LY into selected fibroblasts again demonstrates cell coupling. Hence the microinjection of cells in both the center and the edge of a FPCL pass dye to numerous neighbors. Does cell coupling influence FPCL contraction? FPCL incubated with heptanol and octanol, aliphatic alcohols that uncouple cells, inhibits lattice contraction, whereas hexanol, an aliphatic alcohol that does not uncouple cells, did not alter lattice contraction. Fibroblasts derived from connexin 43 (a transmembrane protein responsible for gap junction structures) knockout mice were demonstrated to lack gap junctional communications. When incorporated into a FPCL these cells failed to elongate and demonstrated retarded lattice contraction. Hence, gap junctional communications between fibroblasts incorporated into collagen lattices appear to optimize FPCL contraction and suggest a role for gap junctions in the organization of collagen fibers.
Collapse
Affiliation(s)
- H P Ehrlich
- Division of Plastic and Reconstructive Surgery, Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA.
| | | | | |
Collapse
|
21
|
Proulx A, Merrifield PA, Naus CC. Blocking gap junctional intercellular communication in myoblasts inhibits myogenin and MRF4 expression. DEVELOPMENTAL GENETICS 2000; 20:133-44. [PMID: 9144924 DOI: 10.1002/(sici)1520-6408(1997)20:2<133::aid-dvg6>3.0.co;2-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Cells rely heavily on cues from their extracellular environment and other cells to coordinate normal physiological processes, and the exchange of molecules via gap junctions has been suggested as on important avenue for cell-cell communication. Gap junctions are found in virtually all mammalian tissues with the notable exception of adult skeletal muscle. However, since functional gap junctions have been detected during the early stages of muscle development, gap junctional intercellular communication (GJIC) may play on important role in myogenesis. In this study, GJIC in normal 16 myoblasts was inhibited using the known blockers l-octanol and beta-glycyrrhetinic acid (beta-GA). Under differentiation promoting conditions, 16 cells fused to form multinucleated myotubes, but when treated with either octanol or beta-GA, no fusion was observed. The expression of two muscle regulatory factors (MRFs), myogenin and MRF4, was examined in both the blocked and control cells. As expected, the activation of both the myogenin and MRF4 genes coincided with the onset of differentiation in the control 16 cells. Neither of these genes were turned on in the blocked cells, even when grown under low serum conditions. This inhibition of differentiation by octanol and beta-GA was reversible, since the activation of both MRF genes as well as myoblast fusion were observed when the blocking medium was replaced with normal differentiating medium. These results suggest that intercellular communication via gap junctions plays an important role in skeletal muscle development and perhaps in the cell signaling events that trigger the activation of muscle-specific MRF genes.
Collapse
Affiliation(s)
- A Proulx
- Department of Anatomy & Cell Biology, University of Western Ontario, London, Canada
| | | | | |
Collapse
|
22
|
Abstract
Intercellular gap junctions have been previously described at contact sites between surface osteoblasts, between osteoblasts and underlying osteocytes, and between osteocyte cell processes in the canaliculi. The subunits of gap junction channels are assembled from a family of proteins called connexins. In the present work, we show that rat osteoclasts cultured on bovine bone slices show connexin-43 (Cx43) staining localizing in the plasma membrane of the cells in cell-cell contacts and over the basolateral membrane of osteoclasts. The effect of heptanol, a known gap-junctional inhibitor, was studied using the well-characterized pit formation assay. Heptanol decreased the number and activity of osteoclasts. The proportion of mononuclear tartrate-resistant acid phosphatase (TRAP)-positive cells out of all TRAP-positive cells increased on heptanol treatment, suggesting a defect in the fusion of mononuclear osteoclast precursors to multinucleated mature osteoclasts. Furthermore, the total resorbed area and the number of resorption pits also decreased in the heptanol-treated cultures. These results suggest that gap-junctional Cx43 plays a functional role in osteoclasts and that the blocking of gap junctions decreases both the number and the activity of osteoclasts. This can indicate both a direct communication between multinucleated osteoclasts and mononuclear cells through gap junctions or an indirect effect through gap junctions between osteoblasts.
Collapse
Affiliation(s)
- J Ilvesaro
- Department of Anatomy and Cell Biology and Biocenter Oulu, University of Oulu, Finland
| | | | | |
Collapse
|
23
|
Abstract
An increasing body of evidence indicates that the response to genotoxic agents such as radiation or drugs is a group phenomenon, rather than the summed response of individual independent cells to injury. Thus, a complex contagion-like response may spread beyond the initial impact of an agent to enlarge its effect. This indirect effect, termed "Bystander Effect," is multifaceted and may play a significant role in the therapy of tumors and in carcinogenesis. A better understanding of this phenomenon is needed in order to modulate treatment protocols to therapeutic advantage and to provide more rational guidelines for the evaluation of environmental hazards.
Collapse
Affiliation(s)
- B Djordjevic
- Department of Radiation Oncology, Health Science Center at Brooklyn, State University of New York, Brooklyn, NY 11203, USA
| |
Collapse
|
24
|
Abstract
Connexin channels provide for a widespread mechanism of cell-to-cell cross-talk within primary tissues, which is mediated by intercellular exchanges of cytoplasmic ions and molecules. Experimental and clinical studies have recently provided evidence that these exchanges are most likely to play multiple roles, which are critical for the proper development and function of primary tissues. There is also increasing evidence that major clinical disorders may result when the formation and function of connexin channels are altered. Still, the physiological functions that the cell-to-cell communication mediated by connexin channels subserve in most primary tissues are still uncertain. Here, I review two approaches that may aid in identifying these specific functions.
Collapse
Affiliation(s)
- P Meda
- Department of Morphology, University of Geneva Medical School, 1, rue Michel Servet, Geneva 4, CH-1211, Switzerland.
| |
Collapse
|
25
|
Stribbling SM, Friedlos F, Martin J, Davies L, Spooner RA, Marais R, Springer CJ. Regressions of established breast carcinoma xenografts by carboxypeptidase G2 suicide gene therapy and the prodrug CMDA are due to a bystander effect. Hum Gene Ther 2000; 11:285-92. [PMID: 10680842 DOI: 10.1089/10430340050016021] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The role of the bystander effect in the treatment of a human breast carcinoma xenograft was studied by suicide gene therapy with carboxypeptidase G2 (CPG2) and CMDA. Cells expressing enzymatically active surface-tethered bacterial CPG2 [stCPG2(Q)3] were mixed with control beta-galactosidase (beta-Gal)-expressing cells to give stCPG2(Q)3:beta-Gal ratios of, respectively: group 1, 0:100; group 2, 10:90; group 3, 50:50; and group 4, 100:0. Four days after injection of the cells into nude mice, the prodrug 4-[(2-chloroethyl)(2-mesyloxyethyl)amino]benzoyl-L-glutamic acid (CMDA) was administered. Tumor growth delay correlated well with the levels of stCPG2(Q)3 expression: group 1, 0 day delay; group 2, 10 days; group 3, 16 days; and group 4, 90 days. Similarly, the number of cures was strongly correlated to the levels of stCPG2(Q)3 activity: group 1, zero of six cured; group 2, one of six cured; group 3, three of six cured and group 4, four of six cured. There was a good correlation between CPG2 enzyme activity in the tumors and the number of cures. The majority of cells from groups 2 and 3 were apoptotic whereas those from group 1 were not, indicating a substantial bystander effect in the tumors. These results suggest that a bystander effect plays a major role in suicide gene therapy regimens with stCPG2(Q)3 and CMDA.
Collapse
Affiliation(s)
- S M Stribbling
- CRC Centre for Cancer Therapeutics, Institute of Cancer Research, Sutton, Surrey, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
26
|
Chanson M, Mollard P, Meda P, Suter S, Jongsma HJ. Modulation of pancreatic acinar cell to cell coupling during ACh-evoked changes in cytosolic Ca2+. J Biol Chem 1999; 274:282-7. [PMID: 9867842 DOI: 10.1074/jbc.274.1.282] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The temporal changes in cytosolic free Ca2+ ([Ca2+]i), Ca2+-dependent membrane currents (Im), and gap junctional current (Ij) elicited by acetylcholine (ACh) were measured in rat pancreatic acinar cells using digital imaging and dual perforated patch-clamp recording. ACh (50 nM-5 microM) increased [Ca2+]i and evoked Im currents without altering Ij in 19 of 37 acinar cell pairs. Although [Ca2+]i rose asynchronously in cells comprising a cluster, the delay of the [Ca2+]i responses decreased with increasing ACh concentrations. Perfusion of inositol 1,4,5-trisphosphate (IP3) into one cell of a cluster resulted in [Ca2+]i responses in neighboring cells that were not necessarily in direct contact with the stimulated one. This suggests that extensive coupling between acinar cells provides a pathway for cell-to-cell diffusion of Ca2+-releasing signals. Strikingly, maximal (1-5 microM) ACh concentrations reduced Ij by 69 +/- 15% (n = 9) in 25% of the cell pairs subjected to dual patch-clamping. This decrease occurred shortly after the Im peak and was prevented by incubating acinar cells in a Ca2+-free medium, suggesting that uncoupling was subsequent to the initiation of the Ca2+-mobilizing responses. Depletion of Ca2+-sequestering stores by thapsigargin resulted in a reduction of intercellular communication similar to that observed with ACh. In addition, ACh-induced uncoupling was prevented by blocking nitric oxide production with L-nitro-arginine and restored by exposing acinar cells to dibutyryl cGMP. The results suggest that ACh-induced uncoupling and capacitative Ca2+ entry are regulated concurrently. Closure of gap junction channels may occur to functionally isolate nearby cells differing in their intrinsic sensitivity to ACh and thereby to allow for sustained activity of groups of secreting cells.
Collapse
Affiliation(s)
- M Chanson
- Department of Medical Physiology and Sport Medicine, Utrecht University, 3508TA Utrecht, The Netherlands.
| | | | | | | | | |
Collapse
|
27
|
Abstract
Invariant left-right asymmetry of the visceral organs is a fundamental feature of vertebrate embryogenesis. While a cascade of asymmetrically expressed genes has been described, the embryonic mechanism that orients the left-right axis relative to the dorsoventral and anteroposterior axes (a prerequisite for asymmetric gene expression) is unknown. We propose that this process involves dorsoventral differences in cell-cell communication through gap junctions composed of connexin proteins. Global modulation of gap junctional states in Xenopus embryos by pharmacological agents specifically induced heterotaxia involving mirror-image reversals of heart, gut, and gall bladder. Greatest sensitivity was observed between st. 5 and st. 12, well before the onset of organogenesis. Moreover, heterotaxia was also induced following microinjection of dominant negative and wild-type connexin mRNAs to modify the endogenous dorsoventral difference in junctional communication. Heterotaxia was induced by either blocking gap junction communication (GJC) dorsally or by introducing communication ventrally (but not the reverse). Both connexin misexpression and exposure to GJC-modifying drugs altered expression of the normally left-sided gene XNR-1, demonstrating that GJC functions upstream of XNR-1 in the pathway that patterns left-right asymmetry. Finally, lineage analysis to follow the progeny of microinjected cells indicated that they generally do not contribute the asymmetric organs. Together with the early sensitivity window, this suggests that GJC functions as part of a fundamental, early aspect of left-right patterning. In addition, we show that a potential regulatory mutation in Connexin43 is sufficient to cause heterotaxia. Despite uncertainty about the prevalence of the serine364 to proline substitution reported in human patients with laterality defects, the mutant protein is both a mild hypomorph and a potent antimorph as determined by the effect of its expression on left-right patterning. Taken together, our data suggest that endogenous dorsoventral differences in GJC within the early embryo are needed to consistently orient left-right asymmetry.
Collapse
Affiliation(s)
- M Levin
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts, 02115, USA
| | | |
Collapse
|
28
|
Chanson M, Fanjul M, Bosco D, Nelles E, Suter S, Willecke K, Meda P. Enhanced secretion of amylase from exocrine pancreas of connexin32-deficient mice. J Cell Biol 1998; 141:1267-75. [PMID: 9606217 PMCID: PMC2137182 DOI: 10.1083/jcb.141.5.1267] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/1997] [Revised: 04/29/1998] [Indexed: 02/07/2023] Open
Abstract
To determine whether junctional communication between pancreatic acinar cells contributes to their secretory function in vivo, we have compared wild-type mice, which express the gap junctional proteins connexin32 (Cx32) and connexin26, to mice deficient for the Cx32 gene. Pancreatic acinar cells from Cx32 (-/-) mice failed to express Cx32 as evidenced by reverse transcription-PCR and immunolabeling and showed a marked reduction (4.8- and 25-fold, respectively) in the number and size of gap junctions. Dye transfer studies showed that the extent of intercellular communication was inhibited in Cx32 (-/-) acini. However, electrical coupling was detected by dual patch clamp recording in Cx32 (-/-) acinar cell pairs. Although wild-type and Cx32 (-/-) acini were similarly stimulated to release amylase by carbamylcholine, Cx32 (-/-) acini showed a twofold increase of their basal secretion. This effect was caused by an increase in the proportion of secreting acini, as detected with a reverse hemolytic plaque assay. Blood measurements further revealed that Cx32 (-/-) mice had elevated basal levels of circulating amylase. The results, which demonstrate an inverse relationship between the extent of acinar cell coupling and basal amylase secretion in vivo, support the view that the physiological recruitment of secretory acinar cells is regulated by gap junction mediated intercellular communication.
Collapse
Affiliation(s)
- M Chanson
- Department of Pediatrics, University of Geneva, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
29
|
Marais R, Spooner RA, Stribbling SM, Light Y, Martin J, Springer CJ. A cell surface tethered enzyme improves efficiency in gene-directed enzyme prodrug therapy. Nat Biotechnol 1997; 15:1373-7. [PMID: 9415889 DOI: 10.1038/nbt1297-1373] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The potential for expressing the bacterial enzyme carboxypeptidase G2 (CPG2) tethered to the outer surface of mammalian cells was examined for use in gene-directed enzyme prodrug therapy. The affinity of CPG2 for the substrate methotrexate was unaffected by three mutations required to prevent N-linked glycosylation. Breast carcinoma MDA MB 361 cells expressing CPG2 internally showed only a very modest increase in sensitivity to the prodrug CMDA because the prodrug did not enter the cells. Cells expressing surface-tethered CPG2, however, became 16-24-fold more sensitive to CMDA and could mount a good bystander effect. Systemic administration of CMDA to mice bearing established xenografts of the transfected cells led to sustained tumor regressions or cures.
Collapse
Affiliation(s)
- R Marais
- CRC Centre for Cancer Therapeutics, Institute of Cancer Research, Sutton, Surrey, UK
| | | | | | | | | | | |
Collapse
|
30
|
Abstract
1. Gap junctions and junction-mediated cell-to-cell communications are obligatory features of gland cells, whatever their secretory product is. 2. Studies on pancreatic islets and acinar cells indicate that cell-to-cell communication via gap junction channels is required for proper biosynthesis, storage and release of both insulin and amylase. 3. However, the endocrine and exocrine portions of the pancreas show opposite connexin (Cx) and coupling changes in relation to the activation and inhibition of their secretory functions. 4. These differences may be accounted for by the expression of Cx43 in pancreatic islets and of Cx26 and Cx32 in pancreatic acini. This alternative expression of connexin isoforms is also found in several other endocrine and exocrine glands. 5. These observations indicate that connexin-made channels play a central role in the control of secretory events.
Collapse
Affiliation(s)
- P Meda
- Department of Morphology, University of Geneva Medical School, Switzerland
| |
Collapse
|
31
|
Meda P. The role of gap junction membrane channels in secretion and hormonal action. J Bioenerg Biomembr 1996; 28:369-77. [PMID: 8844334 DOI: 10.1007/bf02110113] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Connexins, gap junctions, and coupling are obligatory features of both endocrine and exocrine glandular epithelia. Evidence from these two types of tissues, and particularly from pancreatic islets and acini, indicates that cell-to-cell communication via gap junction channels is required for proper biosynthesis, storage, and release of specific secretory products. However, endocrine and exocrine glands express a different set of connexins and show opposite connexin and coupling changes in relation with the activation and inhibition of their secretory function. Also, several hormones modulate connexin and coupling expression, and junctional coupling affects hormonal stimulation. These observations indicate that gap junction channels play an important role in the control of secretion and hormonal action.
Collapse
Affiliation(s)
- P Meda
- Department of Morphology, University of Geneva Medical School, Switzerland
| |
Collapse
|
32
|
Abou Hashieh I, Mathieu S, Besson F, Gerolami A. Inhibition of gap junction intercellular communications of cultured rat hepatocytes by ethanol: role of ethanol metabolism. J Hepatol 1996; 24:360-7. [PMID: 8778205 DOI: 10.1016/s0168-8278(96)80017-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND/AIMS In a previous study, we reported that in cultured rat hepatocytes, ethanol inhibits intercellular communication which is known to play a central role in the regulation of cell growth and differentiation. This work was designed to find out if ethanol exerts a direct action on cell membranes, comparable to other long-chain (C6-C9) alcohols, or an indirect action. METHODS Intercellular communication was measured on short-term cultured rat hepatocytes by the fluorescent Lucifer-Yellow CH transfer method. Intracellular pH was measured by spectrofluorimetry and membrane expression of connexin 32 by indirect immunofluorescence. RESULTS Under our conditions, ethanol (20 mM) inhibited intercellular communication of hepatocytes to the same extent as did octanol and 1 mM. Immunofluorescence semi-quantitative studies of connexin 32 suggested that the observed inhibition was not related to a decrease in the number of gap junction plaques. In contrast with those of octanol, the inhibitory effects of ethanol appeared to be indirect because the inhibition of ethanol metabolism by 4-methyl pyrazole abolished its effects on intercellular communication, while 4-methyl pyrazole did not influence the effects of octanol. Acetaldehyde, the main metabolite of ethanol was without effect on gap junctions. CONCLUSIONS This suggests that the inhibition of intercellular communication induced by ethanol may be included among the consequences of intermediary cell metabolism disturbances indirectly due to ethanol oxidation. This may be one of the mechanisms by which ethanol metabolism exerts a hepatotoxic possibly carcinogenic action.
Collapse
|
33
|
Madhavan K, Madhavan MM. Negative growth control of mitotically active imaginal cells (histoblasts) of the abdominal epidermis during metamorphosis of the housefly. J Morphol 1994; 222:301-307. [PMID: 29865422 DOI: 10.1002/jmor.1052220307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
On the ventral side of each pupal abdominal segment of the housefly, there is a pair of histoblast nests, each containing about 600 diploid cells. These cells, during adult development, divide, replace intervening polytene larval epidermal cells (LEC), and form both the median sternite and the surrounding pleura of the adult segment. Since the histoblast nests and the LEC form a contiguous layer, we examined the role of these two types of cells in regulating the mitotic potential of the histoblasts during development of the median sternite. Two experimental approaches were used: deletion of one of the nests by thermocautery; and by disturbance of the continuity of the monolayered epidermis by thermocautery of, or topical application of heptanol on, the midventral LEC. Ablation of one of the contralateral nests resulted in a mirror image duplication of the hemisternite and pleura by the surviving nest. Disturbance of the continuity of the LEC produced mirror image duplication of the hemisternal pattern by each of the contralateral nests. From these results, we propose that the contralateral ventral nests mutually downregulate their mitotic potential by secreting regulatory factor(s) to produce the normal median sternite pattern and surrounding pleura. We also suggest that these chemicals act in a paracrine fashion, possibly through gap junctions in the LEC. © 1994 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Kornath Madhavan
- Department of Biology, College of the Holy Cross, Worcester, Massachusetts 01610
| | | |
Collapse
|
34
|
Bosco D, Soriano JV, Chanson M, Meda P. Heterogeneity and contact-dependent regulation of amylase release by individual acinar cells. J Cell Physiol 1994; 160:378-88. [PMID: 7518824 DOI: 10.1002/jcp.1041600219] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We have used a reverse hemolytic plaque assay to investigate the amylase release of single and aggregated pancreatic acinar cells. We have found that a minority of single acinar cells released detectable amounts of amylase under basal conditions and were modestly stimulated, in a dose-dependent manner, during a 30-min exposure to concentrations of carbamylcholine (CCh) ranging from 10(-8) to 10(-5) M. This stimulation was largely accounted for by the recruitment of additional secreting cells, rather than by a significant increase in their individual secretory output. We have also observed that aggregates comprising two to five acinar cells secreted more frequently and released more amylase than single acinar cells in the presence of each of the CCh concentrations tested. Under both basal conditions and following CCh stimulation, the proportion of secreting aggregates and their amylase output increased linearly with the aggregate size. Under basal conditions as well as in the presence of secretagogue concentrations in the 10(-8) - 10(-7) M range, individual cells contributed similarly to amylase secretion whether they were single or part of aggregates. By contrast, following stimulation by 10(-6) - 10(-5) M CCh, aggregated cells showed a much higher average secretion than single cells. Investigating the mechanism of this contact-dependent effect, we found that 10(-3) M heptanol did not significantly modify the secretion of single cells and markedly promoted the basal amylase release of acinar cell pairs. This effect was associated with a marked reduction in gap junctional communication between acinar cells, as evaluated by microinjection of Lucifer yellow, and was not observed during exposure to high concentrations of CCh, which also reduced junctional communication. These data show that pancreatic acinar cells are intrinsically heterogeneous in their ability to release amylase and that their basal as well as stimulated secretion are promoted by the establishment of direct intercellular contacts. Our experiments also suggest that junctional coupling contributes to the contact-dependent mechanism which enhances the recruitment of secreting cells and their individual output. These observations strengthen the view that direct interactions between acinar cells are essential in the control of pancreatic secretion.
Collapse
Affiliation(s)
- D Bosco
- Department of Morphology, University of Geneva Medical School, Switzerland
| | | | | | | |
Collapse
|
35
|
Ngezahayo A, Kolb HA. Regulation of gap junctional coupling in isolated pancreatic acinar cell pairs by cholecystokinin-octapeptide, vasoactive intestinal peptide (VIP) and a VIP-antagonist. J Membr Biol 1994; 139:127-36. [PMID: 7520502 DOI: 10.1007/bf00232431] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Cholecystokinin-octapeptide (CCK-OP) induces a time- and dose-dependent decrease of gap junctional conductance in isolated pairs of pancreatic acinar cells. In double whole-cell experiments, the time course could be described by the latency and the half-life time (t1/2) of cell-to-cell uncoupling. The latency shows a biphasic dependence on [CCK-OP] with a minimum of about 50 sec at 10(-9) M CCK-OP. In the presence of vasoactive intestinal peptide (VIP), the biphasic relationship is shifted to lower CCK-OP concentrations. The increase of latency at high concentrations of CCK-OP (> 10(-9) M) was blocked by addition of a VIP-antagonist. t1/2 decreases monophasically with increasing [CCK-OP]. Addition of GTP gamma S to the pipette solution suppresses the [CCK-OP] dependence of the latency and potentiates the uncoupling phase. The kinetic data are discussed in terms of CCK binding to receptors of high and low affinity. Evidence is presented that secretion and cell-to-cell coupling are not related by an all-or-none process, but that for physiological CCK-OP concentrations, gap junctional uncoupling follows secretion.
Collapse
Affiliation(s)
- A Ngezahayo
- University of Konstanz, Faculty of Biology, Germany
| | | |
Collapse
|
36
|
Bastiaanse EM, Jongsma HJ, van der Laarse A, Takens-Kwak BR. Heptanol-induced decrease in cardiac gap junctional conductance is mediated by a decrease in the fluidity of membranous cholesterol-rich domains. J Membr Biol 1993; 136:135-45. [PMID: 7508980 DOI: 10.1007/bf02505758] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
To assess whether alterations in membrane fluidity of neonatal rat heart cells modulate gap junctional conductance (gj), we compared the effects of 2 mM 1-heptanol and 20 microM 2-(methoxy-ethoxy)ethyl 8-(cis-2-n-octylcyclopropyl)-octanoate (A2C) in a combined fluorescence anisotropy and electrophysiological study. Both substances decreased fluorescence steady-state anisotropy (rss), as assessed with the fluorescent probe 1-(4-trimethylammoniumphenyl)-6-phenyl-1,3,5-hexatriene (TMA-DPH) by 9.6 +/- 1.1% (mean +/- SEM, n = 5) and 9.8 +/- 0.6% (n = 5), respectively, i.e., both substances increased bulk membrane fluidity. Double whole-cell voltage-clamp experiments showed that 2 mM heptanol uncoupled cell pairs completely (n = 6), whereas 20 microM A2C, which increased bulk membrane fluidity to the same extent, did not affect coupling at all (n = 5). Since gap junction channels are embedded in relatively cholesterol-rich domains of the membrane, we specifically assessed the fluidity of the cholesterol-rich domains with dehydroergosterol (DHE). Using DHE, heptanol increased rss by 14.9 +/- 3.0% (n = 5), i.e., decreased cholesterol domain fluidity, whereas A2C had no effect on rss (-0.4 +/- 6.7%, n = 5). Following an increase of cellular "cholesterol" content (by loading the cells with DHE), 2 mM heptanol did not uncouple cell pairs completely: gj decreased by 80 +/- 20% (range 41-95%, n = 5). The decrease in gj was most probably due to a decrease in the open probability of the gap junction channels, because the unitary conductances of the channels were not changed nor was the number of channels comprising the gap junction. The sensitivity of nonjunctional membrane channels to heptanol was unaltered in cholesterol-enriched myocytes. These results indicate that the fluidity of cholesterol-rich domains is of importance to gap junctional coupling, and that heptanol decreases gj by decreasing the fluidity of cholesterol-rich domains, rather than by increasing the bulk membrane fluidity.
Collapse
Affiliation(s)
- E M Bastiaanse
- Department of Cardiology, University Hospital, Leiden, The Netherlands
| | | | | | | |
Collapse
|
37
|
Stauffer P, Zhao H, Luby-Phelps K, Moss R, Star R, Muallem S. Gap junction communication modulates [Ca2+]i oscillations and enzyme secretion in pancreatic acini. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)36580-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
38
|
Civitelli R, Beyer EC, Warlow PM, Robertson AJ, Geist ST, Steinberg TH. Connexin43 mediates direct intercellular communication in human osteoblastic cell networks. J Clin Invest 1993; 91:1888-96. [PMID: 8387535 PMCID: PMC288182 DOI: 10.1172/jci116406] [Citation(s) in RCA: 161] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
We have examined cell coupling and expression of gap junction proteins in monolayer cultures of cells derived from human bone marrow stromal cells (BMC) and trabecular bone osteoblasts (HOB), and in the human osteogenic sarcoma cell line, SaOS-2. Both HOB and BMC cells were functionally coupled, since microinjection of Lucifer yellow resulted in dye transfer to neighboring cells, with averages of 3.4 +/- 2.8 (n = 131) and 8.1 +/- 9.3 (n = 51) coupled cells per injection, respectively. In contrast, little diffusion of Lucifer yellow was observed in SaOS-2 monolayers (1.4 +/- 1.8 coupled cells per injection, n = 100). Dye diffusion was inhibited by octanol (3.8 mM), an inhibitor of gap junctional communication. All of the osteoblastic cells expressed mRNA for connexin43 and connexin45, but not for connexins 26, 32, 37, 40, or 46. Whereas all of the osteoblastic cells expressed similar quantities of mRNA for connexin43, the poorly coupled SaOS-2 cells produced significantly less Cx43 protein than either HOB or BMC, as assessed by immunofluorescence and immunoprecipitation. Conversely, more Cx45 mRNA was expressed by SaOS-2 cells than by HOB or BMC. Thus, intercellular coupling in normal and transformed human osteoblastic cells correlates with the level of expression of Cx43, which appears to mediate intercellular communication in these cells. Gap junctional communication may serve as a means by which osteoblasts can work in synchrony and propagate locally generated signals throughout the skeletal tissue.
Collapse
Affiliation(s)
- R Civitelli
- Division of Endocrinology and Bone and Mineral Diseases, Jewish Hospital of St. Louis, Missouri 63110
| | | | | | | | | | | |
Collapse
|
39
|
Sakai N, Tabb T, Garfield RE. Studies of connexin 43 and cell-to-cell coupling in cultured human uterine smooth muscle. Am J Obstet Gynecol 1992; 167:1267-77. [PMID: 1332476 DOI: 10.1016/s0002-9378(11)91699-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
OBJECTIVE The aim of this study was to assess the presence and the permeability of gap junctions between human uterine smooth-muscle cells in culture. STUDY DESIGN The uterine smooth muscles obtained from term-pregnant women were cultured. The presence of gap junction was evaluated by immunocytochemistry with gap junction protein antibodies and by measuring input resistance and intercellular spread of lucifer yellow. These measures also evaluated the permeability of gap junctions. Octanol, isoproterenol, dibutyryl cyclic adenosine monophosphate and forskolin were applied to the cultures to assess their effects on the permeability of gap junctions. RESULTS During culture, immunocytochemical staining of gap junction protein (connexin 43) was increased and input resistance was decreased on day 2 of culture versus day 21 (18.4 +/- 7.87 M omega day 2; 3.8 +/- 1.76 M omega, day 21; p < 0.001). However, the decrease in input resistance was related to cell density rather than time in culture (16.4 +/- 5.01 M omega, single cells on days 1 and 2; 5.3 +/- 2.35 M omega, high-density cultures on days 1 and 2; p < 0.001). Octanol increased input resistance and intercellular spread of lucifer yellow in confluent cultures; isoproterenol, dibutyryl cyclic adenosine monophosphate, and forskolin did not. CONCLUSIONS The increased staining of connexin 43 and the decreased input resistance during culture are evidence of elevated number of gap junctions between cells. The rapid and reversible increase in input resistance and decrease in spread of lucifer yellow by octanol are the result of decreased permeability of gap junctions. These two methods of modulation of gap junctions in human uterine smooth muscles are thought to be major mechanisms for the control of uterine contractility.
Collapse
Affiliation(s)
- N Sakai
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston 77555-1062
| | | | | |
Collapse
|
40
|
Reynhout JK, Lampe PD, Johnson RG. An activator of protein kinase C inhibits gap junction communication between cultured bovine lens cells. Exp Cell Res 1992; 198:337-42. [PMID: 1309506 DOI: 10.1016/0014-4827(92)90388-o] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Currently little is known about the regulation of gap junction communication in the lens. We report here on the effects of the protein kinase C activator, 12-O-tetradecanoylphorbol-13-acetate (TPA), on cultured bovine lens cells which appeared to be epithelial in nature. Dramatically reduced intercellular transfer of the fluorescent dye Lucifer yellow was observed when the cultured lens cells were treated with octanol, a known inhibitor of gap junction communication. TPA (4 beta isomer) was also shown to reduce intercellular permeability within these cultures. In contrast, an inactive form of TPA, 4 alpha-TPA, did not decrease dye transfer. Permeability was evaluated in terms of both the number of cells receiving dye and the rate of decrease in fluorescence intensity in the injected cell. The maximum decreases in dye transfer occurred at 2 h of TPA treatment and dye transfer gradually increased to control levels over a time course of many hours. Incubation of cultures with 32Pi and immunoprecipitation using antibodies to the N- and C-terminal regions of connexin43 demonstrated a gap junction phosphoprotein of 43,000 Da. Phosphorylation of connexin43 increased during the first 2 h of TPA treatment. These results suggest that protein kinase C has a direct or indirect effect on gap junction communication in cultured lens cells.
Collapse
Affiliation(s)
- J K Reynhout
- Department of Biological Sciences, Bethel College, St. Paul, Minnesota 55112
| | | | | |
Collapse
|
41
|
Musil LS, Goodenough DA. Biochemical analysis of connexin43 intracellular transport, phosphorylation, and assembly into gap junctional plaques. J Biophys Biochem Cytol 1991; 115:1357-74. [PMID: 1659577 PMCID: PMC2289231 DOI: 10.1083/jcb.115.5.1357] [Citation(s) in RCA: 565] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We previously demonstrated that the gap junction protein connexin43 is translated as a 42-kD protein (connexin43-NP) that is efficiently phosphorylated to a 46,000-Mr species (connexin43-P2) in gap junctional communication-competent, but not in communication-deficient, cells. In this study, we used a combination of metabolic radiolabeling and immunoprecipitation to investigate the assembly of connexin43 into gap junctions and the relationship of this event to phosphorylation of connexin43. Examination of the detergent solubility of connexin43 in communication-competent NRK cells revealed that processing of connexin43 to the P2 form was accompanied by acquisition of resistance to solubilization in 1% Triton X-100. Immunohistochemical localization of connexin43 in Triton-extracted NRK cells demonstrated that connexin43-P2 (Triton-insoluble) was concentrated in gap junctional plaques, whereas connexin43-NP (Triton-soluble) was predominantly intracellular. Using either a 20 degrees C intracellular transport block or cell-surface protein biotinylation, we determined that connexin43 was transported to the plasma membrane in the Triton-soluble connexin43-NP form. Cell-surface biotinylated connexin43-NP was processed to Triton-insoluble connexin43-P2 at 37 degrees C. Connexin43-NP was also transported to the plasma membrane in communication defective, gap junction-deficient S180 and L929 cells but was not processed to Triton-insoluble connexin43-P2. Taken together, these results demonstrate that gap junction assembly is regulated after arrival of connexin43 at the plasma membrane and is temporally associated with acquisition of insolubility in Triton X-100 and phosphorylation to the connexin43-P2 form.
Collapse
Affiliation(s)
- L S Musil
- Department of Anatomy and Cellular Biology, Harvard Medical School, Boston, Massachusetts 02115
| | | |
Collapse
|
42
|
Musil LS, Cunningham BA, Edelman GM, Goodenough DA. Differential phosphorylation of the gap junction protein connexin43 in junctional communication-competent and -deficient cell lines. J Cell Biol 1990; 111:2077-88. [PMID: 2172261 PMCID: PMC2116332 DOI: 10.1083/jcb.111.5.2077] [Citation(s) in RCA: 513] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Connexin43 is a member of the highly homologous connexin family of gap junction proteins. We have studied how connexin monomers are assembled into functional gap junction plaques by examining the biosynthesis of connexin43 in cell types that differ greatly in their ability to form functional gap junctions. Using a combination of metabolic radiolabeling and immunoprecipitation, we have shown that connexin43 is synthesized in gap junctional communication-competent cells as a 42-kD protein that is efficiently converted to a approximately 46-kD species (connexin43-P2) by the posttranslational addition of phosphate. Surprisingly, certain cell lines severely deficient in gap junctional communication and known cell-cell adhesion molecules (S180 and L929 cells) also expressed 42-kD connexin43. Connexin43 in these communication-deficient cell lines was not, however, phosphorylated to the P2 form. Conversion of S180 cells to a communication-competent phenotype by transfection with a cDNA encoding the cell-cell adhesion molecule L-CAM induced phosphorylation of connexin43 to the P2 form; conversely, blocking junctional communication in ordinarily communication-competent cells inhibited connexin43-P2 formation. Immunohistochemical localization studies indicated that only communication-competent cells accumulated connexin43 in visible gap junction plaques. Together, these results establish a strong correlation between the ability of cells to process connexin43 to the P2 form and to produce functional gap junctions. Connexin43 phosphorylation may therefore play a functional role in gap junction assembly and/or activity.
Collapse
Affiliation(s)
- L S Musil
- Department of Anatomy and Cellular Biology, Harvard Medical School, Boston, Massachusetts 02115
| | | | | | | |
Collapse
|
43
|
Musil LS, Goodenough DA. Gap junctional intercellular communication and the regulation of connexin expression and function. Curr Opin Cell Biol 1990; 2:875-80. [PMID: 1964569 DOI: 10.1016/0955-0674(90)90086-t] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- L S Musil
- Department of Anatomy and Cellular Biology, Harvard Medical School, Boston, Massachusetts
| | | |
Collapse
|
44
|
Meda P, Bosco D, Chanson M, Giordano E, Vallar L, Wollheim C, Orci L. Rapid and reversible secretion changes during uncoupling of rat insulin-producing cells. J Clin Invest 1990; 86:759-68. [PMID: 1697604 PMCID: PMC296790 DOI: 10.1172/jci114772] [Citation(s) in RCA: 98] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
To determine whether insulin secretion is affected by a blockage of gap junctions between B cells, we have studied the secretion of rat pancreatic islets of Langerhans, primary dispersed islet cells, and cells of the RINm5F line, during short-term exposure to heptanol. Within minutes, this alkanol blocked gap junctions between the B cells of intact islets and abolished their normal secretory response to glucose. These two changes were rapidly and fully reversible after return of the islets to control medium. We further found that heptanol had no significant effect on the glucose-stimulated secretion of single B cells but inhibited that of B cell pairs. In the clone of RINm5F cells, whose junctional coupling and D-glyceraldehyde-induced stimulation of insulin release by aggregated cells were also inhibited by heptanol, this alkanol did not perturb intracellular pH and Ca2+ and the most distal steps of the secretion pathway. In summary, a gap junction blocker affected the secretion of insulin-producing cells by a mechanism which is dependent on cell contact and is not associated with detectable pleiotropic perturbations of the cell secretory machinery. The data provide evidence for the involvement of junctional coupling in the control of insulin secretion.
Collapse
Affiliation(s)
- P Meda
- Department of Morphology, University of Geneva Medical School, Switzerland
| | | | | | | | | | | | | |
Collapse
|
45
|
Pepper MS, Spray DC, Chanson M, Montesano R, Orci L, Meda P. Junctional communication is induced in migrating capillary endothelial cells. J Cell Biol 1989; 109:3027-38. [PMID: 2592412 PMCID: PMC2115911 DOI: 10.1083/jcb.109.6.3027] [Citation(s) in RCA: 93] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Using an in vitro model in which a confluent monolayer of capillary endothelial cells is mechanically wounded, gap junction-mediated intercellular communication has been studied by loading the cells with the fluorescent dye, Lucifer Yellow. Approximately 40-50% of the cells in a nonwounded confluent monolayer were coupled in groups of four to five cells (basal level). Basal levels of communication were also observed in sparse and preconfluent cultures, but were reduced in postconfluent monolayers. 30 min after wounding, coupling was markedly reduced between cells lining the wound. Communication at the wound was partially reestablished by 2 h, exceeded basal levels after 6 h and reached a maximum after 24 h, at which stage approximately 90% of the cells were coupled in groups of six to seven cells. When the wound had closed (after 8 d), the increase in communication was no longer observed. Induction of wound-associated communication was unaffected by exposure of the cells to the DNA synthesis inhibitor mitomycin C, but was prevented by the protein synthesis inhibitor, cycloheximide. The induction of wound-associated communication was also inhibited when migration was prevented by placing the cells immediately after wounding at 22 degrees C or after exposure to cytochalasin D, suggesting that the increase in communication is dependent on cells migrating into the wound area. In contrast, migration was not prevented when coupling was blocked by exposure of the cells to retinoic acid, although this agent did disrupt the characteristic sheet-like pattern of migration typically seen during endothelial repair. These results suggest that junctional communication may play an important role in wound repair, possibly by coordinating capillary endothelial cell migration.
Collapse
Affiliation(s)
- M S Pepper
- Department of Morphology, University of Geneva Medical Center, Switzerland
| | | | | | | | | | | |
Collapse
|