1
|
Hoffmann EK, Pedersen SF. Effectors and signaling events activated by cell shrinkage in ehrlich ascites tumor cells: implications for cell proliferation and programmed cell death. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2004; 559:169-178. [PMID: 18727238 DOI: 10.1007/0-387-23752-6_16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Affiliation(s)
- Else K Hoffmann
- Dept. of Biochemistry, August Krogh Institute, 13, Universitetsparken, DK-2100 Copenhagen O, Denmark.
| | | |
Collapse
|
2
|
Panet R, Eliash M, Pick M, Atlan H. Na(+)/K(+)/Cl(-) cotransporter activates mitogen-activated protein kinase in fibroblasts and lymphocytes. J Cell Physiol 2002; 190:227-37. [PMID: 11807827 DOI: 10.1002/jcp.10055] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In a previous work, we have shown that overexpression of the Na(+)/K(+)/Cl(-) cotransporter (NKCC1) induces cell proliferation and transformation. We investigate in the present study the role of the NKCC1 in the mitogenic signal transduction. We show that overexpression of the cotransporter gene (NKCC1) in stablely transfected cells (Balb/c-NKCC1), resulted in enhanced phosphorylation of the extracellular regulated kinase (ERK) to produce double phosphorylated ERK (DP-ERK). Furthermore, the level of DP-ERK was reduced by 50-80% following the addition of bumetanide, a specific inhibitor of the Na(+)/K(+)/Cl(-) cotransporter, in quiescent as well as in proliferating cultures of the Balb/c-NKCC1 clone. In order to explore further the role of the Na(+)/K(+)/Cl(-) cotransporter in mitogenic signal transduction, we measured the effect of the two specific inhibitors of the cotransporter; bumetanide and furosemide, on DP-ERK level in immortalized non-transformed cells. In Balb/c 3T3 fibroblasts stimulated with FGF, bumetanide, and furosemide inhibited 50-60% of the ERK 1/2 phosphorylation. The inhibitor concentration needed for maximal inhibition of ERK 1/2 phosphorylation was similar to the concentration needed to block the K(+) influx mediated by the Na(+)/K(+)/Cl(-) cotransporter in these cells. To analyze whether the Na(+)/K(+)/Cl(-) cotransporter has a role in the mitogenic signal of normal cells, we measured the effect of bumetanide on ERK phosphorylation in human peripheral blood lymphocytes. The phosphorylation of ERK 1/2 in resting human lymphocytes, as well as in lymphocytes stimulated with phytohemagglutinin (PHA) was inhibited by bumetanide. The effect of bumetanide on ERK 2 phosphorylation was much lower than that of ERK 1 phosphorylation. The finding that the Na(+)/K(+)/Cl(-) cotransporter controls the ERK/MAPK (mitogen-activated protein kinase) signal transduction pathway, support our hypothesis that Na(+) and K(+) influxes mediated by this transporter plays a central role in the control of normal cell proliferation. Exploring the cellular ionic currents and levels, mediated by the Na(+)/K(+)/Cl(-) cotransporter, should lead to a better comprehension of cell proliferation and transformation machinery.
Collapse
Affiliation(s)
- Rivka Panet
- Department of Medical Biophysics and Nuclear Medicine, Hadassah University Hospital, Jerusalem, Israel.
| | | | | | | |
Collapse
|
3
|
Panet R, Marcus M, Atlan H. Overexpression of the Na(+)/K(+)/Cl(-) cotransporter gene induces cell proliferation and phenotypic transformation in mouse fibroblasts. J Cell Physiol 2000; 182:109-18. [PMID: 10567922 DOI: 10.1002/(sici)1097-4652(200001)182:1<109::aid-jcp12>3.0.co;2-a] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Na(+)/K(+)/Cl(-) cotransporter activity is stimulated in early G(1) phase of the cell cycle and this stimulation was shown to be an essential event in fibroblast cell proliferation. In order to elucidate further the role of the Na(+)/K(+)/Cl(-) cotransporter in cell proliferation, we overexpressed the gene encoding the Na(+)/K(+)/Cl(-) cotransporter in mouse fibroblasts, and analyzed cellular phenotypic changes. Mouse Balb/c 3T3 cells were stably transfected with the cDNA of the shark rectal gland Na(+)/K(+)/Cl(-) cotransporter gene (NKCC1), and expressed in a mammalian vector under the cytomegalovirus promoter (Balb/c-NKCC1 cells). The transfected cells exhibited up to 10-fold greater bumetanide-sensitive Rb(+) influx compared to the control cells. The Balb/c-NKCC1 cells have acquired a typical transformation phenotype indicated by: (1) Loss of contact inhibition exhibited by growth to a higher cell density in confluent cultures, and formation of cell foci; (2) proliferation in low serum concentrations; and (3) formation of cell colonies in soft agar. The control cells transfected with the NKCC1 gene inserted in the opposite orientation in the vector retained their normal phenotype. Furthermore, the two specific inhibitors of the Na(+)/K(+)/Cl(-) cotransporter activity; bumetanide and furosemide inhibited the clonogenic efficiency in the NKCC1 transfected cells. These control experiments indicate that the apparent transformation phenotype acquired by the Balb/c-NKCC1 cells was not merely associated with the process of transfection and selecting for the neomycin-resistant clones, but rather with the overexpression of the Na(+)/K(+)/Cl(-) cotransporter gene. In order to ascertain that the regulated and normal expression of the Na(+)/K(+)/Cl(-) cotransporter control cell proliferation, the effect of bumetanide a specific inhibitor of the cotransporter, was tested on Balb/c 3T3 cell proliferation, induced by fibroblasts growth factor (FGF) and fetal calf serum (FCS). Bumetanide inhibited synchronized Balb/c 3T3 cell exit from the G(0)/G(1) arrest and entering S-phase. The inhibition was reversible, as removal of bumetanide completely released cell proliferation. Taken together, these results propose that the NKCC1 gene is involved in the control of normal cell proliferation, while its overexpression results in apparent cell transformation, in a manner similar to some protooncogenes.
Collapse
Affiliation(s)
- R Panet
- Department of Medical Biophysics, Hadassah University Hospital, Jerusalem, Israel.
| | | | | |
Collapse
|
4
|
Abstract
Obligatory, coupled cotransport of Na(+), K(+), and Cl(-) by cell membranes has been reported in nearly every animal cell type. This review examines the current status of our knowledge about this ion transport mechanism. Two isoforms of the Na(+)-K(+)-Cl(-) cotransporter (NKCC) protein (approximately 120-130 kDa, unglycosylated) are currently known. One isoform (NKCC2) has at least three alternatively spliced variants and is found exclusively in the kidney. The other (NKCC1) is found in nearly all cell types. The NKCC maintains intracellular Cl(-) concentration ([Cl(-)](i)) at levels above the predicted electrochemical equilibrium. The high [Cl(-)](i) is used by epithelial tissues to promote net salt transport and by neural cells to set synaptic potentials; its function in other cells is unknown. There is substantial evidence in some cells that the NKCC functions to offset osmotically induced cell shrinkage by mediating the net influx of osmotically active ions. Whether it serves to maintain cell volume under euvolemic conditons is less clear. The NKCC may play an important role in the cell cycle. Evidence that each cotransport cycle of the NKCC is electrically silent is discussed along with evidence for the electrically neutral stoichiometries of 1 Na(+):1 K(+):2 Cl- (for most cells) and 2 Na(+):1 K(+):3 Cl(-) (in squid axon). Evidence that the absolute dependence on ATP of the NKCC is the result of regulatory phosphorylation/dephosphorylation mechanisms is decribed. Interestingly, the presumed protein kinase(s) responsible has not been identified. An unusual form of NKCC regulation is by [Cl(-)](i). [Cl(-)](i) in the physiological range and above strongly inhibits the NKCC. This effect may be mediated by a decrease of protein phosphorylation. Although the NKCC has been studied for approximately 20 years, we are only beginning to frame the broad outlines of the structure, function, and regulation of this ubiquitous ion transport mechanism.
Collapse
Affiliation(s)
- J M Russell
- Department of Biology, Biological Research Laboratories, Syracuse, New York, USA. .,edu
| |
Collapse
|
5
|
O'Neill WC. Physiological significance of volume-regulatory transporters. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 276:C995-C1011. [PMID: 10329946 DOI: 10.1152/ajpcell.1999.276.5.c995] [Citation(s) in RCA: 185] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Research over the past 25 years has identified specific ion transporters and channels that are activated by acute changes in cell volume and that serve to restore steady-state volume. The mechanism by which cells sense changes in cell volume and activate the appropriate transporters remains a mystery, but recent studies are providing important clues. A curious aspect of volume regulation in mammalian cells is that it is often absent or incomplete in anisosmotic media, whereas complete volume regulation is observed with isosmotic shrinkage and swelling. The basis for this may lie in an important role of intracellular Cl- in controlling volume-regulatory transporters. This is physiologically relevant, since the principal threat to cell volume in vivo is not changes in extracellular osmolarity but rather changes in the cellular content of osmotically active molecules. Volume-regulatory transporters are also closely linked to cell growth and metabolism, producing requisite changes in cell volume that may also signal subsequent growth and metabolic events. Thus, despite the relatively constant osmolarity in mammals, volume-regulatory transporters have important roles in mammalian physiology.
Collapse
Affiliation(s)
- W C O'Neill
- Renal Division, Department of Medicine, and Department of Physiology, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
| |
Collapse
|
6
|
Orlov SN, Adragna NC, Adarichev VA, Hamet P. Genetic and biochemical determinants of abnormal monovalent ion transport in primary hypertension. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 276:C511-36. [PMID: 10069978 DOI: 10.1152/ajpcell.1999.276.3.c511] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Data obtained during the last two decades show that spontaneously hypertensive rats, an acceptable experimental model of primary human hypertension, possess increased activity of both ubiquitous and renal cell-specific isoforms of the Na+/H+ exchanger (NHE) and Na+-K+-2Cl- cotransporter. Abnormalities of these ion transporters have been found in patients suffering from essential hypertension. Recent genetic studies demonstrate that genes encoding the beta- and gamma-subunits of ENaC, a renal cell-specific isoform of the Na+-K+-2Cl- cotransporter, and alpha3-, alpha1-, and beta2-subunits of the Na+-K+ pump are localized within quantitative trait loci (QTL) for elevated blood pressure as well as for enhanced heart-to-body weight ratio, proteinuria, phosphate excretion, and stroke latency. On the basis of the homology of genome maps, several other genes encoding these transporters, as well as the Na+/H+ exchanger and Na+-K+-2Cl- cotransporter, can be predicted in QTL related to the pathogenesis of hypertension. However, despite their location within QTL, analysis of cDNA structure did not reveal any mutation in the coding region of the above-listed transporters in primary hypertension, with the exception of G276L substitution in the alpha1-Na+-K+ pump from Dahl salt-sensitive rats and a higher occurrence of T594M mutation of beta-ENaC in the black population with essential hypertension. These results suggest that, in contrast to Mendelian forms of hypertension, the altered activity of monovalent ion transporters in primary hypertension is caused by abnormalities of systems involved in the regulation of their expression and/or function. Further analysis of QTL in F2 hybrids of normotensive and hypertensive rats and in affected sibling pairs will allow mapping of genes causing abnormalities of these regulatory pathways.
Collapse
Affiliation(s)
- S N Orlov
- Laboratory of Molecular Medicine, Centre de Recherche de L'Université de Montreal, Campus Hotel-Dieu, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
7
|
Maglova LM, Crowe WE, Smith PR, Altamirano AA, Russell JM. Na+-K+-Cl- cotransport in human fibroblasts is inhibited by cytomegalovirus infection. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:C1330-41. [PMID: 9814982 DOI: 10.1152/ajpcell.1998.275.5.c1330] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We examined the effects of human cytomegalovirus (HCMV) infection on the Na+-K+-Cl- cotransporter (NKCC) in a human fibroblast cell line. Using the Cl--sensitive dye MQAE, we showed that the mock-infected MRC-5 cells express a functional NKCC. 1) Intracellular Cl- concentration ([Cl-]i) was significantly reduced from 53.4 +/- 3.4 mM to 35.1 +/- 3.6 mM following bumetanide treatment. 2) Net Cl- efflux caused by replacement of external Cl- with gluconate was bumetanide sensitive. 3) In Cl--depleted mock-infected cells, the Cl- reuptake rate (in HCO-3-free media) was reduced in the absence of external Na+ and by treatment with bumetanide. After HCMV infection, we found that although [Cl-]i increased progressively [24 h postexposure (PE), 65.2 +/- 4.5 mM; 72 h PE, 80.4 +/- 5.0 mM], the bumetanide and Na+ sensitivities of [Cl-]i and net Cl- uptake and loss were reduced by 24 h PE and abolished by 72 h PE. Western blots using the NKCC-specific monoclonal antibody T4 showed an approximately ninefold decrease in the amount of NKCC protein after 72 h of infection. Thus HCMV infection resulted in the abolition of NKCC function coincident with the severe reduction in the amount of NKCC protein expressed.
Collapse
Affiliation(s)
- L M Maglova
- Department of Physiology, Allegheny University of the Health Sciences, Philadelphia, Pennsylvania 19129, USA
| | | | | | | | | |
Collapse
|
8
|
Dike LE, Ingber DE. Integrin-dependent induction of early growth response genes in capillary endothelial cells. J Cell Sci 1996; 109 ( Pt 12):2855-63. [PMID: 9013333 DOI: 10.1242/jcs.109.12.2855] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Studies were carried out to explore how extracellular matrix molecules, such as fibronectin (FN), promote capillary endothelial (CE) cell growth. When G0-synchronized cells were plated on FN-coated dishes, expression of the immediate-early mRNAs, c-fos, c-myc and c-jun, was rapidly induced, even in the absence of serum or soluble growth factors. Moreover, plating cells on different FN densities (5-200 micrograms/150 mm dish), resulted in a dose-dependent increase in the steady state levels of these mRNAs. Addition of FGF potentiated gene activation and was required for maximal DNA synthesis, however, the overall steady-state level of gene induction was dictated primarily by the density of immobilized FN. Expression of junB also was induced when suspended cells bound RGD-peptide coated microbeads that promote integrin clustering, but not when the suspended cells bound beads coated with other receptor ligands (e.g. acetylated low density protein) or when they were stimulated by soluble FN or FGF in the absence of substrate adhesion. c-Jun exhibited a similar requirement for gene induction except that it also was partially induced by binding to soluble FN alone. In contrast, c-fos expression was induced by all stimuli tested. Interestingly, inhibition of Na+/H+ exchange using hexamethylene-amiloride prevented most of the FN-induced increase in c-jun expression whereas it was relatively ineffective when cells were simultaneously stimulated by both FN and FGF. These data demonstrate that cell adhesion to extracellular matrix and associated integrin binding can directly activate signaling cascades in quiescent CE cells that lead to induction of immediate-early genes associated with the G0/G1 transition and thereby, stimulate these cells to reenter the growth cycle.
Collapse
Affiliation(s)
- L E Dike
- Department of Surgery, Children's Hospital, Boston, MA 02115, USA
| | | |
Collapse
|
9
|
Berman E, Sharon I, Atlan H. An early transient increase of intracellular Na+ may be one of the first components of the mitogenic signal. Direct detection by 23Na-NMR spectroscopy in quiescent 3T3 mouse fibroblasts stimulated by growth factors. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1239:177-85. [PMID: 7488622 DOI: 10.1016/0005-2736(95)00144-r] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
23Na-NMR spectroscopy was designed to allow for continuous recording of intracellular Na+ in 3T3 fibroblasts stimulated by serum growth-factors in the presence of ion transport inhibitors. The metabolic state of cells at rest and following stimulation was monitored by 31P-NMR spectra of ATP and related high-energy phosphates. The study demonstrates that early activation of ion transporters by addition of serum is marked by the appearance of transient increase of the intracellular Na+, beginning 3 min after addition of serum to quiescent culture and lasting approx. 20 min. The initial rise in cellular Na+ results from an increased activity of the bumetanide-sensitive Na+/K+/Cl- cotransport and of the amiloride-sensitive Na+/H+ antiport. It is suppressed by any one of these inhibitors. Subsequent activation of the ouabain-sensitive Na+/K(+)-ATPase results in an increased Na+ efflux, leading to a return of intracellular Na+ to its initial baseline. Previous work had shown that the early activation of bumetanide-sensitive and amiloride sensitive ion-transporters by growth-factors was essential for induction of cell division, at least in some cell types. Preventing ion activation by adding ion-transport inhibitors lead to the inhibition of DNA synthesis 18 h later. This process was reversible upon elimination of these inhibitors. Even though alternative non-specific effects of these inhibitors cannot be ruled out, the observed transient peak in intracellular Na+ may be one of the earliest components of the mitogenic signal. On the basis of previous works, its effect seems to be related to the activation of Ca(2+)-dependent and cyclic AMP second messenger pathways. The different mechanisms whereby the activated Na+/K+/Cl- cotransport and the Na+/H+ antiport contribute to this signal need to be further investigated.
Collapse
Affiliation(s)
- E Berman
- Human Biology Research Center/Department of Medical Biophysics, Hadassah University Hospital, Jerusalem, Israel
| | | | | |
Collapse
|
10
|
Cellular ras activity is required for passage through multiple points of the G0/G1 phase in BALB/c 3T3 cells. Mol Cell Biol 1994. [PMID: 8035821 DOI: 10.1128/mcb.14.8.5441] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Microinjection experiments demonstrated a requirement for cellular ras activity late in G1. In this study, we used two separate methods to identify an additional requirement for cellular ras activity early in the G0/G1 phase of the cell cycle. Quiescent BALB/c cells were injected with anti-ras antibody prior to stimulation with serum. The cells would therefore be inhibited in progression through the cell cycle at the earliest point requiring ras function. Alternatively, cells were inhibited in late G1 as in previous studies by injecting anti-ras several hours after serum addition to quiescent cells. The injected cultures were then treated with chemical cell cycle inhibitors known to function in mid-G1. Cells injected with anti-ras prior to serum stimulation were retained at a point of ras requirement prior to the execution point of the chemical inhibitor, while cells injected 3 to 5 h after serum stimulation were retained at a point of ras requirement downstream of the execution point of the chemical inhibitor. To confirm these results, quiescent BALB/c cells were injected with anti-ras antibody prior to or several hours following serum addition. In this case, however, second injections of oncogenic ras or adenoviral E1A protein were performed to overcome the inhibitory effects of the anti-ras antibody. Cells injected prior to serum addition were clearly inhibited at an early point of Ras requirement since they required 5 or 6 h longer to enter S phase than cells injected with anti-ras antibody after serum addition.
Collapse
|
11
|
Dobrowolski S, Harter M, Stacey DW. Cellular ras activity is required for passage through multiple points of the G0/G1 phase in BALB/c 3T3 cells. Mol Cell Biol 1994; 14:5441-9. [PMID: 8035821 PMCID: PMC359063 DOI: 10.1128/mcb.14.8.5441-5449.1994] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Microinjection experiments demonstrated a requirement for cellular ras activity late in G1. In this study, we used two separate methods to identify an additional requirement for cellular ras activity early in the G0/G1 phase of the cell cycle. Quiescent BALB/c cells were injected with anti-ras antibody prior to stimulation with serum. The cells would therefore be inhibited in progression through the cell cycle at the earliest point requiring ras function. Alternatively, cells were inhibited in late G1 as in previous studies by injecting anti-ras several hours after serum addition to quiescent cells. The injected cultures were then treated with chemical cell cycle inhibitors known to function in mid-G1. Cells injected with anti-ras prior to serum stimulation were retained at a point of ras requirement prior to the execution point of the chemical inhibitor, while cells injected 3 to 5 h after serum stimulation were retained at a point of ras requirement downstream of the execution point of the chemical inhibitor. To confirm these results, quiescent BALB/c cells were injected with anti-ras antibody prior to or several hours following serum addition. In this case, however, second injections of oncogenic ras or adenoviral E1A protein were performed to overcome the inhibitory effects of the anti-ras antibody. Cells injected prior to serum addition were clearly inhibited at an early point of Ras requirement since they required 5 or 6 h longer to enter S phase than cells injected with anti-ras antibody after serum addition.
Collapse
Affiliation(s)
- S Dobrowolski
- Department of Molecular Biology, Cleveland Clinic Foundation, Ohio 44195
| | | | | |
Collapse
|
12
|
Panet R, Markus M, Atlan H. Bumetanide and furosemide inhibited vascular endothelial cell proliferation. J Cell Physiol 1994; 158:121-7. [PMID: 8263019 DOI: 10.1002/jcp.1041580115] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In this study, we examined the role of the bumetanide-sensitive Na+/K+/Cl-cotransport in the mitogenic signal of vascular endothelial cell proliferation. The activity of the Na+/K+/Cl- cotransport is dramatically decreased in quiescent subconfluent cells, as compared to subconfluent cells growing in the presence of FGF. The Na+/K+/Cl- cotransport activity of quiescent subconfluent cultures deprived of FGF decreased to 6%, whereas that of quiescent cells grown to confluency was reduced to only 33% of the activity of subconfluent cells growing in the presence of FGF. The basal low activity of Na+/K+/Cl- cotransport in the quiescent subconfluent vascular endothelial cells was dramatically stimulated by FGF. In order to explore the role of the Na+/K+/Cl- cotransport in the mitogenic signal of the endothelial cells, the effect of two specific inhibitors of the cotransport -furosemide and -bumetanide was tested on cell proliferation induced by FGF. Bumetanide and furosemide inhibited synchronized cell proliferation measured by direct counting of cells and by DNA synthesis. Inhibition by furosemide and bumetanide was reversible; removal of these compounds completely released the cells to proliferate. These results indicate that the effect of these drugs is specific and is not due to an indirect toxic effect. This study clearly demonstrates that the FGF-induced activation of the Na+/K+/Cl- cotransport plays a role in the mitogenic signal pathway of vascular endothelial cells.
Collapse
Affiliation(s)
- R Panet
- Department of Medical Biophysics and Nuclear Medicine, Hadassah University Hospital, Jerusalem, Israel
| | | | | |
Collapse
|
13
|
|
14
|
Snyder D, Atlan H, Markus M, Panet R. Na+/K+/Cl- cotransport is stimulated by a Ca(++)-calmodulin-mediated pathway in BALB/c 3T3 fibroblasts. J Cell Physiol 1991; 149:497-502. [PMID: 1744176 DOI: 10.1002/jcp.1041490320] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In the present study, we investigated the role of intracellular Ca++ in the stimulation of the Na+/K+/Cl- cotransport in synchronized BALB/c 3T3 cells. The Na+/K+/Cl- cotransport was stimulated by the growth factors EGF, TGF-alpha, IGF-1, and IGF-2, which do not activate protein kinase C, but do induce a transient increase in free cytoplasmic Ca++. In addition, direct activation of protein kinase C by the phorbol ester 12-O-tetradecanoyl-phorbol-13-acetate (TPA) did not affect the Na+/K+/Cl- cotransport activity of quiescent cells. The Na+/K+/Cl- cotransport was also stimulated by the above mitogens in cells pretreated with the phorbol ester TPA. This treatment led to a progressive decline in the activity of cellular protein kinase C. This result implies that cells deficient in protein kinase C may still support stimulation of the Na+/K+/Cl- cotransport. Taken as a whole, these findings suggest that the Na+/K+/Cl- cotransport is stimulated predominantly by a protein kinase C-independent mechanism in BALB/c 3T3 fibroblasts. Both the intracellular Ca++ antagonist 8-(N,N-diethylamino)octyl-3,4,5-trimethoxybenzoate (TMB-8) and two potent calmodulin antagonists, trifluoperazine (TFP) and chloropromazine (CP), blocked serum- and mitogen-stimulated Na+/K+/Cl- cotransport. These results suggest that the Na+/K+/Cl- cotransport is stimulated by an increase of intracellular Ca++ and subsequently by a Ca(++)-calmodulin-mediated pathway in the synchronized BALB/c 3T3 fibroblasts.
Collapse
Affiliation(s)
- D Snyder
- Department of Medical Biophysics and Nuclear Medicine, Hadassah University Hospital, Jerusalem, Israel
| | | | | | | |
Collapse
|
15
|
Panet R, Atlan H. Stimulation of bumetanide-sensitive Na+/K+/Cl- cotransport by different mitogens in synchronized human skin fibroblasts is essential for cell proliferation. J Cell Biol 1991; 114:337-42. [PMID: 2071675 PMCID: PMC2289072 DOI: 10.1083/jcb.114.2.337] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In this study, we examined the role of the bumetanide-sensitive Na+/K+/Cl- cotransport in the mitogenic signal of human skin fibroblast proliferation. The Na+/K+/Cl- cotransport was dramatically stimulated by either fetal calf serum, or by recombinant growth factors, added to quiescent G0/G1 human skin fibroblasts. The following mitogens, FGF, PDGF, alpha-thrombin, insulin-like growth factor-1, transforming growth factor-alpha, and the phorbol ester, 12-O-tetradecanoyl-phorbol-13-acetate, all stimulated the Na+/K+/Cl- cotransport. In addition, all the above mitogens induced DNA synthesis in the synchronized human fibroblasts. In order to explore the role of the Na+/K+/Cl- cotransport in the mitogenic signal, the effect of two specific inhibitors of the cotransport, furosemide and bumetanide, was tested on cell proliferation induced by the above recombinant growth factors. Bumetanide and furosemide inhibited synchronized cell proliferation as was measured by (a) cell exit from the G0/G1 phase measured by the use of flow cytometry, (b) cell entering the S-phase, determined by DNA synthesis, and (c) cell growth, measured by counting the cells. The inhibition by furosemide and bumetanide was reversible, removal of these compounds, completely released the cells from the block of DNA synthesis. In addition, the two drugs inhibited DNA synthesis only when added within the first 2-6 h of cell release. These results indicate that the effect of these drugs is specific, and is not due to an indirect toxic effect. This study clearly demonstrates that the growth factor-induced activation of the Na+/K+/Cl- cotransport plays a major role in the mitogenic signaling pathway of the human fibroblasts.
Collapse
Affiliation(s)
- R Panet
- Department of Medical Biophysics and Nuclear Medicine, Hadassah University Hospital, Jerusalem, Israel
| | | |
Collapse
|
16
|
Scalabrino G, Lorenzini EC. Polyamines and mammalian hormones. Part II: Paracrine signals and intracellular regulators. Mol Cell Endocrinol 1991; 77:37-56. [PMID: 1667762 DOI: 10.1016/0303-7207(91)90057-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- G Scalabrino
- Institute of General Pathology, University of Milan, Italy
| | | |
Collapse
|
17
|
Snyder D, Markus M, Atlan H, Panet R. Phorbol ester TPA inhibits the stimulation of bumetanide-sensitive Na+/K+/Cl- transporter by different mitogens in quiescent BALB/c 3T3 mouse fibroblasts. J Cell Physiol 1991; 146:466-72. [PMID: 2022701 DOI: 10.1002/jcp.1041460318] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In this study we examined the effect of the phorbol ester 12-O-tetradecanoyl-phorbol-13-acetate (TPA) on the bumetanide-sensitive Na+/K+/Cl- transporter in quiescent BALB/c 3T3 cells. We have shown that exposure of quiescent BALB/c 3T3 cultures to phorbol ester did not inhibit the basal bumetanide-sensitive Rb+ influx or efflux. In fact, at high concentration (100 ng/ml), TPA slightly stimulated the bumetanide-sensitive Rb+ influx and efflux. However, when the quiescent cultures were stimulated by serum or by defined growth factors, the stimulated fraction of the bumetanide-sensitive Rb+ influx was drastically inhibited by exposure of the cells to the phorbol ester TPA. Based on the above findings, we propose that activation of protein kinase C by the phorbol ester TPA does not inhibit the Na+/K+/Cl- cotransport activity; however it does suppress only the growth-factors-stimulated fraction of the cotransport in quiescent BALB/c 3T3 cells. These data propose that activation of kinase C has a regulatory feedback effect on the stimulation of the Na+/K+/Cl- cotransport activity by growth factors.
Collapse
Affiliation(s)
- D Snyder
- Department of Medical Biophysics and Nuclear Medicine, Hadassah University Hospital, Jerusalem, Israel
| | | | | | | |
Collapse
|
18
|
Vairo G, Argyriou S, Bordun AM, Gonda TJ, Cragoe EJ, Hamilton JA. Na+/H+ exchange involvement in colony-stimulating factor-1-stimulated macrophage proliferation. Evidence for a requirement during late G1 of the cell cycle but not for early growth factor responses. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(17)44850-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
19
|
Panet R, Atlan H. Bumetanide-sensitive Na+/K+/Cl- transporter is stimulated by phorbol ester and different mitogens in quiescent human skin fibroblasts. J Cell Physiol 1990; 145:30-8. [PMID: 2211842 DOI: 10.1002/jcp.1041450106] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In this study we investigated the correlation between the mitogenic effect and stimulation of Rb+ (K+) fluxes in human skin fibroblasts treated by purified growth factors. Both K+ transporters, bumetanide-sensitive and ouabain-sensitive, are stimulated 2-3-fold after addition of either fetal calf serum or purified recombinant growth factors to quiescent G0/G1 human skin fibroblasts. Three groups of mitogens were compared: i) the phorbol ester 2-O-tetradecanoyl-phorbol-13-acetate (TPA); ii) growth factors that stimulate inositol phosphate hydrolysis and subsequently activate protein kinase C--fibroblast growth factor (FGF), platelet derived growth factor (PDGF), and alpha-thrombin; and iii) growth factors that do not activate kinase C--insulin-like growth factor-1 (IGF-1), and transforming like growth-factor-alpha (TGF-alpha). The three groups of mitogens stimulated human skin fibroblasts proliferation and Rb+ influxes in a similar dose-dependent fashion. The results indicate that both the bumetanide-sensitive and the ouabain-sensitive Rb+ fluxes are stimulated by protein kinase C-dependent and by the protein kinase C-independent pathways of the mitogenic signal.
Collapse
Affiliation(s)
- R Panet
- Department of Medical Biophysics and Nuclear Medicine, Hadassah University Hospital, Jerusalem, Israel
| | | |
Collapse
|
20
|
Ingber DE, Prusty D, Frangioni JV, Cragoe EJ, Lechene C, Schwartz MA. Control of intracellular pH and growth by fibronectin in capillary endothelial cells. J Cell Biol 1990; 110:1803-11. [PMID: 2159481 PMCID: PMC2200182 DOI: 10.1083/jcb.110.5.1803] [Citation(s) in RCA: 208] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The aim of this work was to analyze the mechanism by which fibronectin (FN) regulates capillary endothelial cell proliferation. Endothelial cell growth can be controlled in chemically-defined medium by varying the density of FN coated on the substratum (Ingber, D. E., and J. Folkman. J. Cell Biol. 1989. 109:317-330). In this system, DNA synthetic rates are stimulated by FN in direct proportion to its effect on cell extension (projected cell areas) both in the presence and absence of saturating amounts of basic FGF. To investigate direct growth signaling by FN, we carried out microfluorometric measurements of intracellular pH (pHi), a cytoplasmic signal that is commonly influenced by soluble mitogens. pHi increased 0.18 pH units as FN coating densities were raised and cells progressed from round to spread. Intracellular alkalinization induced by attachment to FN was rapid and followed the time course of cell spreading. When measured in the presence and absence of FGF, the effects of FN and FGF on pHi were found to be independent and additive. Furthermore, DNA synthesis correlated with pHi for all combinations of FGF and FN. Ethylisopropylamiloride, a specific inhibitor of the plasma membrane Na+/H+ antiporter, completely suppressed the effects of FN on both pHi and DNA synthesis. However, cytoplasmic pH per se did not appear to be a critical determinant of growth since DNA synthesis was not significantly inhibited when pHi was lowered over the physiological range by varying the pH of the medium. We conclude that FN and FGF exert their growth-modulating effects in part through activation of the Na+/H+ exchanger, although they appear to trigger this system via separate pathways.
Collapse
Affiliation(s)
- D E Ingber
- Surgical Research Laboratory, Children's Hospital, Boston, Massachusetts
| | | | | | | | | | | |
Collapse
|