1
|
Chen Y, Feng J, Chen Y, Xia C, Yao M, Ding W, Li X, Fu X, Zheng S, Ma Y, Zou J, Lan M, Gao F. ROS-responsive nano-medicine for navigating autophagy to enhance targeted therapy of inflammatory bowel disease. Int J Pharm 2024; 659:124117. [PMID: 38615805 DOI: 10.1016/j.ijpharm.2024.124117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 04/16/2024]
Abstract
Inflammatory bowel disease (IBD) is a chronic gastrointestinal disorder characterized by immune dysregulation and intestinal inflammation. Rapamycin (Ra), an mTORC1 pathway inhibitor, has shown promise for autophagy induction in IBD therapy but is associated with off-target effects and toxicity. To address these issues, we developed an oral liposome responsive to reactive oxygen species (ROS) using lipids and amphiphilic materials. We combined ketone thiol (TK) for ROS responsive and hyaluronic acid (HA) with high affinity for CD44 receptors to prepare rapamycin-loaded nanoparticle (Ra@TH). Owing to its ROS responsive characteristic, Ra@TH can achieve inflammatory colonic targeting. Additionally, Ra@TH can induce autophagy by inhibiting the mTORC1 pathway, leading to the clearance of damaged organelles, pathogenic microorganisms and oxidative stress products. Simultaneously, it also collaboratively inhibits the NF-κB pathway suppressed by the removal of ROS resulting from TK cleavage, thereby mediating the expression of inflammatory factors. Furthermore, Ra@TH enhances the expression of typical tight junction proteins, synergistically restoring intestinal barrier function. Our research not only expands the understanding of autophagy in IBD treatment but also introduces a promising therapeutic approach for IBD patients.
Collapse
Affiliation(s)
- You Chen
- Shanghai Frontier Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Juewen Feng
- Shanghai Frontier Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Yang Chen
- Shanghai Frontier Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Chuanhe Xia
- Shanghai Frontier Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Min Yao
- Shanghai Frontier Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Wenxing Ding
- Shanghai Frontier Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Xiang Li
- Shanghai Frontier Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Xiuzhi Fu
- Shanghai Frontier Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Shulei Zheng
- Shanghai Frontier Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Yin Ma
- Shanghai Frontier Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Jiafeng Zou
- Shanghai Frontier Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China; Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China; Shanghai Key Laboratory of New Drug Design, East China University of Science and Technology, Shanghai 200237, China
| | - Minbo Lan
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China
| | - Feng Gao
- Shanghai Frontier Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China; Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China; Shanghai Key Laboratory of New Drug Design, East China University of Science and Technology, Shanghai 200237, China; Optogenetics and Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
2
|
Sudakov NP, Chang HM, Renn TY, Klimenkov IV. Degenerative and Regenerative Actin Cytoskeleton Rearrangements, Cell Death, and Paradoxical Proliferation in the Gills of Pearl Gourami ( Trichogaster leerii) Exposed to Suspended Soot Microparticles. Int J Mol Sci 2023; 24:15146. [PMID: 37894826 PMCID: PMC10607021 DOI: 10.3390/ijms242015146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/28/2023] [Accepted: 09/30/2023] [Indexed: 10/29/2023] Open
Abstract
The effect is studied of water-suspended soot microparticles on the actin cytoskeleton, apoptosis, and proliferation in the gill epithelium of pearl gourami. To this end, the fish are kept in aquariums with 0.005 g/L of soot for 5 and 14 days. Laser confocal microscopy is used to find that at the analyzed times of exposure to the pollutant zones appear in the gill epithelium, where the actin framework of adhesion belts dissociates and F-actin either forms clumps or concentrates perinuclearly. It is shown that the exposure to soot microparticles enhances apoptosis. On day 5, suppression of the proliferation of cells occurs, but the proliferation increases to the control values on day 14. Such a paradoxical increase in proliferation may be a compensatory process, maintaining the necessary level of gill function under the exposure to toxic soot. This process may occur until the gills' recovery reserve is exhausted. In general, soot microparticles cause profound changes in the actin cytoskeleton in gill cells, greatly enhance cell death, and influence cell proliferation as described. Together, these processes may cause gill dysfunction and affect the viability of fish.
Collapse
Affiliation(s)
- Nikolay P. Sudakov
- Department of Cell Ultrastructure, Limnological Institute, Siberian Branch, Russian Academy of Sciences, 3 Ulan-Batorskaya St., 664033 Irkutsk, Russia;
| | - Hung-Ming Chang
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan;
| | - Ting-Yi Renn
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan;
| | - Igor V. Klimenkov
- Department of Cell Ultrastructure, Limnological Institute, Siberian Branch, Russian Academy of Sciences, 3 Ulan-Batorskaya St., 664033 Irkutsk, Russia;
| |
Collapse
|
3
|
Sun S, Xu W, Zhang Y, Yang Y, Ma Q, Xu J. Menadione inhibits thioredoxin reductase 1 via arylation at the Sec 498 residue and enhances both NADPH oxidation and superoxide production in Sec 498 to Cys 498 substitution. Free Radic Biol Med 2021; 172:482-489. [PMID: 34186208 DOI: 10.1016/j.freeradbiomed.2021.06.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/18/2021] [Accepted: 06/23/2021] [Indexed: 12/13/2022]
Abstract
The selenoprotein thioredoxin reductase 1 (TrxR1; TXNRD1) participates in multiple cellular processes and is regarded as a cellular target in anti-tumor drug discovery and development. TrxR1 has been reported to reduce menadione to menadiol and to produce superoxide anion radicals. However, the details of TrxR1-mediated menadione reduction have rarely been studied. In this study, we found that wild-type TrxR1 could reduce menadione in a less efficient way, but the U498C mutant variant supported high-efficiency menadione reduction in a Sec-independent manner. Meanwhile, the site-directed mutagenesis results showed that Cys64 mutant increased the Km values and decreased the catalytic efficiency, which was associated with a charge-transfer complex between FAD-Cys64. Mass spectrometry (MS) revealed that in NADPH pre-reduced TrxR1 but not oxidized TrxR1, the highly active Sec498 of wild-type TrxR1 was arylated by menadione and strongly impaired the DTNB reducing activity in a dose-dependent manner. TrxR1 reduced menadione more efficiently than glutathione reductase (GR), and interestingly menadione did not inhibit the GSSG reducing activity of GR. In summary, our results demonstrate that TrxR1 catalyzes the reduction of menadione in a Sec-independent manner, which highly depend on Cys498 instead of N-terminal redox motif, and the Sec498 of TrxR1 is the primary target of menadione. The interaction between menadione and TrxR1 revealed in this study may provide a valuable reference for the development of anticancer drugs targeting selenoprotein TrxR1.
Collapse
Affiliation(s)
- Shibo Sun
- School of Life and Pharmaceutical Sciences (LPS) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin 124221, China
| | - Weiping Xu
- School of Ocean Science and Technology (OST) & Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), Dalian University of Technology, Panjin 124221, China
| | - Yue Zhang
- School of Life and Pharmaceutical Sciences (LPS) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin 124221, China
| | - Yijia Yang
- School of Life and Pharmaceutical Sciences (LPS) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin 124221, China
| | - Qiang Ma
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China.
| | - Jianqiang Xu
- School of Life and Pharmaceutical Sciences (LPS) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin 124221, China.
| |
Collapse
|
4
|
Hamdi H, Abid-Essefi S, Eyer J. Cytotoxic and genotoxic effects of epoxiconazole on F98 glioma cells. CHEMOSPHERE 2019; 229:314-323. [PMID: 31078888 DOI: 10.1016/j.chemosphere.2019.05.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 04/25/2019] [Accepted: 05/02/2019] [Indexed: 06/09/2023]
Abstract
Epoxiconazole (EPX) is a very effective fungicide of the triazole family. Given its wide spectrum of use, the increased application of this pesticide may represent a serious risk on human health. Previous studies have found that EPX is cytotoxic to cells, although the exact mechanism remains elusive. In particular, the effect on the nervous system is poorly elucidated. Here we evaluated the implication of oxidative stress in the neurotoxicity and studied its apoptotic mechanism of action. We demonstrated that the treatment by EPX reduces the viability of cells in a dose dependent manner with an IC50 of 50 μM. It also provokes the reduction of cell proliferation. EPX could trigger arrest in G1/S phase of cell cycle with low doses, however with IC50, it induced an accumulation of F98 cells in G2/M phase. Moreover, EPX induced cytoskeleton disruption as evidenced by immunocytochemical analysis. It provoked also DNA fragmentation in a concentration dependent manner. The EPX induced apoptosis, which was observed by morphological changes and by positive Annexin V FITC-PI staining concurrent with a depolarization of mitochondria. Furthermore, the cell mortality provoked by EPX was significantly reduced by pretreatment with Z-VAD-FMK, a caspase inhibitor. Moreover, N-acetylcysteine (NAC) strongly restores cell viability that has been inhibited by EPX. The results of these findings highlight the implication of ROS generation in the neurotoxicity induced by EPX, indicating that the production of ROS is the main cause of the induction of apoptosis probably via the mitochondrial pathway.
Collapse
Affiliation(s)
- Hiba Hamdi
- Laboratory for Research on Biologically Compatible Compounds, Faculty of Dental Medicine, University of Monastir, Avicenne Street, Monastir, 5019, Tunisia; Higher Institute of Biotechnology, University of Monastir, Tunisia
| | - Salwa Abid-Essefi
- Laboratory for Research on Biologically Compatible Compounds, Faculty of Dental Medicine, University of Monastir, Avicenne Street, Monastir, 5019, Tunisia
| | - Joel Eyer
- Laboratoire Micro et Nanomédecines Translationnelles (MINT), Inserm 1066, CNRS 6021, Institut de Biologie de la Santé, Centre Hospitalier Universitaire, Angers, 49033, France.
| |
Collapse
|
5
|
Phenothiazinium Dyes Are Active against Trypanosoma cruzi In Vitro. BIOMED RESEARCH INTERNATIONAL 2019; 2019:8301569. [PMID: 31355283 PMCID: PMC6637691 DOI: 10.1155/2019/8301569] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/10/2019] [Accepted: 06/10/2019] [Indexed: 12/29/2022]
Abstract
Chagas disease is a tropical illness caused by the protozoan Trypanosoma cruzi. The disease affects populations of the Americas and has been spread to other continents due to the migration process. The disease is partially controlled by two drugs, Benznidazole and Nifurtimox. These molecules are active in the acute phase of the infection but are usually ineffective during the symptomatic chronic phase. Several research groups have developed novel candidates to control Chagas disease; however, no novel commercial formulation is available. In this article, we described the anti-T. cruzi effects of phenothiazinium dyes in amastigote and trypomastigote forms of the parasite. Methylene Blue, New Methylene Blue, Toluidine Blue O, and 1,9-Dimethyl Methylene Blue inhibited the parasite proliferation at nanomolar concentrations and also demonstrated low toxicity in host cells. Moreover, combinations of phenothiazinium dyes indicated a synergic pattern against amastigotes compared to the Benznidazole counterparts. Phenothiazinium dyes levels of reactive oxygen species (ROS) and decreased the mitochondrial potential in trypomastigotes, indicating the mechanism of action of the dyes in T. cruzi. Our article offers a basis for future strategies for the control of Chagas disease using low-cost formulations, an important point for endemic underdeveloped regions.
Collapse
|
6
|
Fleddermann J, Susewind J, Peuschel H, Koch M, Tavernaro I, Kraegeloh A. Distribution of SiO 2 nanoparticles in 3D liver microtissues. Int J Nanomedicine 2019; 14:1411-1431. [PMID: 30863069 PMCID: PMC6390853 DOI: 10.2147/ijn.s189888] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Introduction Nanoparticles (NPs) are used in numerous products in technical fields and biomedicine; their potential adverse effects have to be considered in order to achieve safe applications. Besides their distribution in tissues, organs, and cellular localization, their impact and penetration during the process of tissue formation occurring in vivo during liver regeneration are critical steps for establishment of safe nanomaterials. Materials and methods In this study, 3D cell culture of human hepatocarcinoma cells (HepG2) was used to generate cellular spheroids, serving as in vitro liver microtissues. In order to determine their differential distribution and penetration depth in HepG2 spheroids, SiO2 NPs were applied either during or after spheroid formation. The NP penetration was comprehensively studied using confocal laser scanning microscopy and scanning electron microscopy. Results Spheroids were exposed to 100 µg mL−1 SiO2 NPs either at the beginning of spheroid formation, or during or after formation of spheroids. Microscopy analyses revealed that NP penetration into the spheroid is limited. During and after spheroid formation, SiO2 NPs penetrated about 20 µm into the spheroids, corresponding to about three cell layers. In contrast, because of the addition of SiO2 NPs simultaneously to cell seeding, NP agglomerates were located also in the spheroid center. Application of SiO2 NPs during the process of spheroid formation had no impact on final spheroid size. Conclusion Understanding the distribution of NPs in tissues is essential for biomedical applications. The obtained results indicate that NPs show only limited penetration into already formed tissue, which is probably caused by the alteration of the tissue structure and cell packing density during the process of spheroid formation.
Collapse
Affiliation(s)
- Jana Fleddermann
- INM - Leibniz Institute for New Materials, Saarbrücken, Germany,
| | | | - Henrike Peuschel
- INM - Leibniz Institute for New Materials, Saarbrücken, Germany,
| | - Marcus Koch
- INM - Leibniz Institute for New Materials, Saarbrücken, Germany,
| | | | | |
Collapse
|
7
|
Shi J, Qian J, Li H, Luo H, Luo W, Lin Z. Renal tubular epithelial cells injury induced by mannitol and its potential mechanism. Ren Fail 2018; 40:85-91. [PMID: 29299951 PMCID: PMC6014470 DOI: 10.1080/0886022x.2017.1419973] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 10/18/2017] [Accepted: 12/14/2017] [Indexed: 02/05/2023] Open
Abstract
Administration of mannitol with high dose could induce extensive isometric renal proximal tubular vacuolization and acute renal failure in clinic. We previously demonstrated that mannitol-induced human kidney tubular epithelial cell (HK-2) injury. The objective of our present work was to further study the cytotoxicity of mannitol in HK-2 cells and its potential mechanism. Cell viability was assessed by an MTT method. Cell morphological changes were observed. Furthermore, levels of malondialdehyde (MDA) and glutathione (GSH) were measured. Flow cytometry was performed to determine cell apoptosis by using Annexin V-FITC and PI. In addition, the F-actin of cells was labeled by FITC-Phalloidin for observation of cytoskeleton. The MTT assay displayed that the cell viability decreased significantly in a dose- and time-dependent manner. The morphological changes were observed, including cell membrane rapture and cell detachment. The GSH concentration in HK-2 cells decreased dramatically in mannitol treatment group, while MDA content increased significantly. The results of flow cytometry indicated that apoptotic percentages of HK-2 cells increased in 250 mmol/L mannitol treatment group. After treatment with 250 mmol/L mannitol for 48 h, HK-2 cells showed disorganization of cytoskeleton and even exhibited a totally destroyed cytoskeleton. Therefore, high dose of mannitol has a toxic effect on renal tubular epithelial cells, which might be attributed to oxidative stress, destroyed cellular cytoskeleton and subsequent cell apoptosis.
Collapse
Affiliation(s)
- Jinwan Shi
- Bioanalytical Laboratory, Shantou University Medical College, Shantou, Guangdong, People’s Republic of China
| | - Jiuzhan Qian
- Bioanalytical Laboratory, Shantou University Medical College, Shantou, Guangdong, People’s Republic of China
| | - Hui Li
- Bioanalytical Laboratory, Shantou University Medical College, Shantou, Guangdong, People’s Republic of China
| | - Hongjun Luo
- Bioanalytical Laboratory, Shantou University Medical College, Shantou, Guangdong, People’s Republic of China
| | - Wenhong Luo
- Bioanalytical Laboratory, Shantou University Medical College, Shantou, Guangdong, People’s Republic of China
| | - Zhexuan Lin
- Bioanalytical Laboratory, Shantou University Medical College, Shantou, Guangdong, People’s Republic of China
| |
Collapse
|
8
|
Benefits of Ascorbic Acid in Association with Low-Dose Benznidazole in Treatment of Chagas Disease. Antimicrob Agents Chemother 2018; 62:AAC.00514-18. [PMID: 29987143 DOI: 10.1128/aac.00514-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 07/05/2018] [Indexed: 12/14/2022] Open
Abstract
The acute phase of Chagas disease (CD) is characterized by high parasitic proliferation and intense inflammation, exacerbating the generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS). These reactive molecules are also increased by the metabolism of the nitroheterocyclic compounds benznidazole (BZ) and nifurtimox, the only drugs available for the treatment of CD. This oxidative environment, associated with the intracellular multiplication of Trypanosoma cruzi, leads to tissue destruction, triggering the pathogenic process. Both drugs have limited efficacy and serious side effects, which demonstrates the need to seek alternative therapies. Due to the difficulty in developing new drugs, reviewing therapeutic regimens appears advantageous, and the use of BZ in low doses associated with antioxidants, such as ascorbic acid (AA), would be a valid alternative to attenuate oxidative stress. In our in vivo studies, mice receiving the combination of 7.14 mg/kg of body weight/day AA and 10 mg/kg/day BZ10 (AA+BZ10) showed a reduction in parasitemia that was more effective than that with those receiving BZ or AA alone. The combined treatment was effective in decreasing intracellular ROS and lipid peroxidation in cardiac tissue. Histological and PCR analyzes showed that AA also reduced the cardiac parasitism. However, the greatest benefit was seen in AA+BZ10 group, since cardiac inflammation was significantly reduced. In addition, the combined therapy prevented the hepatic damage induced by the infection. Our findings suggest that AA combined with a low dose of BZ may improve the trypanocidal activity and attenuate the toxic effects of BZ. The decrease in oxidative damage and inflammation observed in mice treated with AA+BZ10 could result in increased cardioprotection.
Collapse
|
9
|
Foglia S, Ledda M, Fioretti D, Iucci G, Papi M, Capellini G, Lolli MG, Grimaldi S, Rinaldi M, Lisi A. In vitro biocompatibility study of sub-5 nm silica-coated magnetic iron oxide fluorescent nanoparticles for potential biomedical application. Sci Rep 2017; 7:46513. [PMID: 28422155 PMCID: PMC5395943 DOI: 10.1038/srep46513] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 03/17/2017] [Indexed: 01/06/2023] Open
Abstract
Magnetic iron oxide nanoparticles (IONPs), for their intriguing properties, have attracted a great interest as they can be employed in many different biomedical applications. In this multidisciplinary study, we synthetized and characterized ultrafine 3 nm superparamagnetic water-dispersible nanoparticles. By a facile and inexpensive one-pot approach, nanoparticles were coated with a shell of silica and contemporarily functionalized with fluorescein isothiocyanate (FITC) dye. The obtained sub-5 nm silica-coated magnetic iron oxide fluorescent (sub-5 SIO-Fl) nanoparticles were assayed for cellular uptake, biocompatibility and cytotoxicity in a human colon cancer cellular model. By confocal microscopy analysis we demonstrated that nanoparticles as-synthesized are internalized and do not interfere with the CaCo-2 cell cytoskeletal organization nor with their cellular adhesion. We assessed that they do not exhibit cytotoxicity, providing evidence that they do not affect shape, proliferation, cellular viability, cell cycle distribution and progression. We further demonstrated at molecular level that these nanoparticles do not interfere with the expression of key differentiation markers and do not affect pro-inflammatory cytokines response in Caco-2 cells. Overall, these results showed the in vitro biocompatibility of the sub-5 SIO-Fl nanoparticles promising their safe employ for diagnostic and therapeutic biomedical applications.
Collapse
Affiliation(s)
- Sabrina Foglia
- Institute of Materials for Electronics and Magnetism (IMEM), Department of Engineering, ICT and technologies for energy and transportation, National Research Council (CNR), Parma, Italy
| | - Mario Ledda
- Institute of Translational Pharmacology (IFT), Department of Biomedical Sciences, National Research Council (CNR), Rome, Italy
| | - Daniela Fioretti
- Institute of Translational Pharmacology (IFT), Department of Biomedical Sciences, National Research Council (CNR), Rome, Italy
| | | | - Massimiliano Papi
- Institute of Physics, Catholic University of the Sacred Heart, Rome, Italy
| | | | - Maria Grazia Lolli
- Institute of Translational Pharmacology (IFT), Department of Biomedical Sciences, National Research Council (CNR), Rome, Italy
| | - Settimio Grimaldi
- Institute of Translational Pharmacology (IFT), Department of Biomedical Sciences, National Research Council (CNR), Rome, Italy
| | - Monica Rinaldi
- Institute of Translational Pharmacology (IFT), Department of Biomedical Sciences, National Research Council (CNR), Rome, Italy
| | - Antonella Lisi
- Institute of Translational Pharmacology (IFT), Department of Biomedical Sciences, National Research Council (CNR), Rome, Italy
| |
Collapse
|
10
|
Bis(3,5-diiodo-2,4,6-trihydroxyphenyl)squaraine photodynamic therapy disrupts redox homeostasis and induce mitochondria-mediated apoptosis in human breast cancer cells. Sci Rep 2017; 7:42126. [PMID: 28169351 PMCID: PMC5294812 DOI: 10.1038/srep42126] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 01/03/2017] [Indexed: 12/17/2022] Open
Abstract
Photodynamic therapy (PDT) is a clinically established and highly evolving treatment modality for cancer. PDT utilizes a light responsive drug called photosensitizer that selectively destroys tumor cells upon light irradiation. Squaraines are a class of dyes possessing all favorable characteristics of a photosensitizer and have been considered to be a potent candidate for next generation PDT. In this study we chose an iodo derivative of squaraine called diiodo-squaraine (bis(3, 5-diiodo-2,4,6-trihydroxyphenyl)squaraine) which has been reported for its tumor specificity but least studied for its cellular and molecular functions. Our studies revealed that the iodo derivative of squaraine possess maximum photodynamic activity in human breast cancer cells MDA- MB- 231 and had very little cytotoxicity in normal breast cells MCF-10A. We analyzed its pro and anti-apoptotic events initiated by oxidative stress exploring a proteomic approach and delineated other critical molecular pathways and key proteins involved in regulating the complex network of cellular response upon PDT. Our study showed that, diiodo- squaraines predominantly accumulate in mitochondria and induce mitochondria-mediated apoptosis. Our study also reveals the novel mechanistic role of diiodo-squaraines to induce oxidative stress there by activating both protective and death inducing pathways post PDT.
Collapse
|
11
|
Prajitha V, Thoppil JE. Cytotoxic and apoptotic activities of extract of Amaranthus spinosus L. in Allium cepa and human erythrocytes. Cytotechnology 2017; 69:123-133. [PMID: 27896557 PMCID: PMC5264628 DOI: 10.1007/s10616-016-0044-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 11/16/2016] [Indexed: 10/20/2022] Open
Abstract
The present study examined the apoptosis inducing effects of Amaranthus spinosus L. aqueous extract in Allium cepa root meristematic cells and human erythrocytes. Cytogenetic assay revealed many apoptosis inducing cytogenetic aberrations viz., cytoplasmic breakage, cytoplasmic disintegration, cytoplasmic shrinkage, receding of cytoplasm, cytoplasmic vacuolation, enucleated cell, ghost cell, nuclear vacuolation, nuclear fragmentation and nuclear disintegration. A remarkable modification of red blood cell surface morphology was observed in the result of RBC assay. The treated RBCs show membrane blebbing and shrinkage, features typical for apoptosis in nucleated cells. Significant induction of cell death was observed in treated Allium root tip cells after Evans blue staining, disclosing the membrane damage potential of the plant extract. TTC assay results in reduced mitochondrial/metabolic activity in Allium root tip cells after treatment, designating the adverse effect of plant extract on mitochondrial respiratory chain. These results confirm the apoptosis inducing potential of A. spinosus extract. Confirming the present results by further in vitro studies, it can be effectively targeted against cell proliferation during cancer treatment by inducing apoptosis. Thus from the present investigation it can be concluded that the aqueous extract of A. spinosus exhibited apoptosis induction and cytotoxic activities.
Collapse
Affiliation(s)
- V Prajitha
- Cell and Molecular Biology Division, Department of Botany, University of Calicut, Malappuram, Kerala, 673635, India.
| | - J E Thoppil
- Cell and Molecular Biology Division, Department of Botany, University of Calicut, Malappuram, Kerala, 673635, India
| |
Collapse
|
12
|
Rajak P, Dutta M, Khatun S, Mandi M, Roy S. Exploring hazards of acute exposure of Acephate in Drosophila melanogaster and search for l-ascorbic acid mediated defense in it. JOURNAL OF HAZARDOUS MATERIALS 2017; 321:690-702. [PMID: 27701059 DOI: 10.1016/j.jhazmat.2016.09.067] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 08/24/2016] [Accepted: 09/28/2016] [Indexed: 05/21/2023]
Abstract
This study reveals protective role of l-ascorbic acid (25, 50 and 100μg/mL) against toxic impacts of acute sub-lethal exposure of Acephate (5μg/mL) in a non-target organism Drosophila melanogaster. Organismal effect was evident from increased impairment in climbing activities (9 folds) of treated individuals who also manifested altered ocular architecture. These anomalies were reduced with l-ascorbic acid (l-AA) supplementation. Acephate induced apoptotic lesions in eye imaginal discs and gut confirmed tissue damage that also reduced with l-AA co-treatment. Reduction in viability of fat body cells (∼41%), neural cells (∼42%) and hemocytes (3 folds) indicates cytotoxic and immunotoxic potential of Acephate, which were significantly mitigated with l-AA co-administration. The sub-cellular toxic impacts of Acephate treatment became obvious from enhancement in activities of antioxidant enzymes (CAT by ∼1.63 folds, SOD by ∼1.32 folds), detoxifying enzymes (Cyp450 by ∼1.99 folds and GST by ∼1.34 folds), 2.1 times boost in HSP 70 expression, and inhibition of cholinesterase activity (by ∼0.66 folds). DNA breaks evident through comet assay confirmed Acephate triggered genotoxicity which could also be prevented through co-administration of. L-AA Furthermore, the study proposes the use of Drosophila as a model to screen chemicals for their protective potential against pesticide toxicity.
Collapse
Affiliation(s)
- Prem Rajak
- Post Graduate Department of Zoology, ABN Seal College, Cooch Behar, West Bengal, India
| | - Moumita Dutta
- Cytogenetics Laboratory, Department of Zoology, The University of Burdwan, West Bengal, India
| | - Salma Khatun
- Cytogenetics Laboratory, Department of Zoology, The University of Burdwan, West Bengal, India
| | - Moutushi Mandi
- Cytogenetics Laboratory, Department of Zoology, The University of Burdwan, West Bengal, India
| | - Sumedha Roy
- Cytogenetics Laboratory, Department of Zoology, The University of Burdwan, West Bengal, India.
| |
Collapse
|
13
|
Nutrients, Microglia Aging, and Brain Aging. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:7498528. [PMID: 26941889 PMCID: PMC4752989 DOI: 10.1155/2016/7498528] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 12/21/2015] [Accepted: 12/31/2015] [Indexed: 02/04/2023]
Abstract
As the life expectancy continues to increase, the cognitive decline associated with Alzheimer's disease (AD) becomes a big major issue in the world. After cellular activation upon systemic inflammation, microglia, the resident immune cells in the brain, start to release proinflammatory mediators to trigger neuroinflammation. We have found that chronic systemic inflammatory challenges induce differential age-dependent microglial responses, which are in line with the impairment of learning and memory, even in middle-aged animals. We thus raise the concept of “microglia aging.” This concept is based on the fact that microglia are the key contributor to the acceleration of cognitive decline, which is the major sign of brain aging. On the other hand, inflammation induces oxidative stress and DNA damage, which leads to the overproduction of reactive oxygen species by the numerous types of cells, including macrophages and microglia. Oxidative stress-damaged cells successively produce larger amounts of inflammatory mediators to promote microglia aging. Nutrients are necessary for maintaining general health, including the health of brain. The intake of antioxidant nutrients reduces both systemic inflammation and neuroinflammation and thus reduces cognitive decline during aging. We herein review our microglia aging concept and discuss systemic inflammation and microglia aging. We propose that a nutritional approach to controlling microglia aging will open a new window for healthy brain aging.
Collapse
|
14
|
Islam MS, Kabir AMR, Inoue D, Sada K, Kakugo A. Enhanced dynamic instability of microtubules in a ROS free inert environment. Biophys Chem 2015; 211:1-8. [PMID: 26774598 DOI: 10.1016/j.bpc.2015.11.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 11/19/2015] [Accepted: 11/22/2015] [Indexed: 11/28/2022]
Abstract
Reactive oxygen species (ROS), one of the regulators in various biological processes, have recently been suspected to modulate microtubule (MT) dynamics in cells. However due to complicated cellular environment and unavailability of any in vitro investigation, no detail is understood yet. Here, by performing simple in vitro investigations, we have unveiled the effect of ROS on MT dynamics. By studying dynamic instability of MTs in a ROS free environment and comparing with that in the presence of ROS, we disclosed that MTs showed enhanced dynamics in the ROS free environment. All the parameters that define dynamic instability of MTs e.g., growth and shrinkage rates, rescue and catastrophe frequencies were significantly affected by the presence of ROS. This work clearly reveals the role of ROS in modulating MT dynamics in vitro, and would be a great help in understanding the role of ROS in regulation of MT dynamics in cells.
Collapse
Affiliation(s)
- Md Sirajul Islam
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0810, Japan
| | | | - Daisuke Inoue
- Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Kazuki Sada
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0810, Japan; Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Akira Kakugo
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0810, Japan; Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan.
| |
Collapse
|
15
|
Ledda M, D'Emilia E, Giuliani L, Marchese R, Foletti A, Grimaldi S, Lisi A. Nonpulsed Sinusoidal Electromagnetic Fields as a Noninvasive Strategy in Bone Repair: The Effect on Human Mesenchymal Stem Cell Osteogenic Differentiation. Tissue Eng Part C Methods 2015; 21:207-17. [DOI: 10.1089/ten.tec.2014.0216] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Affiliation(s)
- Mario Ledda
- Institute of Translational Pharmacology, National Research Council, Rome, Italy
| | - Enrico D'Emilia
- Dipartimento Insediamenti produttivi ed Interazione con l'Ambiente (INAIL-DIPIA), Rome, Italy
| | - Livio Giuliani
- Dipartimento Insediamenti produttivi ed Interazione con l'Ambiente (INAIL-DIPIA), Rome, Italy
- INAIL Florence, Rome, Italy
| | | | - Alberto Foletti
- Institute of Translational Pharmacology, National Research Council, Rome, Italy
| | - Settimio Grimaldi
- Institute of Translational Pharmacology, National Research Council, Rome, Italy
| | - Antonella Lisi
- Institute of Translational Pharmacology, National Research Council, Rome, Italy
| |
Collapse
|
16
|
Gilloteaux J, Jamison JM, Neal D, Summers JL. Synergistic antitumor cytotoxic actions of ascorbate and menadione on human prostate (DU145) cancer cells in vitro: nucleus and other injuries preceding cell death by autoschizis. Ultrastruct Pathol 2014; 38:116-40. [PMID: 24460713 DOI: 10.3109/01913123.2013.852645] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Scanning (SEM) and transmission electron microscopy (TEM) were used to characterize the cytotoxic effects of ascorbate (VC), menadione (VK3), or a VC:VK3 combination on a human prostate carcinoma cell line (DU145) following a 1-h vitamin treatment and a subsequent 24-h incubation in culture medium. Cell alterations examined by light and electron microscopy were treatment-dependent with VC + VK3 >VK3 > VC > Sham. Oxidative stress-induced damage was found in most organelles. This report describes injuries in the tumor cell nucleus (chromatin and nucleolus), mitochondria, endomembranes, lysosomal bodies (autophagocytoses) and inclusions. Morphologic alterations suggest that cytoskeleton damage is likely responsible for the superficial cytoplasmic changes, including major changes in cell shape and size and the self-excising phenomena. Unlike apoptotic bodies, the excised pieces contain ribonucleoproteins, but not organelles. These deleterious events cause a progressive, significant reduction in the tumor cell size. During nuclear alterations, the nuclei maintain their envelope during chromatolysis and karyolysis until cell death, while nucleoli undergo a characteristic segregation of their components. In addition, changes in fat and glycogen storage are consistent the cytotoxic and metabolic alterations caused by the respective treatments. All cellular ultrastructural changes are consistent with cell death by autoschizis and not apoptosis or other kinds of cell death.
Collapse
Affiliation(s)
- Jacques Gilloteaux
- Department of Anatomical Sciences, St Georges' University International School of Medicine, K B Taylor Scholar's Programme , Newcastle upon Tyne , UK and
| | | | | | | |
Collapse
|
17
|
Agarwal V, Tjandra ES, Iyer KS, Humfrey B, Fear M, Wood FM, Dunlop S, Raston CL. Evaluating the effects of nacre on human skin and scar cells in culture. Toxicol Res (Camb) 2014. [DOI: 10.1039/c4tx00004h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
18
|
Simon S, Dimitrova V, Gibert B, Virot S, Mounier N, Nivon M, Kretz-Remy C, Corset V, Mehlen P, Arrigo AP. Analysis of the dominant effects mediated by wild type or R120G mutant of αB-crystallin (HspB5) towards Hsp27 (HspB1). PLoS One 2013; 8:e70545. [PMID: 23950959 PMCID: PMC3741289 DOI: 10.1371/journal.pone.0070545] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 06/19/2013] [Indexed: 12/21/2022] Open
Abstract
Several human small heat shock proteins (sHsps) are phosphorylated oligomeric chaperones that enhance stress resistance. They are characterized by their ability to interact and form polydispersed hetero-oligomeric complexes. We have analyzed the cellular consequences of the stable expression of either wild type HspB5 or its cataracts and myopathies inducing R120G mutant in growing and oxidative stress treated HeLa cells that originally express only HspB1. Here, we describe that wild type and mutant HspB5 induce drastic and opposite effects on cell morphology and oxidative stress resistance. The cellular distribution and phosphorylation of these polypeptides as well as the oligomerization profile of the resulting hetero-oligomeric complexes formed by HspB1 with the two types of exogenous polypeptides revealed the dominant effects induced by HspB5 polypeptides towards HspB1. The R120G mutation enhanced the native size and salt resistance of HspB1-HspB5 complex. However, in oxidative conditions the interaction between HspB1 and mutant HspB5 was drastically modified resulting in the aggregation of both partners. The mutation also induced the redistribution of HspB1 phosphorylated at serine 15, originally observed at the level of the small oligomers that do not interact with wild type HspB5, to the large oligomeric complex formed with mutant HspB5. This phosphorylation stabilized the interaction of HspB1 with mutant HspB5. A dominant negative effect towards HspB1 appears therefore as an important event in the cellular sensitivity to oxidative stress mediated by mutated HspB5 expression. These observations provide novel data that describe how a mutated sHsp can alter the protective activity of another member of this family of chaperones.
Collapse
Affiliation(s)
- Stéphanie Simon
- Hôpital Henri Mondor University, Créteil, France
- CGphiMC, CNRS UMR 5534, Claude Bernard University Lyon 1, Villeurbanne, France
| | - Valeriya Dimitrova
- Department of Clinical Research, Division of Pediatric Hematology/Oncology, Insel Spital, Institute of Pathology, Bern University, Bern, Switzerland
- CGphiMC, CNRS UMR 5534, Claude Bernard University Lyon 1, Villeurbanne, France
| | - Benjamin Gibert
- CGphiMC, CNRS UMR 5534, Claude Bernard University Lyon 1, Villeurbanne, France
- Apoptosis Cancer and Development Laboratory, Lyon Cancer Research Center, INSERM U1052-CNRS UMR5286, Centre Léon Bérard, Claude Bernard University Lyon 1, Lyon, France
| | - Sophie Virot
- CGphiMC, CNRS UMR 5534, Claude Bernard University Lyon 1, Villeurbanne, France
| | - Nicole Mounier
- CGphiMC, CNRS UMR 5534, Claude Bernard University Lyon 1, Villeurbanne, France
| | - Mathieu Nivon
- CGphiMC, CNRS UMR 5534, Claude Bernard University Lyon 1, Villeurbanne, France
| | - Carole Kretz-Remy
- CGphiMC, CNRS UMR 5534, Claude Bernard University Lyon 1, Villeurbanne, France
| | - Véronique Corset
- Apoptosis Cancer and Development Laboratory, Lyon Cancer Research Center, INSERM U1052-CNRS UMR5286, Centre Léon Bérard, Claude Bernard University Lyon 1, Lyon, France
| | - Patrick Mehlen
- Apoptosis Cancer and Development Laboratory, Lyon Cancer Research Center, INSERM U1052-CNRS UMR5286, Centre Léon Bérard, Claude Bernard University Lyon 1, Lyon, France
| | - André-Patrick Arrigo
- CGphiMC, CNRS UMR 5534, Claude Bernard University Lyon 1, Villeurbanne, France
- Apoptosis Cancer and Development Laboratory, Lyon Cancer Research Center, INSERM U1052-CNRS UMR5286, Centre Léon Bérard, Claude Bernard University Lyon 1, Lyon, France
- * E-mail:
| |
Collapse
|
19
|
Lichtenfels R, Mougiakakos D, Johansson CC, Dressler SP, Recktenwald CV, Kiessling R, Seliger B. Comparative expression profiling of distinct T cell subsets undergoing oxidative stress. PLoS One 2012; 7:e41345. [PMID: 22911781 PMCID: PMC3401147 DOI: 10.1371/journal.pone.0041345] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 06/20/2012] [Indexed: 12/28/2022] Open
Abstract
The clinical outcome of adoptive T cell transfer-based immunotherapies is often limited due to different escape mechanisms established by tumors in order to evade the hosts' immune system. The establishment of an immunosuppressive micromilieu by tumor cells along with distinct subsets of tumor-infiltrating lymphocytes is often associated with oxidative stress that can affect antigen-specific memory/effector cytotoxic T cells thereby substantially reducing their frequency and functional activation. Therefore, protection of tumor-reactive cytotoxic T lymphocytes from oxidative stress may enhance the anti-tumor-directed immune response. In order to better define the key pathways/proteins involved in the response to oxidative stress a comparative 2-DE-based proteome analysis of naïve CD45RA+ and their memory/effector CD45RO+ T cell counterparts in the presence and absence of low dose hydrogen peroxide (H2O2) was performed in this pilot study. Based on the profiling data of these T cell subpopulations under the various conditions, a series of differentially expressed spots were defined, members thereof identified by mass spectrometry and subsequently classified according to their cellular function and localization. Representative targets responding to oxidative stress including proteins involved in signaling pathways, in regulating the cellular redox status as well as in shaping/maintaining the structural cell integrity were independently verified at the transcript and protein level under the same conditions in both T cell subsets. In conclusion the resulting profiling data describe complex, oxidative stress-induced, but not strictly concordant changes within the respective expression profiles of CD45RA+ and CD45RO+ T cells. Some of the differentially expressed genes/proteins might be further exploited as potential targets toward modulating the redox capacity of the distinct lymphocyte subsets thereby providing the basis for further studies aiming at rendering them more resistant to tumor micromilieu-induced oxidative stress.
Collapse
Affiliation(s)
- Rudolf Lichtenfels
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Dimitrios Mougiakakos
- Department of Oncology and Pathology, Cancer Center Karolinska, Stockholm, Sweden
- Department of Internal Medicine 5, Hematology and Oncology, University of Erlangen-Nuremberg, Erlangen, Germany
| | | | - Sven P. Dressler
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | | | - Rolf Kiessling
- Department of Oncology and Pathology, Cancer Center Karolinska, Stockholm, Sweden
| | - Barbara Seliger
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle, Germany
- * E-mail:
| |
Collapse
|
20
|
Sharma A, Mishra M, Shukla AK, Kumar R, Abdin MZ, Chowdhuri DK. Organochlorine pesticide, endosulfan induced cellular and organismal response in Drosophila melanogaster. JOURNAL OF HAZARDOUS MATERIALS 2012; 221-222:275-287. [PMID: 22579458 DOI: 10.1016/j.jhazmat.2012.04.045] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 04/16/2012] [Accepted: 04/18/2012] [Indexed: 05/31/2023]
Abstract
The effect of endosulfan (0.02-2.0μgmL(-1)) to Drosophila melanogaster (Oregon R(+)) at the cellular and organismal levels was examined. Third instar larvae of D. melanogaster and the strains transgenic for hsp70, hsp83 and hsp26 were exposed to endosulfan through food for 12-48h to examine the heat shock proteins (hsps), reactive oxygen species (ROS) generation, anti-oxidant stress markers and xenobiotic metabolism enzymes. We observed a concentration- and time-dependent significant induction of only small hsps (hsp23>hsp22) in the exposed organism in concurrence with a significant induction of ROS generation, oxidative stress and xenobiotic metabolism markers. Sub-organismal response was to be propagated towards organismal response, i.e., delay in the emergence of flies and decreased locomotor behaviour. Organisms with diminished locomotion also exhibited significantly lowered acetylcholinesterase activity. A significant positive correlation observed among ROS generation and different cellular endpoints (small hsps, oxidative stress markers, cytochrome P450 activities) in the exposed organism indicate a modulatory role of ROS in endosulfan-mediated cellular toxicity. The study thus suggests that the adverse effects of endosulfan in exposed Drosophila are manifested both at cellular and organismal levels and recommends Drosophila as an alternative animal model for screening the risk caused by environmental chemicals.
Collapse
Affiliation(s)
- Anurag Sharma
- Embryotoxicology Section, CSIR-Indian Institute of Toxicology Research, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | | | | | | | | | | |
Collapse
|
21
|
Analysis of naphthalene adduct binding sites in model proteins by tandem mass spectrometry. Chem Biol Interact 2012; 199:120-8. [PMID: 22659010 DOI: 10.1016/j.cbi.2012.05.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 05/16/2012] [Accepted: 05/23/2012] [Indexed: 12/15/2022]
Abstract
The electrophilic metabolites of the polyaromatic hydrocarbon naphthalene have been shown to bind covalently to proteins and covalent adduct formation correlates with the cytotoxic effects of the chemical in the respiratory system. Although 1,2-naphthalene epoxide, naphthalene diol epoxide, 1,2-naphthoquinone, and 1,4-napthoquinone have been identified as reactive metabolites of interest, the role of each metabolite in total covalent protein adduction and subsequent cytotoxicity remains to be established. To better understand the target residues associated with the reaction of these metabolites with proteins, mass spectrometry was used to identify adducted residues following (1) incubation of metabolites with actin and protein disulfide isomerase (PDI), and (2) activation of naphthalene in microsomal incubations containing supplemental actin or PDI. All four reactive metabolites bound to Cys, Lys or His residues in actin and PDI. Cys₁₇ of actin was the only residue adducted by all metabolites; there was substantial metabolite selectivity for the majority of adducted residues. Modifications of actin and PDI, following microsomal incubations containing ¹⁴C-naphthalene, were detected readily by 2D gel electrophoresis and phosphor imaging. However, target modifications on tryptic peptides from these isolated proteins could not be readily detected by MALDI/TOF/TOF and only three modified peptides were detected using high resolution-selective ion monitoring (HR-SIM). All the reactive metabolites investigated have the potential to modify several residues in a single protein, but even in tissues with very high rates of naphthalene activation, the extent of modification was too low to allow unambiguous identification of a significant number of modified residues in the isolated proteins.
Collapse
|
22
|
Facile identification of photocleavable reactive metabolites and oxidative stress biomarkers in proteins via mass spectrometry. Anal Bioanal Chem 2012; 403:2269-77. [DOI: 10.1007/s00216-012-5867-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 02/01/2012] [Accepted: 02/10/2012] [Indexed: 10/28/2022]
|
23
|
Adori C, Low P, Andó RD, Gutknecht L, Pap D, Truszka F, Takács J, Kovács GG, Lesch KP, Bagdy G. Ultrastructural characterization of tryptophan hydroxylase 2-specific cortical serotonergic fibers and dorsal raphe neuronal cell bodies after MDMA treatment in rat. Psychopharmacology (Berl) 2011; 213:377-91. [PMID: 21052985 DOI: 10.1007/s00213-010-2041-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 09/29/2010] [Indexed: 11/28/2022]
Abstract
RATIONALE 3,4-Methylenedioxymethamphetamine (MDMA, "ecstasy") is a widely used recreational drug known to cause selective long-term serotonergic damage. OBJECTIVES The aim of this study was to characterize the ultrastructure of serotonergic pericarya and proximal neurites in the dorsal raphe nucleus as well as the ultrastructure of serotonergic axons in the frontal cortex of adolescent Dark Agouti rats 3 days after treatment with 15 mg/kg i.p. MDMA. METHODS Light microscopic immunohistochemistry and pre-embedding immunoelectron microscopy with a novel tryptophan hydroxylase-2 (Tph2) specific antibody, as a marker of serotonergic structures. RESULTS Light microscopic analysis showed reduced serotonergic axon density and aberrant swollen varicosities in the frontal cortex of MDMA-treated animals. According to the electron microscopic analysis, Tph2 exhibited diffuse cytoplasmic immunolocalization in dorsal raphe neuronal cell bodies. The ultrastructural-morphometric analysis of these cell bodies did not indicate pathological changes or significant alteration in the cross-sectional areal density of any examined organelles. Proximal serotonergic neurites in the dorsal raphe exhibited no ultrastructural alteration. However, in the frontal cortex among intact fibers, numerous serotonergic axons with destructed microtubules were found. Most of their mitochondria were intact, albeit some injured axons also contained degenerating mitochondria; moreover, a few of them comprised confluent membrane whorls only. CONCLUSIONS Our treatment protocol does not lead to ultrastructural alteration in the serotonergic dorsal raphe cell bodies and in their proximal neurites but causes impairment in cortical serotonergic axons. In these, the main ultrastructural alteration is the destruction of microtubules although a smaller portion of these axons probably undergo an irreversible damage.
Collapse
Affiliation(s)
- Csaba Adori
- Department of Pharmacodynamics, Semmelweis University, Budapest, Hungary
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Amberg D, Leadsham JE, Kotiadis V, Gourlay CW. Cellular ageing and the actin cytoskeleton. Subcell Biochem 2011; 57:331-52. [PMID: 22094429 DOI: 10.1007/978-94-007-2561-4_15] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
For some time the view that the actin cytoskeleton acts primarily as a scaffold, to be assembled in response to a signaling cascade as an end point in the pathway, has prevailed. However, it is now clear that the dynamic nature of the cytoskeleton is linked to downstream signaling events that further modulate cellular activity, and which can determine cell fate. Examples of this lie within the regulation of programmed cell death, the maintenance of homeostasis and the process of cellular ageing. In yeast the actin cytoskeleton has been shown to interact directly with signaling pathways known to be important in the regulation of both ageing and cell death. For example it has been discovered that the level of damage sustained by the actin cytoskeleton under conditions of oxidative stressoxidative stress is directly linked to apoptosis. Further evidence comes from the finding that actin based propulsion mechanisms are required for the inheritance of mitochondria and anti-ageing factors into newly formed cells. In addition to this actin is known to directly influence the formation of protein aggregations. In this chapter we will discuss these points and postulate as to their significance with respect to the maintenance of cellular homeostasis.
Collapse
Affiliation(s)
- David Amberg
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA,
| | | | | | | |
Collapse
|
25
|
Abstract
Living systems have three major types of cell signalling systems that are dependent upon high-energy chemicals, redox environment and transmembranal ion-gating mechanisms. Development of integrated systems biology descriptions of cell signalling require conceptual models incorporating all three. Recent advances in redox biology show that thiol-disulphide redox systems are regulated under dynamic, nonequilibrium conditions, progressively oxidized with the life cycle of cells and distinct in terms of redox potentials amongst subcellular compartments. This article uses these observations as a basis to distinguish 'redox-sensing' mechanisms, which are more global biologic redox control mechanisms, from 'redox signalling', which involves conveyance of discrete activating or inactivating signals. Both redox sensing and redox signalling use sulphur switches, especially cysteine (Cys) residues in proteins which are sensitive to reversible oxidation, nitrosylation, glutathionylation, acylation, sulfhydration or metal binding. Unlike specific signalling mechanisms, the redox-sensing mechanisms provide means to globally affect the rates and activities of the high-energy, ion-gating and redox-signalling systems by controlling sensitivity, distribution, macromolecular interactions and mobility of signalling proteins. Effects mediated through Cys residues not directly involved in signalling means redox-sensing control can be orthogonal to the signalling mechanisms. This provides a capability to integrate signals according to cell cycle and physiologic state without fundamentally altering the signalling mechanisms. Recent findings that thiol-disulphide pools in humans are oxidized with age, environmental exposures and disease risk suggest that redox-sensing thiols could provide a central mechanistic link in disease development and progression.
Collapse
Affiliation(s)
- D P Jones
- Department of Medicine, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
26
|
Acute ethanol exposure disrupts actin cytoskeleton and generates reactive oxygen species in c6 cells. Toxicol In Vitro 2010; 25:28-36. [PMID: 20837132 DOI: 10.1016/j.tiv.2010.09.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 09/02/2010] [Accepted: 09/07/2010] [Indexed: 02/02/2023]
Abstract
Central nervous system dysfunctions are among the most significant effects of exposure to ethanol and the glial cells that play an important role in maintaining neuronal function, are extremely involved with these effects. The actin cytoskeleton plays a crucial role in a wide variety of cellular functions, especially when there is some injury. Therefore the aim of the present study was to analyze the short-term effects of ethanol (50, 100 and 200 mM) on the cytoskeleton of C6 glioma cells. Here we report that acute ethanol exposure profoundly disrupts the actin cytoskeleton in C6 cells decreasing stress fiber formation and downregulating RhoA and vinculin immunocontent. In contrast, microtubule and GFAP networks were not altered. We further demonstrate that anti-oxidants prevent ethanol-induced actin alterations, suggesting that the actions of ethanol on the actin cytoskeleton are related with generation of reactive oxygen species (ROS) in these cells. Our results show that ethanol at concentrations described to be toxic to the central nervous system was able to target the cytoskeleton of C6 cells and this effect could be related with increased ROS generation. Therefore, we propose that the dynamic restructuring of the cytoskeleton of glial cells might contribute to the response to the injury provoked by binge-like ethanol exposure in brain.
Collapse
|
27
|
Gilloteaux J, Jamison JM, Neal DR, Loukas M, Doberzstyn T, Summers JL. Cell damage and death by autoschizis in human bladder (RT4) carcinoma cells resulting from treatment with ascorbate and menadione. Ultrastruct Pathol 2010; 34:140-60. [PMID: 20455663 DOI: 10.3109/01913121003662304] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
A human bladder carcinoma cell line RT4 was sham-treated with buffer or treated with ascorbate (VC) alone, menadione alone (VK(3)), or a combination of ascorbate:menadione (VC+VK(3)) for 1, 2, and 4 h. Cytotoxic damage was found to be treatment-dependent in this sequence: VC+VK(3)>VC>VK(3)>sham. The combined treatment induced the greatest oxidative stress, with early tumor cell injury affecting the cytoskeletal architecture and contributing to the self-excisions of pieces of cytoplasm freed from organelles. Additional damage, including a reduction in cell size, organelle alterations, nuclear damage, and nucleic acid degradation as well as compromised lysosome integrity, is caused by reactivation of DNases and the redox cycling of VC or VC+VK(3). In addition, cell death caused by VC+VK(3) treatment as well as by prolonged VC treatment is consistent with cell demise by autoschizis, not apoptosis. This report confirms and complements previous observations about this new mode of tumor cell death. It supports the contention that a combination of VC+VK(3), also named Apatone, could be co-administered as a nontoxic adjuvant with radiation and/or chemotherapies to kill bladder tumor cells and other cancer cells without any supplementary risk or side effects for patients.
Collapse
Affiliation(s)
- Jacques Gilloteaux
- Department of Anatomical Sciences, St. Georges' University School of Medicine, Newcastle upon Tyne, UK.
| | | | | | | | | | | |
Collapse
|
28
|
Wu LY, Ma ZM, Fan XL, Zhao T, Liu ZH, Huang X, Li MM, Xiong L, Zhang K, Zhu LL, Fan M. The anti-necrosis role of hypoxic preconditioning after acute anoxia is mediated by aldose reductase and sorbitol pathway in PC12 cells. Cell Stress Chaperones 2010; 15:387-94. [PMID: 19902381 PMCID: PMC3082650 DOI: 10.1007/s12192-009-0153-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2009] [Revised: 09/14/2009] [Accepted: 10/21/2009] [Indexed: 12/14/2022] Open
Abstract
It has been demonstrated that hypoxic preconditioning (HP) enhances the survival ability of the organism against the subsequent acute anoxia (AA). However, it is not yet clear whether necrosis induced by AA can be prevented by HP, and what are the underlying mechanisms. In this study, we examined the effect of HP (10% O(2), 48 h) on necrosis induced by AA (0% O(2), 24 h) in PC12 cells. We found that HP delayed the regulatory volume decrease and reduced cell swelling after 24 h of exposure to AA. Since aldose reductase (AR) is involved in cell volume regulation, we detected AR mRNA expression with reverse transcription-polymerase chain reaction (RT-PCR) techniques. The AR mRNA level was dramatically elevated by HP. Furthermore, an HP-induced decrease in cell injury was reversed by berberine chloride (BB), the inhibitor of AR. In addition, sorbitol synthesized from glucose catalyzed by AR is directly related to cell volume regulation. Subsequently, we tested sorbitol content in the cytoplasm. HP clearly elevated sorbitol content, while BB inhibited the elevation induced by HP. Further study showed that a strong inhibitor of sorbitol permease, quinidine, completely reversed the protection induced by HP after AA. These data provide evidence that HP prevents necrosis induced by AA and is mediated by AR and sorbitol pathway.
Collapse
Affiliation(s)
- Li-Ying Wu
- Department of Brain Protection and Plasticity, Institute of Basic Medical Sciences, Taiping Rd 27, Beijing, 100850 People’s Republic of China
| | - Zi-Min Ma
- Department of Brain Protection and Plasticity, Institute of Basic Medical Sciences, Taiping Rd 27, Beijing, 100850 People’s Republic of China
| | - Xue-Lai Fan
- Department of Brain Protection and Plasticity, Institute of Basic Medical Sciences, Taiping Rd 27, Beijing, 100850 People’s Republic of China
| | - Tong Zhao
- Department of Brain Protection and Plasticity, Institute of Basic Medical Sciences, Taiping Rd 27, Beijing, 100850 People’s Republic of China
| | - Zhao-Hui Liu
- Department of Brain Protection and Plasticity, Institute of Basic Medical Sciences, Taiping Rd 27, Beijing, 100850 People’s Republic of China
| | - Xin Huang
- Department of Brain Protection and Plasticity, Institute of Basic Medical Sciences, Taiping Rd 27, Beijing, 100850 People’s Republic of China
| | - Ming-Ming Li
- Department of Brain Protection and Plasticity, Institute of Basic Medical Sciences, Taiping Rd 27, Beijing, 100850 People’s Republic of China
| | - Lei Xiong
- Department of Brain Protection and Plasticity, Institute of Basic Medical Sciences, Taiping Rd 27, Beijing, 100850 People’s Republic of China
| | - Kuan Zhang
- Department of Brain Protection and Plasticity, Institute of Basic Medical Sciences, Taiping Rd 27, Beijing, 100850 People’s Republic of China
| | - Ling-Ling Zhu
- Department of Brain Protection and Plasticity, Institute of Basic Medical Sciences, Taiping Rd 27, Beijing, 100850 People’s Republic of China
| | - Ming Fan
- Department of Brain Protection and Plasticity, Institute of Basic Medical Sciences, Taiping Rd 27, Beijing, 100850 People’s Republic of China
| |
Collapse
|
29
|
Levanon D, Manov I, Iancu TC. Qualitative and Quantitative Analysis of the Effects of Acetaminophen and N-Acetylcysteine on the Surface Morphology of Hep3B Hepatoma Cells in V itro. Ultrastruct Pathol 2009. [DOI: 10.1080/01913120490275204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
30
|
Gilloteaux J, Jamison JM, Neal DR, Summers JL. Cell Death by Autoschizis in TRAMP Prostate Carcinoma Cells as a Result of Treatment by Ascorbate: Menadione Combination. Ultrastruct Pathol 2009; 29:221-35. [PMID: 16036878 DOI: 10.1080/01913120590951239] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
A prostate carcinoma cell line derived from the transgenic murine prostate cancer model (TRAMP) was treated with ascorbate (VC) alone, menadione (VK(3)) alone, or a combination of ascorbate:menadione (VC + VK(3)) for 1, 2, and 4 h. Cytotoxic cell alterations examined by light and electron microscopy were treatment-dependent with VC + VK(3) > VC > VK(3). Induced by oxidative stress, these alterations included cytokeletal changes conducive to cytoplasmic blebbing, self-excisions, and progressive nuclear alterations. While the excised parts contained ribosomes, they were devoid of nuclear fragments or other organelles. The organelle-free self-excisions caused an extreme reduction in cell size as well as chromatolysis and karyolysis that were consistent with cell death by autoschizis, but not with apoptosis.
Collapse
Affiliation(s)
- Jacques Gilloteaux
- American University of the Caribbean School of Medicine, Campus St. Maarten, M.E.I.O., Inc, Coral Gables, Florida 33134, USA.
| | | | | | | |
Collapse
|
31
|
Lisi A, Foletti A, Ledda M, Rosola E, Giuliani L, D'Emilia E, Grimaldi S. Extremely Low Frequency 7 Hz 100 µT Electromagnetic Radiation Promotes Differentiation in the Human Epithelial Cell Line HaCaT. Electromagn Biol Med 2009; 25:269-80. [PMID: 17178586 DOI: 10.1080/15368370601044184] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Electromagnetic therapy is a treatment method in which an electromagnetic or magnetic stimulus is used to achieve physiological changes in the body. The specific aim of the present work concerns the effectiveness of low frequency electromagnetic fields to modify the biochemical properties of human keratinocytes (HaCaT). Cells exposed to a 7 Hz 100 microT electromagnetic field for one hour (twice daily), indicated modification in shape and morphology. These modifications were also associated with different actin distribution as revealed by phalloidin fluorescence analysis. Indirect immunofluorescence with fluorescent antibodies against involucrin and beta-Catenin, both differentiation and adhesion markers, revealed an increase in involucrin and beta-Catenin expression, supporting the conclusion that exposure to electromagnetic field carries keratinocytes to an upper differentiation level. This study confirms our previous observation and supports the hypothesis that 7 Hz electromagnetic field, may modify cell biochemistry interfering in the differentiation and cellular adhesion of normal keratinocytes.
Collapse
Affiliation(s)
- Antonella Lisi
- Istituto di Neurobiologia e Medicina Molecolare CNR, Rome, Italy.
| | | | | | | | | | | | | |
Collapse
|
32
|
Morrow DMP, Entezari-Zaher TE, Romashko J, Azghani AO, Javdan M, Ulloa L, Miller EJ, Mantell LL. Antioxidants preserve macrophage phagocytosis of Pseudomonas aeruginosa during hyperoxia. Free Radic Biol Med 2007; 42:1338-49. [PMID: 17395007 PMCID: PMC3104269 DOI: 10.1016/j.freeradbiomed.2007.01.031] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2006] [Revised: 01/13/2007] [Accepted: 01/17/2007] [Indexed: 11/29/2022]
Abstract
Pseudomonas. aeruginosa (PA) is a leading cause of nosocomial pneumonia in patients receiving mechanical ventilation with hyperoxia. Exposure to supraphysiological concentrations of reactive oxygen species during hyperoxia may result in macrophage damage that reduces their ability to phagocytose PA. We tested this hypothesis in cultured macrophage-like RAW 264.7 cells and alveolar macrophages from mice exposed to hyperoxia. Exposure to hyperoxia induced a similarly impaired phagocytosis of both the mucoid and the nonmucoid forms of PA in alveolar macrophages and RAW cells. Compromised PA phagocytosis was associated with cytoskeleton disorganization and actin oxidation in hyperoxic macrophages. To test whether moderate concentrations of O(2) limit the loss of phagocytic function induced by > or =95% O(2), mice and RAW cells were exposed to 65% O(2). Interestingly, although the resulting lung injury/cell proliferation was not significant, exposure to 65% O(2) resulted in a marked reduction in PA phagocytosis that was comparable to that of > or =95% O(2). Treatment with antioxidants, even post hyperoxic exposure, preserved actin cytoskeleton organization and phagocytosis of PA. These data suggest that hyperoxia reduces macrophage phagocytosis through effects on actin functions which can be preserved by antioxidant treatment. In addition, administration of moderate rather than higher concentrations of O2 does not improve macrophage phagocytosis of PA.
Collapse
Affiliation(s)
- Dympna M. P. Morrow
- Department of Pharmaceutical Sciences, St. John’s University College of Pharmacy, Queens, NY 11439
- Cardiopulmonary Research, North Shore University Hospital/The Feinstein Institute for Medical Research, North Shore-LIJ Health System, Manhasset, NY 11030
| | - Tahereh E. Entezari-Zaher
- Department of Pharmaceutical Sciences, St. John’s University College of Pharmacy, Queens, NY 11439
- Cardiopulmonary Research, North Shore University Hospital/The Feinstein Institute for Medical Research, North Shore-LIJ Health System, Manhasset, NY 11030
| | - John Romashko
- Cardiopulmonary Research, North Shore University Hospital/The Feinstein Institute for Medical Research, North Shore-LIJ Health System, Manhasset, NY 11030
| | - Ali O. Azghani
- Department of Speciality Care Services, The University of Texas Health Center, Tyler, TX
| | - Mohammad Javdan
- Cardiopulmonary Research, North Shore University Hospital/The Feinstein Institute for Medical Research, North Shore-LIJ Health System, Manhasset, NY 11030
| | - Luis Ulloa
- Laboratory of Biomedical Science, North Shore University Hospital/The Feinstein Institute for Medical Research, North Shore-LIJ Health System, Manhasset, NY 11030
| | - Edmund J. Miller
- Surgercal Immunology, North Shore University Hospital/The Feinstein Institute for Medical Research, North Shore-LIJ Health System, Manhasset, NY 11030
| | - Lin L. Mantell
- Department of Pharmaceutical Sciences, St. John’s University College of Pharmacy, Queens, NY 11439
- Cardiopulmonary Research, North Shore University Hospital/The Feinstein Institute for Medical Research, North Shore-LIJ Health System, Manhasset, NY 11030
- Correspondence author: Lin L. Mantell, Department of Pharmaceutical Sciences, St. John’s University College of Pharmacy, 108/SB28 St. Albert Hall, 8000 Utopia Parkway, Queens, New York 11439, Tel: 718-990-5933, Fax: 718-990-1877,
| |
Collapse
|
33
|
Masella R, Straface E, Giovannini C, Benedetto R, Scazzocchio B, Viora M, Cantafora A, Malorni W. Subcellular Alterations Induced by UV-Oxidized Low-Density Lipoproteins in Epithelial Cells Can Be Counteracted by α-Tocopherol. Photochem Photobiol 2007. [DOI: 10.1562/0031-8655(2000)0710097saibuo2.0.co2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
34
|
de Lima Pelaez P, Funchal C, Loureiro SO, Heimfarth L, Zamoner A, Gottfried C, Latini A, Wajner M, Pessoa-Pureur R. Branched‐chain amino acids accumulating in maple syrup urine disease induce morphological alterations in C6 glioma cells probably through reactive species. Int J Dev Neurosci 2007; 25:181-9. [PMID: 17317075 DOI: 10.1016/j.ijdevneu.2007.01.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2006] [Revised: 01/03/2007] [Accepted: 01/05/2007] [Indexed: 11/28/2022] Open
Abstract
In the present study, we investigated the effects of the branched-chain amino acids (BCAA) leucine (Leu), isoleucine (Ile) and valine (Val), which accumulate in maple syrup urine disease (MSUD), on C6 glioma cell morphology and cytoskeletal reorganization by exposing the cultured cells to 1 and 5 mM BCAA. We observed that cells showed a fusiform shape with processes after 3 h treatment. Cell death was also observed when cells were incubated in the presence of the BCAA for 3 and 24 h. Val-treated cells presented the most dramatic morphological alterations. Immunocytochemistry with anti-actin and anti-GFAP antibodies revealed that all BCAA induced reorganization of actin and GFAP cytoskeleton. Although phosphorylation regulates intermediate filament (IF) assembly/disassembly, we verified that the BCAA did not change the in vitro phosphorylation of IF proteins either in C6 cells or in slices of cerebral cortex of rats during development (9-, 12-, 17- and 21-day-old). Furthermore, we observed that 3 h cell exposure to 5 mM of each BCAA resulted in a marked reduction of reduced glutathione (GSH) levels and significantly increased nitric oxide production. Finally, we observed that the morphological features caused by the BCAA on C6 cells were prevented by the use of the antioxidants GSH (1 mM) and N(omega)-nitro-L-arginine methyl ester (L-NAME, 0.5 mM). On the basis of the present results, we conclude that free radical attack might be involved in the cell morphological alterations, as well as, in the cytoskeletal reorganization elicited by the BCAA. It is therefore presumed that these findings could be involved in the neuropathological features observed in patients affected by MSUD.
Collapse
Affiliation(s)
- Priscila de Lima Pelaez
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Oxidative stress is considered one of the causative pathomechanisms of nervous system diseases such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, stroke and excitotoxicity. The basal expression of six different peroxiredoxin (Prx) isozymes show distinct distribution profiles in different brain regions and different cell types. PrxI and VI are expressed in glial cells but not in neurons; while PrxII, III, IV and V are expressed in neurons. Various diseases or models show altered expression levels of these isozymes, such as by upregulation of PrxI, II and VI and downregulation of PrxIII. Thioredoxin (Trx)I mRNA is distributed widely in the rat brain. This distribution pattern may reflect the specific functions of these isozymes. Recently, the neuroprotective roles of Prx III and V against ibotenate-induced-excitotoxicity were reported by two independent groups. Adenovirus transduction of PrxIII eliminated protein nitration and prevented gliosis caused by direct infusion of ibotenate. Systemic administration of recombinant PrxV diminished brain lesions in animals treated with ibotenate. In this chapter, we review the causative mechanisms of oxidative stress in neurodegenerative diseases, as well as describe the basal and disease-induced changes in Prxs/Trxs/Trx reductases expression levels and neuroprotective roles of Trxs and Prxs as demonstrated in overexpression models.
Collapse
Affiliation(s)
- Fumiyuki Hattori
- Asubio Pharma Co. Ltd. Research park, Institute of Integrated Medical Research Keio University, School of Medicine, Tokyo, Japan
| | | |
Collapse
|
36
|
Morrison D, Rahman I, MacNee W. Permeability, inflammation and oxidant status in airspace epithelium exposed to ozone. Respir Med 2006; 100:2227-34. [PMID: 17023150 DOI: 10.1016/j.rmed.2005.10.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2004] [Revised: 10/02/2005] [Accepted: 10/07/2005] [Indexed: 12/22/2022]
Abstract
The aim of the study was to investigate possible mechanisms of epithelial injury in normal subjects exposed to environmentally relevant concentrations of ozone. Fifteen healthy non-smoking subjects (M:F 12:3) were studied. Five of the 15 subjects were exposed to filtered air, six were exposed to ozone 100 parts per billion (ppb) and seven were exposed to ozone 400 ppb with 99mtechnetium labelled diethylene-triamine-penta-acetate (99mTc-DTPA) or bronchoalveolar lavage (BAL) performed 1 or 6 h after exposure as indicated above. All the above studies were performed on different occasions at least 5 days apart. The subjects were exposed on each occasion for 1h during intermittent exercise at a ventilation of 40l min-1. 99mTc-DTPA lung clearance did not change after either level of ozone exposure, but neutrophils increased in BAL 6 h after exposure to 400 ppb. Superoxide anion release from mixed BAL leucocytes decreased 1 h after 100 ppb and 6 h after 400 ppb. Products of lipid peroxidation in epithelial lining fluid decreased both 1 and 6 h after 400 ppb. There was no change in anti-oxidant capacity or glutathione concentrations. Ozone exposure did not increase epithelial permeability, but was associated with neutrophil influx into the airspaces, without evidence of increased oxidative stress.
Collapse
Affiliation(s)
- Douglas Morrison
- Respiratory Medicine Unit, Department of Medicine, University of Edinburgh, Medical School, Teviot Place, Edinburgh EH3 9YW, Scotland, UK
| | | | | |
Collapse
|
37
|
Kaplan M, Mutlu EA, Benson M, Fields JZ, Banan A, Keshavarzian A. Use of herbal preparations in the treatment of oxidant-mediated inflammatory disorders. Complement Ther Med 2006; 15:207-16. [PMID: 17709066 DOI: 10.1016/j.ctim.2006.06.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2005] [Accepted: 06/14/2006] [Indexed: 01/28/2023] Open
Abstract
Complementary and alternative medicine (CAM) use has increased in popularity in recent years and herbal therapy alone is now a billion dollar market. For centuries herbs have been used as food and for medicinal purposes. Various herbs have been identified as possessing anti-inflammatory and antioxidative properties, and they are currently being used to treat inflammatory disorders as well as those caused by reactive oxygen species (ROS). Asthma, Alzheimer's disease, inflammatory bowel disease (IBD), rheumatoid arthritis (RA), and atherogenesis are all disorders where inflammation and ROS are involved in their pathogenesis. This review examines the pathogenesis of the above mentioned ROS-mediated inflammatory disorders, as well as discusses the antioxidant and anti-inflammatory mechanisms of various herbs and the clinical trials where herbs have been used to treat these disorders.
Collapse
Affiliation(s)
- Mitchell Kaplan
- Rush University Medical Center, Department of Internal Medicine, Section of Gastroenterology and Nutrition, 1725 West Harrison Street, Suite 206, Chicago, IL 60612-3824, United States.
| | | | | | | | | | | |
Collapse
|
38
|
Funchal C, Latini A, Jacques-Silva MC, Dos Santos AQ, Buzin L, Gottfried C, Wajner M, Pessoa-Pureur R. Morphological alterations and induction of oxidative stress in glial cells caused by the branched-chain alpha-keto acids accumulating in maple syrup urine disease. Neurochem Int 2006; 49:640-50. [PMID: 16822590 DOI: 10.1016/j.neuint.2006.05.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2006] [Revised: 04/17/2006] [Accepted: 05/23/2006] [Indexed: 11/17/2022]
Abstract
Maple syrup urine disease (MSUD) is an inherited neurometabolic disorder biochemically characterized by the accumulation of the branched-chain alpha-keto acids (BCKA) alpha-ketoisocaproic (KIC), alpha-keto-beta-methylvaleric (KMV) and alpha-ketoisovaleric (KIV) and their respective branched-chain alpha-amino acids in body fluids and tissues. Affected MSUD patients have predominantly neurological features, including cerebral edema and atrophy whose pathophysiology is not well established. In the present study we investigated the effects of KIC, KMV and KIV on cell morphology, cytoskeleton reorganization, actin immunocontent and on various parameters of oxidative stress, namely total antioxidant reactivity (TAR), glutathione (GSH) and nitric oxide concentrations, and on the activities of catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx) in C6 glioma cells. We initially observed that C6 cultivated cells exposed for 3 h to the BCKA (1 and 10 mM) changed their usual rounded morphology to a fusiform or process-bearing cell appearance, while 24 h exposure to these organic acids elicited massive cell death. Rhodamine-labelled phalloidin analysis revealed that these organic acids induced reorganization of the actin cytoskeleton with no modifications on total actin content. It was also observed that 3h cell exposure to low doses of all BCKA (1 mM) resulted in a marked reduction of the non-enzymatic antioxidant defenses, as determined by TAR and GSH measurements. In addition, KIC provoked a reduced activity of SOD and GPx, whereas KMV caused a diminution of SOD activity. In contrast, CAT activity was not modified by the metabolites. Furthermore, nitric oxide production was significantly increased by all BCKA. Finally, we observed that the morphological features caused by BCKA on C6 cells were prevented by the use of the antioxidants GSH (1.0 mM), alpha-tocopherol (trolox; 10 microM) and Nomega-nitro-L-arginine methyl ester (L-NAME; 500 microM). These results strongly indicate that oxidative stress might be involved in the cell morphological alterations and death, as well as in the cytoskeletal reorganization elicited by the BCKA. It is presumed that these findings are possibly implicated in the neuropathological features observed in patients affected by MSUD.
Collapse
Affiliation(s)
- Cláudia Funchal
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Lisi A, Ledda M, Rosola E, Pozzi D, D'Emilia E, Giuliani L, Foletti A, Modesti A, Morris SJ, Grimaldi S. Extremely low frequency electromagnetic field exposure promotes differentiation of pituitary corticotrope-derived AtT20 D16V cells. Bioelectromagnetics 2006; 27:641-51. [PMID: 16838272 DOI: 10.1002/bem.20255] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The pituitary corticotrope-derived AtT20 D16V cell line responds to nerve growth factor (NGF) by extending neurite-like processes and differentiating into neurosecretory-like cells. The aim of this work is the study of the effect of extremely low frequency electromagnetic fields (ELF-EMF) at a frequency of 50 Hz on these differentiation activities. To establish whether exposure to the field could influence the molecular biology of the cells, they were exposed to a magnetic flux density of 2 milli-Tesla (mT). Intracellular calcium ([Ca2+]i) and intracellular pH (pHi) were monitored in single exposed AtT20 D16V cells using fluorophores Indo-1 and SNARF for [Ca2+]i and pHi, respectively. Single-cell fluorescence microscopy showed a statistically significant increase in [Ca2+]i followed by a drop in pHi in exposed cells. Both scanning electron microscopy (SEM) and transmission microscopy of exposed AtT20 D16V cells show morphological changes in plasma membrane compared to non-exposed cells; this modification was accompanied by a rearrangement in actin filament distribution and the emergence of properties typical of peptidergic neuronal cells-the appearance of secretory-like granules in the cytosol and the increase of synaptophysin in synaptic vesicles, changes typical of neurosecretory-like cells. Using a monoclonal antibody toward the neurofilament protein NF-200 gave additional evidence that exposed cells were in an early stage of differentiation compared to control. Pre-treatment with 0.3 microM nifedipine, which specifically blocks L-type Ca2+ channels, prevented NF-200 expression in AtT20 D16V exposed cells. The above findings demonstrate that exposure to 50 Hz ELF-EMF is responsible for the premature differentiation in AtT20 D 16 V cells.
Collapse
Affiliation(s)
- Antonella Lisi
- Consiglio Nazionale delle Ricerche Istituto di Neurobiologia e Medicina Molecolare, Rome, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Resmi H, Akhunlar H, Temiz Artmann A, Güner G. In vitro effects of high glucose concentrations on membrane protein oxidation, G-actin and deformability of human erythrocytes. Cell Biochem Funct 2005; 23:163-8. [PMID: 15386536 DOI: 10.1002/cbf.1129] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The object of this study was to examine the effect of elevated in vitro glucose concentrations on protein modification and functional changes in human erythrocytes. Groups were exposed to 5-45 mM glucose concentrations. The time effect of any changes was also evaluated. In erythrocyte ghosts, protein glycation and oxidation were evaluated using spectrophotometric methods. G-actin was measured by a DNase I inhibition assay in cell lysates. Erythrocyte deformability was assessed using a cell transit analyser. At 24 h, a significant protein oxidation (at 25 and 45 mM glucose; p < 0.05), and G-actin increase was observed for all concentrations (p < 0.05). At 48 h, a significant increase in glycation (25 and 45 mM glucose; p < 0.05), protein oxidation (p < 0.05), and G-actin (p < 0.05) was observed in all groups. A significant positive correlation was observed between glucose /protein oxidation, glucose/G-actin and protein oxidation/G-actin at 24 and 48 h. Our findings show that the oxidative effect of glucose on erythrocytes depends on concentration and incubation time. We also present the first evidence of increased G-actin in human erythrocytes exposed to high glucose concentrations as a diabetes model.
Collapse
Affiliation(s)
- Halil Resmi
- Department of Biochemistry, Dokuz Eylül University Medical School, Izmir, Turkey
| | | | | | | |
Collapse
|
41
|
Gilloteaux J, Jamison JM, Arnold D, Neal DR, Summers JL. Morphology and DNA degeneration during autoschizic cell death in bladder carcinoma T24 cells induced by ascorbate and menadione treatment. ACTA ACUST UNITED AC 2005; 288:58-83. [PMID: 16345077 DOI: 10.1002/ar.a.20276] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Feulgen and actin-phalloidin staining as well as gel electrophoresis have been employed in conjunction with cell ultrastructure to describe the effects of 1-, 2-, and 4-hr ascorbate (VC), menadione (VK(3)), and ascorbate:menadione (VC:VK(3)) treatments on the T24 human bladder carcinoma cell line. T24 cells exposed to VC alone display blebs and other superficial membrane defects related to membrane alterations and to superficial cytoskeleton changes. VK(3) treatment damages the cell nucleus and organelles, leads to the redistribution of the organelles in the perikaryon as a consequence of cytoskeletal damage, and results in cytoplasmic self-excisions. After VC:VK(3) treatment, the cells show exaggerated alterations characteristic of each vitamin treatment alone, including damaged mitochondria, self-excision of organelle-free pieces of cytoplasm, and extrusion of the perikaryon containing a nucleus surrounded by the damaged organelles. The nuclear envelope appears intact and contains chromatin that decondenses and dissipates. During the cellular demise that concludes with apparent karyolysis, the cells significantly decrease their size and alter their shape. However, the cisterns of rough endoplasmic reticulum are undamaged, but may become dilated. Since the cellular phenomena leading to cell death differ morphologically from apoptosis and necrosis, but entail self-cutting without nuclear bodies, this new form of cell death was called autoschizis. In addition, gel electrophoresis and Feulgen staining demonstrate that autoschizis is accompanied by random DNA degeneration.
Collapse
Affiliation(s)
- Jacques Gilloteaux
- Department of Anatomy, American University of the Caribbean, School of Medicine, Coral Gables, Florida 33134, USA.
| | | | | | | | | |
Collapse
|
42
|
Gilloteaux J, Jamison JM, Lorimer HE, Jarjoura D, Taper HS, Calderon PB, Neal DR, Summers JL. Autoschizis: a new form of cell death for human ovarian carcinoma cells following ascorbate:menadione treatment. Nuclear and DNA degradation. Tissue Cell 2004; 36:197-209. [PMID: 15140597 DOI: 10.1016/j.tice.2004.01.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2003] [Revised: 01/20/2004] [Accepted: 01/27/2004] [Indexed: 01/02/2023]
Abstract
Microscopic aspects, densitometric evaluation of Feulgen-stained DNA, and gel electrophoresis of total DNA have been used to elucidate the effects of 1, 2, and 3 h VC (ascorbic acid), VK3 (menadione), and combined VC:VK3 treatments on the cellular and nuclear morphology and DNA content of a human ovarian carcinoma cell line (MDAH 2774). Optical densitometry showed a significant decrease in cancer cell DNA content directly related to VC and VC:VK3 treatments while VK3 and VC:VK3 treated cells exhibited cytoskeletal changes that included self-excision of cytoplasmic pieces with no membranous organelles. Nuclei decreased in size and exhibited poor contrast consistent with progressive decondensation of their chromatin. Degraded chromatin was also detected in cytoplasmic autophagosomes. Nucleoli segregated their components and fragmented into small pieces. Gel electrophoretic analysis of total DNA revealed evidence of generalized DNA degradation specific to treated tumor cells. These results are consistent with previous observations [Scanning 20 (1998a) 564; Ultrastruct. Pathol. 25 (2001b) 183; J. Histochem. Cytochem. 49 (2001) 109] which demonstrated that the VC:VK3 combination induced autoschizic cell death by a series of cytoplasmic excisions without organelles along with specific nuclear ultrastructural damage.
Collapse
Affiliation(s)
- Jacques Gilloteaux
- Department of Anatomy, American University of the Caribbean, School of Medicine, Campus St. Maarten, M.E.I.O. Inc., Ponce de Leon Boulevard 901, Suite #401, Coral Gables, FL 33135, USA.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Jamison JM, Gilloteaux J, Nassiri MR, Venugopal M, Neal DR, Summers JL. Cell cycle arrest and autoschizis in a human bladder carcinoma cell line following Vitamin C and Vitamin K3 treatment. Biochem Pharmacol 2004; 67:337-51. [PMID: 14698046 DOI: 10.1016/j.bcp.2003.08.040] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Exponentially growing cultures of human bladder tumor cells (T24) were treated with Vitamin C (VC) alone, Vitamin K(3) (VK(3)) alone, or with a VC:VK(3) combination for 1, 2, or 4hr. Flow cytometry of T24 cells exposed to the vitamins for 1h revealed a growth arrested population and a population undergoing cell death. Cells in G(1) during vitamin treatment arrested in G(1) while those in S phase progressed through S phase and arrested in G(2)/M. DNA synthesis decreased to 14 to 21% of control levels which agreed with the percent of cells in S phase during treatment. Annexin V labeling demonstrated the majority of the cells died by autoschizis, but necrosis and apoptosis also were observed. Catalase treatment abrogated both cell cycle arrest and cell death which implicated hydrogen peroxide (H(2)O(2)) in these processes. Redox cycling of VC and VK(3) increased H(2)O(2) production and decreased cellular thiol levels and DNA content, while increasing intracellular Ca(2+) levels and lipid peroxidation. Feulgen staining of treated cells revealed a time-dependent decrease in tumor cell DNA, while electrophoresis revealed a spread pattern. These results suggest that Ca(2+) disregulation activates at least one DNase which degrades tumor cell DNA and induces tumor cell death.
Collapse
Affiliation(s)
- James M Jamison
- Department of Urology, College of Medicine, Northeastern Ohio Universities, Summa Health System/NEOUCOM, Akron, OH 44304, USA.
| | | | | | | | | | | |
Collapse
|
44
|
Manni V, Lisi A, Rieti S, Serafino A, Ledda M, Giuliani L, Sacco D, D'Emilia E, Grimaldi S. Low electromagnetic field (50 Hz) induces differentiation on primary human oral keratinocytes (HOK). Bioelectromagnetics 2004; 25:118-26. [PMID: 14735562 DOI: 10.1002/bem.10158] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This work concerns the effect of low frequency electromagnetic fields (ELF) on biochemical properties of human oral keratinocytes (HOK). Cells exposed to a 2 mT, 50 Hz, magnetic field, showed by scanning electron microscopy (SEM) modification in shape and morphology; these modifications were also associated with different actin distribution, revealed by phalloidin fluorescence analysis. Moreover, exposed cells had a smaller clonogenic capacity, and decreased cellular growth. Indirect immunofluorescence with fluorescent antibodies against involucrin and beta-catenin, both differentiation and adhesion markers, revealed an increase in involucrin and beta-catenin expression. The advance in differentiation was confirmed by a decrease of expression of epidermal growth factor (EGF) receptor in exposed cells, supporting the idea that exposure to electromagnetic field carries keratinocytes to higher differentiation level. These observations support the hypothesis that 50 Hz electromagnetic fields may modify cell morphology and interfere in differentiation and cellular adhesion of normal keratinocytes.
Collapse
Affiliation(s)
- Vanessa Manni
- Istituto di Neurobiologia e Medicina Molecolare (INeMM), CNR, Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Wignall SM, Gray NS, Chang YT, Juarez L, Jacob R, Al Burlingame, Schultz PG, Heald R. Identification of a Novel Protein Regulating Microtubule Stability through a Chemical Approach. ACTA ACUST UNITED AC 2004. [DOI: 10.1016/j.chembiol.2003.12.019] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
46
|
Alexandre H, Delsinne V, Goval JJ. The thiol reagent, thimerosal, irreversibly inhibits meiosis reinitiation in mouse oocyte when applied during a very early and narrow temporal window: a pharmacological analysis. Mol Reprod Dev 2003; 65:454-61. [PMID: 12840819 DOI: 10.1002/mrd.10319] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The effect of the sulfhydryl reagent, thimerosal (TMS) on meiosis resumption in germinal vesicle (GV)-stage denuded mouse oocytes was studied. It irreversibly inhibits both GV breakdown (GVBD) and the first polar body (pb1) extrusion in concentration- and time-dependent manners, the most striking result being the very early and narrow temporal window during which denuded primary oocytes released from their follicle are susceptible to a pulse of the drug. This inhibition is bypassed by dithiothreitol (DTT) with an efficiency declining with time, while thiosalicylic acid (TA), an analog of TMS devoid of the mercury atom, has no effect on meiosis reinitiation. These results strongly suggest that the inhibitory effect of TMS is a consequence of its sulfhydryl group oxidising activity. The molecular target(s) of this inhibitory oxidation should however be identified. In contrast to DTT, okadaic acid (OA), known to bypass the inhibitory effect of drugs interfering with protein kinase activities, only induces chromatin condensation and GVBD in TMS-pulsed oocytes with a delay of about 8 hr as compared to the control situation. This confirms that a very early thiol oxidation induced by TMS exerts a much more dramatic effect on resumption on meiosis than any pharmacological manipulation of protein kinase activities leading to activation of MPF.
Collapse
Affiliation(s)
- H Alexandre
- Université de Mons-Hainaut, Faculté de Médecine et de Pharmacie, Mons, Belgium.
| | | | | |
Collapse
|
47
|
Gilloteaux J, Jamison JM, Arnold D, Jarjoura D, Von Greuningen V, Summers JL. Autoschizis of human ovarian carcinoma cells: scanning electron and light microscopy of a new cell death induced by sodium ascorbate: menadione treatment. SCANNING 2003; 25:137-149. [PMID: 12866647 DOI: 10.1002/sca.4950250306] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Human ovarian carcinoma (MDAH 2774) cells were treated with sodium ascorbate (VC), menadione (VK3), or a combination of both in a ratio 100:1 for 1h and then examined with scanning electron microscopy (SEM) and light microscopy (LM). Light microscopy data corroborated SEM observations, which demonstrated that death of VC+VK3-treated tumor cells occurred primarily by autoschizis. This type of cell death is characterized by a decrease in cell size, cytoplasmic self-excisions, and nuclear and nucleolar morphologic degradations without the formation of apoptotic bodies. Ultimately, cell death results from karyorrhexis and karyolysis. This study illustrates that plasma membrane damage (branching filopodia, blisters, blebs) results from VC treatment; cytoskeletal damage and self-morsellation are caused by VC, VK3 and VC+VK, treatments. The VC treatment results in a 23% decrease in cell diameter while VK3-treated cells decrease cell diameter by 66%. After 1h of VC+VK3 treatment, a heterogenous cell population is found. This population can be resolved into one population whose diameters are 23% smaller than those of sham-treated cells, and a second population whose diameters are approximately twice those of sham-treated cells. This second population is indicative of doublet formation in which the cells appear to be dividing (an early stage of autoschizic cell death). One half of the doublet contains the cell nucleus while the other half consists of cytoplasm and membrane only. The enucleate portion of this doublet will then be excised. When the types of cell death are enumerated following VC+VK3 treatment, 43% of the cells die by autoschizis, 3% by apoptosis, and 1.9% by oncosis. These results confirm that autoschizis is the principal form of cell death that results from the in vitro treatment of human ovarian carcinoma cells with the vitamin combination.
Collapse
Affiliation(s)
- J Gilloteaux
- M.E.I.O. Inc., Coral Gables, Florida 33135, USA.
| | | | | | | | | | | |
Collapse
|
48
|
Abstract
Vitamin C (VC) and vitamin K(3) (VK(3)) administered in a VC:VK(3) ratio of 100:1 exhibit synergistic antitumor activity and preferentially kill tumor cells by autoschizis, a novel type of necrosis characterized by exaggerated membrane damage and progressive loss of organelle-free cytoplasm through a series of self-excisions. During this process, the nucleus becomes smaller, cell size decreases one-half to one-third of its original size, and most organelles surround an intact nucleus in a narrow rim of cytoplasm. While the mitochondria are condensed, tumor cell death does not result from ATP depletion. However, vitamin treatment induces a G(1)/S block, diminishes DNA synthesis, increases H(2)O(2) production, and decreases cellular thiol levels. These effects can be prevented by the addition of catalase to scavenge the H(2)O(2). There is a concurrent 8- to 10-fold increase in intracellular Ca(2+) levels. Electrophoretic analysis of DNA reveals degradation due to the caspase-3-independent reactivation of deoxyribonuclease I and II (DNase I, DNase II). Redox cycling of the vitamins is believed to increase oxidative stress until it surpasses the reducing ability of cellular thiols and induces Ca(2+) release, which triggers activation of Ca(2+)-dependent DNase and leads to degradation of DNA. Recent experiments indicate that oral VC:VK(3) increases the life-span of tumor-bearing nude mice and significantly reduces the growth rate of solid tumors without any significant toxicity by reactivating DNase I and II and inducing autoschizis. This report discusses the mechanisms of action employed by these vitamins to induce tumor-specific death by autoschizis.
Collapse
Affiliation(s)
- James M Jamison
- Department of Urology, Summa Health System/Northeastern Ohio Universities College of Medicine, 2209 State Route 44, PO Box 95, Rootstown, OH 44272-0095, USA.
| | | | | | | | | |
Collapse
|
49
|
Manni V, Lisi A, Pozzi D, Rieti S, Serafino A, Giuliani L, Grimaldi S. Effects of extremely low frequency (50 Hz) magnetic field on morphological and biochemical properties of human keratinocytes. Bioelectromagnetics 2002; 23:298-305. [PMID: 11948610 DOI: 10.1002/bem.10023] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We investigated the effects on human keratinocytes (HaCaT) of exposure to a sinusoidal magnetic field of 2 mT (50 Hz). These cells are a good model for studying interaction of nonionising radiation, because they are not shielded from fields in vivo and also because they are resistant to both mechanical and thermal stimuli. We performed scanning microscopy which showed modification in shape and morphology in exposed cells. This modification is related to differential actin distribution as revealed by phalloidin fluorescence analysis. Moreover, the exposed cells show increased clonogenic capacity, as well as increased cellular growth as showed by clonogenicity assays and growth curves. Indirect immunofluorescence analysis using a fluorescent antibody against involucrin and beta4 integrin, which are respectively differentiation and adhesion markers, revealed an increase of involucrin expression and segregation of beta4 integrin in the cell membrane in cells exposed to 50 Hz; a higher percentage of the exposed cells shows a modified pattern of adhesion and differentiation markers. We also present evidence that exposure of HaCaT cells can interfere with protein kinase activity. Our observations confirm the hypothesis that electromagnetic fields at 50 Hz may modify cell membrane morphology and interfere with initiation of the signal cascade pathway and cellular adhesion.
Collapse
Affiliation(s)
- Vanessa Manni
- Istituto di Neurobiologia e Medicina Molecolare CNR-Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
50
|
Viora M, Quaranta MG, Straface E, Vari R, Masella R, Malorni W. Redox imbalance and immune functions: opposite effects of oxidized low-density lipoproteins and N-acetylcysteine. Immunology 2001; 104:431-8. [PMID: 11899429 PMCID: PMC1783329 DOI: 10.1046/j.1365-2567.2001.01334.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
This study investigates the in vitro effects of oxidized low-density lipoproteins (ox-LDL), 'physiological' pro-oxidants, N-acetylcysteine (NAC), a free radical scavenger and glutathione precursor, and their combination on human peripheral blood mononuclear cell functions. We found that treatment with ox-LDL induced a significant down-regulation of proliferative response to mitogens, antigens and interleukin-2. Lipid extracts from ox-LDL were able to reproduce the same effect as the lipoprotein. On the other hand, NAC exposure induced a significant up-regulation of proliferative responses to all the stimuli used. Moreover, we showed that natural killer (NK) cell-mediated cytotoxic activity was significantly down-regulated by ox-LDL while treatment with NAC induced a significant up-regulation of NK-cell activity. Finally, we found that ox-LDL and NAC exerted opposite effects on the cytokine network, interfering both at the protein secretion level and the messenger RNA synthesis level. More importantly, when NAC was used in combination with ox-LDL the proliferative responses, NK-cell-mediated cytotoxic activity and cytokine production were restored to values comparable to controls. These data indicate that ox-LDL and NAC modulate immune functions, exerting opposite effects reflecting their pro-oxidant and antioxidant behaviours. Our results add new insights to the key role played by redox imbalance as a modulator of immune system homeostasis and suggest that an antioxidant drug such as NAC could be useful against pathologies associated with an increase in lipid peroxidation.
Collapse
Affiliation(s)
- M Viora
- Immunology Department, Istituto Superiore di Sanità, Rome, Italy.
| | | | | | | | | | | |
Collapse
|