1
|
Rana M, Liou KC, Thakur A, Nepali K, Liou JP. Advancing glioblastoma therapy: Learning from the past and innovations for the future. Cancer Lett 2025; 617:217601. [PMID: 40037502 DOI: 10.1016/j.canlet.2025.217601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/25/2025] [Accepted: 03/01/2025] [Indexed: 03/06/2025]
Abstract
Marred by a median survival of only around 12-15 months coupled with poor prognosis and effective therapeutic deprived drug armory, treatment/management of glioblastoma has proved to be a daunting task. Surgical resection, flanked by radiotherapy and chemotherapy with temozolomide, stands as the standard of care; however, this trimodal therapy often manifests limited efficacy due to the heterogeneous and highly infiltrative nature of GBM cells. In addition, the existence of the blood-brain barrier, tumor microenvironment, and the immunosuppressive nature of GBM, along with the encountered resistance of GBM cells towards conventional therapy, also hinders the therapeutic applications of chemotherapeutics in GBM. This review presents key insights into the molecular pathology of GBM, including genetic mutations, signaling pathways, and tumor microenvironment characteristics. Recent innovations such as immunotherapy, oncolytic viral therapies, vaccines, nanotechnology, electric field, and cancer neuroscience, as well as their clinical progress, have been covered. In addition, this compilation also encompasses a discussion on the role of personalized medicine in tailoring treatments based on individual tumor profiles, an approach that is gradually shifting the paradigm in GBM management. Endowed with the learnings imbibed from past failures coupled with the zeal to embrace novel/multidisciplinary approaches, researchers appear to be on the right track to pinpoint more effective and durable solutions in the context of GBM treatment.
Collapse
Affiliation(s)
- Mandeep Rana
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 110, Taiwan
| | - Ke-Chi Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 110, Taiwan
| | - Amandeep Thakur
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 110, Taiwan
| | - Kunal Nepali
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 110, Taiwan; TMU Research Center for Drug Discovery, Taipei Medical University, Taipei, 110, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, 110, Taiwan.
| | - Jing-Ping Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 110, Taiwan; TMU Research Center for Drug Discovery, Taipei Medical University, Taipei, 110, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, 110, Taiwan.
| |
Collapse
|
2
|
Lai Y, Lu X, Liao Y, Ouyang P, Wang H, Zhang X, Huang G, Qi S, Li Y. Crosstalk between glioblastoma and tumor microenvironment drives proneural-mesenchymal transition through ligand-receptor interactions. Genes Dis 2024; 11:874-889. [PMID: 37692522 PMCID: PMC10491977 DOI: 10.1016/j.gendis.2023.05.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/28/2023] [Accepted: 05/25/2023] [Indexed: 09/12/2023] Open
Abstract
Glioblastoma (GBM) is the most common intrinsic and aggressive primary brain tumor in adults, with a median survival of approximately 15 months. GBM heterogeneity is considered responsible for the treatment resistance and unfavorable prognosis. Proneural-mesenchymal transition (PMT) represents GBM malignant progression and recurrence, which might be a breakthrough to understand GBM heterogeneity and overcome treatment resistance. PMT is a complicated process influenced by crosstalk between GBM and tumor microenvironment, depending on intricate ligand-receptor interactions. In this review, we summarize the autocrine and paracrine pathways in the GBM microenvironment and related ligand-receptor interactions inducing PMT. We also discuss the current therapies targeting the PMT-related autocrine and paracrine pathways. Together, this review offers a comprehensive understanding of the failure of GBM-targeted therapy and ideas for future tendencies of GBM treatment.
Collapse
Affiliation(s)
- Yancheng Lai
- Department of Neurosurgery, Institute of Brain Disease, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xiaole Lu
- Department of Neurosurgery, Institute of Brain Disease, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yankai Liao
- Department of Neurosurgery, Institute of Brain Disease, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Pei Ouyang
- Department of Neurosurgery, Institute of Brain Disease, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Hai Wang
- Department of Neurosurgery, Institute of Brain Disease, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xian Zhang
- Department of Neurosurgery, Institute of Brain Disease, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Guanglong Huang
- Department of Neurosurgery, Institute of Brain Disease, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Songtao Qi
- Department of Neurosurgery, Institute of Brain Disease, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yaomin Li
- Department of Neurosurgery, Institute of Brain Disease, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| |
Collapse
|
3
|
Obrador E, Moreno-Murciano P, Oriol-Caballo M, López-Blanch R, Pineda B, Gutiérrez-Arroyo JL, Loras A, Gonzalez-Bonet LG, Martinez-Cadenas C, Estrela JM, Marqués-Torrejón MÁ. Glioblastoma Therapy: Past, Present and Future. Int J Mol Sci 2024; 25:2529. [PMID: 38473776 PMCID: PMC10931797 DOI: 10.3390/ijms25052529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/10/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
Glioblastoma (GB) stands out as the most prevalent and lethal form of brain cancer. Although great efforts have been made by clinicians and researchers, no significant improvement in survival has been achieved since the Stupp protocol became the standard of care (SOC) in 2005. Despite multimodality treatments, recurrence is almost universal with survival rates under 2 years after diagnosis. Here, we discuss the recent progress in our understanding of GB pathophysiology, in particular, the importance of glioma stem cells (GSCs), the tumor microenvironment conditions, and epigenetic mechanisms involved in GB growth, aggressiveness and recurrence. The discussion on therapeutic strategies first covers the SOC treatment and targeted therapies that have been shown to interfere with different signaling pathways (pRB/CDK4/RB1/P16ink4, TP53/MDM2/P14arf, PI3k/Akt-PTEN, RAS/RAF/MEK, PARP) involved in GB tumorigenesis, pathophysiology, and treatment resistance acquisition. Below, we analyze several immunotherapeutic approaches (i.e., checkpoint inhibitors, vaccines, CAR-modified NK or T cells, oncolytic virotherapy) that have been used in an attempt to enhance the immune response against GB, and thereby avoid recidivism or increase survival of GB patients. Finally, we present treatment attempts made using nanotherapies (nanometric structures having active anti-GB agents such as antibodies, chemotherapeutic/anti-angiogenic drugs or sensitizers, radionuclides, and molecules that target GB cellular receptors or open the blood-brain barrier) and non-ionizing energies (laser interstitial thermal therapy, high/low intensity focused ultrasounds, photodynamic/sonodynamic therapies and electroporation). The aim of this review is to discuss the advances and limitations of the current therapies and to present novel approaches that are under development or following clinical trials.
Collapse
Affiliation(s)
- Elena Obrador
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Paz Moreno-Murciano
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
| | - María Oriol-Caballo
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Rafael López-Blanch
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Begoña Pineda
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Julia Lara Gutiérrez-Arroyo
- Department of Medicine, Jaume I University of Castellon, 12071 Castellon, Spain; (J.L.G.-A.); (A.L.); (C.M.-C.)
| | - Alba Loras
- Department of Medicine, Jaume I University of Castellon, 12071 Castellon, Spain; (J.L.G.-A.); (A.L.); (C.M.-C.)
| | - Luis G. Gonzalez-Bonet
- Department of Neurosurgery, Castellon General University Hospital, 12004 Castellon, Spain;
| | - Conrado Martinez-Cadenas
- Department of Medicine, Jaume I University of Castellon, 12071 Castellon, Spain; (J.L.G.-A.); (A.L.); (C.M.-C.)
| | - José M. Estrela
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
- Department of Physiology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain
| | | |
Collapse
|
4
|
Shikalov A, Koman I, Kogan NM. Targeted Glioma Therapy-Clinical Trials and Future Directions. Pharmaceutics 2024; 16:100. [PMID: 38258110 PMCID: PMC10820492 DOI: 10.3390/pharmaceutics16010100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Glioblastoma multiforme (GBM) is the most common type of glioma, with a median survival of 14.6 months post-diagnosis. Understanding the molecular profile of such tumors allowed the development of specific targeted therapies toward GBM, with a major role attributed to tyrosine kinase receptor inhibitors and immune checkpoint inhibitors. Targeted therapeutics are drugs that work by specific binding to GBM-specific or overexpressed markers on the tumor cellular surface and therefore contain a recognition moiety linked to a cytotoxic agent, which produces an antiproliferative effect. In this review, we have summarized the available information on the targeted therapeutics used in clinical trials of GBM and summarized current obstacles and advances in targeted therapy concerning specific targets present in GBM tumor cells, outlined efficacy endpoints for major classes of investigational drugs, and discussed promising strategies towards an increase in drug efficacy in GBM.
Collapse
Affiliation(s)
| | | | - Natalya M. Kogan
- Department of Molecular Biology, Institute of Personalized and Translational Medicine, Ariel University, Ariel 40700, Israel; (A.S.); (I.K.)
| |
Collapse
|
5
|
Mondal D, Amin SA, Moinul M, Das K, Jha T, Gayen S. How the structural properties of the indole derivatives are important in kinase targeted drug design?: A case study on tyrosine kinase inhibitors. Bioorg Med Chem 2022; 53:116534. [PMID: 34864496 DOI: 10.1016/j.bmc.2021.116534] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 12/18/2022]
Abstract
Kinases are considered as important signalling enzymes that illustrate 20% of the druggable genome. Human kinase family comprises >500 protein kinases and about 20 lipid kinases. Protein kinases are responsible for the mechanism of protein phosphorylation. These are necessary for regulation of various cellular activities including proliferation, cell cycle, apoptosis, motility, growth, differentiation, etc. Their deregulation leads to disruption of many cellular processes leading to different diseases most importantly cancer. Thus, kinases are considered as valuable targets in different types of cancer as well as other diseases. Researchers around the world are actively engaged in developing inhibitors based on distinct chemical scaffolds. Indole represents as a versatile scaffold in the naturally occurring and bioactive molecules. It is also used as a privileged scaffold for the target-based drug design against different diseases. This present article aim to review the applications of indole scaffold in the design of inhibitors against different tyrosine kinases such as epidermal growth factor receptors (EGFRs), vascular endothelial growth factor receptors (VEGFRs), platelet-derived growth factor receptors (PDGFRs), etc. Important structure activity relationships (SARs) of indole derivatives were discussed. The present work is an attempt to summarize all the crucial structural information which is essential for the development of indole based tyrosine kinase inhibitors with improved potency.
Collapse
Affiliation(s)
- Dipayan Mondal
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar 470003, MP, India
| | - Sk Abdul Amin
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, P. O. Box 17020, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Md Moinul
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Kalpataru Das
- Advanced Organic Synthesis Laboratory, Department of Chemistry, Dr. Harisingh Gour University, Sagar 470003, MP, India
| | - Tarun Jha
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, P. O. Box 17020, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India.
| | - Shovanlal Gayen
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar 470003, MP, India; Laboratory of Drug Design and Discovery, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India.
| |
Collapse
|
6
|
Sautter L, Hofheinz R, Tuettenberg J, Grimm M, Vajkoczy P, Groden C, Schmieder K, Hochhaus A, Wenz F, Giordano FA. Open-Label Phase II Evaluation of Imatinib in Primary Inoperable or Incompletely Resected and Recurrent Glioblastoma. Oncology 2019; 98:16-22. [PMID: 31514200 DOI: 10.1159/000502483] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 08/05/2019] [Indexed: 11/19/2022]
Abstract
PURPOSE Preclinical studies indicated that imatinib may have single-agent activity in glioblastoma through inhibition of tyrosine kinase activity and also that it might enhance the efficacy of radiotherapy. We therefore sought to investigate clinical efficacy in patients with newly diagnosed and recurrent glioblastoma in combination with radiotherapy. METHODS We conducted a nonrandomized, 2-arm, open-label phase II trial including patients aged 18 years or older with an ECOG performance status of 0-2 that were either newly diagnosed (arm A) with a measurable tumor (i.e., after incomplete resection or biopsy) or that were diagnosed with progression of a glioblastoma after initial therapy (arm B). Patients in arm A received 600 mg/day imatinib in combination with hypofractionated radiotherapy (2.5 Gy per fraction, 22 fractions). Patients in arm B received 600 mg/day imatinib alone or in combination with re-irradiation at various doses. In case tumor progression occurred, CCNU was added (2 cycles, 100 mg/m2) to imatinib. The primary end point was progression-free survival (PFS). The secondary end point was safety, defined as per Common Terminology Criteria for Adverse Events (version 2.0). Overall survival (OS) was analyzed as an exploratory end point. RESULTS Fifty-one patients were enrolled, of which 19 were included in arm A and 32 in arm B. The median follow-up was 4 (0.5-30) months in arm A and 6.5 (0.3-51.5) months in arm B. The median PFS was 2.8 months (95% CI 0-8.7) in arm A and 2.1 months (95% CI 0-11.8) in arm B. The median OS was 5.0 (0.8-30) months (95% CI 0-24.1) in arm A and 6.5 (0.3-51.5) months (95% CI 0-32.5) in arm B. The major grade 3 events were seizure (present in 17 patients), pneumonia (11 patients), and vigilance decrease (7 patients). CONCLUSIONS Imatinib showed no measurable activity in patients with newly diagnosed or recurrent glioblastoma.
Collapse
Affiliation(s)
- Lisa Sautter
- Department of Radiation Oncology, University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Ralf Hofheinz
- Day Treatment Center (TTZ), Interdisciplinary Tumor Center Mannheim (ITM) and 3rd Medical Clinic, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Jochen Tuettenberg
- Department of Neurosurgery, Klinikum Idar-Oberstein, Idar-Oberstein, Germany
| | - Mario Grimm
- Department of Radiation Oncology, University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité University Hospital, Humboldt University Berlin, Berlin, Germany
| | - Christoph Groden
- Department of Neuroradiology, University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | | | - Andreas Hochhaus
- Department of Internal Medicine II, University Hospital Jena, Jena, Germany
| | - Frederik Wenz
- University Medical Center Freiburg, Freiburg, Germany
| | - Frank A Giordano
- Department of Radiation Oncology, University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany,
| |
Collapse
|
7
|
Jun HJ, Appleman VA, Wu HJ, Rose CM, Pineda JJ, Yeo AT, Delcuze B, Lee C, Gyuris A, Zhu H, Woolfenden S, Bronisz A, Nakano I, Chiocca EA, Bronson RT, Ligon KL, Sarkaria JN, Gygi SP, Michor F, Mitchison TJ, Charest A. A PDGFRα-driven mouse model of glioblastoma reveals a stathmin1-mediated mechanism of sensitivity to vinblastine. Nat Commun 2018; 9:3116. [PMID: 30082792 PMCID: PMC6078993 DOI: 10.1038/s41467-018-05036-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 05/24/2018] [Indexed: 11/09/2022] Open
Abstract
Glioblastoma multiforme (GBM) is an aggressive primary brain cancer that includes focal amplification of PDGFRα and for which there are no effective therapies. Herein, we report the development of a genetically engineered mouse model of GBM based on autocrine, chronic stimulation of overexpressed PDGFRα, and the analysis of GBM signaling pathways using proteomics. We discover the tubulin-binding protein Stathmin1 (STMN1) as a PDGFRα phospho-regulated target, and that this mis-regulation confers sensitivity to vinblastine (VB) cytotoxicity. Treatment of PDGFRα-positive mouse and a patient-derived xenograft (PDX) GBMs with VB in mice prolongs survival and is dependent on STMN1. Our work reveals a previously unconsidered link between PDGFRα activity and STMN1, and highlight an STMN1-dependent cytotoxic effect of VB in GBM.
Collapse
Affiliation(s)
- Hyun Jung Jun
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
| | - Vicky A Appleman
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
| | - Hua-Jun Wu
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.,Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Christopher M Rose
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02215, USA
| | - Javier J Pineda
- Department of Systems Biology, Harvard Medical School, Boston, MA, 02215, USA
| | - Alan T Yeo
- Sackler School of Graduate Studies, Tufts University School of Medicine, Boston, MA, 02111, USA
| | - Bethany Delcuze
- Sackler School of Graduate Studies, Tufts University School of Medicine, Boston, MA, 02111, USA
| | - Charlotte Lee
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.,Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Aron Gyuris
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
| | - Haihao Zhu
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, MA, 02111, USA
| | - Steve Woolfenden
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, MA, 02111, USA
| | - Agnieszka Bronisz
- Harvey Cushing Neuro-Oncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02215, USA
| | - Ichiro Nakano
- Department of Neurosurgery and Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, 35243, USA
| | - Ennio A Chiocca
- Harvey Cushing Neuro-Oncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02215, USA
| | - Roderick T Bronson
- Rodent Histopathology Core, Dana-Farber/Harvard Cancer Center, Boston, MA, 02215, USA
| | - Keith L Ligon
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Jann N Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, 55902, USA
| | - Steve P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02215, USA
| | - Franziska Michor
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.,Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Timothy J Mitchison
- Department of Systems Biology, Harvard Medical School, Boston, MA, 02215, USA
| | - Al Charest
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA. .,Department of Medicine, Harvard Medical School, Boston, MA, 02215, USA.
| |
Collapse
|
8
|
Zhou S, Appleman VA, Rose CM, Jun HJ, Yang J, Zhou Y, Bronson RT, Gygi SP, Charest A. Chronic platelet-derived growth factor receptor signaling exerts control over initiation of protein translation in glioma. Life Sci Alliance 2018; 1:e201800029. [PMID: 30456354 PMCID: PMC6238596 DOI: 10.26508/lsa.201800029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 05/29/2018] [Accepted: 05/29/2018] [Indexed: 01/23/2023] Open
Abstract
Using phospho-proteomics in a new model of malignant glioma, we reveal that clinically relevant, chronic PDGFRα signaling differs considerably from acute receptor stimulation and unveils previously unrecognized control over key elements of the translation initiation machinery. Activation of the platelet-derived growth factor receptors (PDGFRs) gives rise to some of the most important signaling pathways that regulate mammalian cellular growth, survival, proliferation, and differentiation and their misregulation is common in a variety of diseases. Herein, we present a comprehensive and detailed map of PDGFR signaling pathways assembled from literature and integrate this map in a bioinformatics protocol designed to extract meaningful information from large-scale quantitative proteomics mass spectrometry data. We demonstrate the usefulness of this approach using a new genetically engineered mouse model of PDGFRα-driven glioma. We discovered that acute PDGFRα stimulation differs considerably from chronic receptor activation in the regulation of protein translation initiation. Transient stimulation activates several key components of the translation initiation machinery, whereas the clinically relevant chronic activity of PDGFRα is associated with a significant shutdown of translational members. Our work defines a step-by-step approach to extract biologically relevant insights from global unbiased phospho-protein datasets to uncover targets for therapeutic assessment.
Collapse
Affiliation(s)
- Shuang Zhou
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Vicky A Appleman
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | | | - Hyun Jung Jun
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Juechen Yang
- Department of Computer Science, North Dakota State University, Fargo, ND, USA
| | - Yue Zhou
- Department of Statistics, North Dakota State University, Fargo, ND, USA
| | - Roderick T Bronson
- Rodent Histopathology Core, Dana-Farber/Harvard Cancer Center, Boston, MA, USA
| | - Steve P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Al Charest
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
9
|
Heldin CH, Lennartsson J, Westermark B. Involvement of platelet-derived growth factor ligands and receptors in tumorigenesis. J Intern Med 2018; 283:16-44. [PMID: 28940884 DOI: 10.1111/joim.12690] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Platelet-derived growth factor (PDGF) isoforms and their receptors have important roles during embryogenesis, particularly in the development of various mesenchymal cell types in different organs. In the adult, PDGF stimulates wound healing and regulates tissue homeostasis. However, overactivity of PDGF signalling is associated with malignancies and other diseases characterized by excessive cell proliferation, such as fibrotic conditions and atherosclerosis. In certain tumours, genetic or epigenetic alterations of the genes for PDGF ligands and receptors drive tumour cell proliferation and survival. Examples include the rare skin tumour dermatofibrosarcoma protuberance, which is driven by autocrine PDGF stimulation due to translocation of a PDGF gene, and certain gastrointestinal stromal tumours and leukaemias, which are driven by constitute activation of PDGF receptors due to point mutations and formation of fusion proteins of the receptors, respectively. Moreover, PDGF stimulates cells in tumour stroma and promotes angiogenesis as well as the development of cancer-associated fibroblasts, both of which promote tumour progression. Inhibitors of PDGF signalling may thus be of clinical usefulness in the treatment of certain tumours.
Collapse
Affiliation(s)
- C-H Heldin
- Ludwig Institute for Cancer Research, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.,Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - J Lennartsson
- Ludwig Institute for Cancer Research, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.,Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - B Westermark
- Department of Genetics and Pathology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
10
|
Holzer TR, O'Neill Reising L, Credille KM, Schade AE, Oakley GJ. Variability in Platelet-Derived Growth Factor Receptor Alpha Antibody Specificity May Impact Clinical Utility of Immunohistochemistry Assays. J Histochem Cytochem 2017; 64:785-810. [PMID: 27837159 DOI: 10.1369/0022155416673979] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 09/06/2016] [Indexed: 11/22/2022] Open
Abstract
Aberrant regulation of the receptor tyrosine kinase platelet-derived growth factor alpha (PDGFRα) is implicated in several types of cancer. Inhibition of the PDGFRα pathway may be a beneficial therapy, and detection of PDGFRα in tumor biopsies may lead to insights about which patients respond to therapy. Exploratory or clinical biomarker use of PDGFRα IHC has been frequently reported, often with polyclonal antibody sc-338. An sc-338-based assay was systematically compared with anti-PDGFRα rabbit monoclonal antibody D13C6 using immunoblot profiling and IHC in formalin-fixed and paraffin-embedded human tumor cell lines. Application of sc-338 to blots of whole cell lysates showed multiple bands including some of unknown origin, whereas application of D13C6 resulted in a prominent band at the expected molecular mass of PDGFRα. The IHC assay using D13C6 showed appropriate staining in cell lines, whereas the assay using sc-338 suggested nonspecific detection of proteins. An optimized IHC assay using D13C6 showed a range of staining in the tumor stromal compartment in lung and ovarian carcinomas. These observations suggest that use of clone sc-338 produced unreliable results and should not be used for an IHC research grade assay. In addition, this precludes its use as a potential antibody for a clinical diagnostic tool.
Collapse
Affiliation(s)
- Timothy R Holzer
- Diagnostic and Experimental Pathology, Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (TRH, LOR, KMC, AES, GJO)
| | - Leslie O'Neill Reising
- Diagnostic and Experimental Pathology, Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (TRH, LOR, KMC, AES, GJO)
| | - Kelly M Credille
- Diagnostic and Experimental Pathology, Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (TRH, LOR, KMC, AES, GJO)
| | - Andrew E Schade
- Diagnostic and Experimental Pathology, Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (TRH, LOR, KMC, AES, GJO)
| | - Gerard J Oakley
- Diagnostic and Experimental Pathology, Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (TRH, LOR, KMC, AES, GJO)
| |
Collapse
|
11
|
Sharma VK, Singh A, Srivastava SK, Kumar V, Gardi NL, Nalwa A, Dinda AK, Chattopadhyay P, Yadav S. Increased expression of platelet-derived growth factor associated protein-1 is associated with PDGF-B mediated glioma progression. Int J Biochem Cell Biol 2016; 78:194-205. [PMID: 27448842 DOI: 10.1016/j.biocel.2016.07.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 07/16/2016] [Accepted: 07/18/2016] [Indexed: 12/30/2022]
Abstract
The current treatment therapies available for malignant gliomas are inadequate. There is an urgent need to develop more effective therapies by characterizing the molecular pathogenesis of the disease. Over expression of platelet-derived growth factor (PDGF) ligands and receptors have been reported in malignant gliomas. Platelet-derived growth factor associated protein-1 (PDAP-1) is reported to modulate the mitogenic activity of PDGF ligands, but to date, there is no information concerning its role in PDGF-mediated glioma cell proliferation. This study aimed to characterize the role of PDAP-1 in PDGF-mediated glioma proliferation. The expression of PDAP-1 was observed to be significantly increased (p<0.05) in grade IV glioma tissue and cell lines compared to grade III. siRNA-mediated knockdown of PDAP-1 reduced the expression of PDGF-B and its downstream genes (Akt1/Protein kinase B (PKB) and phosphoinositide-dependent kinase-1 (PDK1) by up to 50%. In PDAP-1 knockdown glioma cells, more than a twofold reduction was also observed in the level of phosphorylated Akt. Interestingly, knockdown of PDAP-1 in combination with PDGF-B antibody inhibited glioma cell proliferation through activation of Caspase 3/7 and 9. We also demonstrate that PDAP-1 co-localizes with PDGF-B in the cytoplasm of glioma cells, and an interaction between both of the proteins was established. Collectively, these findings suggest that the expression of PDAP-1 is associated with disease malignancy, and its inhibition reduced the proliferation of malignant glioma cells through down-regulation of PDGF-B/Akt/PDK1 signaling. Thus, this study establishes PDAP-1 as an effecter of PDGF signaling in glioma cells and suggests that it could also be a promising therapeutic target.
Collapse
Affiliation(s)
- Vinay Kumar Sharma
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Anand Singh
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi 110029, India
| | | | - Vignesh Kumar
- Proteomics and Structural Biology Unit, Institute of genomics and Integrative Biology, New Delhi 110025, India
| | - Nilesh Laxman Gardi
- Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Mumbai, India
| | - Aasma Nalwa
- Department of Pathology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Amit Kumar Dinda
- Department of Pathology, All India Institute of Medical Sciences, New Delhi 110029, India
| | | | - Savita Yadav
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India.
| |
Collapse
|
12
|
Rizzo D, Ruggiero A, Martini M, Rizzo V, Maurizi P, Riccardi R. Molecular Biology in Pediatric High-Grade Glioma: Impact on Prognosis and Treatment. BIOMED RESEARCH INTERNATIONAL 2015; 2015:215135. [PMID: 26448930 PMCID: PMC4584033 DOI: 10.1155/2015/215135] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 11/04/2014] [Indexed: 12/17/2022]
Abstract
High-grade gliomas are the main cause of death in children with brain tumours. Despite recent advances in cancer therapy, their prognosis remains poor and the treatment is still challenging. To date, surgery followed by radiotherapy and temozolomide is the standard therapy. However, increasing knowledge of glioma biology is starting to impact drug development towards targeted therapies. The identification of agents directed against molecular targets aims at going beyond the traditional therapeutic approach in order to develop a personalized therapy and improve the outcome of pediatric high-grade gliomas. In this paper, we critically review the literature regarding the genetic abnormalities implicated in the pathogenesis of pediatric malignant gliomas and the current development of molecularly targeted therapies. In particular, we analyse the impact of molecular biology on the prognosis and treatment of pediatric high-grade glioma, comparing it to that of adult gliomas.
Collapse
Affiliation(s)
- Daniela Rizzo
- Department of Pediatric Oncology, A. Gemelli Hospital, Catholic University of Rome, Largo A Gemelli, 1, 00168 Rome, Italy
| | - Antonio Ruggiero
- Department of Pediatric Oncology, A. Gemelli Hospital, Catholic University of Rome, Largo A Gemelli, 1, 00168 Rome, Italy
| | - Maurizio Martini
- Anatomic Pathology, Catholic University, “A. Gemelli” Hospital, 00168 Rome, Italy
| | - Valentina Rizzo
- Department of Pediatric Oncology, A. Gemelli Hospital, Catholic University of Rome, Largo A Gemelli, 1, 00168 Rome, Italy
| | - Palma Maurizi
- Department of Pediatric Oncology, A. Gemelli Hospital, Catholic University of Rome, Largo A Gemelli, 1, 00168 Rome, Italy
| | - Riccardo Riccardi
- Department of Pediatric Oncology, A. Gemelli Hospital, Catholic University of Rome, Largo A Gemelli, 1, 00168 Rome, Italy
| |
Collapse
|
13
|
Abstract
The platelet-derived growth factor (PDGF) family of mitogens exerts vital functions during embryonal development, e.g. in the central nervous system, where PDGF drives the proliferation of oligodendrocyte precursors. PDGF and PDGF receptors are co-expressed in human glioblastoma (GBM). Whether an aberrant activation of the PDGF receptor pathway is a driving force in glioma development has remained an open question. In experimental animals, overexpression of PDGF has convincingly been shown to induce tumors, both in wild-type animals (marmoset, rat, mouse) and in mice with targeted deletions of suppressor genes, e.g. Tp53 or Ink4A. Targeting the PDGF receptor in tumor-bearing mice leads to growth inhibition and reversion of the transformed phenotype. Findings of PDGF receptor amplification or mutations in human GBM are strong indicators of a causative role of the PDGF receptor pathway. However, clinical trials using PDGF receptor antagonists have been disappointing. In conclusion, a PDGF receptor profile may be a biomarker for a subgroup of GBM originating from a PDGF receptor-responsive cell. Although compelling experimental and clinical evidence supports the notion that the PDGF receptor pathway is a driver in GBM, formal proof is still missing.
Collapse
Affiliation(s)
- Bengt Westermark
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
14
|
Role of receptor tyrosine kinases and their ligands in glioblastoma. Cells 2014; 3:199-235. [PMID: 24709958 PMCID: PMC4092852 DOI: 10.3390/cells3020199] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 03/12/2014] [Accepted: 03/21/2014] [Indexed: 01/04/2023] Open
Abstract
Glioblastoma multiforme is the most frequent, aggressive and fatal type of brain tumor. Glioblastomas are characterized by their infiltrating nature, high proliferation rate and resistance to chemotherapy and radiation. Recently, oncologic therapy experienced a rapid evolution towards “targeted therapy,” which is the employment of drugs directed against particular targets that play essential roles in proliferation, survival and invasiveness of cancer cells. A number of molecules involved in signal transduction pathways are used as molecular targets for the treatment of various tumors. In fact, inhibitors of these molecules have already entered the clinic or are undergoing clinical trials. Cellular receptors are clear examples of such targets and in the case of glioblastoma multiforme, some of these receptors and their ligands have become relevant. In this review, the importance of glioblastoma multiforme in signaling pathways initiated by extracellular tyrosine kinase receptors such as EGFR, PDGFR and IGF-1R will be discussed. We will describe their ligands, family members, structure, activation mechanism, downstream molecules, as well as the interaction among these pathways. Lastly, we will provide an up-to-date review of the current targeted therapies in cancer, in particular glioblastoma that employ inhibitors of these pathways and their benefits.
Collapse
|
15
|
Zhou Y, Jin G, Mi R, Dong C, Zhang J, Liu F. The methylation status of the platelet-derived growth factor-B gene promoter and its regulation of cellular proliferation following folate treatment in human glioma cells. Brain Res 2014; 1556:57-66. [PMID: 24502980 DOI: 10.1016/j.brainres.2014.01.045] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 01/21/2014] [Accepted: 01/28/2014] [Indexed: 12/13/2022]
Abstract
Platelet-derived growth factor-B (PDGF-B) is a growth factor that regulates cell migration, proliferation, and differentiation, and is involved in several physical and pathological processes. The overexpression of PDGF-B in glioma surgical samples revealed its effect on tumorigenesis. In this study, we determined that the expression of PDGF-B in 54 glioma samples varied among different grades and was correlated with the cell proliferation marker, Ki-67. Using pyrosequencing, we quantitatively assessed PDGF-B gene methylation levels and determined that hypomethylation promotes increased expression of PDGF-B in higher grade gliomas. Furthermore, we treated two glioma cell lines with a demethylating agent (5-aza-2'-deoxycitidine, 5-aza-dC) or a remethylating agent (folate) to alter the methylation status of PDGF-B. The epigenetic regulation of the PDGF-B gene not only modulated the expression levels of PDGF-B but also affected the cellular proliferation induced by TGFβ-Smad activity and the PDGF-B peptide itself. Our work showed the importance of the methylation status of the PDGF-B gene promoter, and suggests that the epigenetic regulation of the PDGF-B gene may serve as a potential therapeutic target for the inhibition of glioma proliferation.
Collapse
Affiliation(s)
- Yiqiang Zhou
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Department of Neurosurgery, Beijing Tiantan Hospital affiliated to Capital Medical University, Beijing 100050, PR China
| | - Guishan Jin
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Department of Neurosurgery, Beijing Tiantan Hospital affiliated to Capital Medical University, Beijing 100050, PR China
| | - Ruifang Mi
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Department of Neurosurgery, Beijing Tiantan Hospital affiliated to Capital Medical University, Beijing 100050, PR China
| | - Chengyuan Dong
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Department of Neurosurgery, Beijing Tiantan Hospital affiliated to Capital Medical University, Beijing 100050, PR China
| | - Jin Zhang
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Department of Neurosurgery, Beijing Tiantan Hospital affiliated to Capital Medical University, Beijing 100050, PR China
| | - Fusheng Liu
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Department of Neurosurgery, Beijing Tiantan Hospital affiliated to Capital Medical University, Beijing 100050, PR China.
| |
Collapse
|
16
|
Abstract
Platelet-derived growth factor (PDGF) isoforms are important mitogens for different types of mesenchymal cells, which have important functions during the embryonal development and in the adult during wound healing and tissue homeostasis. In tumors, PDGF isoforms are often over-expressed and contribute to the growth of both normal and malignant cells. This review focuses on tumors expressing PDGF isoforms together with their tyrosine kinase receptors, thus resulting in autocrine stimulation of growth and survival. Patients with such tumors could benefit from treatment with inhibitors of either PDGF or PDGF receptors.
Collapse
Affiliation(s)
- Carl-Henrik Heldin
- Ludwig Institute for Cancer Research, Uppsala University, BMC, Box 595, S-751 24 Uppsala, Sweden
| |
Collapse
|
17
|
Abstract
The family of platelet-derived growth factors (PDGFs) plays a number of critical roles in normal embryonic development, cellular differentiation, and response to tissue damage. Not surprisingly, as it is a multi-faceted regulatory system, numerous pathological conditions are associated with aberrant activity of the PDGFs and their receptors. As we and others have shown, human gliomas, especially glioblastoma, express all PDGF ligands and both the two cell surface receptors, PDGFR-α and -β. The cellular distribution of these proteins in tumors indicates that glial tumor cells are stimulated via PDGF/PDGFR-α autocrine and paracrine loops, while tumor vessels are stimulated via the PDGFR-β. Here we summarize the initial discoveries on the role of PDGF and PDGF receptors in gliomas and provide a brief overview of what is known in this field.
Collapse
Affiliation(s)
- Inga Nazarenko
- Department of Oncology-Pathology, Karolinska Institutet, CCK R8:04, Karolinska University Hospital Solna, SE-17176 Stockholm, Sweden
| | - Sanna-Maria Hede
- Department of Oncology-Pathology, Karolinska Institutet, CCK R8:04, Karolinska University Hospital Solna, SE-17176 Stockholm, Sweden
- (currently) Uppsala University, Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, SE-751 85 Uppsala, Sweden
| | - Xiaobing He
- Department of Oncology-Pathology, Karolinska Institutet, CCK R8:04, Karolinska University Hospital Solna, SE-17176 Stockholm, Sweden
| | - Anna Hedrén
- Department of Oncology-Pathology, Karolinska Institutet, CCK R8:04, Karolinska University Hospital Solna, SE-17176 Stockholm, Sweden
| | - James Thompson
- Department of Oncology-Pathology, Karolinska Institutet, CCK R8:04, Karolinska University Hospital Solna, SE-17176 Stockholm, Sweden
- Karolinska Healthcare Research Biobank (KHRBB), Clinical Pathology/Cytology, Karolinska University Hospital, SE-17176 Stockholm, Sweden
| | - Mikael S. Lindström
- Department of Oncology-Pathology, Karolinska Institutet, CCK R8:04, Karolinska University Hospital Solna, SE-17176 Stockholm, Sweden
| | - Monica Nistér
- Department of Oncology-Pathology, Karolinska Institutet, CCK R8:04, Karolinska University Hospital Solna, SE-17176 Stockholm, Sweden
- Karolinska Healthcare Research Biobank (KHRBB), Clinical Pathology/Cytology, Karolinska University Hospital, SE-17176 Stockholm, Sweden
| |
Collapse
|
18
|
Activation of PDGFr-β Signaling Pathway after Imatinib and Radioimmunotherapy Treatment in Experimental Pancreatic Cancer. Cancers (Basel) 2011; 3:2501-15. [PMID: 24212821 PMCID: PMC3757429 DOI: 10.3390/cancers3022501] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 04/25/2011] [Accepted: 05/17/2011] [Indexed: 12/11/2022] Open
Abstract
Pancreatic cancer does not respond to a single-agent imatinib therapy. Consequently, multimodality treatments are contemplated. Published data indicate that in colorectal cancer, imatinib and radioimmunotherapy synergize to delay tumor growth. In pancreatic cancer, the tumor response is additive. This disparity of outcomes merited further studies because interactions between these modalities depend on the imatinib-induced reduction of the tumor interstitial fluid pressure. The examination of human and murine PDGFr-β/PDGF-B pathways in SW1990 pancreatic cancer xenografts revealed that the human branch is practically dormant in untreated tumors but the insult on the stromal component produces massive responses of human cancer cells. Inhibition of the stromal PDGFr-β with imatinib activates human PDGFr-β/PDGF-B signaling loop, silent in untreated xenografts, via an apparent paracrine rescue pathway. Responses are treatment-and time-dependent. Soon after treatment, levels of human PDGFr-β, compared to untreated tumors, are 3.4×, 12.4×, and 5.7× higher in imatinib-, radioimmunotherapy + imatinib-, and radioimmunotherapy-treated tumors, respectively. A continuous 14-day irradiation of imatinib-treated xenografts reduces levels of PDGFr-β and phosphorylated PDGFr-β by 5.3× and 4×, compared to earlier times. Human PDGF-B is upregulated suggesting that the survival signaling via the autocrine pathway is also triggered after stromal injury. These findings indicate that therapies targeting pancreatic cancer stromal components may have unintended mitogenic effects and that these effects can be reversed when imatinib is used in conjunction with radioimmunotherapy.
Collapse
|
19
|
Quant EC, Wen PY. Novel medical therapeutics in glioblastomas, including targeted molecular therapies, current and future clinical trials. Neuroimaging Clin N Am 2010; 20:425-48. [PMID: 20708556 DOI: 10.1016/j.nic.2010.04.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The prognosis for glioblastoma is poor despite optimal therapy with surgery, radiation, and chemotherapy. New therapies that improve survival and quality of life are needed. Research has increased our understanding of the molecular pathways important for gliomagenesis and disease progression. Novel agents have been developed against these targets, including receptor tyrosine kinases, intracellular signaling molecules, epigenetic abnormalities, and tumor vasculature and microenvironment. This article reviews novel therapies for glioblastoma, with an emphasis on targeted agents.
Collapse
Affiliation(s)
- Eudocia C Quant
- Division of Cancer Neurology, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, 44 Binney Street, SW 430D, Boston, MA 02115, USA
| | | |
Collapse
|
20
|
Helgaland T, Engelen B, Olsnes C, Aarstad HJ, Vassbotn FS. In vitro cholesteatoma growth and secretion of cytokines. Acta Otolaryngol 2010; 130:815-9. [PMID: 20085440 DOI: 10.3109/00016480903413657] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONCLUSION Our results show a significant difference between skin and cholesteatoma biology in vitro. OBJECTIVES Cholesteatoma disease is a process of destruction characterized by uncontrolled growth of squamous epithelial cells in the middle ear or temporal bone. The pathophysiology behind the cholesteatoma development is controversial, and the mechanisms driving the cholesteatoma growth, migration and destructive properties is still unclear. We aimed to provide a method to study the effect of various compounds on cholesteatoma and skin tissue growth, as well as to further investigate the biological differences between normal skin and cholesteatoma tissue. METHODS We have established a method to study cholesteatoma biopsy tissue in vitro. Cholesteatoma tissues from patients undergoing surgery for chronic otitis were grown in culture medium and compared to growth patterns and behaviour of normal retroauricular skin. Conditioned medium was analysed for various secreted cytokines. RESULTS We found a radial outgrowth of keratinocyte epithelium from the circular biopsies. After 5 days of culture we found a significant growth of both cholesteatoma and skin-derived cells. Cholesteatoma samples showed higher growth rate as compared with skin control cultures from the same patient. Moreover, the cholesteatoma cells showed higher production of monocyte chemoattractant protein-1 (MCP-1) and interleukin (IL)-6 as compared with normal skin.
Collapse
|
21
|
Teodorczyk M, Martin-Villalba A. Sensing invasion: cell surface receptors driving spreading of glioblastoma. J Cell Physiol 2009; 222:1-10. [PMID: 19688773 DOI: 10.1002/jcp.21901] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Glioblastoma multiforme (GBM) is the most common malignant brain tumour in adults. One main source of its high malignancy is the invasion of isolated tumour cells into the surrounding parenchyma, which makes surgical resection an insufficient therapy in nearly all cases. The invasion is triggered by several cell surface receptors including receptor tyrosine kinases (RTKs), G protein-coupled receptors (GPCRs), TGF-beta receptor, integrins, immunoglobulins, tumour necrosis factor (TNF) family, cytokine receptors, and protein tyrosine phosphatase receptors. The cross-talk between cell-surface receptors and the redundancy of downstream effectors make analysis of invasive signals even more complex. Therapies involving inhibition of single receptors do not give promising outcomes and a thorough knowledge of invasive signals of common and exclusive signalling components is required for design of best combinatory treatment schemes to fight the disease.
Collapse
Affiliation(s)
- Marcin Teodorczyk
- Molecular Neurobiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | |
Collapse
|
22
|
Raymond E, Brandes AA, Dittrich C, Fumoleau P, Coudert B, Clement PMJ, Frenay M, Rampling R, Stupp R, Kros JM, Heinrich MC, Gorlia T, Lacombe D, van den Bent MJ. Phase II study of imatinib in patients with recurrent gliomas of various histologies: a European Organisation for Research and Treatment of Cancer Brain Tumor Group Study. J Clin Oncol 2008; 26:4659-65. [PMID: 18824712 DOI: 10.1200/jco.2008.16.9235] [Citation(s) in RCA: 163] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
PURPOSE To evaluate the safety and the efficacy of imatinib in recurrent malignant gliomas. PATIENTS AND METHODS This was a single-arm, phase II study. Eligible patients had recurrent glioma after prior radiotherapy with an enhancing lesion on magnetic resonance imaging. Three different histologic groups were studied: glioblastomas (GBM), pure/mixed (anaplastic) oligodendrogliomas (OD), and low-grade or anaplastic astrocytomas (A). Imatinib was started at a dose of 600 mg/d with dose escalation to 800 mg in case of no toxicity; during the trial this dose was increased to 800 mg/d with escalation to 1,000 mg/d. Trial design was one-stage Fleming; both an objective response and 6 months of progression-free survival (PFS) were considered a successful outcome to treatment. RESULTS A total of 112 patients (51 patients with GBM, 25 patients with A, and 36 patients with OD) were enrolled. Imatinib was in general well tolerated. The median number of cycles was 2.0 (range, 1 to 43 cycles). Five patients had an objective partial response, including three patients with GBM; all had 6 months of PFS. The 6-month PFS rate was 16% (95% CI, 8.0% to 34.0%) in GBM, 4.0% (95% CI, 0.3% to 15.0%) in OD, and 9% (95% CI, 2.0% to 25.0%) in A. The exposure to imatinib was significantly lower in patients using enzyme-inducing antiepileptic drugs. The presence of ABCG2 point mutations were not correlated with pharmacokinetic findings. No somatic activating mutations of KIT or platelet-derived growth factor receptor-A or -B were found. CONCLUSION In the dose range of 600 to 1,000 mg/d, single-agent imatinib is well tolerated but has limited antitumor activity in patients with recurrent gliomas.
Collapse
Affiliation(s)
- Eric Raymond
- Service Inter Hospitalier de Cancérologie, Beaujon University Hospital, Clichy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Handolias D, McArthur GA. Imatinib as effective therapy for dermatofibrosarcoma protuberans: proof of concept of the autocrine hypothesis for cancer. Future Oncol 2008; 4:211-7. [DOI: 10.2217/14796694.4.2.211] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cancer literature has consistently described autocrine loops involving growth factors to be important mechanisms for cellular transformation and proliferation in preclinical cancer models. Finally, convincing clinical data exist to implicate autocrine loops as central to the pathogenesis of a malignant condition, largely as a result of the recent development of inhibitors of protein tyrosine kinases important in cell signaling and growth. Although a rare condition, the study of patients with dermatofibrosarcoma protuberans (DFSP) is enriched by data demonstrating strong scientific rationale for its pathogenesis and susceptibility to molecular-based therapies. DFSP is a low-grade sarcoma that responds to treatment with imatinib, an inhibitor of the PDGF receptor tyrosine kinase. This treatment response illustrates the importance of autocrine/paracrine loops involving PDGF and its receptor as the key molecular target in DFSP. New insight into this fundamental biological mechanism sets the scene for the further development of molecular-targeted therapeutic options for cancer.
Collapse
Affiliation(s)
- Despina Handolias
- Peter MacCallum Cancer Centre, Department of Haematology and Medical Oncology, Locked Bag 1, A’Beckett Street, Victoria 8006, Australia
| | - Grant A McArthur
- Peter MacCallum Cancer Centre, Department of Haematology and Medical Oncology, Locked Bag 1, A’Beckett Street, Victoria 8006, Australia
| |
Collapse
|
24
|
Pollack IF, Jakacki RI, Blaney SM, Hancock ML, Kieran MW, Phillips P, Kun LE, Friedman H, Packer R, Banerjee A, Geyer JR, Goldman S, Poussaint TY, Krasin MJ, Wang Y, Hayes M, Murgo A, Weiner S, Boyett JM. Phase I trial of imatinib in children with newly diagnosed brainstem and recurrent malignant gliomas: a Pediatric Brain Tumor Consortium report. Neuro Oncol 2007; 9:145-60. [PMID: 17293590 PMCID: PMC1871662 DOI: 10.1215/15228517-2006-031] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2006] [Accepted: 11/08/2006] [Indexed: 01/13/2023] Open
Abstract
This study estimated the maximum tolerated dose (MTD) of imatinib with irradiation in children with newly diagnosed brainstem gliomas, and those with recurrent malignant intracranial gliomas, stratified according to use of enzyme-inducing anticonvulsant drugs (EIACDs). In the brainstem glioma stratum, imatinib was initially administered twice daily during irradiation, but because of possible association with intratumoral hemorrhage (ITH) was subsequently started two weeks after irradiation. The protocol was also amended to exclude children with prior hemorrhage. Twenty-four evaluable patients received therapy before the amendment, and three of six with a brainstem tumor experienced dose-limiting toxicity (DLT): one had asymptomatic ITH, one had grade 4 neutropenia and, one had renal insufficiency. None of 18 patients with recurrent glioma experienced DLT. After protocol amendment, 3 of 16 patients with brainstem glioma and 2 of 11 patients with recurrent glioma who were not receiving EIACDs experienced ITH DLTs, with three patients being symptomatic. In addition to the six patients with hemorrhages during the DLT monitoring period, 10 experienced ITH (eight patients were symptomatic) thereafter. The recommended phase II dose for brainstem gliomas was 265 mg/m(2). Three of 27 patients with brainstem gliomas with imaging before and after irradiation, prior to receiving imatinib, had new hemorrhage, excluding their receiving imatinib. The MTD for recurrent high-grade gliomas without EIACDs was 465 mg/m(2), but the MTD was not established with EIACDs, with no DLTs at 800 mg/m(2). In summary, recommended phase II imatinib doses were determined for children with newly diagnosed brainstem glioma and recurrent high-grade glioma who were not receiving EIACDs. Imatinib may increase the risk of ITH, although the incidence of spontaneous hemorrhages in brainstem glioma is sufficiently high that this should be considered in studies of agents in which hemorrhage is a concern.
Collapse
Affiliation(s)
- Ian F Pollack
- Department of Neurosurgery, Children's Hospital of Pittsburgh, 3705 Fifth Avenue, Pittsburgh, PA 15213, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Signaling through platelet-derived growth factor (PDGF) receptors contributes to multiple tumor-associated processes. The recent introduction of clinically useful PDGF inhibitors have the last years validated PDGF receptors in malignant and stromal cells as relevant cancer drug targets. Mutational activation of PDGF receptor signaling in malignant cells has been described in some rare tumor types such as dermatofibrosarcoma protuberans, a subset of GISTs, and some hematologic malignancies. Furthermore, expression of PDGF receptors on pericytes is a common characteristic of solid tumors. The clinical efficacy of novel multikinase inhibitors, such as sunitinib and sorafenib, most likely involves targeting of PDGF receptor-dependent pericytes. Preclinical studies suggest that targeting of stromal PDGF receptors might also constitute a novel strategy to enhance tumor drug uptake. Finally, recent studies have implied both pro- and antimetastatic effects of PDGF receptors on malignant and stromal cells. The studies on the roles of PDGF receptors in cancer signaling are thus presently in a dynamic phase where collaborations between oncologists, pathologists, and tumor biologists are predicted to be highly productive.
Collapse
Affiliation(s)
- Arne Ostman
- Department of Pathology-Oncology, Cancer Center Karolinska, Karolinska Institutet, R8:03, SE-171 76 Stockholm, Sweden
| | | |
Collapse
|
26
|
Wen PY, Yung WKA, Lamborn KR, Dahia PL, Wang Y, Peng B, Abrey LE, Raizer J, Cloughesy TF, Fink K, Gilbert M, Chang S, Junck L, Schiff D, Lieberman F, Fine HA, Mehta M, Robins HI, DeAngelis LM, Groves MD, Puduvalli VK, Levin V, Conrad C, Maher EA, Aldape K, Hayes M, Letvak L, Egorin MJ, Capdeville R, Kaplan R, Murgo AJ, Stiles C, Prados MD. Phase I/II Study of Imatinib Mesylate for Recurrent Malignant Gliomas: North American Brain Tumor Consortium Study 99-08. Clin Cancer Res 2006; 12:4899-907. [PMID: 16914578 DOI: 10.1158/1078-0432.ccr-06-0773] [Citation(s) in RCA: 289] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Phase I: To determine the maximum tolerated doses, toxicities, and pharmacokinetics of imatinib mesylate (Gleevec) in patients with malignant gliomas taking enzyme-inducing antiepileptic drugs (EIAED) or not taking EIAED. Phase II: To determine the therapeutic efficacy of imatinib. EXPERIMENTAL DESIGN Phase I component used an interpatient dose escalation scheme. End points of the phase II component were 6-month progression-free survival and response. RESULTS Fifty patients enrolled in the phase I component (27 EIAED and 23 non-EIAED). The maximum tolerated dose for non-EIAED patients was 800 mg/d. Dose-limiting toxicities were neutropenia, rash, and elevated alanine aminotransferase. EIAED patients received up to 1,200 mg/d imatinib without developing dose-limiting toxicity. Plasma exposure of imatinib was reduced by approximately 68% in EIAED patients compared with non-EIAED patients. Fifty-five non-EIAED patients (34 glioblastoma multiforme and 21 anaplastic glioma) enrolled in the phase II component. Patients initially received 800 mg/d imatinib; 15 anaplastic glioma patients received 600 mg/d after hemorrhages were observed. There were 2 partial response and 6 stable disease among glioblastoma multiforme patients and 0 partial response and 5 stable disease among anaplastic glioma patients. Six-month progression-free survival was 3% for glioblastoma multiforme and 10% for anaplastic glioma patients. Five phase II patients developed intratumoral hemorrhages. CONCLUSIONS Single-agent imatinib has minimal activity in malignant gliomas. CYP3A4 inducers, such as EIAEDs, substantially decreased plasma exposure of imatinib and should be avoided in patients receiving imatinib for chronic myelogenous leukemia and gastrointestinal stromal tumors. The evaluation of the activity of combination regimens incorporating imatinib is under way in phase II trials.
Collapse
Affiliation(s)
- Patrick Y Wen
- Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Jechlinger M, Sommer A, Moriggl R, Seither P, Kraut N, Capodiecci P, Donovan M, Cordon-Cardo C, Beug H, Grünert S. Autocrine PDGFR signaling promotes mammary cancer metastasis. J Clin Invest 2006; 116:1561-70. [PMID: 16741576 PMCID: PMC1469776 DOI: 10.1172/jci24652] [Citation(s) in RCA: 264] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2005] [Accepted: 03/21/2006] [Indexed: 01/20/2023] Open
Abstract
Metastasis is the major cause of cancer morbidity, but strategies for direct interference with invasion processes are lacking. Dedifferentiated, late-stage tumor cells secrete multiple factors that represent attractive targets for therapeutic intervention. Here we show that metastatic potential of oncogenic mammary epithelial cells requires an autocrine PDGF/PDGFR loop, which is established as a consequence of TGF-beta-induced epithelial-mesenchymal transition (EMT), a faithful in vitro correlate of metastasis. The cooperation of autocrine PDGFR signaling with oncogenic Ras hyperactivates PI3K and is required for survival during EMT. Autocrine PDGFR signaling also contributes to maintenance of EMT, possibly through activation of STAT1 and other distinct pathways. Inhibition of PDGFR signaling interfered with EMT and caused apoptosis in murine and human mammary carcinoma cell lines. Consequently, overexpression of a dominant-negative PDGFR or application of the established cancer drug STI571 interfered with experimental metastasis in mice. Similarly, in mouse mammary tumor virus-Neu (MMTV-Neu) transgenic mice, TGF-beta enhanced metastasis of mammary tumors, induced EMT, and elevated PDGFR signaling. Finally, expression of PDGFRalpha and -beta correlated with invasive behavior in human mammary carcinomas. Thus, autocrine PDGFR signaling plays an essential role during cancer progression, suggesting a novel application of STI571 to therapeutically interfere with metastasis.
Collapse
Affiliation(s)
- Martin Jechlinger
- Research Institute for Molecular Pathology, Vienna, Austria.
Boehringer Ingelheim Pharma KG, Genomics Group, Biberach, Germany.
Boehringer Ingelheim Austria GmbH, Department of Lead Discovery, Vienna, Austria.
Aureon Laboratories, Yonkers, New York, USA.
Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Andreas Sommer
- Research Institute for Molecular Pathology, Vienna, Austria.
Boehringer Ingelheim Pharma KG, Genomics Group, Biberach, Germany.
Boehringer Ingelheim Austria GmbH, Department of Lead Discovery, Vienna, Austria.
Aureon Laboratories, Yonkers, New York, USA.
Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Richard Moriggl
- Research Institute for Molecular Pathology, Vienna, Austria.
Boehringer Ingelheim Pharma KG, Genomics Group, Biberach, Germany.
Boehringer Ingelheim Austria GmbH, Department of Lead Discovery, Vienna, Austria.
Aureon Laboratories, Yonkers, New York, USA.
Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Peter Seither
- Research Institute for Molecular Pathology, Vienna, Austria.
Boehringer Ingelheim Pharma KG, Genomics Group, Biberach, Germany.
Boehringer Ingelheim Austria GmbH, Department of Lead Discovery, Vienna, Austria.
Aureon Laboratories, Yonkers, New York, USA.
Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Norbert Kraut
- Research Institute for Molecular Pathology, Vienna, Austria.
Boehringer Ingelheim Pharma KG, Genomics Group, Biberach, Germany.
Boehringer Ingelheim Austria GmbH, Department of Lead Discovery, Vienna, Austria.
Aureon Laboratories, Yonkers, New York, USA.
Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Paola Capodiecci
- Research Institute for Molecular Pathology, Vienna, Austria.
Boehringer Ingelheim Pharma KG, Genomics Group, Biberach, Germany.
Boehringer Ingelheim Austria GmbH, Department of Lead Discovery, Vienna, Austria.
Aureon Laboratories, Yonkers, New York, USA.
Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Michael Donovan
- Research Institute for Molecular Pathology, Vienna, Austria.
Boehringer Ingelheim Pharma KG, Genomics Group, Biberach, Germany.
Boehringer Ingelheim Austria GmbH, Department of Lead Discovery, Vienna, Austria.
Aureon Laboratories, Yonkers, New York, USA.
Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Carlos Cordon-Cardo
- Research Institute for Molecular Pathology, Vienna, Austria.
Boehringer Ingelheim Pharma KG, Genomics Group, Biberach, Germany.
Boehringer Ingelheim Austria GmbH, Department of Lead Discovery, Vienna, Austria.
Aureon Laboratories, Yonkers, New York, USA.
Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Hartmut Beug
- Research Institute for Molecular Pathology, Vienna, Austria.
Boehringer Ingelheim Pharma KG, Genomics Group, Biberach, Germany.
Boehringer Ingelheim Austria GmbH, Department of Lead Discovery, Vienna, Austria.
Aureon Laboratories, Yonkers, New York, USA.
Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Stefan Grünert
- Research Institute for Molecular Pathology, Vienna, Austria.
Boehringer Ingelheim Pharma KG, Genomics Group, Biberach, Germany.
Boehringer Ingelheim Austria GmbH, Department of Lead Discovery, Vienna, Austria.
Aureon Laboratories, Yonkers, New York, USA.
Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
28
|
Assanah M, Lochhead R, Ogden A, Bruce J, Goldman J, Canoll P. Glial progenitors in adult white matter are driven to form malignant gliomas by platelet-derived growth factor-expressing retroviruses. J Neurosci 2006; 26:6781-90. [PMID: 16793885 PMCID: PMC6673823 DOI: 10.1523/jneurosci.0514-06.2006] [Citation(s) in RCA: 217] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
To test the gliomagenic potential of adult glial progenitors, we infected adult rat white matter with a retrovirus that expresses high levels of PDGF and green fluorescent protein (GFP). Tumors that closely resembled human glioblastomas formed in 100% of the animals by 14 d postinfection. Surprisingly, the tumors were composed of a heterogeneous population of cells, <20% of which expressed the retroviral reporter gene (GFP). The vast majority of both GFP+ and GFP- tumor cells expressed markers of glial progenitors. Thus, the tumors arose from the massive expansion of both infected and uninfected glial progenitors, suggesting that PDGF was driving tumor formation via autocrine and paracrine stimulation of glial progenitor cells. To explore this possibility further, we coinjected a retrovirus expressing PDGF-IRES-DsRed with a control retrovirus expressing only GFP. The resulting tumors contained a mixture of red cells (PDGF-expressing/tumor-initiating cells) and green cells (recruited progenitors). Both populations were highly proliferative and infiltrative. In contrast, when the control GFP retrovirus was injected alone, the animals never formed tumors and the majority of infected cells differentiated along the oligodendrocyte lineage. Together, these results reveal that adult white matter progenitors not only have the capacity to give rise to gliomas, but resident progenitors are recruited to proliferate within the mitogenic environment of the tumor and in this way contribute significantly to the heterogeneous mass of cells that compose a malignant glioma.
Collapse
|
29
|
Rand V, Huang J, Stockwell T, Ferriera S, Buzko O, Levy S, Busam D, Li K, Edwards JB, Eberhart C, Murphy KM, Tsiamouri A, Beeson K, Simpson AJG, Venter JC, Riggins GJ, Strausberg RL. Sequence survey of receptor tyrosine kinases reveals mutations in glioblastomas. Proc Natl Acad Sci U S A 2005; 102:14344-9. [PMID: 16186508 PMCID: PMC1242336 DOI: 10.1073/pnas.0507200102] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
It is now clear that tyrosine kinases represent attractive targets for therapeutic intervention in cancer. Recent advances in DNA sequencing technology now provide the opportunity to survey mutational changes in cancer in a high-throughput and comprehensive manner. Here we report on the sequence analysis of members of the receptor tyrosine kinase (RTK) gene family in the genomes of glioblastoma brain tumors. Previous studies have identified a number of molecular alterations in glioblastoma, including amplification of the RTK epidermal growth factor receptor. We have identified mutations in two other RTKs: (i) fibroblast growth receptor 1, including the first mutations in the kinase domain in this gene observed in any cancer, and (ii) a frameshift mutation in the platelet-derived growth factor receptor-alpha gene. Fibroblast growth receptor 1, platelet-derived growth factor receptor-alpha, and epidermal growth factor receptor are all potential entry points to the phosphatidylinositol 3-kinase and mitogen-activated protein kinase intracellular signaling pathways already known to be important for neoplasia. Our results demonstrate the utility of applying DNA sequencing technology to systematically assess the coding sequence of genes within cancer genomes.
Collapse
Affiliation(s)
- Vikki Rand
- Department of Neurosurgery, Johns Hopkins University School of Medicine, 5200 Eastern Avenue, Baltimore, MD 21224, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Chen KT, Lin JD, Liou MJ, Weng HF, Chang CA, Chan EC. An aberrant autocrine activation of the platelet-derived growth factor alpha-receptor in follicular and papillary thyroid carcinoma cell lines. Cancer Lett 2005; 231:192-205. [PMID: 16126335 DOI: 10.1016/j.canlet.2005.01.039] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2004] [Revised: 01/30/2005] [Accepted: 01/31/2005] [Indexed: 10/25/2022]
Abstract
Platelet-derived growth factor receptor (PDGFR) can bind to its ligand and consequently possess a kinase activity, and which is associated with the carcinogenesis of different cell types, including astrocytomas, oligodendrogliomas, and glioblastoma. In a cDNA microarray analysis, we observe the over-expressed mRNA of both PDGF-A and PDGF-alpha receptor in thyroid carcinoma cells. And the elevated protein expressions of PDGF-A and PDGF-alpha receptor in thyroid carcinoma cells were also confirmed by a Western blot analysis. The phosphorylation of PDGF-alpha receptor evaluated by an antibody against Tyr 720-phosphate was found in thyroid carcinoma cells. The tyrosine kinase activity of PDGF-alpha receptor was inhibited by tyrphostin AG1295 and showed a dose-dependent inhibition for the proliferation of thyroid carcinoma cells. These findings imply that autocrine activation of PDGF-alpha receptor plays a crucial role in the carcinogenesis of thyroid cells.
Collapse
MESH Headings
- Adenocarcinoma, Follicular/genetics
- Adenocarcinoma, Follicular/metabolism
- Adenocarcinoma, Papillary/genetics
- Adenocarcinoma, Papillary/metabolism
- Autocrine Communication
- Blotting, Western
- Cell Proliferation/drug effects
- DNA, Complementary
- Enzyme Activation
- Gene Expression Profiling
- Humans
- Oligonucleotide Array Sequence Analysis
- Phosphorylation
- Platelet-Derived Growth Factor/genetics
- Platelet-Derived Growth Factor/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptor, Platelet-Derived Growth Factor alpha/genetics
- Receptor, Platelet-Derived Growth Factor alpha/metabolism
- Thyroid Neoplasms/genetics
- Thyroid Neoplasms/metabolism
- Tumor Cells, Cultured
- Tyrosine/metabolism
- Tyrphostins/pharmacology
Collapse
Affiliation(s)
- Kuei-Tien Chen
- School of Medical Technology, Chang Gung University, Taoyuan, Taiwan
| | | | | | | | | | | |
Collapse
|
31
|
Au PYB, Martin N, Chau H, Moemeni B, Chia M, Liu FF, Minden M, Yeh WC. The oncogene PDGF-B provides a key switch from cell death to survival induced by TNF. Oncogene 2005; 24:3196-205. [PMID: 15735680 DOI: 10.1038/sj.onc.1208516] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Tumor necrosis factor (TNF) induces both cell death and survival signals. NF-kappaB, a transcription factor activated by TNF, is critical for controlling survival signals through trans-activation of downstream target genes. However, few NF-kappaB target survival genes have been identified with direct roles in oncogenesis. We report that platelet-derived growth factor B (PDGF-B), an oncogene and growth factor, is highly induced by TNF in fibroblasts in an NF-kappaB-dependent manner. PDGF-B can rescue NF-kappaB-deficient fibroblasts from TNF-mediated killing, and inhibition of PDGF-B signaling sensitizes wild-type cells to TNF-induced death. Interestingly, PDGF-B-transformed NIH-3T3 cells are even more highly sensitized to TNF-induced cell death with PDGF-B inhibition. Our results suggest that while normal cells contain multiple TNF-induced survival signals, tumor cells may favor a specific survival gene that is abnormally upregulated in order to evade death signals.
Collapse
Affiliation(s)
- P Y Billie Au
- AMDI/cFIFBCR, University Health Network, Department of Medical Biophysics, University of Toronto, 620 University Ave. Suite 7-706, Toronto, Ontario, Canada M5G 2C1
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Vereb G, Feuerstein BG, Hyun WC, Fulwyler MJ, Balázs M, Szöllosi J. Biphasic calcium response of platelet-derived growth factor stimulated glioblastoma cells is a function of cell confluence. Cytometry A 2005; 67:172-9. [PMID: 16163701 DOI: 10.1002/cyto.a.20178] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Previous reports have linked the spiking or two-phased character of calcium transients evoked by platelet-derived growth factor (PDGF) to the position of cells in the cell cycle without regard to cell-cell contact and communication. Because cell confluence can regulate growth factor receptor expression and dephosphorylation, we investigated the effect of cell culture confluence and cell cycle on calcium responses of PDGF-BB-stimulated A172 glioblastoma cells. METHODS Digital imaging cytometry was used to correlate the peak and duration of calcium response with bromodeoxyuridine positivity and DNA content and with culture confluence on a cell-by-cell basis. RESULTS In serum-starved cultures, complete two-phase calcium signals and shorter, lower spikes occurred independent of cell cycle phase. However, the confluence of cell culture seemed essential for inducing a complete response because cells in sparse cultures exhibited mostly short spikes with lower peaks or no transients at all. CONCLUSION Because cell confluence, by virtue of cell-cell contacts, is assumed to be an important regulator of proliferation, one is tempted to speculate that in transformed cells the ability to produce stronger growth signals upon reaching confluence and facing contact inhibition could provide a proliferative advantage.
Collapse
Affiliation(s)
- György Vereb
- Department of Biophysics and Cell Biology, Research Center for Molecular Medicine, University of Debrecen, Debrecen, Hungary.
| | | | | | | | | | | |
Collapse
|
33
|
Abstract
Primary central nervous system (CNS) tumors constitute a small fraction of the overall incidence of human cancer, but they represent a major source of cancer-related morbidity and mortality. The most common CNS tumor subtype in adults, high-grade astrocytoma, confers a dismal prognosis with a median survival of only 1 to 2 years. Other common adult CNS tumors, ie, low-grade astrocytomas and oligodendrogliomas, carry a less ominous, yet still poor prognosis. Unfortunately, there has been little progress in extending the survival or quality of life for glioma patients, despite nearly four decades of extensive research. This research has, however, greatly increased our understanding of the underlying molecular biology of these tumors, examples of which include the determination of elevated epidermal growth factor receptor (EGFR) as well as platelet-derived growth factor receptor (PDGF) signaling, and the inactivation of p53 , p16 , and PTEN tumor-suppressor genes (TSGs) that negatively regulate specific enzymatic activities in normal glial cells. Such observations have greatly improved our understanding of the pathogenesis of these tumors and have potential diagnostic as well as therapeutic relevance. With respect to the latter of these two issues, the identification of aberrant enzymatic activities in gliomas has promoted the development of novel therapeutic agents that target specific signaling effectors, and whose inhibition should, in theory, prove to be cytostatic, if not cytotoxic, to tumor cells. Several clinical trials are currently underway for testing these therapeutic agents in patients with primary brain tumors, and it is hoped that the targeting of pro-tumorigenic enzymatic activities will lead to better patient outcomes. In this review, we will describe the most pertinent genetic and signaling pathway alterations that are clinically relevant to the management of glial tumors.
Collapse
Affiliation(s)
- Ravi D Rao
- Division of Medical Oncology, Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | | |
Collapse
|
34
|
Rich JN, Bigner DD. Development of novel targeted therapies in the treatment of malignant glioma. Nat Rev Drug Discov 2004; 3:430-46. [PMID: 15136790 DOI: 10.1038/nrd1380] [Citation(s) in RCA: 190] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jeremy N Rich
- Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | |
Collapse
|
35
|
Takeuchi H, Kanzawa T, Kondo Y, Kondo S. Inhibition of platelet-derived growth factor signalling induces autophagy in malignant glioma cells. Br J Cancer 2004; 90:1069-75. [PMID: 14997209 PMCID: PMC2409632 DOI: 10.1038/sj.bjc.6601605] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Malignant gliomas highly coexpress platelet-derived growth factor (PDGF) and its receptor, suggesting the presence of an autocrine loop. Therefore, disruption of PDGF ligand/receptor complex represents a promising strategy for the treatment of malignant gliomas. However, the mechanisms of the antitumour effect exerted by the inhibition of PDGF-mediated cell growth remain unclear. In the present study, using anti-PDGF neutralising antibody, we investigated the effect of the inhibition of PDGF signalling on malignant glioma U87-MG, D54, and T98G cells with high levels of PDGF-A and -B. As a control, normal fibroblast MRC5 cells expressing low levels of PDGF-A and -B were used. Treatment with anti-PDGF neutralising antibody did not affect the expressions of PDGF-A, PDGF-B, and Akt, but suppressed the level of phosphorylated Akt in tumour cells, indicating the inhibition of PDGF signalling. The cell viability of all malignant glioma cells tested in this study was significantly inhibited in a time-dependent manner following the treatment compared to that of fibroblast cells (P<0.02 to <0.05). The antitumour effect of anti-PDGF antibody was suppressed by the activation of Akt and enhanced by the downregulation of Akt. Interestingly, the inhibition of PDGF signalling induced the development of acidic vesicular organelles and the autophagosome membrane association of the microtubule-associated protein light chain 3, which are characteristic of autophagy, in malignant glioma cells, while apoptotic cell death was not observed. Together these findings imply a new concept of autophagy for PDGF autocrine inhibition in malignant gliomas.
Collapse
Affiliation(s)
- H Takeuchi
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 64, Houston, TX 77030, USA
| | - T Kanzawa
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 64, Houston, TX 77030, USA
| | - Y Kondo
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 64, Houston, TX 77030, USA
| | - S Kondo
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 64, Houston, TX 77030, USA
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 64, Houston, TX 77030, USA. E-mail:
| |
Collapse
|
36
|
Abstract
Brain tumors represent the most common solid tumor of childhood. Although the histology of many pediatric brain tumors is similar to that of their adult counterparts, significant differences exist with regard to tumor location and response to therapy. The biological and genetic basis for this difference is poorly understood, as tumor tissue is generally unavailable for such studies. While targeted therapies directed against specific molecules active in cancer represents a new arsenal of agents for treating these tumors, such agents are generally not being developed for pediatric cancer in particular. Therefore, new agents for treatment of pediatric glioma must be obtained from compounds being tested against tumors of comparable histology in adult patients. Compounding this problem, although brain tumors are among the most lethal tumors of childhood, their absolute number is relatively small. As a consequence, trials with new agents must be prioritized based on the likelihood that a particular agent or combination of agents will have efficacy in pediatric cancer. Mouse models for brain tumors may help to identify targeted agents, and combinations of agents, effective against these tumors. Such data can be used to prioritize therapies for clinical trials in children with these tumors.
Collapse
Affiliation(s)
- William A Weiss
- Departments of Neurology, Pediatrics, and Neurological Surgery, University of California, San Francisco, CA 94143, USA.
| | | |
Collapse
|
37
|
Palamakumbura AH, Sommer P, Trackman PC. Autocrine growth factor regulation of lysyl oxidase expression in transformed fibroblasts. J Biol Chem 2003; 278:30781-7. [PMID: 12788924 DOI: 10.1074/jbc.m305238200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lysyl oxidase catalyzes oxidative deamination of peptidyl-lysine and hydroxylysine residues in collagens and lysine residues in elastin to form peptidyl aldehydes that are required for the formation of covalent cross-links in normal extracellular matrix biosynthesis. Lysyl oxidase in addition has tumor suppressor activity, and phenotypic reversion of transformed cell lines is accompanied by increased lysyl oxidase expression. The mechanism of low expression of lysyl oxidase in tumor cells is unknown. The present study investigates the hypothesis that autocrine growth factor pathways maintain low lysyl oxidase expression levels in c-H-ras-transformed fibroblasts (RS485 cell line). Autocrine pathways were blocked with suramin, a general inhibitor of growth factor receptor binding, and resulted in more than a 10-fold increase in lysyl oxidase expression and proenzyme production. This regulation was found to be reversible and occurred at the transcriptional level determined using lysyl oxidase promoter/reporter gene assays. Function blocking anti-fibroblast growth factor-2 (FGF-2) antibody enhanced lysyl oxidase expression in the absence of suramin. Finally, the addition of FGF-2 to suramin-treated cells completely reversed suramin stimulation of lysyl oxidase mRNA levels. Data support that an FGF-2 autocrine pathway inhibits lysyl oxidase transcription in the tumorigenic-transformed RS485 cell line. This finding may be of therapeutic significance and, in addition, provides a new experimental approach to investigate the mechanism of the tumor suppressor activity of lysyl oxidase.
Collapse
Affiliation(s)
- Amitha H Palamakumbura
- Boston University Goldman School of Dental Medicine, Division of Oral Biology, Boston, Massachusetts 02118, USA
| | | | | |
Collapse
|
38
|
Kapoor GS, O'Rourke DM. Mitogenic signaling cascades in glial tumors. Neurosurgery 2003; 52:1425-34; discussion 1434-5. [PMID: 12762887 DOI: 10.1227/01.neu.0000065135.28143.39] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2002] [Accepted: 01/29/2003] [Indexed: 01/29/2023] Open
Abstract
Gliomas are primary central nervous system tumors that arise from astrocytes, oligodendrocytes, or their precursors. Gliomas can be classified into several groups according to histological features. A number of genetic alterations have been identified in human gliomas; these generally affect either signal transduction pathways activated by receptor tyrosine kinases or cell cycle growth arrest pathways. These observed genetic alterations are now being used to complement histopathological diagnosis. The aim of the present review is to give a broad overview of the receptor tyrosine kinase signaling machinery involved in gliomagenesis, with an emphasis on the cooperative interaction between receptor tyrosine kinase signaling and the cell cycle-regulatory machinery. Understanding molecular features of primary glial tumors will eventually allow for target-selective intervention in distinct glioma subsets and a more rational approach to adjuvant therapies for these refractory diseases.
Collapse
Affiliation(s)
- Gurpreet S Kapoor
- Department of Neurosurgery, University of Pennsylvania School of Medicine, 36th and Hamilton Walk, Philadelphia, PA 19104, USA
| | | |
Collapse
|
39
|
Reigstad LJ, Sande HM, Fluge Ø, Bruland O, Muga A, Varhaug JE, Martinez A, Lillehaug JR. Platelet-derived growth factor (PDGF)-C, a PDGF family member with a vascular endothelial growth factor-like structure. J Biol Chem 2003; 278:17114-20. [PMID: 12598536 DOI: 10.1074/jbc.m301728200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Platelet-derived growth factor (PDGF)-C is a novel member of the PDGF family that binds to PDGF alphaalpha and alphabeta receptors. The growth factor domain of PDGF-C (GFD-PDGF-C) was expressed in high yields in Escherichia coli and was purified and refolded from inclusion bodies obtaining a biologically active growth factor with dimeric structure. The GFD-PDGF-C contains 12 cysteine residues, and Ellman assay analysis indicates that it contains three intramonomeric disulfide bonds, which is in accordance with GFD-PDGF-C being a member of the cystine knot superfamily of growth factors. The recombinant GFD-PDGF-C was characterized by CD, fluorescence, NMR, and infrared spectroscopy. Together, our data indicate that GFD-PDGF-C is a highly thermostable protein that contains mostly beta-sheet secondary structure and some (6%) alpha-helix structure. The structural model of PDGF-C, obtained by homology-based molecular modeling using the structural representatives of this family of growth factors, shows that GFD-PDGF-C has a higher structural homology to the vascular endothelial growth factor than to PDGF-B. The modeled structure can give further insights into the function and specificity of this molecule.
Collapse
Affiliation(s)
- Laila J Reigstad
- Department of Molecular Biology, University of Bergen, Bergen 5009, Norway
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Shimamura T, Hsu TC, Colburn NH, Bejcek BE. Activation of NF-kappaB is required for PDGF-B chain to transform NIH3T3 cells. Exp Cell Res 2002; 274:157-67. [PMID: 11855867 DOI: 10.1006/excr.2001.5449] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Elucidating the secondary signaling molecules that are necessary for platelet-derived growth factor (PDGF) to stimulate tumor development will be crucial to the understanding and treatment of a variety of cancers. Several lines of evidence have indicated that the transcription factor NF-kappaB plays a central role in transformation induced by Ha-ras and Bcr-abl, but nothing is known concerning its role in transformation by PDGF. Here we demonstrate that transcription from a promoter containing NF-kappaB binding sequences as well as the DNA binding activity of NF-kappaB were increased in PDGF-B-chain-transformed mouse fibroblast cells. Focus formation of PDGF-B-chain-transformed mouse fibroblasts was suppressed by treatment with acetylsalicylic acid (ASA) and salicylic acid, which are known inhibitors of NF-kappaB activation, but other nonsteroidal anti-inflammatory drugs that do not have an effect on NF-kappaB activity did not affect focus formation in these cells. Furthermore, expression of a dominant negative mutant of IkappaBalpha, pMEIkappaBalpha67CJ, and a dominant negative mutant of p65, p65DeltaC, resulted in decreased focus formation and NF-kappaB activity. Therefore, the transcription factor NF-kappaB plays a vital role in PDGF-B chain transformation of mouse fibroblast cells, and the NF-kappaB activity is sensitive to treatment with ASA.
Collapse
Affiliation(s)
- Takeshi Shimamura
- Department of Biological Sciences, Western Michigan University, Kalamazoo, Michigan 49008, USA
| | | | | | | |
Collapse
|
41
|
Mahboobi S, Teller S, Pongratz H, Hufsky H, Sellmer A, Botzki A, Uecker A, Beckers T, Baasner S, Schächtele C, Uberall F, Kassack MU, Dove S, Böhmer FD. Bis(1H-2-indolyl)methanones as a novel class of inhibitors of the platelet-derived growth factor receptor kinase. J Med Chem 2002; 45:1002-18. [PMID: 11855980 DOI: 10.1021/jm010988n] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The novel lead bis(1H-2-indolyl)methanone inhibits autophosphorylation of platelet-derived growth factor (PDGF) receptor tyrosine kinase in intact cells. Various substituents in the 5- or 6-position of one indole ring increase or preserve potency, whereas most modifications of the ring structures and of the methanone group as well as substitution at both indoles result in weak or no activity. An ATP binding site model, derived by homology from the FGFR-1 tyrosine kinase crystal structure suggesting hydrogen bonds of one indole NH and the methanone oxygen with the backbone carbonyl and amide, respectively, of Cys684, explains why only one indole moiety is open for substitution and locates groups in the 5- or 6-position outside the pocket. The hitherto most active derivatives, 39, 53 and 67, inhibit both isoforms of the PDGF receptor kinase in intact cells, with IC(50) of 0.1-0.3 microM, and purified PDGFbeta-receptor in vitro, with IC(50) of 0.09, 0.1, or 0.02 microM, respectively. PDGF-stimulated DNA synthesis is inhibited by these derivatives with IC(50) values of 1-3 microM. Kinetic analysis of 53 showed an ATP-competitive mode of inhibition. The compounds are inactive or weakly active toward a number of other tyrosine kinases, including the FGF receptor 1, EGF receptor, and c-Src kinase, as well as toward serine-threonine kinases, including different PKC isoforms and GRK2, and appear therefore selective for PDGF receptor inhibition.
Collapse
Affiliation(s)
- Siavosh Mahboobi
- Faculty of Chemistry and Pharmacy, Institute of Pharmacy, University of Regensburg, D-93040 Regensburg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Ostman A, Heldin CH. Involvement of platelet-derived growth factor in disease: development of specific antagonists. Adv Cancer Res 2001; 80:1-38. [PMID: 11034538 DOI: 10.1016/s0065-230x(01)80010-5] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Platelet-derived growth factor (PDGF) is a family of dimeric isoforms that stimulates, e.g., growth, chemotaxis and cell shape changes of various connective tissue cell types and certain other cells. The cellular effects of PDGF isoforms are exerted through binding to two structurally related tyrosine kinase receptors. Ligand binding induces receptor dimerization and autophosphorylation. This enables a number of SH2 domain containing signal transduction molecules to bind to the receptors, thereby initiating various signaling pathways. PDGF isoforms have important roles during the embryonic development, particularly in the formation of connective tissue in various organs. In the adult, PDGF stimulates wound healing. Overactivity of PDGF has been implicated in certain disorders, including fibrotic conditions, atherosclerosis, and malignancies. Different kinds of PDGF antagonists are currently being developed and evaluated in different animal disease models, as well as in clinical trials.
Collapse
Affiliation(s)
- A Ostman
- Ludwig Institute for Cancer Research, Biomedical Center, Uppsala, Sweden
| | | |
Collapse
|
43
|
Sundberg C, Nagy JA, Brown LF, Feng D, Eckelhoefer IA, Manseau EJ, Dvorak AM, Dvorak HF. Glomeruloid microvascular proliferation follows adenoviral vascular permeability factor/vascular endothelial growth factor-164 gene delivery. THE AMERICAN JOURNAL OF PATHOLOGY 2001; 158:1145-60. [PMID: 11238063 PMCID: PMC1850349 DOI: 10.1016/s0002-9440(10)64062-x] [Citation(s) in RCA: 161] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Glomeruloid bodies are a defining histological feature of glioblastoma multiforme and some other tumors and vascular malformations. Little is known about their pathogenesis. We injected a nonreplicating adenoviral vector engineered to express vascular permeability factor/vascular endothelial growth factor-164 (VPF/VEGF(164)) into the ears of athymic mice. This vector infected local cells that strongly expressed VPF/VEGF(164) mRNA for 10 to 14 days, after which expression gradually declined. Locally expressed VPF/VEGF(164) induced an early increase in microvascular permeability, leading within 24 hours to edema and deposition of extravascular fibrin; in addition, many pre-existing microvessels enlarged to form thin-walled, pericyte-poor, "mother" vessels. Glomeruloid body precursors were first detected at 3 days as focal accumulations of rapidly proliferating cells in the endothelial lining of mother vessels, immediately adjacent to cells expressing VPF/VEGF(164). Initially, glomeruloid bodies were comprised of endothelial cells but subsequently pericytes and macrophages also participated. As they enlarged by endothelial cell and pericyte proliferation, glomeruloid bodies severely compromised mother vessel lumens and blood flow. Subsequently, as VPF/VEGF(164) expression declined, glomeruloid bodies devolved throughout a period of weeks by apoptosis and reorganization into normal-appearing microvessels. These results provide the first animal model for inducing glomeruloid bodies and indicate that VPF/VEGF(164) is sufficient for their induction and necessary for their maintenance.
Collapse
MESH Headings
- Adenoviridae/genetics
- Animals
- Apoptosis
- Capillary Permeability
- Cell Division
- Cytokines/biosynthesis
- Cytokines/genetics
- Endothelial Growth Factors/biosynthesis
- Endothelial Growth Factors/genetics
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/pathology
- Endothelium, Vascular/ultrastructure
- Female
- In Situ Hybridization
- Lymphokines/biosynthesis
- Lymphokines/genetics
- Mice
- Mice, Nude
- Models, Animal
- Neovascularization, Pathologic
- Protein Isoforms/biosynthesis
- Protein Isoforms/genetics
- RNA, Messenger/biosynthesis
- Receptor Protein-Tyrosine Kinases/biosynthesis
- Receptor Protein-Tyrosine Kinases/genetics
- Receptors, Cytokine/biosynthesis
- Receptors, Cytokine/genetics
- Receptors, Growth Factor/biosynthesis
- Receptors, Growth Factor/genetics
- Receptors, Vascular Endothelial Growth Factor
- Time Factors
- Transcription, Genetic
- Transgenes
- Vascular Endothelial Growth Factor A
- Vascular Endothelial Growth Factors
Collapse
Affiliation(s)
- C Sundberg
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Besson A, Yong VW. Mitogenic signaling and the relationship to cell cycle regulation in astrocytomas. J Neurooncol 2001; 51:245-64. [PMID: 11407596 DOI: 10.1023/a:1010657030494] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The activity and regulation of a number of mitogenic signaling pathways is aberrant in astrocytomas, and this is thought to play a crucial role in the development of these tumors. The cascade of events leading to the formation and the progression from low-grade to high-grade astrocytomas is well characterized. These events include activating mutations, amplification, and overexpression of various growth factor receptors (e.g. epidermal growth factor receptor (EGFR), platelet derived growth factor receptor (PDGFR), c-Met), signaling intermediates (e.g. Ras and Protein kinase C (PKC)), and cell cycle regulatory molecules (e.g. mouse double minute-2 (Mdm2), cyclin-dependent kinase-4 (CDK4), and CDK6), that positively regulate proliferation and cell cycle progression. Inactivating mutations and deletions of signaling and cell cycle regulatory molecules that negatively regulate proliferation and cell cycle progression (e.g. p53, p16/INK4a, p14/ARF, p15/INK4b, retinoblastoma protein (Rb), and Phosphatase and tensin homologue deleted from chromosome 10 (PTEN)) also participate actively in the development of the transformed phenotype. Several mitogenic pathways are also stimulated via an autocrine loop, with astrocytoma cells expressing both the receptors and the respective cognate ligand. Due to the multitude of factors involved in astrocytoma pathogenesis, attempts to target a single pathway have not given satisfactory results. The simultaneous targeting of several pathways or the targeting of signaling intermediates, such as Ras or PKC, situated downstream of many growth factor receptor signaling pathways may show more efficacy in astrocytoma therapy. We will give an overview of how the combination of these aberrations drive astrocytoma cells into a relentless proliferation and how these signaling molecules may constitute relevant therapeutic targets.
Collapse
Affiliation(s)
- A Besson
- Department of Oncology, University of Calgary, Alberta, Canada
| | | |
Collapse
|
45
|
Sachinidis A, Seul C, Seewald S, Ahn H, Ko Y, Vetter H. Green tea compounds inhibit tyrosine phosphorylation of PDGF beta-receptor and transformation of A172 human glioblastoma. FEBS Lett 2000; 471:51-5. [PMID: 10760511 DOI: 10.1016/s0014-5793(00)01360-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The effect of the green tea compounds 2-(3,4-dihydroxyphenyl)-3, 4-dihydro-2H-1-benzopyran-3,5,7-triol (catechin), epicathechin (EC), epigallocathechin-3 gallate (EGCG), epicathechin-3 gallate (ECG) and catechin-3 gallate (CG) on the tyrosine phosphorylation of PDGF beta-receptor (PDGF-Rbeta) and on the anchorage-independent growth of A172 glioblastoma cells in semisolid agar has been investigated. Treatment of A172 glioblastoma with 50 microM CG, ECG, EGCG and 25 microM Tyrphostin 1296 resulted in an 82+/-17%, 77+/-21%, 75+/-8% and 55+/-11%, respectively (mean+/-S.D., n=3) inhibition of the PDGF-BB-induced tyrosine phosphorylation of PDGF-Rbeta. The PDGF-Rbeta downstream intracellular transduction pathway including tyrosine phosphorylation of phospholipase C-gamma1 (PLC-gamma1) and phosphatidylinositol 3'-kinase (PI 3'-K) was also inhibited. Spheroid formation was completely inhibited by 50 microM ECG, CG, EGCG and by 25 microM Tyrphostin 1296. We conclude that catechins of the green tea possessing the gallate group in their chemical structure act as anticancer agents probably partly via their ability to suppress the tyrosine kinase activity of the PDGF-Rbeta.
Collapse
Affiliation(s)
- A Sachinidis
- Medizinische Universitäts-Poliklinik, Wilhelmstr. 35-37, 53111, Bonn, Germany.
| | | | | | | | | | | |
Collapse
|
46
|
Donson AM, Banerjee A, Gamboni-Robertson F, Fleitz JM, Foreman NK. Protein kinase C zeta isoform is critical for proliferation in human glioblastoma cell lines. J Neurooncol 2000; 47:109-15. [PMID: 10982151 DOI: 10.1023/a:1006406208376] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Previous studies have confirmed that proliferation in glioblastoma cell lines can be blocked by non-isoform specific protein kinase C (PKC) inhibitors, e.g calphostin C, staurosporine. However, the exact mechanism of PKC involvement is poorly understood. The aim of this study was to explore the role of specific PKC isoforms in the aberrant growth of glioblastoma. Identification of the isoform(s) critical for proliferation in glioblastoma would present a better target for the design of chemotherapeutic strategies. To this end, we screened expression on PKC isoforms in four human glioblastoma cell lines both when proliferating and in a quiescent state using western assays. PKC isoforms alpha, beta, betaII and zeta were found to be expressed in all cell lines. PKC epsilon was detected in three out of four cell lines and PKC eta was detected in one out of four cell lines. Quiescence of growth resulted in down-regulation of PKC epsilon. We examined the role of these isoforms by studying the effect of PKC isoform-specific inhibitors bisindolylmaleimide-I and Gö6976 on proliferation in a panel of four human glioblastoma cell lines. Inhibition of PKC alpha and epsilon had no effect on proliferation, suggesting that previous studies targeting PKC alpha may not be of therapeutic benefit. More significantly, it was shown that inhibition of PKC zeta blocked proliferation. This suggests that the inhibition of PKC zeta may be an important chemotherapeutic target for arresting growth in glioblastoma.
Collapse
Affiliation(s)
- A M Donson
- Department of Pediatrics, University of Colorado Health Sciences Center, Denver, USA
| | | | | | | | | |
Collapse
|
47
|
Heller S, Scheibenpflug L, Westermark B, Nistér M. PDGF B mRNA variants in human tumors with similarity to the v-sis oncogene: Expression of cellular PDGF B protein is associated with exon 1 divergence, but not with a 3'UTR splice variant. Int J Cancer 2000. [DOI: 10.1002/(sici)1097-0215(20000115)85:2%3c211::aid-ijc11%3e3.0.co;2-p] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
48
|
Heller S, Scheibenpflug L, Westermark B, Nistér M. PDGF B mRNA variants in human tumors with similarity to the v-sis oncogene: Expression of cellular PDGF B protein is associated with exon 1 divergence, but not with a 3'UTR splice variant. Int J Cancer 2000. [DOI: 10.1002/(sici)1097-0215(20000115)85:2<211::aid-ijc11>3.0.co;2-p] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
49
|
Morimoto AM, Tomlinson MG, Nakatani K, Bolen JB, Roth RA, Herbst R. The MMAC1 tumor suppressor phosphatase inhibits phospholipase C and integrin-linked kinase activity. Oncogene 2000; 19:200-9. [PMID: 10644997 DOI: 10.1038/sj.onc.1203288] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Loss of the tumor suppressor MMAC1 has been shown to be involved in breast, prostate and brain cancer. Consistent with its identification as a tumor suppressor, expression of MMAC1 has been demonstrated to reduce cell proliferation, tumorigenicity, and motility as well as affect cell-cell and cell-matrix interactions of malignant human glioma cells. Subsequently, MMAC1 was shown to have lipid phosphatase activity towards PIP3 and protein phosphatase activity against focal adhesion kinase (FAK). The lipid phosphatase activity of MMAC1 results in decreased activation of the PIP3-dependent, anti-apoptotic kinase, AKT. It is thought that this inhibition of AKT culminates with reduced glioma cell proliferation. In contrast, MMAC1's effects on cell motility, cell - cell and cell - matrix interactions are thought to be due to its protein phosphatase activity towards FAK. However, recent studies suggest that the lipid phosphatase activity of MMAC1 correlates with its ability to be a tumor suppressor. The high rate of mutation of MMAC1 in late stage metastatic tumors suggests that effects of MMAC1 on motility, cell - cell and cell - matrix interactions are due to its tumor suppressor activity. Therefore the lipid phosphatase activity of MMAC1 may affect PIP3 dependent signaling pathways and result in reduced motility and altered cell - cell and cell - matrix interactions. We demonstrate here that expression of MMAC1 in human glioma cells reduced intracellular levels of inositol trisphosphate and inhibited extracellular Ca2+ influx, suggesting that MMAC1 affects the phospholipase C signaling pathway. In addition, we show that MMAC1 expression inhibits integrin-linked kinase activity. Furthermore, we show that these effects require the catalytic activity of MMAC1. Our data thus provide a link of MMAC1 to PIP3 dependent signaling pathways that regulate cell - matrix and cell - cell interactions as well as motility. Lastly, we demonstrate that AKT3, an isoform of AKT highly expressed in the brain, is also a target for MMAC1 repression. These data suggest an important role for AKT3 in glioblastoma multiforme. We therefore propose that repression of multiple PIP3 dependent signaling pathways may be required for MMAC1 to act as a tumor suppressor.
Collapse
Affiliation(s)
- A M Morimoto
- Department of Cell Signaling, DNAX Research Institute, 901 California Ave, Palo Alto, California, CA 94304, USA
| | | | | | | | | | | |
Collapse
|
50
|
Abstract
Platelet-derived growth factor (PDGF) is a major mitogen for connective tissue cells and certain other cell types. It is a dimeric molecule consisting of disulfide-bonded, structurally similar A- and B-polypeptide chains, which combine to homo- and heterodimers. The PDGF isoforms exert their cellular effects by binding to and activating two structurally related protein tyrosine kinase receptors, denoted the alpha-receptor and the beta-receptor. Activation of PDGF receptors leads to stimulation of cell growth, but also to changes in cell shape and motility; PDGF induces reorganization of the actin filament system and stimulates chemotaxis, i.e., a directed cell movement toward a gradient of PDGF. In vivo, PDGF has important roles during the embryonic development as well as during wound healing. Moreover, overactivity of PDGF has been implicated in several pathological conditions. The sis oncogene of simian sarcoma virus (SSV) is related to the B-chain of PDGF, and SSV transformation involves autocrine stimulation by a PDGF-like molecule. Similarly, overproduction of PDGF may be involved in autocrine and paracrine growth stimulation of human tumors. Overactivity of PDGF has, in addition, been implicated in nonmalignant conditions characterized by an increased cell proliferation, such as atherosclerosis and fibrotic conditions. This review discusses structural and functional properties of PDGF and PDGF receptors, the mechanism whereby PDGF exerts its cellular effects, and the role of PDGF in normal and diseased tissues.
Collapse
Affiliation(s)
- C H Heldin
- Ludwig Institute for Cancer Research, Biomedical Center, and Department of Pathology, University Hospital, Uppsala, Sweden.
| | | |
Collapse
|