1
|
Parihar K, Nukpezah J, Iwamoto DV, Cruz K, Byfield FJ, Chin L, Murray ME, Mendez MG, van Oosten AS, Herrmann A, Charrier EE, Galie PA, Donlick M, Lee T, Janmey PA, Radhakrishnan R. Tissue-dependent mechanosensing by cells derived from human tumors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.11.632563. [PMID: 39868185 PMCID: PMC11761415 DOI: 10.1101/2025.01.11.632563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Alterations of the extracellular matrix (ECM), including both mechanical (such as stiffening of the ECM) and chemical (such as variation of adhesion proteins and deposition of hyaluronic acid (HA)) changes, in malignant tissues have been shown to mediate tumor progression. To survey how cells from different tissue types respond to various changes in ECM mechanics and composition, we measured physical characteristics (adherent area, shape, cell stiffness, and cell speed) of 25 cancer and 5 non-tumorigenic cell lines on 7 different substrate conditions. Our results indicate substantial heterogeneity in how cell mechanics changes within and across tissue types in response to mechanosensitive and chemosensitive changes in ECM. The analysis also underscores the role of HA in ECM with some cell lines showing changes in cell mechanics in response to presence of HA in soft substrate that are similar to those observed on stiff substrate. This pan-cancer investigation also highlights the importance of tissue-type and cell line specificity for inferences made based on comparison between physical properties of cancer and normal cells. Lastly, using unsupervised machine learning, we identify phenotypic classes that characterize the physical plasticity, i.e. the distribution of physical feature values attainable, of a particular cell type in response to different ECM-based conditions.
Collapse
|
2
|
Lan BQ, Wang YJ, Yu SX, Liu W, Liu YJ. Physical effects of 3-D microenvironments on confined cell behaviors. Am J Physiol Cell Physiol 2024; 327:C1192-C1201. [PMID: 39246142 DOI: 10.1152/ajpcell.00288.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/16/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
Cell migration is a fundamental and functional cellular process, influenced by a complex microenvironment consisting of different cells and extracellular matrix. Recent research has highlighted that, besides biochemical cues from the microenvironment, physical cues can also greatly alter cellular behavior. However, due to the complexity of the microenvironment, little is known about how the physical interactions between migrating cells and surrounding microenvironment instructs cell movement. Here, we explore various examples of three-dimensional microenvironment reconstruction models in vitro and describe how the physical interplay between migrating cells and the neighboring microenvironment controls cell behavior. Understanding this mechanical cooperation will provide key insights into organ development, regeneration, and tumor metastasis.
Collapse
Affiliation(s)
- Bao-Qiong Lan
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, the People's Republic of China
| | - Ya-Jun Wang
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, the People's Republic of China
| | - Sai-Xi Yu
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, the People's Republic of China
| | - Wei Liu
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, the People's Republic of China
| | - Yan-Jun Liu
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, the People's Republic of China
| |
Collapse
|
3
|
De PS, De R. Emergence of biphasic versus monotonic response of actin retrograde flow and cell traction force with varying substrate rigidity. Phys Rev E 2024; 110:054414. [PMID: 39690572 DOI: 10.1103/physreve.110.054414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 10/21/2024] [Indexed: 12/19/2024]
Abstract
The transmission of cytoskeletal forces to the extracellular matrix through focal adhesion complexes is essential for a multitude of biological processes, such as cell migration, cell differentiation, tissue development, and cancer progression, among others. During migration, focal adhesions arrest the actin retrograde flow towards the cell interior, allowing the cell front to move forward. Here, we address a puzzling observation of the existence of two distinct phenomena: a biphasic vs a monotonic relationship of the retrograde flow and cell traction force with substrate rigidity. In the former, maximum traction force and minimum retrograde flow velocity are observed at an intermediate optimal substrate stiffness; while in the latter, the actin retrograde flow decreases and traction force increases with increasing substrate stiffness. We propose a theoretical model for cell-matrix adhesions at the leading edge of a migrating cell, incorporating a novel approach in force loading rate sensitive binding and reinforcement of focal adhesions assembly and the subsequent force-induced slowing down of actin flow. Our model exhibits both biphasic and monotonic responses of the retrograde flow and cell traction force with increasing substrate rigidity, owing to the cell's ability to sense and adapt to the fast-growing forces. Furthermore, our analysis shows how competition between different timescales regulated by loading rate sensitivity influences the biphasic versus monotonic behavior and the emergence of optimal substrate rigidity in the biphasic scenario. We also elucidate how the viscoelastic properties of the substrate regulate these nonlinear responses and predict the loss of cell sensitivity to variation in substrate rigidity when adhesions are subjected to high forces.
Collapse
|
4
|
Kelly MD, Pawlak MR, Zhan KH, Shamsan GA, Gordon WR, Odde DJ. Mutual antagonism between CD44 and integrins in glioblastoma cell traction and migration. APL Bioeng 2024; 8:036102. [PMID: 38957223 PMCID: PMC11219079 DOI: 10.1063/5.0203028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/17/2024] [Indexed: 07/04/2024] Open
Abstract
Cell migration is the major driver of invasion and metastasis during cancer progression. For cells to migrate, they utilize the actin-myosin cytoskeleton and adhesion molecules, such as integrins and CD44, to generate traction forces in their environment. CD44 primarily binds to hyaluronic acid (HA) and integrins primarily bind to extracellular matrix (ECM) proteins such as collagen. However, the role of CD44 under integrin-mediated conditions and vice versa is not well known. Here, we performed traction force microscopy (TFM) on U251 cells seeded on collagen I-coated polyacrylamide gels to assess the functional mechanical relationship between integrins and CD44. Performing TFM on integrin-mediated adhesion conditions, i.e., collagen, we found that CD44KO U251 cells exerted more traction force than wild-type (WT) U251 cells. Furthermore, untreated WT and CD44-blocked WT exhibited comparable results. Conversely, in CD44-mediated adhesive conditions, integrin-blocked WT cells exerted a higher traction force than untreated WT cells. Our data suggest that CD44 and integrins have a mutually antagonistic relationship where one receptor represses the other's ability to generate traction force on its cognate substrate.
Collapse
Affiliation(s)
- Marcus D. Kelly
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Matthew R. Pawlak
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Kevin H. Zhan
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Ghaidan A. Shamsan
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Wendy R. Gordon
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - David J. Odde
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
5
|
Sakamoto N, Ito K, Ii S, Conway DE, Ueda Y, Nagatomi J. A homeostatic role of nucleus-actin filament coupling in the regulation of cellular traction forces in fibroblasts. Biomech Model Mechanobiol 2024; 23:1289-1298. [PMID: 38502433 DOI: 10.1007/s10237-024-01839-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 03/21/2024]
Abstract
Cellular traction forces are contractile forces that depend on the material/substrate stiffness and play essential roles in sensing mechanical environments and regulating cell morphology and function. Traction forces are primarily generated by the actin cytoskeleton and transmitted to the substrate through focal adhesions. The cell nucleus is also believed to be involved in the regulation of this type of force; however, the role of the nucleus in cellular traction forces remains unclear. In this study, we explored the effects of nucleus-actin filament coupling on cellular traction forces in human dermal fibroblasts cultured on substrates with varying stiffness (5, 15, and 48 kPa). To investigate these effects, we transfected the cells with a dominant-negative Klarsicht/ANC-1/Syne homology (DN-KASH) protein that was designed to displace endogenous linker proteins and disrupt nucleus-actin cytoskeleton connections. The force that exists between the cytoskeleton and the nucleus (nuclear tension) was also evaluated with a fluorescence resonance energy transfer (FRET)-based tension sensor. We observed a biphasic change in cellular traction forces with a peak at 15 kPa, regardless of DN-KASH expression, that was inversely correlated with the nuclear tension. In addition, the relative magnitude and distribution of traction forces in nontreated wild-type cells were similar across different stiffness conditions, while DN-KASH-transfected cells exhibited a different distribution pattern that was impacted by the substrate stiffness. These results suggest that the nucleus-actin filament coupling play a homeostatic role by maintaining the relative magnitude of cellular traction forces in fibroblasts under different stiffness conditions.
Collapse
Affiliation(s)
- Naoya Sakamoto
- Department of Mechanical Systems Engineering, Tokyo Metropolitan University, Minami- Osawa 1-1, Hachioji, Tokyo, 192-0397, Japan.
- Research Center for Medicine-Engineering Collaboration, Tokyo Metropolitan University, Minami-Osawa 1-1, Hachioji, Tokyo, 192-0397, Japan.
| | - Keisuke Ito
- Department of Mechanical Systems Engineering, Tokyo Metropolitan University, Minami- Osawa 1-1, Hachioji, Tokyo, 192-0397, Japan
| | - Satoshi Ii
- Department of Mechanical Systems Engineering, Tokyo Metropolitan University, Minami- Osawa 1-1, Hachioji, Tokyo, 192-0397, Japan
- Research Center for Medicine-Engineering Collaboration, Tokyo Metropolitan University, Minami-Osawa 1-1, Hachioji, Tokyo, 192-0397, Japan
| | - Daniel E Conway
- Department of Biomedical Engineering, The Ohio State University, 140W 19th Avenue, Columbus, OH, USA
| | - Yuki Ueda
- Department of Mechanical Systems Engineering, Tokyo Metropolitan University, Minami- Osawa 1-1, Hachioji, Tokyo, 192-0397, Japan
| | - Jiro Nagatomi
- Research Center for Medicine-Engineering Collaboration, Tokyo Metropolitan University, Minami-Osawa 1-1, Hachioji, Tokyo, 192-0397, Japan
- Department of Bioengineering, Clemson University, 301 Rhodes Research Center, Clemson, SC, 29634-0905, USA
| |
Collapse
|
6
|
Radman BA, Alhameed AMM, Shu G, Yin G, Wang M. Cellular elasticity in cancer: a review of altered biomechanical features. J Mater Chem B 2024; 12:5299-5324. [PMID: 38742281 DOI: 10.1039/d4tb00328d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
A large number of studies have shown that changes in biomechanical characteristics are an important indicator of tumor transformation in normal cells. Elastic deformation is one of the more studied biomechanical features of tumor cells, which plays an important role in tumourigenesis and development. Altered cell elasticity often brings many indications. This manuscript reviews the effects of altered cellular elasticity on cell characteristics, including adhesion viscosity, migration, proliferation, and differentiation elasticity and stiffness. Also, the physical factors that may affect cell elasticity, such as temperature, cell height, cell-viscosity, and aging, are summarized. Then, the effects of cell-matrix, cytoskeleton, in vitro culture medium, and cell-substrate with different three-dimensional structures on cell elasticity during cell tumorigenesis are outlined. Importantly, we summarize the current signaling pathways that may affect cellular elasticity, as well as tests for cellular elastic deformation. Finally, we summarize current hybrid materials: polymer-polymer, protein-protein, and protein-polymer hybrids, also, nano-delivery strategies that target cellular resilience and cases that are at least in clinical phase 1 trials. Overall, the behavior of cancer cell elasticity is modulated by biological, chemical, and physical changes, which in turn have the potential to alter cellular elasticity, and this may be an encouraging prediction for the future discovery of cancer therapies.
Collapse
Affiliation(s)
- Bakeel A Radman
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, China.
- Department of Biology, College of Science and Education, Albaydha University, Yemen
| | | | - Guang Shu
- Department of Histology and Embryology, School of Basic Medical Sciences, Central South University, Changsha, 410013, China
- China-Africa Research Center of Infectious Diseases, School of Basic Medical Sciences, Central South University, Changsha, 410013, China
| | - Gang Yin
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, China.
| | - Maonan Wang
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, China.
| |
Collapse
|
7
|
Kondapaneni RV, Gurung SK, Nakod PS, Goodarzi K, Yakati V, Lenart NA, Rao SS. Glioblastoma mechanobiology at multiple length scales. BIOMATERIALS ADVANCES 2024; 160:213860. [PMID: 38640876 DOI: 10.1016/j.bioadv.2024.213860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/05/2024] [Accepted: 04/12/2024] [Indexed: 04/21/2024]
Abstract
Glioblastoma multiforme (GBM), a primary brain cancer, is one of the most aggressive forms of human cancer, with a very low patient survival rate. A characteristic feature of GBM is the diffuse infiltration of tumor cells into the surrounding brain extracellular matrix (ECM) that provide biophysical, topographical, and biochemical cues. In particular, ECM stiffness and composition is known to play a key role in controlling various GBM cell behaviors including proliferation, migration, invasion, as well as the stem-like state and response to chemotherapies. In this review, we discuss the mechanical characteristics of the GBM microenvironment at multiple length scales, and how biomaterial scaffolds such as polymeric hydrogels, and fibers, as well as microfluidic chip-based platforms have been employed as tissue mimetic models to study GBM mechanobiology. We also highlight how such tissue mimetic models can impact the field of GBM mechanobiology.
Collapse
Affiliation(s)
- Raghu Vamsi Kondapaneni
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL, USA
| | - Sumiran Kumar Gurung
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL, USA
| | - Pinaki S Nakod
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL, USA
| | - Kasra Goodarzi
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL, USA
| | - Venu Yakati
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL, USA
| | - Nicholas A Lenart
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL, USA
| | - Shreyas S Rao
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL, USA.
| |
Collapse
|
8
|
He K, Kou G, Cai H, Tian G, Xu Z, Yang Z. Effects of Contact Surface Shape on Dynamic Lifetime and Strength of Molecular Bond Clusters under Displacement- and Force-Controlled Loading Conditions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:10947-10956. [PMID: 38752855 DOI: 10.1021/acs.langmuir.4c00329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Many experimental and theoretical studies have shown that the mechanical properties of cells and the extracellular matrix can significantly affect the lifetime and strength of the adhesion clusters of molecular bonds. However, there are few studies on how the shape of the contact surface affects the lifetime and strength of the adhesion clusters of molecular bonds, especially theoretical studies in this area. An idealized model of focal adhesion is adopted, in which two rigid media are bonded together by an array of receptor-ligand bonds modeled as Hookean springs on a complex surface topography, which is described by three parameters: the surface shape factor β, the length of a single identical surface shape L, and the amplitude of surface shapes w. In this study, systematic Monte Carlo simulations of this model are conducted to study the lifetime of the molecular bond cluster under linear incremental force loading and the strength of the molecular bond cluster under linear incremental displacement loading. We find that both small surface shape amplitudes and large surface shape factors will increase the lifetime and strength of the adhesion cluster, whereas the length of a single surface shape causes oscillations in the lifetime and strength of the cluster, and this oscillation amplitude is affected by the surface shape amplitude and the factor. At the same time, we also find that the pretension in the cluster will play a dominant role in the adhesion strength under large amplitudes and small factors of surface shapes. The physical mechanisms behind these phenomena are that the changes of the length of a single surface shape, the amplitude of surface shapes, and the surface shape factor cause the changes of stress concentration in the adhesion region, bond affinity, and the number of similar affinity bonds.
Collapse
Affiliation(s)
- Kuncheng He
- Xi'an Research Institute of High Technology, Xi'an 710025, China
| | - Guangjie Kou
- Xi'an Research Institute of High Technology, Xi'an 710025, China
| | - Hui Cai
- Xi'an Research Institute of High Technology, Xi'an 710025, China
| | - Gan Tian
- Xi'an Research Institute of High Technology, Xi'an 710025, China
| | - Zhigao Xu
- Xi'an Research Institute of High Technology, Xi'an 710025, China
| | - Zhengwei Yang
- Xi'an Research Institute of High Technology, Xi'an 710025, China
| |
Collapse
|
9
|
Mathieu M, Isomursu A, Ivaska J. Positive and negative durotaxis - mechanisms and emerging concepts. J Cell Sci 2024; 137:jcs261919. [PMID: 38647525 DOI: 10.1242/jcs.261919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024] Open
Abstract
Cell migration is controlled by the coordinated action of cell adhesion, cytoskeletal dynamics, contractility and cell extrinsic cues. Integrins are the main adhesion receptors to ligands of the extracellular matrix (ECM), linking the actin cytoskeleton to the ECM and enabling cells to sense matrix rigidity and mount a directional cell migration response to stiffness gradients. Most models studied show preferred migration of single cells or cell clusters towards increasing rigidity. This is referred to as durotaxis, and since its initial discovery in 2000, technical advances and elegant computational models have provided molecular level details of stiffness sensing in cell migration. However, modeling has long predicted that, depending on cell intrinsic factors, such as the balance of cell adhesion molecules (clutches) and the motor proteins pulling on them, cells might also prefer adhesion to intermediate rigidity. Recently, experimental evidence has supported this notion and demonstrated the ability of cells to migrate towards lower rigidity, in a process called negative durotaxis. In this Review, we discuss the significant conceptual advances that have been made in our appreciation of cell plasticity and context dependency in stiffness-guided directional cell migration.
Collapse
Affiliation(s)
- Mathilde Mathieu
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, FI-20520 Turku, Finland
| | - Aleksi Isomursu
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, FI-20520 Turku, Finland
| | - Johanna Ivaska
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, FI-20520 Turku, Finland
- Department of Life Technologies, University of Turku, FI-20520 Turku, Finland
- Western Finnish Cancer Center (FICAN West), University of Turku, FI-20520 Turku, Finland
- Foundation for the Finnish Cancer Institute, Tukholmankatu 8, FI-00014 Helsinki, Finland
| |
Collapse
|
10
|
Scianna M. Selected aspects of avascular tumor growth reproduced by a hybrid model of cell dynamics and chemical kinetics. Math Biosci 2024; 370:109168. [PMID: 38408698 DOI: 10.1016/j.mbs.2024.109168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 02/10/2024] [Accepted: 02/23/2024] [Indexed: 02/28/2024]
Abstract
We here propose a hybrid computational framework to reproduce and analyze aspects of the avascular progression of a generic solid tumor. Our method first employs an individual-based approach to represent the population of tumor cells, which are distinguished in viable and necrotic agents. The active part of the disease is in turn differentiated according to a set of metabolic states. We then describe the spatio-temporal evolution of the concentration of oxygen and of tumor-secreted proteolytic enzymes using partial differential equations (PDEs). A differential equation finally governs the local degradation of the extracellular matrix (ECM) by the malignant mass. Numerical realizations of the model are run to reproduce tumor growth and invasion in a number scenarios that differ for cell properties (adhesiveness, duplication potential, proteolytic activity) and/or environmental conditions (level of tissue oxygenation and matrix density pattern). In particular, our simulations suggest that tumor aggressiveness, in terms of invasive depth and extension of necrotic tissue, can be reduced by (i) stable cell-cell contact interactions, (ii) poor tendency of malignant agents to chemotactically move upon oxygen gradients, and (iii) presence of an overdense matrix, if coupled by a disrupted proteolytic activity of the disease.
Collapse
Affiliation(s)
- Marco Scianna
- Department of Mathematical Sciences, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.
| |
Collapse
|
11
|
Wang X, Li L, Sun B, Hou X, Song S, Shi C, Chen W. Piezo1-ERK1/2-YAP Signaling Cascade Regulates the Proliferation of Urine-derived Stem Cells on Collagen Gels. Curr Stem Cell Res Ther 2024; 19:103-115. [PMID: 36999714 DOI: 10.2174/1574888x18666230331123540] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/30/2022] [Accepted: 01/26/2023] [Indexed: 04/01/2023]
Abstract
BACKGROUND Urine-derived stem cells (USCs) were considered to be an ideal source of stem cells for repairing urological diseases. However, the proliferative ability of USCs significantly decreased when cultured on plastic dishes, which limited their clinical application. It was found that collagen gels could promote the proliferation of USCs, but the underlying molecular mechanisms were unclear. OBJECTIVE The study aims to investigate the role of the mechanically activated cation channel Piezo1 and the transcriptional coactivator YAP in the regulation of proliferation of USCs on collagen gels. METHODS USCs were cultured on collagen gels (group COL), or plastic dishes (group NON). MTT assay, Scratch assay, EDU staining, and immunofluorescence (IF) of Ki67 were performed to evaluate the proliferation of USCs; IF of YAP was conducted to observe its nuclear localization; calcium imaging experiment was executed to evaluate the function of Piezo1; western blot was used to compare changes in protein expression of YAP, LATS1, ERK1/2, and p-ERK1/2. In addition, the regulatory effect of YAP on the proliferative capacity of USCs was confirmed by intervening YAP with its inhibitor verteporfin (VP); and the inhibitor or activator of Piezo1, GsMTx4 or Yoda1 was used to explore the effect of Piezo1 on the nuclear localization of YAP, the proliferation of USCs and the regeneration of injured bladder. RESULTS The results showed that cell proliferation was significantly enhanced in USCs in the COL group with the nuclear accumulation of YAP compared with the NON group and VP attenuated these effects. The expression and function of Piezo1 were higher in the COL group compared with the NON group. Blockage of Piezo1 by GsMTx4 decreased nuclear localization of YAP, the proliferation of USCs, and caused the failure of bladder reconstruction. Activation of Piezo1 by Yoda1 increased the nuclear expression of YAP, and the proliferation of USCs, which further improved the regeneration of the injured bladder. Finally, the ERK1/2 rather than LATS1 was revealed to participate in the Piezo1/YAP signal cascades of USCs proliferation. CONCLUSION Taken together, Piezo1-ERK1/2-YAP signal cascades were involved in regulating the proliferation ability of USCs in collagen gels which would be beneficial for the regeneration of the bladder.
Collapse
Affiliation(s)
- Xiaoya Wang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China
| | - Ling Li
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China
| | - Bishao Sun
- Department of Urology, Xinqiao Hospital of Army Medical University, Chongqing, China
| | - Xianglin Hou
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Siqi Song
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China
| | - Chunying Shi
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China
| | - Wei Chen
- Department of Urology, Xinqiao Hospital of Army Medical University, Chongqing, China
| |
Collapse
|
12
|
Meijer E, Giles R, van Dijk CGM, Maringanti R, Wissing TB, Appels Y, Chrifi I, Crielaard H, Verhaar MC, Smits AI, Cheng C. Effect of Mechanical Stimuli on the Phenotypic Plasticity of Induced Pluripotent Stem-Cell-Derived Vascular Smooth Muscle Cells in a 3D Hydrogel. ACS APPLIED BIO MATERIALS 2023; 6:5716-5729. [PMID: 38032545 PMCID: PMC10731661 DOI: 10.1021/acsabm.3c00840] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/09/2023] [Accepted: 11/12/2023] [Indexed: 12/01/2023]
Abstract
Introduction: Vascular smooth muscle cells (VSMCs) play a pivotal role in vascular homeostasis, with dysregulation leading to vascular complications. Human-induced pluripotent stem-cell (hiPSC)-derived VSMCs offer prospects for personalized disease modeling and regenerative strategies. Current research lacks comparative studies on the impact of three-dimensional (3D) substrate properties under cyclic strain on phenotypic adaptation in hiPSC-derived VSMCs. Here, we aim to investigate the impact of intrinsic substrate properties, such as the hydrogel's elastic modulus and cross-linking density in a 3D static and dynamic environment, on the phenotypical adaptation of human mural cells derived from hiPSC-derived organoids (ODMCs), compared to aortic VSMCs. Methods and results: ODMCs were cultured in two-dimensional (2D) conditions with synthetic or contractile differentiation medium or in 3D Gelatin Methacryloyl (GelMa) substrates with varying degrees of functionalization and percentages to modulate Young's modulus and cross-linking density. Cells in 3D substrates were exposed to cyclic, unidirectional strain. Phenotype characterization was conducted using specific markers through immunofluorescence and gene expression analysis. Under static 2D culture, ODMCs derived from hiPSCs exhibited a VSMC phenotype, expressing key mural markers, and demonstrated a level of phenotypic plasticity similar to primary human VSMCs. In static 3D culture, a substrate with a higher Young's modulus and cross-linking density promoted a contractile phenotype in ODMCs and VSMCs. Dynamic stimulation in the 3D substrate promoted a switch toward a contractile phenotype in both cell types. Conclusion: Our study demonstrates phenotypic plasticity of human ODMCs in response to 2D biological and 3D mechanical stimuli that equals that of primary human VSMCs. These findings may contribute to the advancement of tailored approaches for vascular disease modeling and regenerative strategies.
Collapse
Affiliation(s)
- Elana
M. Meijer
- Department
of Nephrology and Hypertension, Division of Internal Medicine and
Dermatology, University Medical Center Utrecht, Utrecht 3508 GA, The Netherlands
- Regenerative
Medicine Center Utrecht, University Medical
Center Utrecht, Utrecht 3508 GA, The Netherlands
| | - Rachel Giles
- Department
of Nephrology and Hypertension, Division of Internal Medicine and
Dermatology, University Medical Center Utrecht, Utrecht 3508 GA, The Netherlands
- Regenerative
Medicine Center Utrecht, University Medical
Center Utrecht, Utrecht 3508 GA, The Netherlands
| | - Christian G. M. van Dijk
- Department
of Nephrology and Hypertension, Division of Internal Medicine and
Dermatology, University Medical Center Utrecht, Utrecht 3508 GA, The Netherlands
- Regenerative
Medicine Center Utrecht, University Medical
Center Utrecht, Utrecht 3508 GA, The Netherlands
| | - Ranganath Maringanti
- Department
of Nephrology and Hypertension, Division of Internal Medicine and
Dermatology, University Medical Center Utrecht, Utrecht 3508 GA, The Netherlands
- Regenerative
Medicine Center Utrecht, University Medical
Center Utrecht, Utrecht 3508 GA, The Netherlands
- Experimental
Cardiology, Department of Cardiology, Thorax
Center Erasmus University Medical Center, Rotterdam 3000 CA, The Netherlands
| | - Tamar B. Wissing
- Department
of Biomedical Engineering, Eindhoven University
of Technology; Eindhoven 5612 AE, The Netherlands
- Institute
for Complex Molecular Systems (ICMS), Eindhoven
University of Technology; Eindhoven 5612 AE, The Netherlands
| | - Ymke Appels
- Department
of Nephrology and Hypertension, Division of Internal Medicine and
Dermatology, University Medical Center Utrecht, Utrecht 3508 GA, The Netherlands
- Regenerative
Medicine Center Utrecht, University Medical
Center Utrecht, Utrecht 3508 GA, The Netherlands
| | - Ihsan Chrifi
- Department
of Nephrology and Hypertension, Division of Internal Medicine and
Dermatology, University Medical Center Utrecht, Utrecht 3508 GA, The Netherlands
- Regenerative
Medicine Center Utrecht, University Medical
Center Utrecht, Utrecht 3508 GA, The Netherlands
- Experimental
Cardiology, Department of Cardiology, Thorax
Center Erasmus University Medical Center, Rotterdam 3000 CA, The Netherlands
| | - Hanneke Crielaard
- Department
of Biomedical Engineering, Erasmus Medical
Center, Rotterdam 3000 CA, The Netherlands
| | - Marianne C. Verhaar
- Department
of Nephrology and Hypertension, Division of Internal Medicine and
Dermatology, University Medical Center Utrecht, Utrecht 3508 GA, The Netherlands
- Regenerative
Medicine Center Utrecht, University Medical
Center Utrecht, Utrecht 3508 GA, The Netherlands
| | - Anthal I.P.M. Smits
- Department
of Biomedical Engineering, Eindhoven University
of Technology; Eindhoven 5612 AE, The Netherlands
- Institute
for Complex Molecular Systems (ICMS), Eindhoven
University of Technology; Eindhoven 5612 AE, The Netherlands
| | - Caroline Cheng
- Department
of Nephrology and Hypertension, Division of Internal Medicine and
Dermatology, University Medical Center Utrecht, Utrecht 3508 GA, The Netherlands
- Regenerative
Medicine Center Utrecht, University Medical
Center Utrecht, Utrecht 3508 GA, The Netherlands
- Experimental
Cardiology, Department of Cardiology, Thorax
Center Erasmus University Medical Center, Rotterdam 3000 CA, The Netherlands
| |
Collapse
|
13
|
Shu W, Kaplan CN. A multiscale theory for spreading and migration of adhesion-reinforced mesenchymal cells. J R Soc Interface 2023; 20:20230317. [PMID: 38086406 PMCID: PMC10715917 DOI: 10.1098/rsif.2023.0317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 11/17/2023] [Indexed: 12/18/2023] Open
Abstract
We present a chemomechanical whole-cell theory for the spreading and migration dynamics of mesenchymal cells that can actively reinforce their adhesion to an underlying viscoelastic substrate as a function of its stiffness. Our multiscale model couples the adhesion reinforcement effect at the subcellular scale with the nonlinear mechanics of the nucleus-cytoskeletal network complex at the cellular scale to explain the concurrent monotonic area-stiffness and non-monotonic speed-stiffness relationships observed in experiments: we consider that large cell spreading on stiff substrates flattens the nucleus, increasing the viscous drag force on it. The resulting force balance dictates a reduction in the migration speed on stiff substrates. We also reproduce the experimental influence of the substrate viscosity on the cell spreading area and migration speed by elucidating how the viscosity may either maintain adhesion reinforcement or prevent it depending on the substrate stiffness. Additionally, our model captures the experimental directed migration behaviour of the adhesion-reinforced cells along a stiffness gradient, known as durotaxis, as well as up or down a viscosity gradient (viscotaxis or anti-viscotaxis), the cell moving towards an optimal viscosity in either case. Overall, our theory explains the intertwined mechanics of the cell spreading, migration speed and direction in the presence of the molecular adhesion reinforcement mechanism.
Collapse
Affiliation(s)
- Wenya Shu
- Department of Physics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
- Center for Soft Matter and Biological Physics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - C. Nadir Kaplan
- Department of Physics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
- Center for Soft Matter and Biological Physics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| |
Collapse
|
14
|
Biber JC, Sullivan A, Brazzo JA, Heo Y, Tumenbayar BI, Krajnik A, Poppenberg KE, Tutino VM, Heo SJ, Kolega J, Lee K, Bae Y. Survivin as a mediator of stiffness-induced cell cycle progression and proliferation of vascular smooth muscle cells. APL Bioeng 2023; 7:046108. [PMID: 37915752 PMCID: PMC10618027 DOI: 10.1063/5.0150532] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 10/05/2023] [Indexed: 11/03/2023] Open
Abstract
Stiffened arteries are a pathology of atherosclerosis, hypertension, and coronary artery disease and a key risk factor for cardiovascular disease events. The increased stiffness of arteries triggers a phenotypic switch, hypermigration, and hyperproliferation of vascular smooth muscle cells (VSMCs), leading to neointimal hyperplasia and accelerated neointima formation. However, the mechanism underlying this trigger remains unknown. Our analyses of whole-transcriptome microarray data from mouse VSMCs cultured on stiff hydrogels simulating arterial pathology identified 623 genes that were significantly and differentially expressed (360 upregulated and 263 downregulated) relative to expression in VSMCs cultured on soft hydrogels. Functional enrichment and gene network analyses revealed that these stiffness-sensitive genes are linked to cell cycle progression and proliferation. Importantly, we found that survivin, an inhibitor of apoptosis protein, mediates stiffness-dependent cell cycle progression and proliferation as determined by gene network and pathway analyses, RT-qPCR, immunoblotting, and cell proliferation assays. Furthermore, we found that inhibition of cell cycle progression did not reduce survivin expression, suggesting that survivin functions as an upstream regulator of cell cycle progression and proliferation in response to ECM stiffness. Mechanistically, we found that the stiffness signal is mechanotransduced via the FAK-E2F1 signaling axis to regulate survivin expression, establishing a regulatory pathway for how the stiffness of the cellular microenvironment affects VSMC behaviors. Overall, our findings indicate that survivin is necessary for VSMC cycling and proliferation and plays a role in regulating stiffness-responsive phenotypes.
Collapse
Affiliation(s)
- John C. Biber
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14203, USA
| | - Andra Sullivan
- Department of Biomedical Engineering, School of Engineering and Applied Sciences, University at Buffalo, Buffalo, New York 14260, USA
| | - Joseph A. Brazzo
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14203, USA
| | | | - Bat-Ider Tumenbayar
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14203, USA
| | - Amanda Krajnik
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14203, USA
| | | | | | - Su-Jin Heo
- Department of Orthopedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - John Kolega
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14203, USA
| | - Kwonmoo Lee
- Vascular Biology Program, Boston Children's Hospital, Boston, Massachusetts 02115, USA
| | - Yongho Bae
- Author to whom correspondence should be addressed:
| |
Collapse
|
15
|
Yu TY, Zhang G, Chai XX, Ren L, Yin DC, Zhang CY. Recent progress on the effect of extracellular matrix on occurrence and progression of breast cancer. Life Sci 2023; 332:122084. [PMID: 37716504 DOI: 10.1016/j.lfs.2023.122084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/18/2023]
Abstract
Breast cancer (BC) metastasis is an enormous challenge targeting BC therapy. The extracellular matrix (ECM), the principal component of the BC metastasis niche, is the pivotal driver of breast tumor development, whose biochemical and biophysical characteristics have attracted widespread attention. Here, we review the biological effects of ECM constituents and the influence of ECM stiffness on BC metastasis and drug resistance. We provide an overview of the relative signal transduction mechanisms, existing metastasis models, and targeted drug strategies centered around ECM stiffness. It will shed light on exploring more underlying targets and developing specific drugs aimed at ECM utilizing biomimetic platforms, which are promising for breast cancer treatment.
Collapse
Affiliation(s)
- Tong-Yao Yu
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shanxi, PR China
| | - Ge Zhang
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shanxi, PR China
| | - Xiao-Xia Chai
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shanxi, PR China
| | - Li Ren
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shanxi, PR China; Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, Ningbo 315103, Zhejiang, PR China
| | - Da-Chuan Yin
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shanxi, PR China.
| | - Chen-Yan Zhang
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shanxi, PR China.
| |
Collapse
|
16
|
Höllring K, Vurnek D, Gehrer S, Dudziak D, Hubert M, Smith AS. Morphology as indicator of adaptive changes of model tissues in osmotically and chemically changing environments. BIOMATERIALS ADVANCES 2023; 154:213635. [PMID: 37804683 DOI: 10.1016/j.bioadv.2023.213635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 08/23/2023] [Accepted: 09/19/2023] [Indexed: 10/09/2023]
Abstract
We investigate the formation and maintenance of the homeostatic state in the case of 2D epithelial tissues following an induction of hyperosmotic conditions, using media enriched with 80 to 320 mOsm of mannitol, NaCl, and urea. We characterise the changes in the tissue immediately after the osmotic shock, and follow it until the new homeostatic state is formed. We characterise changes in cooperative motility and proliferation pressure in the tissue upon treatment with the help of a theoretical model based on the delayed Fisher-Kolmogorov formalism, where the delay in density evolution is induced by the the finite time of the cell division. Finally we explore the adaptation of the homeostatic tissue to highly elevated osmotic conditions by evaluating the morphology and topology of cells after 20 days in incubation. We find that hyperosmotic environments together with changes in the extracellular matrix induce different mechanical states in viable tissues, where only some remain functional. The perspective is a relation between tissue topology and function, which could be explored beyond the scope of this manuscript. Experimental investigation of morphological effect of change of osmotic conditions on long-term tissue morphology and topology Effect of osmotic changes on transient tissue growth behaviour Analysis of recovery process of tissues post-osmotic-shock Toxicity limits of osmolytes in mid- to long-term tissue evolution Tissue adaptation to physiological changes in environment Long-term tissue stabilisation under altered osmotic conditions.
Collapse
Affiliation(s)
- Kevin Höllring
- PULS Group, Institute for Theoretical Physics, FAU Erlangen-Nürnberg, Cauerstraße 3, 91058 Erlangen, Germany
| | - Damir Vurnek
- PULS Group, Institute for Theoretical Physics, FAU Erlangen-Nürnberg, Cauerstraße 3, 91058 Erlangen, Germany; Laboratory of Dendritic Cell Biology, Department of Dermatology, FAU Erlangen-Nürnberg, University Hospital Erlangen, Erlangen 91052, Germany
| | - Simone Gehrer
- PULS Group, Institute for Theoretical Physics, FAU Erlangen-Nürnberg, Cauerstraße 3, 91058 Erlangen, Germany
| | - Diana Dudziak
- Laboratory of Dendritic Cell Biology, Department of Dermatology, FAU Erlangen-Nürnberg, University Hospital Erlangen, Erlangen 91052, Germany
| | - Maxime Hubert
- PULS Group, Institute for Theoretical Physics, FAU Erlangen-Nürnberg, Cauerstraße 3, 91058 Erlangen, Germany; Group of Computational Life Sciences, Department of Physical Chemistry, Ruer Bošković Institute, Bijenička 54, Zagreb 10000, Croatia
| | - Ana-Sunčana Smith
- PULS Group, Institute for Theoretical Physics, FAU Erlangen-Nürnberg, Cauerstraße 3, 91058 Erlangen, Germany; Group of Computational Life Sciences, Department of Physical Chemistry, Ruer Bošković Institute, Bijenička 54, Zagreb 10000, Croatia.
| |
Collapse
|
17
|
Grolleman J, van Engeland NCA, Raza M, Azimi S, Conte V, Sahlgren CM, Bouten CVC. Environmental stiffness restores mechanical homeostasis in vimentin-depleted cells. Sci Rep 2023; 13:18374. [PMID: 37884575 PMCID: PMC10603057 DOI: 10.1038/s41598-023-44835-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023] Open
Abstract
Recent experimental evidence indicates a role for the intermediate filament vimentin in regulating cellular mechanical homeostasis, but its precise contribution remains to be discovered. Mechanical homeostasis requires a balanced bi-directional interplay between the cell's microenvironment and the cellular morphological and mechanical state-this balance being regulated via processes of mechanotransduction and mechanoresponse, commonly referred to as mechanoreciprocity. Here, we systematically analyze vimentin-expressing and vimentin-depleted cells in a swatch of in vitro cellular microenvironments varying in stiffness and/or ECM density. We find that vimentin-expressing cells maintain mechanical homeostasis by adapting cellular morphology and mechanics to micromechanical changes in the microenvironment. However, vimentin-depleted cells lose this mechanoresponse ability on short timescales, only to reacquire it on longer time scales. Indeed, we find that the morphology and mechanics of vimentin-depleted cell in stiffened microenvironmental conditions can get restored to the homeostatic levels of vimentin-expressing cells. Additionally, we observed vimentin-depleted cells increasing collagen matrix synthesis and its crosslinking, a phenomenon which is known to increase matrix stiffness, and which we now hypothesize to be a cellular compensation mechanism for the loss of vimentin. Taken together, our findings provide further insight in the regulating role of intermediate filament vimentin in mediating mechanoreciprocity and mechanical homeostasis.
Collapse
Affiliation(s)
- Janine Grolleman
- Department of Biomedical Engineering, Soft Tissue Engineering and Mechanobiology, Eindhoven University of Technology, Eindhoven, 5612AE, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, 5600MB, The Netherlands
| | - Nicole C A van Engeland
- Department of Biomedical Engineering, Soft Tissue Engineering and Mechanobiology, Eindhoven University of Technology, Eindhoven, 5612AE, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, 5600MB, The Netherlands
- Faculty of Science and Engineering, Cell Biology, Åbobo Akademi University, 20520, Turku, Finland
| | - Minahil Raza
- Faculty of Science and Engineering, Information Technology, Åbobo Akademi University, 20500, Turku, Finland
| | - Sepinoud Azimi
- Faculty of Science and Engineering, Information Technology, Åbobo Akademi University, 20500, Turku, Finland
- Department of Information and Communication Technology, Technology, Policy and Management, Delft University of Technology, Delft, 2600GA, The Netherlands
| | - Vito Conte
- Department of Biomedical Engineering, Soft Tissue Engineering and Mechanobiology, Eindhoven University of Technology, Eindhoven, 5612AE, The Netherlands.
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, 5600MB, The Netherlands.
- Institute for Bioengineering of Catalonia, The Barcelona Institute of Science and Technology, 08036, Barcelona, Spain.
| | - Cecilia M Sahlgren
- Department of Biomedical Engineering, Soft Tissue Engineering and Mechanobiology, Eindhoven University of Technology, Eindhoven, 5612AE, The Netherlands.
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, 5600MB, The Netherlands.
- Faculty of Science and Engineering, Cell Biology, Åbobo Akademi University, 20520, Turku, Finland.
| | - Carlijn V C Bouten
- Department of Biomedical Engineering, Soft Tissue Engineering and Mechanobiology, Eindhoven University of Technology, Eindhoven, 5612AE, The Netherlands.
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, 5600MB, The Netherlands.
| |
Collapse
|
18
|
da Silva VA, Bobotis BC, Correia FF, Lima-Vasconcellos TH, Chiarantin GMD, De La Vega L, Lombello CB, Willerth SM, Malmonge SM, Paschon V, Kihara AH. The Impact of Biomaterial Surface Properties on Engineering Neural Tissue for Spinal Cord Regeneration. Int J Mol Sci 2023; 24:13642. [PMID: 37686446 PMCID: PMC10488158 DOI: 10.3390/ijms241713642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/24/2023] [Accepted: 08/26/2023] [Indexed: 09/10/2023] Open
Abstract
Tissue engineering for spinal cord injury (SCI) remains a complex and challenging task. Biomaterial scaffolds have been suggested as a potential solution for supporting cell survival and differentiation at the injury site. However, different biomaterials display multiple properties that significantly impact neural tissue at a cellular level. Here, we evaluated the behavior of different cell lines seeded on chitosan (CHI), poly (ε-caprolactone) (PCL), and poly (L-lactic acid) (PLLA) scaffolds. We demonstrated that the surface properties of a material play a crucial role in cell morphology and differentiation. While the direct contact of a polymer with the cells did not cause cytotoxicity or inhibit the spread of neural progenitor cells derived from neurospheres (NPCdn), neonatal rat spinal cord cells (SCC) and NPCdn only attached and matured on PCL and PLLA surfaces. Scanning electron microscopy and computational analysis suggested that cells attached to the material's surface emerged into distinct morphological populations. Flow cytometry revealed a higher differentiation of neural progenitor cells derived from human induced pluripotent stem cells (hiPSC-NPC) into glial cells on all biomaterials. Immunofluorescence assays demonstrated that PCL and PLLA guided neuronal differentiation and network development in SCC. Our data emphasize the importance of selecting appropriate biomaterials for tissue engineering in SCI treatment.
Collapse
Affiliation(s)
- Victor A. da Silva
- Laboratório de Neurogenética, Universidade Federal do ABC, Alameda da Universidade s/n, São Bernardo do Campo 09606-070, SP, Brazil
| | - Bianca C. Bobotis
- Laboratório de Neurogenética, Universidade Federal do ABC, Alameda da Universidade s/n, São Bernardo do Campo 09606-070, SP, Brazil
| | - Felipe F. Correia
- Laboratório de Neurogenética, Universidade Federal do ABC, Alameda da Universidade s/n, São Bernardo do Campo 09606-070, SP, Brazil
| | - Théo H. Lima-Vasconcellos
- Laboratório de Neurogenética, Universidade Federal do ABC, Alameda da Universidade s/n, São Bernardo do Campo 09606-070, SP, Brazil
| | - Gabrielly M. D. Chiarantin
- Laboratório de Neurogenética, Universidade Federal do ABC, Alameda da Universidade s/n, São Bernardo do Campo 09606-070, SP, Brazil
| | - Laura De La Vega
- Department of Mechanical Engineering, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Christiane B. Lombello
- Centro de Engenharia, Modelagem e Ciências Sociais Aplicadas, Universidade Federal do ABC, São Bernardo do Campo 09606-070, SP, Brazil
| | - Stephanie M. Willerth
- Department of Mechanical Engineering, University of Victoria, Victoria, BC V8W 2Y2, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Sônia M. Malmonge
- Centro de Engenharia, Modelagem e Ciências Sociais Aplicadas, Universidade Federal do ABC, São Bernardo do Campo 09606-070, SP, Brazil
| | - Vera Paschon
- Laboratório de Neurogenética, Universidade Federal do ABC, Alameda da Universidade s/n, São Bernardo do Campo 09606-070, SP, Brazil
| | - Alexandre H. Kihara
- Laboratório de Neurogenética, Universidade Federal do ABC, Alameda da Universidade s/n, São Bernardo do Campo 09606-070, SP, Brazil
| |
Collapse
|
19
|
Alonso-Matilla R, Provenzano PP, Odde DJ. Optimal cell traction forces in a generalized motor-clutch model. Biophys J 2023; 122:3369-3385. [PMID: 37475213 PMCID: PMC10465728 DOI: 10.1016/j.bpj.2023.07.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/25/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023] Open
Abstract
Cells exert forces on mechanically compliant environments to sense stiffness, migrate, and remodel tissue. Cells can sense environmental stiffness via myosin-generated pulling forces acting on F-actin, which is in turn mechanically coupled to the environment via adhesive proteins, akin to a clutch in a drivetrain. In this "motor-clutch" framework, the force transmitted depends on the complex interplay of motor, clutch, and environmental properties. Previous mean-field analysis of the motor-clutch model identified the conditions for optimal stiffness for maximal force transmission via a dimensionless number that combines motor-clutch parameters. However, in this and other previous mean-field analyses, the motor-clutch system is assumed to have balanced motors and clutches and did not consider force-dependent clutch reinforcement and catch bond behavior. Here, we generalize the motor-clutch analytical framework to include imbalanced motor-clutch regimes, with clutch reinforcement and catch bonding, and investigate optimality with respect to all parameters. We found that traction force is strongly influenced by clutch stiffness, and we discovered an optimal clutch stiffness that maximizes traction force, suggesting that cells could tune their clutch mechanical properties to perform a specific function. The results provide guidance for maximizing the accuracy of cell-generated force measurements via molecular tension sensors by designing their mechanosensitive linker peptide to be as stiff as possible. In addition, we found that, on rigid substrates, the mean-field analysis identifies optimal motor properties, suggesting that cells could regulate their myosin repertoire and activity to maximize force transmission. Finally, we found that clutch reinforcement shifts the optimum substrate stiffness to larger values, whereas the optimum substrate stiffness is insensitive to clutch catch bond properties. Overall, our work reveals novel features of the motor-clutch model that can affect the design of molecular tension sensors and provide a generalized analytical framework for predicting and controlling cell adhesion and migration in immunotherapy and cancer.
Collapse
Affiliation(s)
- Roberto Alonso-Matilla
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota; University of Minnesota Physical Sciences in Oncology Center, Minneapolis, Minnesota; University of Minnesota Center for Multiparametric Imaging of Tumor Immune Microenvironments, Minneapolis, Minnesota
| | - Paolo P Provenzano
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota; University of Minnesota Physical Sciences in Oncology Center, Minneapolis, Minnesota; University of Minnesota Center for Multiparametric Imaging of Tumor Immune Microenvironments, Minneapolis, Minnesota; Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota; Department of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, Minnesota; Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota
| | - David J Odde
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota; University of Minnesota Physical Sciences in Oncology Center, Minneapolis, Minnesota; University of Minnesota Center for Multiparametric Imaging of Tumor Immune Microenvironments, Minneapolis, Minnesota; Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
20
|
Lee YL, Mathur J, Walter C, Zmuda H, Pathak A. Matrix obstructions cause multiscale disruption in collective epithelial migration by suppressing leader cell function. Mol Biol Cell 2023; 34:ar94. [PMID: 37379202 PMCID: PMC10398892 DOI: 10.1091/mbc.e22-06-0226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 06/06/2023] [Accepted: 06/21/2023] [Indexed: 06/30/2023] Open
Abstract
During disease and development, physical changes in extracellular matrix cause jamming, unjamming, and scattering in epithelial migration. However, whether disruptions in matrix topology alter collective cell migration speed and cell-cell coordination remains unclear. We microfabricated substrates with stumps of defined geometry, density, and orientation, which create obstructions for migrating epithelial cells. Here, we show that cells lose their speed and directionality when moving through densely spaced obstructions. Although leader cells are stiffer than follower cells on flat substrates, dense obstructions cause overall cell softening. Through a lattice-based model, we identify cellular protrusions, cell-cell adhesions, and leader-follower communication as key mechanisms for obstruction-sensitive collective cell migration. Our modeling predictions and experimental validations show that cells' obstruction sensitivity requires an optimal balance of cell-cell adhesions and protrusions. Both MDCK (more cohesive) and α-catenin-depleted MCF10A cells were less obstruction sensitive than wild-type MCF10A cells. Together, microscale softening, mesoscale disorder, and macroscale multicellular communication enable epithelial cell populations to sense topological obstructions encountered in challenging environments. Thus, obstruction-sensitivity could define "mechanotype" of cells that collectively migrate yet maintain intercellular communication.
Collapse
Affiliation(s)
- Ye Lim Lee
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130
| | - Jairaj Mathur
- Department of Mechanical Engineering & Materials Science, Washington University in St. Louis, St. Louis, MO 63130
| | - Christopher Walter
- Department of Mechanical Engineering & Materials Science, Washington University in St. Louis, St. Louis, MO 63130
| | - Hannah Zmuda
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130
| | - Amit Pathak
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130
- Department of Mechanical Engineering & Materials Science, Washington University in St. Louis, St. Louis, MO 63130
| |
Collapse
|
21
|
Saraswathibhatla A, Indana D, Chaudhuri O. Cell-extracellular matrix mechanotransduction in 3D. Nat Rev Mol Cell Biol 2023; 24:495-516. [PMID: 36849594 PMCID: PMC10656994 DOI: 10.1038/s41580-023-00583-1] [Citation(s) in RCA: 186] [Impact Index Per Article: 93.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2023] [Indexed: 03/01/2023]
Abstract
Mechanical properties of extracellular matrices (ECMs) regulate essential cell behaviours, including differentiation, migration and proliferation, through mechanotransduction. Studies of cell-ECM mechanotransduction have largely focused on cells cultured in 2D, on top of elastic substrates with a range of stiffnesses. However, cells often interact with ECMs in vivo in a 3D context, and cell-ECM interactions and mechanisms of mechanotransduction in 3D can differ from those in 2D. The ECM exhibits various structural features as well as complex mechanical properties. In 3D, mechanical confinement by the surrounding ECM restricts changes in cell volume and cell shape but allows cells to generate force on the matrix by extending protrusions and regulating cell volume as well as through actomyosin-based contractility. Furthermore, cell-matrix interactions are dynamic owing to matrix remodelling. Accordingly, ECM stiffness, viscoelasticity and degradability often play a critical role in regulating cell behaviours in 3D. Mechanisms of 3D mechanotransduction include traditional integrin-mediated pathways that sense mechanical properties and more recently described mechanosensitive ion channel-mediated pathways that sense 3D confinement, with both converging on the nucleus for downstream control of transcription and phenotype. Mechanotransduction is involved in tissues from development to cancer and is being increasingly harnessed towards mechanotherapy. Here we discuss recent progress in our understanding of cell-ECM mechanotransduction in 3D.
Collapse
Affiliation(s)
| | - Dhiraj Indana
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
| | - Ovijit Chaudhuri
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA.
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA.
| |
Collapse
|
22
|
Safarians G, Sohrabi A, Solomon I, Xiao W, Bastola S, Rajput BW, Epperson M, Rosenzweig I, Tamura K, Singer B, Huang J, Harrison MJ, Sanazzaro T, Condro MC, Kornblum HI, Seidlits SK. Glioblastoma Spheroid Invasion through Soft, Brain-Like Matrices Depends on Hyaluronic Acid-CD44 Interactions. Adv Healthc Mater 2023; 12:e2203143. [PMID: 36694362 PMCID: PMC10238626 DOI: 10.1002/adhm.202203143] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Indexed: 01/26/2023]
Abstract
Increased secretion of hyaluronic acid (HA), a glycosaminoglycan abundant in the brain extracellular matrix (ECM), correlates with worse clinical outcomes for glioblastoma (GBM) patients. GBM cells aggressively invade the brain parenchyma while encountering spatiotemporal changes in their local ECM, including HA concentration. To investigate how varying HA concentrations affect GBM invasion, patient-derived GBM cells are cultured within a soft, 3D matrix in which HA concentration is precisely varied and cell migration observed. Data demonstrate that HA concentration can determine the invasive activity of patient-derived GBM cells in a biphasic and highly sensitive manner, where the absolute concentration of HA at which cell migration peaked is specific to each patient-derived line. Furthermore, evidence that this response relies on phosphorylated ezrin, which interacts with the intracellular domain of HA-engaged CD44 to effectively link the actin cytoskeleton to the local ECM is provided. Overall, this study highlights CD44-HA binding as a major mediator of GBM cell migration that acts independently of integrins and focal adhesion complexes and suggests that targeting HA-CD44-ezrin interactions represents a promising therapeutic strategy to prevent tumor cell invasion in the brain.
Collapse
Affiliation(s)
- Gevick Safarians
- Department of BioengineeringUniversity of California Los AngelesLos AngelesCA90095USA
| | - Alireza Sohrabi
- Department of BioengineeringUniversity of California Los AngelesLos AngelesCA90095USA
- Department of Biomedical EngineeringThe University of Texas at AustinAustinTX78712USA
| | - Itay Solomon
- Department of BioengineeringUniversity of California Los AngelesLos AngelesCA90095USA
| | - Weikun Xiao
- Department of BioengineeringUniversity of California Los AngelesLos AngelesCA90095USA
| | - Soniya Bastola
- Department of BioengineeringUniversity of California Los AngelesLos AngelesCA90095USA
- Semel Institute for Neuroscience and Human BehaviorUniversity of California Los AngelesLos AngelesCA90024USA
| | - Bushra W. Rajput
- Department of BioengineeringUniversity of California Los AngelesLos AngelesCA90095USA
| | - Mary Epperson
- Department of BioengineeringUniversity of California Los AngelesLos AngelesCA90095USA
| | - Isabella Rosenzweig
- Department of BioengineeringUniversity of California Los AngelesLos AngelesCA90095USA
| | - Kelly Tamura
- Department of BioengineeringUniversity of California Los AngelesLos AngelesCA90095USA
| | - Breahna Singer
- Department of BioengineeringUniversity of California Los AngelesLos AngelesCA90095USA
| | - Joyce Huang
- Department of BioengineeringUniversity of California Los AngelesLos AngelesCA90095USA
| | - Mollie J. Harrison
- Department of Biomedical EngineeringThe University of Texas at AustinAustinTX78712USA
| | - Talia Sanazzaro
- Department of Biomedical EngineeringThe University of Texas at AustinAustinTX78712USA
| | - Michael C. Condro
- Semel Institute for Neuroscience and Human BehaviorUniversity of California Los AngelesLos AngelesCA90024USA
| | - Harley I. Kornblum
- Semel Institute for Neuroscience and Human BehaviorUniversity of California Los AngelesLos AngelesCA90024USA
| | - Stephanie K. Seidlits
- Department of BioengineeringUniversity of California Los AngelesLos AngelesCA90095USA
- Department of Biomedical EngineeringThe University of Texas at AustinAustinTX78712USA
| |
Collapse
|
23
|
Prahl LS, Porter CM, Liu J, Viola JM, Hughes AJ. Independent control over cell patterning and adhesion on hydrogel substrates for tissue interface mechanobiology. iScience 2023; 26:106657. [PMID: 37168559 PMCID: PMC10164898 DOI: 10.1016/j.isci.2023.106657] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/27/2023] [Accepted: 04/06/2023] [Indexed: 05/13/2023] Open
Abstract
Tissue boundaries and interfaces are engines of morphogenesis in vivo. However, despite a wealth of micropatterning approaches available to control tissue size, shape, and mechanical environment in vitro, fine-scale spatial control of cell positioning within tissue constructs remains an engineering challenge. To address this, we augment DNA "velcro" technology for selective patterning of ssDNA-labeled cells on mechanically defined photoactive polyacrylamide hydrogels. Hydrogels bearing photopatterned single-stranded DNA (ssDNA) features for cell capture are then co-functionalized with extracellular matrix (ECM) proteins to support subsequent adhesion of patterned tissues. ECM protein co-functionalization does not alter ssDNA pattern fidelity, cell capture, or hydrogel elastic stiffness. This approach enables mechanobiology studies and measurements of signaling activity at dynamic cell interfaces with precise initial patterning. Combining DNA velcro patterning and ECM functionalization provides independent control of initial cell placement, adhesion, and mechanics, constituting a new tool for studying biological interfaces and for programming multicellular interactions in engineered tissues.
Collapse
Affiliation(s)
- Louis S. Prahl
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Catherine M. Porter
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jiageng Liu
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John M. Viola
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alex J. Hughes
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Cell & Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Corresponding author
| |
Collapse
|
24
|
Hu Y, Becker ML, Willits RK. Quantification of cell migration: metrics selection to model application. Front Cell Dev Biol 2023; 11:1155882. [PMID: 37255596 PMCID: PMC10225508 DOI: 10.3389/fcell.2023.1155882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/05/2023] [Indexed: 06/01/2023] Open
Abstract
Cell migration plays an essential role in physiological and pathological states, such as immune response, tissue generation and tumor development. This phenomenon can occur spontaneously or it can be triggered by an external stimuli, including biochemical, mechanical, or electrical cues that induce or direct cells to migrate. The migratory response to these cues is foundational to several fields including neuroscience, cancer and regenerative medicine. Various platforms are available to qualitatively and quantitatively measure cell migration, making the measurements of cell motility straight-forward. Migratory behavior must be analyzed by multiple metrics and then models to connect the measurements to physiological meaning. This review will focus on describing and quantifying cell movement for individual cell migration.
Collapse
Affiliation(s)
- Yang Hu
- Department of Chemical Engineering, College of Engineering, Northeastern University, Boston, MA, United States
| | - Matthew L. Becker
- Departments of Chemistry, Mechanical Engineering and Materials Science, Biomedical Engineering and Orthopedic Surgery, Duke University, Durham, NC, United States
| | - Rebecca Kuntz Willits
- Department of Chemical Engineering, College of Engineering, Northeastern University, Boston, MA, United States
- Department of Bioengineering, College of Engineering, Northeastern University, Boston, MA, United States
| |
Collapse
|
25
|
Vitronectin acts as a key regulator of adhesion and migration in human umbilical cord-derived MSCs under different stress conditions. Exp Cell Res 2023; 423:113467. [PMID: 36634744 DOI: 10.1016/j.yexcr.2023.113467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 12/21/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023]
Abstract
To improve mesenchymal stem cell (MSC)-based therapy efficacy, it is critical to identify factors involved in regulating migration and adhesion of MSCs under microenvironmental stress conditions. We observed that human Wharton's jelly-derived MSCs (WJ-MSCs) exhibited increase in cell spread area and adhesion, with reduction in cellular migration under serum starvation stress. The changes in adhesion and migration characteristics were accompanied by formation of large number of super mature focal adhesions along with extensive stress fibres and altered ECM gene expression with notable induction in vitronectin (VTN) expression. NF-κβ was found to be a positive regulator of VTN expression while ERK pathway regulated it negatively. Inhibition of these signalling pathways or knocking down of VTN under serum starvation established the correlation between increase in VTN expression and increased cellular adhesion with corresponding reduction in cell migration. VTN knockdown also resulted in reduction of super mature focal adhesions and extensive stress fibres, formed under serum starvation stress. Additionally, VTN induction was not detected in hypoxia-treated WJ-MSCs, and the MSCs showed no significant change in the adhesion or migration properties under hypoxia. VTN is established as a key player which possibly regulates the adhesion and migration properties of WJ-MSCs via focal adhesion signalling.
Collapse
|
26
|
Choi JW, Youn J, Kim DS, Park TE. Human iPS-derived blood-brain barrier model exhibiting enhanced barrier properties empowered by engineered basement membrane. Biomaterials 2023; 293:121983. [PMID: 36610323 DOI: 10.1016/j.biomaterials.2022.121983] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 10/17/2022] [Accepted: 12/22/2022] [Indexed: 12/24/2022]
Abstract
The basement membrane (BM) of the blood-brain barrier (BBB), a thin extracellular matrix (ECM) sheet underneath the brain microvascular endothelial cells (BMECs), plays crucial roles in regulating the unique physiological barrier function of the BBB, which represents a major obstacle for brain drug delivery. Owing to the difficulty in mimicking the unique biophysical and chemical features of BM in in vitro systems, current in vitro BBB models have suffered from poor physiological relevance. Here, we describe a highly ameliorated human BBB model accomplished by an ultra-thin ECM hydrogel-based engineered basement membrane (nEBM), which is supported by a sparse electrospun nanofiber scaffold that offers in vivo BM-like microenvironment to BMECs. BBB model reconstituted on a nEBM recapitulates the physical barrier function of the in vivo human BBB through ECM mechano-response to physiological relevant stiffness (∼500 kPa) and exhibits high efflux pump activity. These features of the proposed BBB model enable modelling of ischemic stroke, reproducing the dynamic changes of BBB, immune cell infiltration, and drug response. Therefore, the proposed BBB model represents a powerful tool for predicting the BBB permeation of drugs and developing therapeutic strategies for brain diseases.
Collapse
Affiliation(s)
- Jeong-Won Choi
- Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Jaeseung Youn
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Dong Sung Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea; Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea; Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Seoul, 03722, Republic of Korea.
| | - Tae-Eun Park
- Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
| |
Collapse
|
27
|
Shu W, Kaplan CN. A multiscale whole-cell theory for mechanosensitive migration on viscoelastic substrates. Biophys J 2023; 122:114-129. [PMID: 36493781 PMCID: PMC9822805 DOI: 10.1016/j.bpj.2022.11.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/25/2022] [Accepted: 11/14/2022] [Indexed: 12/13/2022] Open
Abstract
Increasing experimental evidence validates that both the elastic stiffness and viscosity of the extracellular matrix regulate mesenchymal cell behavior, such as the rational switch between durotaxis (cell migration to stiffer regions), anti-durotaxis (migration to softer regions), and adurotaxis (stiffness-insensitive migration). To reveal the mechanisms underlying the crossover between these motility regimes, we have developed a multiscale chemomechanical whole-cell theory for mesenchymal migration. Our framework couples the subcellular focal adhesion dynamics at the cell-substrate interface with the cellular cytoskeletal mechanics and the chemical signaling pathways involving Rho GTPase proteins. Upon polarization by the Rho GTPase gradients, our simulated cell migrates by concerted peripheral protrusions and contractions, a hallmark of the mesenchymal mode. The resulting cell dynamics quantitatively reproduces the experimental migration speed as a function of the uniform substrate stiffness and explains the influence of viscosity on the migration efficiency. In the presence of stiffness gradients and absence of chemical polarization, our simulated cell can exhibit durotaxis, anti-durotaxis, and adurotaxis respectively with increasing substrate stiffness or viscosity. The cell moves toward an optimally stiff region from softer regions during durotaxis and from stiffer regions during anti-durotaxis. We show that cell polarization through steep Rho GTPase gradients can reverse the migration direction dictated by the mechanical cues. Overall, our theory demonstrates that opposing durotactic behaviors emerge via the interplay between intracellular signaling and cell-medium mechanical interactions in agreement with experiments, thereby elucidating complex mechanosensing at the single-cell level.
Collapse
Affiliation(s)
- Wenya Shu
- Department of Physics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia; Center for Soft Matter and Biological Physics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - C Nadir Kaplan
- Department of Physics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia; Center for Soft Matter and Biological Physics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia.
| |
Collapse
|
28
|
Han SJ, Kwon S, Kim KS. Contribution of mechanical homeostasis to epithelial-mesenchymal transition. Cell Oncol (Dordr) 2022; 45:1119-1136. [PMID: 36149601 DOI: 10.1007/s13402-022-00720-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Metastasis refers to the spread of cancer cells from a primary tumor to other parts of the body via the lymphatic system and bloodstream. With tremendous effort over the past decades, remarkable progress has been made in understanding the molecular and cellular basis of metastatic processes. Metastasis occurs through five steps, including infiltration and migration, intravasation, survival, extravasation, and colonization. Various molecular and cellular factors involved in the metastatic process have been identified, such as epigenetic factors of the extracellular matrix (ECM), cell-cell interactions, soluble signaling, adhesion molecules, and mechanical stimuli. However, the underlying cause of cancer metastasis has not been elucidated. CONCLUSION In this review, we have focused on changes in the mechanical properties of cancer cells and their surrounding environment to understand the causes of cancer metastasis. Cancer cells have unique mechanical properties that distinguish them from healthy cells. ECM stiffness is involved in cancer cell growth, particularly in promoting the epithelial-mesenchymal transition (EMT). During tumorigenesis, the mechanical properties of cancer cells change in the direction opposite to their environment, resulting in a mechanical stress imbalance between the intracellular and extracellular domains. Disruption of mechanical homeostasis may be one of the causes of EMT that triggers the metastasis of cancer cells.
Collapse
Affiliation(s)
- Se Jik Han
- Department of Biomedical Engineering, College of Medicine, Kyung Hee University, Seoul, Korea.,Department of Biomedical Engineering, Graduate School, Kyung Hee University, Seoul, Korea
| | - Sangwoo Kwon
- Department of Biomedical Engineering, Graduate School, Kyung Hee University, Seoul, Korea
| | - Kyung Sook Kim
- Department of Biomedical Engineering, Graduate School, Kyung Hee University, Seoul, Korea.
| |
Collapse
|
29
|
Nikolić M, Scarcelli G, Tanner K. Multimodal microscale mechanical mapping of cancer cells in complex microenvironments. Biophys J 2022; 121:3586-3599. [PMID: 36059196 PMCID: PMC9617162 DOI: 10.1016/j.bpj.2022.09.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 08/05/2022] [Accepted: 09/02/2022] [Indexed: 02/07/2023] Open
Abstract
The mechanical phenotype of the cell is critical for survival following deformations due to confinement and fluid flow. One idea is that cancer cells are plastic and adopt different mechanical phenotypes under different geometries that aid in their survival. Thus, an attractive goal is to disrupt cancer cells' ability to adopt multiple mechanical states. To begin to address this question, we aimed to quantify the diversity of these mechanical states using in vitro biomimetics to mimic in vivo two-dimensional (2D) and 3D extracellular matrix environments. Here, we used two modalities Brillouin microscopy (∼GHz) and broadband frequency (7-15 kHz) optical tweezer microrheology to measure microscale cell mechanics. We measured the response of intracellular mechanics of cancer cells cultured in 2D and 3D environments where we modified substrate stiffness, dimensionality (2D versus 3D), and presence of fibrillar topography. We determined that there was good agreement between two modalities despite the difference in timescale of the two measurements. These findings on cell mechanical phenotype in different environments confirm a correlation between modalities that employ different mechanisms at different temporal scales (Hz-kHz versus GHz). We also determined that observed heterogeneity in cell shape is more closely linked to the cells' mechanical state. Moreover, individual cells in multicellular spheroids exhibit a lower degree of mechanical heterogeneity when compared with single cells cultured in monodisperse 3D cultures. The observed decreased heterogeneity among cells in spheroids suggested that there is mechanical cooperativity between cells that make up a single spheroid.
Collapse
Affiliation(s)
- Miloš Nikolić
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland; Maryland Biophysics Program, IPST, University of Maryland, College Park, Maryland
| | - Giuliano Scarcelli
- Maryland Biophysics Program, IPST, University of Maryland, College Park, Maryland; Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| | - Kandice Tanner
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
30
|
Clark AG, Maitra A, Jacques C, Bergert M, Pérez-González C, Simon A, Lederer L, Diz-Muñoz A, Trepat X, Voituriez R, Vignjevic DM. Self-generated gradients steer collective migration on viscoelastic collagen networks. NATURE MATERIALS 2022; 21:1200-1210. [PMID: 35637338 DOI: 10.1038/s41563-022-01259-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 04/13/2022] [Indexed: 06/15/2023]
Abstract
Growing evidence suggests that the physical properties of the cellular microenvironment influence cell migration. However, it is not currently understood how active physical remodelling by cells affects migration dynamics. Here we report that cell clusters seeded on deformable collagen-I networks display persistent collective migration despite not showing any apparent intrinsic polarity. Clusters generate transient gradients in collagen density and alignment due to viscoelastic relaxation of the collagen networks. Combining theory and experiments, we show that crosslinking collagen networks or reducing cell cluster size results in reduced network deformation, shorter viscoelastic relaxation time and smaller gradients, leading to lower migration persistence. Traction force and Brillouin microscopy reveal asymmetries in force distributions and collagen stiffness during migration, providing evidence of mechanical cross-talk between cells and their substrate during migration. This physical model provides a mechanism for self-generated directional migration on viscoelastic substrates in the absence of internal biochemical polarity cues.
Collapse
Affiliation(s)
- Andrew G Clark
- Cell Biology and Cancer Unit, Institut Curie, PSL Research University, CNRS, Paris, France.
- Institute of Cell Biology and Immunology, Stuttgart Research Center Systems Biology, University of Stuttgart, Stuttgart, Germany.
- Center for Personalized Medicine, University of Tübingen, Tübingen, Germany.
| | - Ananyo Maitra
- Laboratoire Jean Perrin, Sorbonne Université and CNRS, Paris, France.
- Laboratoire de Physique Théorique et Modélisation, CNRS, CY Cergy Paris Université, Cergy-Pontoise Cedex, France.
| | - Cécile Jacques
- Cell Biology and Cancer Unit, Institut Curie, PSL Research University, CNRS, Paris, France
| | - Martin Bergert
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Carlos Pérez-González
- Cell Biology and Cancer Unit, Institut Curie, PSL Research University, CNRS, Paris, France
| | - Anthony Simon
- Cell Biology and Cancer Unit, Institut Curie, PSL Research University, CNRS, Paris, France
| | - Luc Lederer
- Cell Biology and Cancer Unit, Institut Curie, PSL Research University, CNRS, Paris, France
| | - Alba Diz-Muñoz
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Xavier Trepat
- Institute for Bioengineering of Catalonia, The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
- Facultat de Medicina, University of Barcelona, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, Barcelona, Spain
| | - Raphaël Voituriez
- Laboratoire de Physique Théorique et Modélisation, CNRS, CY Cergy Paris Université, Cergy-Pontoise Cedex, France
- Laboratoire de Physique Théorique de la Matière Condensée, Sorbonne Université and CNRS, Paris, France
| | | |
Collapse
|
31
|
Chen PC, Feng XQ, Li B. Unified multiscale theory of cellular mechanical adaptations to substrate stiffness. Biophys J 2022; 121:3474-3485. [PMID: 35978549 PMCID: PMC9515123 DOI: 10.1016/j.bpj.2022.08.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 07/27/2022] [Accepted: 08/11/2022] [Indexed: 11/19/2022] Open
Abstract
Rigidity of the extracellular matrix markedly regulates many cellular processes. However, how cells detect and respond to matrix rigidity remains incompletely understood. Here, we propose a unified two-dimensional multiscale framework accounting for the chemomechanical feedback to explore the interrelated cellular mechanosensing, polarization, and migration, which constitute the dynamic cascade in cellular response to matrix stiffness but are often modeled separately in previous theories. By combining integrin dynamics and intracellular force transduction, we show that substrate stiffness can act as a switch to activate or deactivate cell polarization. Our theory quantitatively reproduces rich stiffness-dependent cellular dynamics, including spreading, polarity selection, migration pattern, durotaxis, and even negative durotaxis, reported in a wide spectrum of cell types, and reconciles some inconsistent experimental observations. We find that a specific bipolarized mode can determine the optimal substrate stiffness, which enables the fastest cell migration rather than the largest traction forces that cells apply on the substrate. We identify that such a mechanical adaptation stems from the force balance across the whole cell. These findings could yield universal insights into various stiffness-mediated cellular processes within the context of tissue morphogenesis, wound healing, and cancer invasion.
Collapse
Affiliation(s)
- Peng-Cheng Chen
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Xi-Qiao Feng
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Bo Li
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
32
|
Paudel SS, deWeever A, Sayner S, Stevens T, Tambe DT. Substrate stiffness modulates migration and local intercellular membrane motion in pulmonary endothelial cell monolayers. Am J Physiol Cell Physiol 2022; 323:C936-C949. [PMID: 35912996 PMCID: PMC9467474 DOI: 10.1152/ajpcell.00339.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 07/22/2022] [Accepted: 07/22/2022] [Indexed: 11/22/2022]
Abstract
The pulmonary artery endothelium forms a semipermeable barrier that limits macromolecular flux through intercellular junctions. This barrier is maintained by an intrinsic forward protrusion of the interacting membranes between adjacent cells. However, the dynamic interactions of these membranes have been incompletely quantified. Here, we present a novel technique to quantify the motion of the peripheral membrane of the cells, called paracellular morphological fluctuations (PMFs), and to assess the impact of substrate stiffness on PMFs. Substrate stiffness impacted large-length scale morphological changes such as cell size and motion. Cell size was larger on stiffer substrates, whereas the speed of cell movement was decreased on hydrogels with stiffness either larger or smaller than 1.25 kPa, consistent with cells approaching a jammed state. Pulmonary artery endothelial cells moved fastest on 1.25 kPa hydrogel, a stiffness consistent with a healthy pulmonary artery. Unlike these large-length scale morphological changes, the baseline of PMFs was largely insensitive to the substrate stiffness on which the cells were cultured. Activation of store-operated calcium channels using thapsigargin treatment triggered a transient increase in PMFs beyond the control treatment. However, in hypocalcemic conditions, such an increase in PMFs was absent on 1.25 kPa hydrogel but was present on 30 kPa hydrogel-a stiffness consistent with that of a hypertensive pulmonary artery. These findings indicate that 1) PMFs occur in cultured endothelial cell clusters, irrespective of the substrate stiffness; 2) PMFs increase in response to calcium influx through store-operated calcium entry channels; and 3) stiffer substrate promotes PMFs through a mechanism that does not require calcium influx.
Collapse
Affiliation(s)
- Sunita Subedi Paudel
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama
- Department of Mechanical Aerospace and Biomedical Engineering, University of South Alabama, Mobile, Alabama
- Center for Lung Biology, University of South Alabama, Mobile, Alabama
| | - Althea deWeever
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama
- Center for Lung Biology, University of South Alabama, Mobile, Alabama
| | - Sarah Sayner
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama
- Center for Lung Biology, University of South Alabama, Mobile, Alabama
| | - Troy Stevens
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama
- Department of Internal Medicine, University of South Alabama, Mobile, Alabama
- Department of Mechanical Aerospace and Biomedical Engineering, University of South Alabama, Mobile, Alabama
| | - Dhananjay T Tambe
- Department of Mechanical Aerospace and Biomedical Engineering, University of South Alabama, Mobile, Alabama
- Department of Pharmacology, University of South Alabama, Mobile, Alabama
- Center for Lung Biology, University of South Alabama, Mobile, Alabama
| |
Collapse
|
33
|
Whyte W, Goswami D, Wang SX, Fan Y, Ward NA, Levey RE, Beatty R, Robinson ST, Sheppard D, O'Connor R, Monahan DS, Trask L, Mendez KL, Varela CE, Horvath MA, Wylie R, O'Dwyer J, Domingo-Lopez DA, Rothman AS, Duffy GP, Dolan EB, Roche ET. Dynamic actuation enhances transport and extends therapeutic lifespan in an implantable drug delivery platform. Nat Commun 2022; 13:4496. [PMID: 35922421 PMCID: PMC9349266 DOI: 10.1038/s41467-022-32147-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 07/18/2022] [Indexed: 12/03/2022] Open
Abstract
Fibrous capsule (FC) formation, secondary to the foreign body response (FBR), impedes molecular transport and is detrimental to the long-term efficacy of implantable drug delivery devices, especially when tunable, temporal control is necessary. We report the development of an implantable mechanotherapeutic drug delivery platform to mitigate and overcome this host immune response using two distinct, yet synergistic soft robotic strategies. Firstly, daily intermittent actuation (cycling at 1 Hz for 5 minutes every 12 hours) preserves long-term, rapid delivery of a model drug (insulin) over 8 weeks of implantation, by mediating local immunomodulation of the cellular FBR and inducing multiphasic temporal FC changes. Secondly, actuation-mediated rapid release of therapy can enhance mass transport and therapeutic effect with tunable, temporal control. In a step towards clinical translation, we utilise a minimally invasive percutaneous approach to implant a scaled-up device in a human cadaveric model. Our soft actuatable platform has potential clinical utility for a variety of indications where transport is affected by fibrosis, such as the management of type 1 diabetes. Drug delivery implants suffer from diminished release profiles due to fibrous capsule formation over time. Here, the authors use soft robotic actuation to modulate the immune response of the host to maintain drug delivery over the longer-term and to perform controlled release in vivo.
Collapse
Affiliation(s)
- William Whyte
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Debkalpa Goswami
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sophie X Wang
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Surgery, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Yiling Fan
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Niamh A Ward
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Biomedical Engineering, National University of Ireland Galway, Galway, Ireland
| | - Ruth E Levey
- Anatomy and Regenerative Medicine Institute (REMEDI), National University of Ireland Galway, Galway, Ireland
| | - Rachel Beatty
- Anatomy and Regenerative Medicine Institute (REMEDI), National University of Ireland Galway, Galway, Ireland
| | - Scott T Robinson
- Anatomy and Regenerative Medicine Institute (REMEDI), National University of Ireland Galway, Galway, Ireland.,Advanced Materials and BioEngineering Research Centre (AMBER), Trinity College Dublin, Dublin, Ireland
| | - Declan Sheppard
- Department of Radiology, University Hospital, Galway, Ireland
| | - Raymond O'Connor
- Anatomy and Regenerative Medicine Institute (REMEDI), National University of Ireland Galway, Galway, Ireland
| | - David S Monahan
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA.,Anatomy and Regenerative Medicine Institute (REMEDI), National University of Ireland Galway, Galway, Ireland
| | - Lesley Trask
- Department of Biomedical Engineering, National University of Ireland Galway, Galway, Ireland
| | - Keegan L Mendez
- Harvard-MIT Program in Health Sciences and Technology, Cambridge, MA, USA
| | - Claudia E Varela
- Harvard-MIT Program in Health Sciences and Technology, Cambridge, MA, USA
| | - Markus A Horvath
- Harvard-MIT Program in Health Sciences and Technology, Cambridge, MA, USA
| | - Robert Wylie
- Anatomy and Regenerative Medicine Institute (REMEDI), National University of Ireland Galway, Galway, Ireland
| | - Joanne O'Dwyer
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Biomedical Engineering, National University of Ireland Galway, Galway, Ireland
| | - Daniel A Domingo-Lopez
- Anatomy and Regenerative Medicine Institute (REMEDI), National University of Ireland Galway, Galway, Ireland
| | - Arielle S Rothman
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Garry P Duffy
- Anatomy and Regenerative Medicine Institute (REMEDI), National University of Ireland Galway, Galway, Ireland.,Advanced Materials and BioEngineering Research Centre (AMBER), Trinity College Dublin, Dublin, Ireland
| | - Eimear B Dolan
- Department of Biomedical Engineering, National University of Ireland Galway, Galway, Ireland.
| | - Ellen T Roche
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA. .,Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA. .,Harvard-MIT Program in Health Sciences and Technology, Cambridge, MA, USA.
| |
Collapse
|
34
|
Pajic-Lijakovic I, Milivojevic M, Clark AG. Collective Cell Migration on Collagen-I Networks: The Impact of Matrix Viscoelasticity. Front Cell Dev Biol 2022; 10:901026. [PMID: 35859899 PMCID: PMC9289519 DOI: 10.3389/fcell.2022.901026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/10/2022] [Indexed: 01/01/2023] Open
Abstract
Collective cell migration on extracellular matrix (ECM) networks is a key biological process involved in development, tissue homeostasis and diseases such as metastatic cancer. During invasion of epithelial cancers, cell clusters migrate through the surrounding stroma, which is comprised primarily of networks of collagen-I fibers. There is growing evidence that the rheological and topological properties of collagen networks can impact cell behavior and cell migration dynamics. During migration, cells exert mechanical forces on their substrate, resulting in an active remodeling of ECM networks that depends not only on the forces produced, but also on the molecular mechanisms that dictate network rheology. One aspect of collagen network rheology whose role is emerging as a crucial parameter in dictating cell behavior is network viscoelasticity. Dynamic reorganization of ECM networks can induce local changes in network organization and mechanics, which can further feed back on cell migration dynamics and cell-cell rearrangement. A number of studies, including many recent publications, have investigated the mechanisms underlying structural changes to collagen networks in response to mechanical force as well as the role of collagen rheology and topology in regulating cell behavior. In this mini-review, we explore the cause-consequence relationship between collagen network viscoelasticity and cell rearrangements at various spatiotemporal scales. We focus on structural alterations of collagen-I networks during collective cell migration and discuss the main rheological parameters, and in particular the role of viscoelasticity, which can contribute to local matrix stiffening during cell movement and can elicit changes in cell dynamics.
Collapse
Affiliation(s)
| | - Milan Milivojevic
- University of Belgrade, Faculty of Technology and Metallurgy, Belgrade, Serbia
| | - Andrew G. Clark
- University of Stuttgart, Institute of Cell Biology and Immunology, Stuttgart, Germany
- University of Stuttgart, Stuttgart Research Center Systems Biology, Stuttgart, Germany
- University of Tübingen, Center for Personalized Medicine, Tübingen, Germany
| |
Collapse
|
35
|
Garoffolo G, Casaburo M, Amadeo F, Salvi M, Bernava G, Piacentini L, Chimenti I, Zaccagnini G, Milcovich G, Zuccolo E, Agrifoglio M, Ragazzini S, Baasansuren O, Cozzolino C, Chiesa M, Ferrari S, Carbonaro D, Santoro R, Manzoni M, Casalis L, Raucci A, Molinari F, Menicanti L, Pagano F, Ohashi T, Martelli F, Massai D, Colombo GI, Messina E, Morbiducci U, Pesce M. Reduction of Cardiac Fibrosis by Interference With YAP-Dependent Transactivation. Circ Res 2022; 131:239-257. [PMID: 35770662 DOI: 10.1161/circresaha.121.319373] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Conversion of cardiac stromal cells into myofibroblasts is typically associated with hypoxia conditions, metabolic insults, and/or inflammation, all of which are predisposing factors to cardiac fibrosis and heart failure. We hypothesized that this conversion could be also mediated by response of these cells to mechanical cues through activation of the Hippo transcriptional pathway. The objective of the present study was to assess the role of cellular/nuclear straining forces acting in myofibroblast differentiation of cardiac stromal cells under the control of YAP (yes-associated protein) transcription factor and to validate this finding using a pharmacological agent that interferes with the interactions of the YAP/TAZ (transcriptional coactivator with PDZ-binding motif) complex with their cognate transcription factors TEADs (TEA domain transcription factors), under high-strain and profibrotic stimulation. METHODS We employed high content imaging, 2-dimensional/3-dimensional culture, atomic force microscopy mapping, and molecular methods to prove the role of cell/nuclear straining in YAP-dependent fibrotic programming in a mouse model of ischemia-dependent cardiac fibrosis and in human-derived primitive cardiac stromal cells. We also tested treatment of cells with Verteporfin, a drug known to prevent the association of the YAP/TAZ complex with their cognate transcription factors TEADs. RESULTS Our experiments suggested that pharmacologically targeting the YAP-dependent pathway overrides the profibrotic activation of cardiac stromal cells by mechanical cues in vitro, and that this occurs even in the presence of profibrotic signaling mediated by TGF-β1 (transforming growth factor beta-1). In vivo administration of Verteporfin in mice with permanent cardiac ischemia reduced significantly fibrosis and morphometric remodeling but did not improve cardiac performance. CONCLUSIONS Our study indicates that preventing molecular translation of mechanical cues in cardiac stromal cells reduces the impact of cardiac maladaptive remodeling with a positive effect on fibrosis.
Collapse
Affiliation(s)
- Gloria Garoffolo
- Centro Cardiologico Monzino, IRCCS, Milan, Italy (G.G., M.C., F.A., G.B., L.P., E.Z., S.R., M.C., S.F., R.S., M.M., A.R., G.I.C., M.P.)
| | - Manuel Casaburo
- Centro Cardiologico Monzino, IRCCS, Milan, Italy (G.G., M.C., F.A., G.B., L.P., E.Z., S.R., M.C., S.F., R.S., M.M., A.R., G.I.C., M.P.)
| | - Francesco Amadeo
- Centro Cardiologico Monzino, IRCCS, Milan, Italy (G.G., M.C., F.A., G.B., L.P., E.Z., S.R., M.C., S.F., R.S., M.M., A.R., G.I.C., M.P.)
| | - Massimo Salvi
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy (M.S., D.C., F. Molinari, D.M., U.M.)
| | - Giacomo Bernava
- Centro Cardiologico Monzino, IRCCS, Milan, Italy (G.G., M.C., F.A., G.B., L.P., E.Z., S.R., M.C., S.F., R.S., M.M., A.R., G.I.C., M.P.)
| | - Luca Piacentini
- Centro Cardiologico Monzino, IRCCS, Milan, Italy (G.G., M.C., F.A., G.B., L.P., E.Z., S.R., M.C., S.F., R.S., M.M., A.R., G.I.C., M.P.)
| | - Isotta Chimenti
- Department of Medical Surgical Science and Biotechnology, Sapienza University of Rome (I.C., C.C.).,Mediterranea Cardiocentro, Napoli (I.C.)
| | | | | | - Estella Zuccolo
- Centro Cardiologico Monzino, IRCCS, Milan, Italy (G.G., M.C., F.A., G.B., L.P., E.Z., S.R., M.C., S.F., R.S., M.M., A.R., G.I.C., M.P.)
| | - Marco Agrifoglio
- Dipartimento di Scienze Biomediche, Chirurgiche ed Odontoiatriche, Università di Milano, Milan, Italy (M.A.)
| | - Sara Ragazzini
- Centro Cardiologico Monzino, IRCCS, Milan, Italy (G.G., M.C., F.A., G.B., L.P., E.Z., S.R., M.C., S.F., R.S., M.M., A.R., G.I.C., M.P.)
| | - Otgon Baasansuren
- Faculty of Engineering, Hokkaido University, Sapporo, Japan (O.B., T.O.)
| | - Claudia Cozzolino
- Department of Medical Surgical Science and Biotechnology, Sapienza University of Rome (I.C., C.C.)
| | - Mattia Chiesa
- Centro Cardiologico Monzino, IRCCS, Milan, Italy (G.G., M.C., F.A., G.B., L.P., E.Z., S.R., M.C., S.F., R.S., M.M., A.R., G.I.C., M.P.)
| | - Silvia Ferrari
- Centro Cardiologico Monzino, IRCCS, Milan, Italy (G.G., M.C., F.A., G.B., L.P., E.Z., S.R., M.C., S.F., R.S., M.M., A.R., G.I.C., M.P.)
| | - Dario Carbonaro
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy (M.S., D.C., F. Molinari, D.M., U.M.)
| | - Rosaria Santoro
- Centro Cardiologico Monzino, IRCCS, Milan, Italy (G.G., M.C., F.A., G.B., L.P., E.Z., S.R., M.C., S.F., R.S., M.M., A.R., G.I.C., M.P.)
| | - Martina Manzoni
- Centro Cardiologico Monzino, IRCCS, Milan, Italy (G.G., M.C., F.A., G.B., L.P., E.Z., S.R., M.C., S.F., R.S., M.M., A.R., G.I.C., M.P.)
| | | | - Angela Raucci
- Centro Cardiologico Monzino, IRCCS, Milan, Italy (G.G., M.C., F.A., G.B., L.P., E.Z., S.R., M.C., S.F., R.S., M.M., A.R., G.I.C., M.P.)
| | - Filippo Molinari
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy (M.S., D.C., F. Molinari, D.M., U.M.)
| | | | - Francesca Pagano
- Institute of Biochemistry and Cell Biology, National Council of Research (IBBC-CNR), Monterotondo, Italy (F.P.)
| | - Toshiro Ohashi
- Faculty of Engineering, Hokkaido University, Sapporo, Japan (O.B., T.O.)
| | | | - Diana Massai
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy (M.S., D.C., F. Molinari, D.M., U.M.)
| | - Gualtiero I Colombo
- Centro Cardiologico Monzino, IRCCS, Milan, Italy (G.G., M.C., F.A., G.B., L.P., E.Z., S.R., M.C., S.F., R.S., M.M., A.R., G.I.C., M.P.)
| | - Elisa Messina
- Department of Pediatrics and Infant Neuropsychiatry. Policlinico Umberto I, Sapienza University of Rome (E.M.)
| | - Umberto Morbiducci
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy (M.S., D.C., F. Molinari, D.M., U.M.)
| | - Maurizio Pesce
- Centro Cardiologico Monzino, IRCCS, Milan, Italy (G.G., M.C., F.A., G.B., L.P., E.Z., S.R., M.C., S.F., R.S., M.M., A.R., G.I.C., M.P.)
| |
Collapse
|
36
|
Guo T, He C, Venado A, Zhou Y. Extracellular Matrix Stiffness in Lung Health and Disease. Compr Physiol 2022; 12:3523-3558. [PMID: 35766837 PMCID: PMC10088466 DOI: 10.1002/cphy.c210032] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The extracellular matrix (ECM) provides structural support and imparts a wide variety of environmental cues to cells. In the past decade, a growing body of work revealed that the mechanical properties of the ECM, commonly known as matrix stiffness, regulate the fundamental cellular processes of the lung. There is growing appreciation that mechanical interplays between cells and associated ECM are essential to maintain lung homeostasis. Dysregulation of ECM-derived mechanical signaling via altered mechanosensing and mechanotransduction pathways is associated with many common lung diseases. Matrix stiffening is a hallmark of lung fibrosis. The stiffened ECM is not merely a sequelae of lung fibrosis but can actively drive the progression of fibrotic lung disease. In this article, we provide a comprehensive view on the role of matrix stiffness in lung health and disease. We begin by summarizing the effects of matrix stiffness on the function and behavior of various lung cell types and on regulation of biomolecule activity and key physiological processes, including host immune response and cellular metabolism. We discuss the potential mechanisms by which cells probe matrix stiffness and convert mechanical signals to regulate gene expression. We highlight the factors that govern matrix stiffness and outline the role of matrix stiffness in lung development and the pathogenesis of pulmonary fibrosis, pulmonary hypertension, asthma, chronic obstructive pulmonary disease (COPD), and lung cancer. We envision targeting of deleterious matrix mechanical cues for treatment of fibrotic lung disease. Advances in technologies for matrix stiffness measurements and design of stiffness-tunable matrix substrates are also explored. © 2022 American Physiological Society. Compr Physiol 12:3523-3558, 2022.
Collapse
Affiliation(s)
- Ting Guo
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Alabama, USA.,Department of Respiratory Medicine, the Second Xiangya Hospital, Central-South University, Changsha, Hunan, China
| | - Chao He
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Alabama, USA
| | - Aida Venado
- Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Yong Zhou
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Alabama, USA
| |
Collapse
|
37
|
Contact guidance as a consequence of coupled morphological evolution and motility of adherent cells. Biomech Model Mechanobiol 2022; 21:1043-1065. [PMID: 35477826 PMCID: PMC9283373 DOI: 10.1007/s10237-022-01570-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 02/25/2022] [Indexed: 11/25/2022]
Abstract
Adherent cells seeded on substrates spread and evolve their morphology while simultaneously displaying motility. Phenomena such as contact guidance, viz. the alignment of cells on patterned substrates, are strongly linked to the coupling of morphological evolution with motility. Here, we employ a recently developed statistical thermodynamics framework for modelling the non-thermal fluctuating response of cells to probe this coupling. This thermodynamic framework is first extended via a Langevin style model to predict temporal responses of cells to unpatterned and patterned substrates. The Langevin model is then shown to not only predict the different experimentally observed temporal scales for morphological observables such as cell area and elongation but also the interplay of morphology with motility that ultimately leads to contact guidance.
Collapse
|
38
|
Carvalho EM, Kumar S. Lose the stress: Viscoelastic materials for cell engineering. Acta Biomater 2022; 163:146-157. [PMID: 35405329 DOI: 10.1016/j.actbio.2022.03.058] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/21/2022] [Accepted: 03/31/2022] [Indexed: 11/30/2022]
Abstract
Biomaterials are widely used to study and control a variety of cell behaviors, including stem cell differentiation, organogenesis, and tumor invasion. While considerable attention has historically been paid to biomaterial elastic (storage) properties, it has recently become clear that viscous (loss) properties can also powerfully influence cell behavior. Here we review advances in viscoelastic materials for cell engineering. We begin by discussing collagen, an abundant naturally occurring biomaterial that derives its viscoelastic properties from its fibrillar architecture, which enables dissipation of applied stresses. We then turn to two other naturally occurring biomaterials that are more frequently modified for engineering applications, alginate and hyaluronic acid, whose viscoelastic properties may be tuned by modulating network composition and crosslinking. We also discuss the potential of exploiting engineered fibrous materials, particularly electrospun fiber-based materials, to control viscoelastic properties. Finally, we review mechanisms through which cells process viscous and viscoelastic cues as they move along and within these materials. The ability of viscoelastic materials to relax cell-imposed stresses can dramatically alter migration on two-dimensional surfaces and confinement-imposed barriers to engraftment and infiltration in three-dimensional scaffolds. STATEMENT OF SIGNIFICANCE: Most tissues and many biomaterials exhibit some viscous character, a property that is increasingly understood to influence cell behavior in profound ways. This review discusses the origin and significance of viscoelastic properties of common biomaterials, as well as how these cues are processed by cells to influence migration. A deeper understanding of the mechanisms of viscoelastic behavior in biomaterials and how cells interpret these inputs should aid the design and selection of biomaterials for specific applications.
Collapse
Affiliation(s)
- Emily M Carvalho
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA
| | - Sanjay Kumar
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA; San Francisco Graduate, Program in Bioengineering, University of California, Berkeley-University of California, Berkeley, CA 94720, USA; Department of Bioengineering, University of California, Berkeley, CA 94720, USA; Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158, USA.
| |
Collapse
|
39
|
Zhao J, Tian M, Li Y, Su W, Fan T. Construction of tissue-engineered human corneal endothelium for corneal endothelial regeneration using a crosslinked amniotic membrane scaffold. Acta Biomater 2022; 147:185-197. [PMID: 35358736 DOI: 10.1016/j.actbio.2022.03.039] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/18/2022] [Accepted: 03/23/2022] [Indexed: 11/01/2022]
Abstract
Descemet's membrane endothelial keratoplasty (DMEK) may provide fast visual rehabilitation in the therapy of corneal endothelial disorders. However, due to shortage of donated corneas, how to construct a corneal endothelial substitute with powerful functions that can be used for DMEK is still unsolved. Herein, we introduced the method of corneal crosslinking (CXL) and conjugated the components of native Descemet's membrane (DM) to improve the mechanical properties and the biocompatibility of denuded amniotic membrane (dAM), further assessed their effects on cell adhesion, proliferation, YAP translocation, and metabolic activity in human corneal endothelial (HCE) cells. Using modified crosslinked dAM (mcdAM) and non-transfected HCE cells, we constructed a tissue-engineered HCE (TE-HCE) and evaluated its functions in cat and monkey models as well. Our results showed that the mechanical properties of mcdAM were improved effectively by CXL, and the adhesion, proliferation, and YAP translocation of HCE cells were dose-dependently improved after ECM modification. The combination of 0.01 mg/mL laminin with 0.1 mg/mL fibronectin showed the highest efficacy. Then, the TE-HCE was constructed in vitro, with a high density of 3612 ± 243 cells/mm2. Results of DMEK in animal models showed that corneal transparency was maintained, accompanied with normal morphology and histological structure of the regenerated corneal endothelium. Therefore, CXL combined with DM-mimic-coating methods could effectively improve the mechanical properties of dAM and enhance the biocompatibility with HCE cells. The constructed TE-HCE had normal histological structure and functioned well in animal models via DMEK, which could be used as a promising powerful equivalent of HCE. STATEMENT OF SIGNIFICANCE: Using high-quality corneal endothelium and an appropriate endothelial keratoplasty is the most effective way for the treatment of corneal endotheliopathy. Descemet's membrane endothelial keratoplasty (DMEK) which can provide better visual acuity, lower immunological rejection rates, and improved graft survival is an ideal surgery at present. However, due to the shortage of donated corneas, it is urgent to find an equivalent substitute of corneal endothelial donor which is suitable for the DMEK surgery to solve the problem of corneal endothelial regeneration. Herein, we introduced the clinical cornea-crosslinking and Descemet's membrane-mimic-coating methods to build the modified crosslinked denuded amniotic membrane scaffold and further constructed a high-quality corneal endothelial functional substitute that can be used in DMEK surgery.
Collapse
Affiliation(s)
- Jun Zhao
- Key Laboratory for Corneal Tissue Engineering, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, Shandong Province, China
| | - Meng Tian
- Key Laboratory for Corneal Tissue Engineering, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, Shandong Province, China
| | - Yun Li
- Key Laboratory for Corneal Tissue Engineering, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, Shandong Province, China
| | - Wen Su
- Key Laboratory for Corneal Tissue Engineering, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, Shandong Province, China; Present address: Department of traditional Chinese Medicine and Immunizations, Institute of Chinese Medicine and Pharmacy, Shandong University of traditional Chinese Medicine, Jinan 250355, Shandong Province, China
| | - Tingjun Fan
- Key Laboratory for Corneal Tissue Engineering, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, Shandong Province, China.
| |
Collapse
|
40
|
Jansen LE, Kim H, Hall CL, McCarthy TP, Lee MJ, Peyton SR. A poly(ethylene glycol) three-dimensional bone marrow hydrogel. Biomaterials 2022; 280:121270. [PMID: 34890973 PMCID: PMC8890749 DOI: 10.1016/j.biomaterials.2021.121270] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 01/03/2023]
Abstract
Three-dimensional (3D) hydrogels made from synthetic polymers have emerged as in vitro cell culture platforms capable of representing the extracellular geometry, modulus, and water content of tissues in a tunable fashion. Hydrogels made from these otherwise non-bioactive polymers can be decorated with short peptides derived from proteins naturally found in tissues to support cell viability and direct phenotype. We identified two key limitations that limit the ability of this class of materials to recapitulate real tissue. First, these environments typically display between 1 and 3 bioactive peptides, which vastly underrepresents the diversity of proteins found in the extracellular matrix (ECM) of real tissues. Second, peptides chosen are ubiquitous in ECM and not derived from proteins found in specific tissues, per se. To overcome this critical limitation in hydrogel design and functionality, we developed an approach to incorporate the complex and specific protein signature of bone marrow into a poly (ethylene glycol) (PEG) hydrogel. This bone marrow hydrogel mimics the elasticity of marrow and has 20 bone marrow-specific and cell-instructive peptides. We propose this tissue-centric approach as the next generation of 3D hydrogel design for applications in tissue engineering and beyond.
Collapse
Affiliation(s)
- Lauren E Jansen
- Department of Chemical Engineering, University of Massachusetts Amherst, USA
| | - Hyuna Kim
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, USA
| | - Christopher L Hall
- Department of Chemical Engineering, University of Massachusetts Amherst, USA
| | - Thomas P McCarthy
- Department of Chemical Engineering, University of Massachusetts Amherst, USA
| | - Michael J Lee
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Shelly R Peyton
- Department of Chemical Engineering, University of Massachusetts Amherst, USA; Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, USA; Institute for Applied Life Sciences, University of Massachusetts Amherst 240 Thatcher Way, Life Sciences Laboratory N531, Amherst, MA, 01003, USA.
| |
Collapse
|
41
|
Wei Q, Wang S, Han F, Wang H, Zhang W, Yu Q, Liu C, Ding L, Wang J, Yu L, Zhu C, Li B, Bl, Cz, Cz, Cz, Qw, Sw, Fh, Hw, Wz, Qy, Cl, Ld, Jw, Ly, Cz, Qw. Cellular modulation by the mechanical cues from biomaterials for tissue engineering. BIOMATERIALS TRANSLATIONAL 2021; 2:323-342. [PMID: 35837415 PMCID: PMC9255801 DOI: 10.12336/biomatertransl.2021.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/13/2021] [Accepted: 07/10/2021] [Indexed: 01/17/2023]
Abstract
Mechanical cues from the extracellular matrix (ECM) microenvironment are known to be significant in modulating the fate of stem cells to guide developmental processes and maintain bodily homeostasis. Tissue engineering has provided a promising approach to the repair or regeneration of damaged tissues. Scaffolds are fundamental in cell-based regenerative therapies. Developing artificial ECM that mimics the mechanical properties of native ECM would greatly help to guide cell functions and thus promote tissue regeneration. In this review, we introduce various mechanical cues provided by the ECM including elasticity, viscoelasticity, topography, and external stimuli, and their effects on cell behaviours. Meanwhile, we discuss the underlying principles and strategies to develop natural or synthetic biomaterials with different mechanical properties for cellular modulation, and explore the mechanism by which the mechanical cues from biomaterials regulate cell function toward tissue regeneration. We also discuss the challenges in multimodal mechanical modulation of cell behaviours and the interplay between mechanical cues and other microenvironmental factors.
Collapse
Affiliation(s)
- Qiang Wei
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Shenghao Wang
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Feng Han
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Huan Wang
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Weidong Zhang
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Qifan Yu
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Changjiang Liu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu Province, China
| | - Luguang Ding
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu Province, China
| | - Jiayuan Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu Province, China
| | - Lili Yu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu Province, China
| | - Caihong Zhu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu Province, China,Corresponding authors: Caihong Zhu, ; Bin Li,
| | - Bin Li
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China,College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu Province, China,China Orthopaedic Regenerative Medicine Group (CORMed), Hangzhou, Zhejiang Province, China,Corresponding authors: Caihong Zhu, ; Bin Li,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Yip AK, Zhang S, Chong LH, Cheruba E, Woon JYX, Chua TX, Goh CJH, Yang H, Tay CY, Koh CG, Chiam KH. Zyxin Is Involved in Fibroblast Rigidity Sensing and Durotaxis. Front Cell Dev Biol 2021; 9:735298. [PMID: 34869319 PMCID: PMC8637444 DOI: 10.3389/fcell.2021.735298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 10/28/2021] [Indexed: 11/13/2022] Open
Abstract
Focal adhesions (FAs) are specialized structures that enable cells to sense their extracellular matrix rigidity and transmit these signals to the interior of the cells, bringing about actin cytoskeleton reorganization, FA maturation, and cell migration. It is known that cells migrate towards regions of higher substrate rigidity, a phenomenon known as durotaxis. However, the underlying molecular mechanism of durotaxis and how different proteins in the FA are involved remain unclear. Zyxin is a component of the FA that has been implicated in connecting the actin cytoskeleton to the FA. We have found that knocking down zyxin impaired NIH3T3 fibroblast's ability to sense and respond to changes in extracellular matrix in terms of their FA sizes, cell traction stress magnitudes and F-actin organization. Cell migration speed of zyxin knockdown fibroblasts was also independent of the underlying substrate rigidity, unlike wild type fibroblasts which migrated fastest at an intermediate substrate rigidity of 14 kPa. Wild type fibroblasts exhibited durotaxis by migrating toward regions of increasing substrate rigidity on polyacrylamide gels with substrate rigidity gradient, while zyxin knockdown fibroblasts did not exhibit durotaxis. Therefore, we propose zyxin as an essential protein that is required for rigidity sensing and durotaxis through modulating FA sizes, cell traction stress and F-actin organization.
Collapse
Affiliation(s)
- Ai Kia Yip
- Bioinformatics Institute ASTAR, Singapore, Singapore
| | - Songjing Zhang
- School of Biological Sciences, Nanyang Technological University Singapore, Singapore, Singapore
| | - Lor Huai Chong
- Bioinformatics Institute ASTAR, Singapore, Singapore.,School of Pharmacy, Monash University Malaysia, Subang Jaya, Malaysia
| | | | - Jessie Yong Xing Woon
- School of Biological Sciences, Nanyang Technological University Singapore, Singapore, Singapore
| | - Theng Xuan Chua
- School of Biological Sciences, Nanyang Technological University Singapore, Singapore, Singapore
| | | | - Haibo Yang
- Mechanobiology Institute, Singapore, Singapore
| | - Chor Yong Tay
- School of Biological Sciences, Nanyang Technological University Singapore, Singapore, Singapore.,School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore.,Environmental Chemistry and Materials Centre, Nanyang Environment and Water Research Institute, Singapore, Singapore.,Energy Research Institute, Nanyang Technological University, Singapore, Singapore
| | - Cheng-Gee Koh
- School of Biological Sciences, Nanyang Technological University Singapore, Singapore, Singapore
| | | |
Collapse
|
43
|
Braun J, Eckes S, Kilb MF, Fischer D, Eßbach C, Rommens PM, Drees P, Schmitz K, Nickel D, Ritz U. Mechanical characterization of rose bengal and green light crosslinked collagen scaffolds for regenerative medicine. Regen Biomater 2021; 8:rbab059. [PMID: 34858633 PMCID: PMC8633790 DOI: 10.1093/rb/rbab059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/30/2021] [Accepted: 10/22/2021] [Indexed: 11/13/2022] Open
Abstract
Collagen is one of the most important biomaterials for tissue engineering approaches. Despite its excellent biocompatibility, it shows the non-negligible disadvantage of poor mechanical stability. Photochemical crosslinking with rose bengal and green light (RGX) is an appropriate method to improve this property. The development of collagen laminates is helpful for further adjustment of the mechanical properties as well as the controlled release of incorporated substances. In this study, we investigate the impact of crosslinking and layering of two different collagen scaffolds on the swelling behavior and mechanical behavior in micro tensile tests to obtain information on its wearing comfort (stiffness, strength and ductility). The mechanical stability of the collagen material after degradation due to cell contact is examined using thickness measurements. There is no linear increase or decrease due to layering homologous laminates. Unexpectedly, a decrease in elongation at break, Young's modulus and ultimate tensile strength are measured when the untreated monolayer is compared to the crosslinked one. Furthermore, we can detect a connection between stability and cell proliferation. The results show that with variation in number and type of layers, collagen scaffolds with tailored mechanical properties can be produced. Such a multi-layered structure enables the release of biomolecules into inner or outer layers for biomedical applications.
Collapse
Affiliation(s)
- Joy Braun
- Department of Orthopedics and Traumatology, BiomaTiCS, University Medical Center, Johannes Gutenberg University, Langenbeckstraße 1, Mainz 55131, Germany
| | - Stefanie Eckes
- Clemens-Schöpf-Institute of Organic Chemistry and Biochemistry, Technical University of Darmstadt, Alarich-Weiss-Straße 4, Darmstadt 64287, Germany
| | - Michelle Fiona Kilb
- Clemens-Schöpf-Institute of Organic Chemistry and Biochemistry, Technical University of Darmstadt, Alarich-Weiss-Straße 4, Darmstadt 64287, Germany
| | - Dirk Fischer
- Berufsakademie Sachsen-Staatliche Studienakademie Glauchau, University of Cooperative Education, Kopernikusstraße 51, Glauchau 08371, Germany
| | - Claudia Eßbach
- Berufsakademie Sachsen-Staatliche Studienakademie Glauchau, University of Cooperative Education, Kopernikusstraße 51, Glauchau 08371, Germany
| | - Pol Maria Rommens
- Department of Orthopedics and Traumatology, BiomaTiCS, University Medical Center, Johannes Gutenberg University, Langenbeckstraße 1, Mainz 55131, Germany
| | - Philipp Drees
- Department of Orthopedics and Traumatology, BiomaTiCS, University Medical Center, Johannes Gutenberg University, Langenbeckstraße 1, Mainz 55131, Germany
| | - Katja Schmitz
- Clemens-Schöpf-Institute of Organic Chemistry and Biochemistry, Technical University of Darmstadt, Alarich-Weiss-Straße 4, Darmstadt 64287, Germany
| | - Daniela Nickel
- Berufsakademie Sachsen-Staatliche Studienakademie Glauchau, University of Cooperative Education, Kopernikusstraße 51, Glauchau 08371, Germany
| | - Ulrike Ritz
- Department of Orthopedics and Traumatology, BiomaTiCS, University Medical Center, Johannes Gutenberg University, Langenbeckstraße 1, Mainz 55131, Germany
| |
Collapse
|
44
|
Oh E, Meckes B, Chang J, Shin D, Mirkin CA. Controlled Glioma Cell Migration and Confinement Using Biomimetic‐Patterned Hydrogels. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- EunBi Oh
- Department of Chemistry Northwestern University 2145 Sheridan Rd. Evanston IL 60208 USA
- International Institute for Nanotechnology Northwestern University 2145 Sheridan Rd. Evanston IL 60208 USA
| | - Brian Meckes
- Department of Chemistry Northwestern University 2145 Sheridan Rd. Evanston IL 60208 USA
- International Institute for Nanotechnology Northwestern University 2145 Sheridan Rd. Evanston IL 60208 USA
| | - Jinyoung Chang
- International Institute for Nanotechnology Northwestern University 2145 Sheridan Rd. Evanston IL 60208 USA
| | - Donghoon Shin
- International Institute for Nanotechnology Northwestern University 2145 Sheridan Rd. Evanston IL 60208 USA
- Department of Materials Science and Engineering Northwestern University 2220 Campus Drive Evanston IL 60208 USA
| | - Chad A. Mirkin
- Department of Chemistry Northwestern University 2145 Sheridan Rd. Evanston IL 60208 USA
- International Institute for Nanotechnology Northwestern University 2145 Sheridan Rd. Evanston IL 60208 USA
- Department of Materials Science and Engineering Northwestern University 2220 Campus Drive Evanston IL 60208 USA
| |
Collapse
|
45
|
ECM stiffness-tuned exosomes drive breast cancer motility through thrombospondin-1. Biomaterials 2021; 279:121185. [PMID: 34808560 DOI: 10.1016/j.biomaterials.2021.121185] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 09/08/2021] [Accepted: 10/12/2021] [Indexed: 12/15/2022]
Abstract
Breast cancer progression features ECM stiffening due to excess deposition and crosslinking of collagen, which dramatically influence tumor behaviour and fate. The mechanisms by which extracellular matrix (ECM) stiffening drives breast cancer invasion is an area of active research. Here we demonstrate the role of exosomes in ECM stiffness triggered breast cancer invasiveness. Using stiffness tuneable hydrogel ECM scaffolds, we show that stiff ECMs promote exosome secretion in a YAP/TAZ pathway-dependent manner. Interestingly, blocking exosome synthesis and secretion by GW4869 abrogated stiffness regulated motility and contractility in breast cancer cells. Reciprocally, exogenous addition of ECM stiffness-tuned exosomes orchestrated a series of changes in cell morphology, adhesion, protrusion dynamics resulting in fostered cell motility and invasion. Proteomic analysis of exosomal lysates followed by overrepresentation analysis and interactome studies revealed enrichment of cell adhesion and cell migration proteins in exosomes from stiff ECM cultures compared to that of soft ones. Quantitative proteomics of exosomes combined with genomic analysis of human breast tumor tissues (TCGA database) identified thrombospondin-1 (THBS1) as a prospective regulator of stiffness-dependent cancer invasion. Knockdown studies confirmed that the pro-invasive effects of stiffness-tuned exosomes are fuelled by exosomal THBS1. We further demonstrated that exosomal THBS1 mediates these stiffness-induced effects by engaging matrix metalloproteinase and focal adhesion kinase. Our studies establish the pivotal role of exosomal communication in ECM stiffness dependent cell migration with exosomal THBS1 as a master regulator of cancer invasion, which can be further exploited as a potential theranostic for improved breast cancer management.
Collapse
|
46
|
Yeh CF, Chou C, Yang KC. Mechanotransduction in fibrosis: Mechanisms and treatment targets. CURRENT TOPICS IN MEMBRANES 2021; 87:279-314. [PMID: 34696888 DOI: 10.1016/bs.ctm.2021.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
To perceive and integrate the environmental cues, cells and tissues sense and interpret various physical forces like shear, tensile, and compression stress. Mechanotransduction involves the sensing and translation of mechanical forces into biochemical and mechanical signals to guide cell fate and achieve tissue homeostasis. Disruption of this mechanical homeostasis by tissue injury elicits multiple cellular responses leading to pathological matrix deposition and tissue stiffening, and consequent evolution toward pro-inflammatory/pro-fibrotic phenotypes, leading to tissue/organ fibrosis. This review focuses on the molecular mechanisms linking mechanotransduction to fibrosis and uncovers the potential therapeutic targets to halt or resolve fibrosis.
Collapse
Affiliation(s)
- Chih-Fan Yeh
- Division of Cardiology, Department of Internal Medicine and Cardiovascular Center, National Taiwan University Hospital, Taipei, Taiwan; Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Caroline Chou
- Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan; Washington University in St. Louis, St. Louis, MO, United States
| | - Kai-Chien Yang
- Division of Cardiology, Department of Internal Medicine and Cardiovascular Center, National Taiwan University Hospital, Taipei, Taiwan; Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan; Research Center for Developmental Biology & Regenerative Medicine, National Taiwan University, Taipei, Taiwan; Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
47
|
Effects of substrate stiffness on mast cell migration. Eur J Cell Biol 2021; 100:151178. [PMID: 34555639 DOI: 10.1016/j.ejcb.2021.151178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 09/13/2021] [Accepted: 09/13/2021] [Indexed: 11/21/2022] Open
Abstract
Mast cells (MCs) play important roles in multiple pathologies, including fibrosis; however, their behaviors in different extracellular matrix (ECM) environments have not been fully elucidated. Accordingly, in this study, the migration of MCs on substrates with different stiffnesses was investigated using time-lapse video microscopy. Our results showed that MCs could appear in round, spindle, and star-like shapes; spindle-shaped cells accounted for 80-90 % of the total observed cells. The migration speed of round cells was significantly lower than that of cells with other shapes. Interestingly, spindle-shaped MCs migrated in a jiggling and wiggling motion between protrusions. The persistence index of MC migration was slightly higher on stiffer substrates. Moreover, we found that there was an intermediate optimal stiffness at which the migration efficiency was the highest. These findings may help to improve our understanding of MC-induced pathologies and the roles of MC migration in the immune system.
Collapse
|
48
|
Organ-Chip Models: Opportunities for Precision Medicine in Pancreatic Cancer. Cancers (Basel) 2021; 13:cancers13174487. [PMID: 34503294 PMCID: PMC8430573 DOI: 10.3390/cancers13174487] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Among all types of cancer, Pancreatic Ductal Adenocarcinoma (PDAC) has one of the lowest survival rates, partly due to the failure of current chemotherapeutics. This treatment failure can be attributed to the complicated nature of the tumor microenvironment, where the rich fibro-inflammatory responses can hinder drug delivery and efficacy at the tumor site. Moreover, the high molecular variations in PDAC create a large heterogeneity in the tumor microenvironment among patients. Current in vivo and in vitro options for drug testing are mostly ineffective in recapitulating the complex cellular interactions and individual variations in the PDAC tumor microenvironment, and as a result, they fail to provide appropriate models for individualized drug screening. Organ-on-a-chip technology combined with patient-derived organoids may provide the opportunity for developing personalized treatment options in PDAC. Abstract Pancreatic Ductal Adenocarcinoma (PDAC) is an expeditiously fatal malignancy with a five-year survival rate of 6–8%. Conventional chemotherapeutics fail in many cases due to inadequate primary response and rapidly developing resistance. This treatment failure is particularly challenging in pancreatic cancer because of the high molecular heterogeneity across tumors. Additionally, a rich fibro-inflammatory component within the tumor microenvironment (TME) limits the delivery and effectiveness of anticancer drugs, further contributing to the lack of response or developing resistance to conventional approaches in this cancer. As a result, there is an urgent need to model pancreatic cancer ex vivo to discover effective drug regimens, including those targeting the components of the TME on an individualized basis. Patient-derived three-dimensional (3D) organoid technology has provided a unique opportunity to study patient-specific cancerous epithelium. Patient-derived organoids cultured with the TME components can more accurately reflect the in vivo tumor environment. Here we present the advances in organoid technology and multicellular platforms that could allow for the development of “organ-on-a-chip” approaches to recapitulate the complex cellular interactions in PDAC tumors. We highlight the current advances of the organ-on-a-chip-based cancer models and discuss their potential for the preclinical selection of individualized treatment in PDAC.
Collapse
|
49
|
Ansardamavandi A, Tafazzoli-Shadpour M. The functional cross talk between cancer cells and cancer associated fibroblasts from a cancer mechanics perspective. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:119103. [PMID: 34293346 DOI: 10.1016/j.bbamcr.2021.119103] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/13/2021] [Accepted: 07/18/2021] [Indexed: 12/12/2022]
Abstract
The function of biological tissues in health and disease is regulated at cellular level and is highly influenced by the physical microenvironment, through the interaction of forces between cells and ECM, which are perceived through mechanosensing pathways. In cancer, both chemical and physical signaling cascades and their interactions are involved during cell-cell and cell-ECM communications to meet requirements of tumor growth. Among stroma cells, cancer associated fibroblasts (CAFs) play key role in tumor growth and pave the way for cancer cells to initiate metastasis and invasion to other tissues, and without recruitment of CAFs, the process of cancer invasion is dysfunctional. This is through an intense chemical and physical cross talks with tumor cells, and interactive remodeling of ECM. During such interaction CAFs apply traction forces and depending on the mechanical properties, deform ECM and in return receive physical signals from the micromechanical environment. Such interaction leads to ECM remodeling by manipulating ECM structure and its mechanical properties. The results are in form of deposition of extra fibers, stiffening, rearrangement and reorganization of fibrous structure, and degradation which are due to a complex secretion and expression of different markers triggered by mechanosensing of tumor cells, specially CAFs. Such events define cancer progress and invasion of cancer cells. A systemic knowledge of chemical and physical factors provides a holistic view of how cancer process and enhances the current treatment methods to provide more diversity among targets that involves tumor cells and ECM structure.
Collapse
Affiliation(s)
- Arian Ansardamavandi
- Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | | |
Collapse
|
50
|
Brazzo JA, Biber JC, Nimmer E, Heo Y, Ying L, Zhao R, Lee K, Krause M, Bae Y. Mechanosensitive expression of lamellipodin promotes intracellular stiffness, cyclin expression and cell proliferation. J Cell Sci 2021; 134:jcs257709. [PMID: 34152388 DOI: 10.1242/jcs.257709] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 05/17/2021] [Indexed: 12/12/2022] Open
Abstract
Cell cycle control is a key aspect of numerous physiological and pathological processes. The contribution of biophysical cues, such as stiffness or elasticity of the underlying extracellular matrix (ECM), is critically important in regulating cell cycle progression and proliferation. Indeed, increased ECM stiffness causes aberrant cell cycle progression and proliferation. However, the molecular mechanisms that control these stiffness-mediated cellular responses remain unclear. Here, we address this gap and show good evidence that lamellipodin (symbol RAPH1), previously known as a critical regulator of cell migration, stimulates ECM stiffness-mediated cyclin expression and intracellular stiffening in mouse embryonic fibroblasts. We observed that increased ECM stiffness upregulates lamellipodin expression. This is mediated by an integrin-dependent FAK-Cas-Rac signaling module and supports stiffness-mediated lamellipodin induction. Mechanistically, we find that lamellipodin overexpression increased, and lamellipodin knockdown reduced, stiffness-induced cell cyclin expression and cell proliferation, and intracellular stiffness. Overall, these results suggest that lamellipodin levels may be critical for regulating cell proliferation. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Joseph A Brazzo
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA
| | - John C Biber
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA
| | - Erik Nimmer
- Department of Biomedical Engineering, School of Engineering and Applied Sciences, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Yuna Heo
- Department of Biomedical Engineering, School of Engineering and Applied Sciences, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Linxuan Ying
- Department of Biomedical Engineering, School of Engineering and Applied Sciences, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Ruogang Zhao
- Department of Biomedical Engineering, School of Engineering and Applied Sciences, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Kwonmoo Lee
- Vascular Biology Program, Boston Children's Hospital, Boston, MA 02115, USA
| | - Matthias Krause
- Randall Centre of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| | - Yongho Bae
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA
| |
Collapse
|