1
|
Gut microbiota of bats: pro-mutagenic properties and possible frontiers in preventing emerging disease. Sci Rep 2021; 11:21075. [PMID: 34702917 PMCID: PMC8548564 DOI: 10.1038/s41598-021-00604-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/06/2021] [Indexed: 01/03/2023] Open
Abstract
Bats are potential natural reservoirs for emerging viruses, causing deadly human diseases, such as COVID-19, MERS, SARS, Nipah, Hendra, and Ebola infections. The fundamental mechanisms by which bats are considered “living bioreactors” for emerging viruses are not fully understood. Some studies suggest that tolerance to viruses is linked to suppressing antiviral immune and inflammatory responses due to DNA damage by energy generated to fly. Our study reveals that bats' gut bacteria could also be involved in the host and its microbiota's DNA damage. We performed screening of lactic acid bacteria and bacilli isolated from bats' feces for mutagenic and oxidative activity by lux-biosensors. The pro-mutagenic activity was determined when expression of recA increased with the appearance of double-strand breaks in the cell DNA, while an increase of katG expression in the presence of hydroxyl radicals indicated antioxidant activity. We identified that most of the isolated bacteria have pro-mutagenic and antioxidant properties at the same time. This study reveals new insights into bat gut microbiota's potential involvement in antiviral response and opens new frontiers in preventing emerging diseases originating from bats.
Collapse
|
2
|
Liu Y, Nonnemacher MR, Alexaki A, Pirrone V, Banerjee A, Li L, Kilareski E, Wigdahl B. Functional Studies of CCAAT/Enhancer Binding Protein Site Located Downstream of the Transcriptional Start Site. Clin Med Insights Pathol 2017; 10:1179555717694556. [PMID: 29162980 PMCID: PMC5692137 DOI: 10.1177/1179555717694556] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 09/20/2016] [Indexed: 12/13/2022] Open
Abstract
Previous studies have identified a CCAAT/enhancer binding protein (C/EBP) site located downstream of the transcriptional start site (DS3). The role of the DS3 element with respect to HIV-1 transactivation by Tat and viral replication has not been characterized. We have demonstrated that DS3 was a functional C/EBPβ binding site and mutation of this site to the C/EBP knockout DS3-9C variant showed lower HIV-1 long terminal repeat (LTR) transactivation by C/EBPβ. However, it was able to exhibit similar or even higher transcription levels by Tat compared to the parental LTR. C/EBPβ and Tat together further enhanced the transcription level of the parental LAI-LTR and DS3-9C LTR, with higher levels in the DS3-9C LTR. HIV molecular clone viruses carrying the DS3-9C variant LTR demonstrated a decreased replication capacity and delayed rate of replication. These results suggest that DS3 plays a role in virus transcriptional initiation and provides new insight into C/EBP regulation of HIV-1.
Collapse
Affiliation(s)
- Yujie Liu
- Department of Microbiology and Immunology, Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Michael R Nonnemacher
- Department of Microbiology and Immunology, Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Aikaterini Alexaki
- Department of Microbiology and Immunology, Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Vanessa Pirrone
- Department of Microbiology and Immunology, Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Anupam Banerjee
- Department of Microbiology and Immunology, Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Luna Li
- Department of Microbiology and Immunology, Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Evelyn Kilareski
- Department of Microbiology and Immunology, Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Brian Wigdahl
- Department of Microbiology and Immunology, Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA.,Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
3
|
Son K, Nguyen TTT, Choi JW, Pham LV, Luong TTD, Lim YS, Hwang SB. Rad51 Interacts with Non-structural 3 Protein of Hepatitis C Virus and Regulates Viral Production. Front Microbiol 2017; 8:1249. [PMID: 28729862 PMCID: PMC5498509 DOI: 10.3389/fmicb.2017.01249] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 06/21/2017] [Indexed: 12/12/2022] Open
Abstract
Hepatitis C virus (HCV) is a leading cause of chronic liver disease affecting over 170 million people worldwide. Chronic infection with HCV progresses to liver fibrosis, cirrhosis, and hepatocellular carcinoma. HCV exploits host cellular factors for viral propagation. To investigate the cellular factors required for HCV propagation, we screened a siRNA library targeting human cell cycle genes using cell culture grown HCV-infected cells. In the present study, we selected and characterized a gene encoding Rad51. Rad51, a member of a conserved recombinase family, is an essential factor for homologous recombination and repair of double-strand DNA breaks. We demonstrated that siRNA-mediated knockdown of Rad51 significantly inhibited HCV propagation without affecting HCV RNA replication. Silencing of Rad51 impaired secretion of infectious HCV particles and thus intracellular viruses were accumulated. We showed that HCV NS3 specifically interacted with Rad51 and accumulated Rad51 in the cytosol. Furthermore, Rad51 was coprecipitated with NS3 and HCV RNA. By employing membrane flotation and protease protection assays, we also demonstrated that Rad51 was co-fractionated with HCV NS3 on the lipid raft. These data indicate that Rad51 may be a component of the HCV RNA replication complex. Collectively, these data suggest that HCV may exploit cellular Rad51 to promote viral propagation and thus Rad51 may be a potential therapeutic target for HCV.
Collapse
Affiliation(s)
- Kidong Son
- Department of Biomedical Gerontology, Graduate School of Hallym UniversityChuncheon, South Korea.,National Research Laboratory of Hepatitis C Virus and Ilsong Institute of Life Science, Hallym UniversityAnyang, South Korea.,Environmental Health Research Department, National Institute of Environmental ResearchIncheon, South Korea
| | - Tram T T Nguyen
- Department of Biomedical Gerontology, Graduate School of Hallym UniversityChuncheon, South Korea.,National Research Laboratory of Hepatitis C Virus and Ilsong Institute of Life Science, Hallym UniversityAnyang, South Korea
| | - Jae-Woong Choi
- Department of Biomedical Gerontology, Graduate School of Hallym UniversityChuncheon, South Korea.,National Research Laboratory of Hepatitis C Virus and Ilsong Institute of Life Science, Hallym UniversityAnyang, South Korea
| | - Long V Pham
- Department of Biomedical Gerontology, Graduate School of Hallym UniversityChuncheon, South Korea.,National Research Laboratory of Hepatitis C Virus and Ilsong Institute of Life Science, Hallym UniversityAnyang, South Korea
| | - Trang T D Luong
- Department of Biomedical Gerontology, Graduate School of Hallym UniversityChuncheon, South Korea.,National Research Laboratory of Hepatitis C Virus and Ilsong Institute of Life Science, Hallym UniversityAnyang, South Korea
| | - Yun-Sook Lim
- National Research Laboratory of Hepatitis C Virus and Ilsong Institute of Life Science, Hallym UniversityAnyang, South Korea
| | - Soon B Hwang
- Department of Biomedical Gerontology, Graduate School of Hallym UniversityChuncheon, South Korea.,National Research Laboratory of Hepatitis C Virus and Ilsong Institute of Life Science, Hallym UniversityAnyang, South Korea
| |
Collapse
|
4
|
SEN SATARUPA, DESHMANE SATISHL, KAMINSKI RAFAL, AMINI SHOHREH, DATTA PRASUNK. Non-Metabolic Role of PKM2 in Regulation of the HIV-1 LTR. J Cell Physiol 2017; 232:517-525. [PMID: 27249540 PMCID: PMC5714288 DOI: 10.1002/jcp.25445] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 05/31/2016] [Indexed: 12/31/2022]
Abstract
Identification of cellular proteins, in addition to already known transcription factors such as NF-κB, Sp1, C-EBPβ, NFAT, ATF/CREB, and LEF-1, which interact with the HIV-1 LTR, is critical in understanding the mechanism of HIV-1 replication in monocytes/macrophages. Our studies demonstrate upregulation of pyruvate kinase isoform M2 (PKM2) expression during HIV-1SF162 infection of monocyte/macrophages and reactivation of HIV-1 in U1 cells, a macrophage model of latency. We observed that HIV-1SF162 infection of monocyte/macrophages and reactivation of HIV-1 in U1 cells by PMA resulted in increased levels of nuclear PKM2 compared to PMA-induced U937 cells. Furthermore, there was a significant increase in the nuclear dimeric form of PKM2 in the PMA-induced U1 cells in comparison to PMA-induced U937 cells. We focused on understanding the potential role of PKM2 in HIV-1 LTR transactivation. Chromatin immunoprecipitation (ChIP) analysis in PMA-activated U1 and TZM-bl cells demonstrated the interaction of PKM2 with the HIV-1 LTR. Our studies show that overexpression of PKM2 results in transactivation of HIV-1 LTR-luciferase reporter in U937, U-87 MG, and TZM-bl cells. Using various truncated constructs of the HIV-1 LTR, we mapped the region spanning -120 bp to -80 bp to be essential for PKM2-mediated transactivation. This region contains the NF-κB binding site and deletion of this site attenuated PKM2-mediated activation of HIV-1 LTR. Immunoprecipitation experiments using U1 cell lysates demonstrated a physical interaction between PKM2 and the p65 subunit of NF-κB. These observations demonstrate for the first time that PKM2 is a transcriptional co-activator of HIV-1 LTR. J. Cell. Physiol. 232: 517-525, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- SATARUPA SEN
- Department of Neuroscience, Comprehensive NeuroAIDS Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
- Department of Biology, College of Science and Technology, Philadelphia, Pennsylvania
| | - SATISH L. DESHMANE
- Department of Neuroscience, Comprehensive NeuroAIDS Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - RAFAL KAMINSKI
- Department of Neuroscience, Comprehensive NeuroAIDS Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - SHOHREH AMINI
- Department of Neuroscience, Comprehensive NeuroAIDS Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
- Department of Biology, College of Science and Technology, Philadelphia, Pennsylvania
| | - PRASUN K. DATTA
- Department of Neuroscience, Comprehensive NeuroAIDS Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
5
|
Thierry S, Benleulmi MS, Sinzelle L, Thierry E, Calmels C, Chaignepain S, Waffo-Teguo P, Merillon JM, Budke B, Pasquet JM, Litvak S, Ciuffi A, Sung P, Connell P, Hauber I, Hauber J, Andreola ML, Delelis O, Parissi V. Dual and Opposite Effects of hRAD51 Chemical Modulation on HIV-1 Integration. ACTA ACUST UNITED AC 2015; 22:712-23. [PMID: 26051216 DOI: 10.1016/j.chembiol.2015.04.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 03/31/2015] [Accepted: 04/22/2015] [Indexed: 12/24/2022]
Abstract
The cellular DNA repair hRAD51 protein has been shown to restrict HIV-1 integration both in vitro and in vivo. To investigate its regulatory functions, we performed a pharmacological analysis of the retroviral integration modulation by hRAD51. We found that, in vitro, chemical activation of hRAD51 stimulates its integration inhibitory properties, whereas inhibition of hRAD51 decreases the integration restriction, indicating that the modulation of HIV-1 integration depends on the hRAD51 recombinase activity. Cellular analyses demonstrated that cells exhibiting high hRAD51 levels prior to de novo infection are more resistant to integration. On the other hand, when hRAD51 was activated during integration, cells were more permissive. Altogether, these data establish the functional link between hRAD51 activity and HIV-1 integration. Our results highlight the multiple and opposite effects of the recombinase during integration and provide new insights into the cellular regulation of HIV-1 replication.
Collapse
Affiliation(s)
| | | | - Ludivine Sinzelle
- MFP, UMR5234, CNRS-Université de Bordeaux, SFR Transbiomed, 33076 Bordeaux, France
| | | | - Christina Calmels
- MFP, UMR5234, CNRS-Université de Bordeaux, SFR Transbiomed, 33076 Bordeaux, France
| | | | - Pierre Waffo-Teguo
- GESVAB, EA 3675 - UFR Pharmacie, Université de Bordeaux, ISVV, 33076 Bordeaux, France
| | - Jean-Michel Merillon
- GESVAB, EA 3675 - UFR Pharmacie, Université de Bordeaux, ISVV, 33076 Bordeaux, France
| | - Brian Budke
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL 60637, USA
| | - Jean-Max Pasquet
- Laboratoire Biothérapies des Maladies Génétiques et Cancers, INSERM U1035, Université de Bordeaux, 33076 Bordeaux, France
| | - Simon Litvak
- MFP, UMR5234, CNRS-Université de Bordeaux, SFR Transbiomed, 33076 Bordeaux, France
| | - Angela Ciuffi
- Institute of Microbiology (IMUL), Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Patrick Sung
- Department of Molecular Biophysics & Biochemistry, Yale University School of Medicine, New Haven, CT 06320-8024, USA
| | - Philip Connell
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL 60637, USA
| | - Ilona Hauber
- HPI, Leibniz Institute for Experimental Virology, German Center for Infection Research (DZIF), 20251 Hamburg, Germany
| | - Joachim Hauber
- HPI, Leibniz Institute for Experimental Virology, German Center for Infection Research (DZIF), 20251 Hamburg, Germany
| | - Marie-Line Andreola
- MFP, UMR5234, CNRS-Université de Bordeaux, SFR Transbiomed, 33076 Bordeaux, France
| | | | - Vincent Parissi
- MFP, UMR5234, CNRS-Université de Bordeaux, SFR Transbiomed, 33076 Bordeaux, France.
| |
Collapse
|
6
|
Wiegmans AP, Al-Ejeh F, Chee N, Yap PY, Gorski JJ, Silva LD, Bolderson E, Chenevix-Trench G, Anderson R, Simpson PT, Lakhani SR, Khanna KK. Rad51 supports triple negative breast cancer metastasis. Oncotarget 2014; 5:3261-72. [PMID: 24811120 PMCID: PMC4102808 DOI: 10.18632/oncotarget.1923] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 04/25/2014] [Indexed: 01/05/2023] Open
Abstract
In contrast to extensive studies on familial breast cancer, it is currently unclear whether defects in DNA double strand break (DSB) repair genes play a role in sporadic breast cancer development and progression. We performed analysis of immunohistochemistry in an independent cohort of 235 were sporadic breast tumours. This analysis suggested that RAD51 expression is increased during breast cancer progression and metastasis and an oncogenic role for RAD51 when deregulated. Subsequent knockdown of RAD51 repressed cancer cell migration in vitro and reduced primary tumor growth in a syngeneic mouse model in vivo. Loss of RAD51 also inhibited associated metastasis not only in syngeneic mice but human xenografts and changed the metastatic gene expression profile of cancer cells, consistent with inhibition of distant metastasis. This demonstrates for the first time a new function of RAD51 that may underlie the proclivity of patients with RAD51 overexpression to develop distant metastasis. RAD51 is a potential biomarker and attractive drug target for metastatic triple negative breast cancer, with the capability to extend the survival of patients, which is less than 6 months.
Collapse
Affiliation(s)
- Adrian P Wiegmans
- QIMR Berghofer Medical Research Institute, Signal Transduction Laboratory, Herston Rd, Herston QLD 4006, Australia
| | - Fares Al-Ejeh
- QIMR Berghofer Medical Research Institute, Signal Transduction Laboratory, Herston Rd, Herston QLD 4006, Australia
| | - Nicole Chee
- QIMR Berghofer Medical Research Institute, Signal Transduction Laboratory, Herston Rd, Herston QLD 4006, Australia
| | - Pei-Yi Yap
- QIMR Berghofer Medical Research Institute, Signal Transduction Laboratory, Herston Rd, Herston QLD 4006, Australia
| | - Julia J Gorski
- Queens University Belfast, Dentistry and Biomedical Science, Lisburn Rd, Belfast, BT5 7BL, UK
| | - Leonard Da Silva
- The University of Queensland, UQ Centre for Clinical Research, Herston, Brisbane, QLD 4006, Australia
- The University of Queensland, School of Medicine, Herston, Brisbane, QLD 4006, Australia
| | - Emma Bolderson
- The University of Queensland, Institute of Health and Biomedical Innovation, TRI, Woolloongabba, Brisbane, QLD 4102, Australia
| | - Georgia Chenevix-Trench
- Cancer Genetics Laboratory, Queensland Institute of Medical Research, Herston Rd, Herston QLD 4006, Australia
| | - Robin Anderson
- Metastasis Research Laboratory, Peter MacCallum Cancer Centre, St Andrews Place, East Melbourne Vic 3002, Australia
- Department of Oncology, Sir Peter MacCallum Cancer Centre, The University of Melbourne, Parkville Vic 3052, Australia
| | - Peter T Simpson
- The University of Queensland, UQ Centre for Clinical Research, Herston, Brisbane, QLD 4006, Australia
| | - Sunil R Lakhani
- The University of Queensland, UQ Centre for Clinical Research, Herston, Brisbane, QLD 4006, Australia
- The University of Queensland, School of Medicine, Herston, Brisbane, QLD 4006, Australia
- Pathology Queensland: The Royal Brisbane & Women's Hospital, Brisbane, Herston QLD 4006, Australia
| | - Kum Kum Khanna
- QIMR Berghofer Medical Research Institute, Signal Transduction Laboratory, Herston Rd, Herston QLD 4006, Australia
| |
Collapse
|
7
|
Kaminski R, Wollebo HS, Datta PK, White MK, Amini S, Khalili K. Interplay of Rad51 with NF-κB pathway stimulates expression of HIV-1. PLoS One 2014; 9:e98304. [PMID: 24847939 PMCID: PMC4029908 DOI: 10.1371/journal.pone.0098304] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 04/30/2014] [Indexed: 12/12/2022] Open
Abstract
Transcription from the HIV-1 promoter is controlled by a series of ubiquitous and inducible cellular proteins with the ability to enter the nucleus and interact with the promoter. A DNA sequence spanning nucleotides −120 to −80, which supports the association of the inducible NF-κB transcription factor, has received much attention. Here we demonstrate that the interplay between Rad51, a key regulator of the homologous recombination pathway of DNA repair and whose level is induced upon HIV-1 infection, with the NF-κB pathway, augments transcription of the viral promoter. Evidently, stimulation of the NF-κB pathway by PMA and/or TSA promotes association of Rad51 with the LTR DNA sequence and that the p65 subunit of NF-κB is important for this event. Our results also demonstrate that, similar to p65, Rad51 utilizes the NF-κB pathway to position itself in the nucleus as ectopic expression of an IκB mutant impedes its nuclear appearance and transcriptional activity upon the HIV-1 LTR. Treatment of peripheral blood mononuclear cells with small molecules that inhibit Rad51 activity results in greater than 50% decrease in the HIV-1 infection of cells. These observations provide evidence for the involvement of DNA repair factors in control of HIV-1 gene activation and offer a new avenue for the development of anti-viral therapeutics that affect viral gene transcription in latently infected cells.
Collapse
Affiliation(s)
- Rafal Kaminski
- Department of Neuroscience, Center for Neurovirology, Temple University School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Hassen S. Wollebo
- Department of Neuroscience, Center for Neurovirology, Temple University School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Prasun K. Datta
- Department of Neuroscience, Center for Neurovirology, Temple University School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Martyn K. White
- Department of Neuroscience, Center for Neurovirology, Temple University School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Shohreh Amini
- Department of Neuroscience, Center for Neurovirology, Temple University School of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Kamel Khalili
- Department of Neuroscience, Center for Neurovirology, Temple University School of Medicine, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
8
|
Cui X, Zhang J, Du R, Wang L, Archacki S, Zhang Y, Yuan M, Ke T, Li H, Li D, Li C, Li DWC, Tang Z, Yin Z, Liu M. HSF4 is involved in DNA damage repair through regulation of Rad51. Biochim Biophys Acta Mol Basis Dis 2012; 1822:1308-15. [PMID: 22587838 DOI: 10.1016/j.bbadis.2012.05.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 04/26/2012] [Accepted: 05/08/2012] [Indexed: 10/28/2022]
Abstract
Heat shock factor protein 4 (HSF4) is expressed exclusively in the ocular lens and plays a critical role in the lens formation and differentiation. Mutations in the HSF4 gene lead to congenital and senile cataract. However, the molecular mechanisms causing this disease have not been well characterized. DNA damage in lens is a crucial risk factor in senile cataract formation, and its timely repair is essential for maintaining the lens' transparency. Our study firstly found evidence that HSF4 contributes to the repair of DNA strand breaks. Yet, this does not occur with cataract causative mutations in HSF4. We verify that DNA damage repair is mediated by the binding of HSF4 to a heat shock element in the Rad51 promoter, a gene which assists in the homologous recombination (HR) repair of DNA strand breaks. HSF4 up-regulates Rad51 expression while mutations in HSF4 fail, and DNA does not get repaired. Camptothecin, which interrupts the regulation of Rad51 by HSF4, also affects DNA damage repair. Additionally, with HSF4 knockdown in the lens of Zebrafish, DNA damage was observed and the protein level of Rad51 was significantly lower. Our study presents the first evidence demonstrating that HSF4 plays a role in DNA damage repair and may contribute a better understanding of congenital cataract formation.
Collapse
Affiliation(s)
- Xiukun Cui
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Stimulation of the human RAD51 nucleofilament restricts HIV-1 integration in vitro and in infected cells. J Virol 2011; 86:513-26. [PMID: 22013044 DOI: 10.1128/jvi.05425-11] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Stable HIV-1 replication requires the DNA repair of the integration locus catalyzed by cellular factors. The human RAD51 (hRAD51) protein plays a major role in homologous recombination (HR) DNA repair and was previously shown to interact with HIV-1 integrase (IN) and inhibit its activity. Here we determined the molecular mechanism of inhibition of IN. Our standard in vitro integration assays performed under various conditions promoting or inhibiting hRAD51 activity demonstrated that the formation of an active hRAD51 nucleofilament is required for optimal inhibition involving an IN-DNA complex dissociation mechanism. Furthermore we show that this inhibition mechanism can be promoted in HIV-1-infected cells by chemical stimulation of the endogenous hRAD51 protein. This hRAD51 stimulation induced both an enhancement of the endogenous DNA repair process and the inhibition of the integration step. Elucidation of this molecular mechanism leading to the restriction of viral proliferation paves the way to a new concept of antiretroviral therapy based on the enhancement of endogenous hRAD51 recombination activity and highlights the functional interaction between HIV-1 IN and hRAD51.
Collapse
|
10
|
Rom S, Pacifici M, Passiatore G, Aprea S, Waligorska A, Del Valle L, Peruzzi F. HIV-1 Tat binds to SH3 domains: cellular and viral outcome of Tat/Grb2 interaction. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1813:1836-44. [PMID: 21745501 DOI: 10.1016/j.bbamcr.2011.06.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 06/22/2011] [Accepted: 06/24/2011] [Indexed: 12/13/2022]
Abstract
The Src-homology 3 (SH3) domain is one of the most frequent protein recognition modules (PRMs), being represented in signal transduction pathways and in several pathologies such as cancer and AIDS. Grb2 (growth factor receptor-bound protein 2) is an adaptor protein that contains two SH3 domains and is involved in receptor tyrosine kinase (RTK) signal transduction pathways. The HIV-1 transactivator factor Tat is required for viral replication and it has been shown to bind directly or indirectly to several host proteins, deregulating their functions. In this study, we show interaction between the cellular factor Grb2 and the HIV-1 trans-activating protein Tat. The binding is mediated by the proline-rich sequence of Tat and the SH3 domain of Grb2. As the adaptor protein Grb2 participates in a wide variety of signaling pathways, we characterized at least one of the possible downstream effects of the Tat/Grb2 interaction on the well-known IGF-1R/Raf/MAPK cascade. We show that the binding of Tat to Grb2 impairs activation of the Raf/MAPK pathway, while potentiating the PKA/Raf inhibitory pathway. The Tat/Grb2 interaction affects also viral function by inhibiting the Tat-mediated transactivation of HIV-1 LTR and viral replication in infected primary microglia.
Collapse
Affiliation(s)
- Slava Rom
- Temple University School of Medicine, Department of Pathology and Laboratory Medicine, Philadelphia, PA, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Khiati A, Chaloin O, Muller S, Tardieu M, Horellou P. Induction of monocyte chemoattractant protein-1 (MCP-1/CCL2) gene expression by human immunodeficiency virus-1 Tat in human astrocytes is CDK9 dependent. J Neurovirol 2010; 16:150-67. [PMID: 20370601 DOI: 10.3109/13550281003735691] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Human immunodeficiency virus-1 (HIV-1) invades the brain early in infection and may cause HIV-associated dementia (HAD), which is characterized by reactive astrocytes, and macrophage and T-cell infiltrates. HIV-1 Tat protein is thought to contribute to HAD by transactivating host genes, such as that encoding monocyte chemoattractant protein-1 (MCP-1/CCL2), although its mechanisms of action are not fully understood. We investigated the molecular pathways involved in Tat-induced MCP-1/CCL2 gene expression in human astrocytes. We found that Tat induced MCP-1/CCL2 synthesis in human astrocytes infected with a lentivirus carrying the gene encoding Tat or treated with a biologically active synthetic Tat protein. The induction of MCP-1/CCL2 was independent of the nuclear factor kappaB (NF-kappaB) classical pathway, but was significantly inhibited by specific cyclin-dependent kinase 9 (cdk9) inhibitors, such as a dominant-negative mutant or siRNA. By contrast, broader-spectrum cdk inhibitors, such as roscovitine, 5,6-dichloro-1-beta-d-ribofuranosylbenzimidazole (DRB), and flavopiridol, inhibited MCP-1/CCL2 induction by Tat. We also analyzed the effects of roscovitine, DRB, and flavopiridol on Tat-induced HIV-1 long terminal repeat (LTR) expression following the infection of astrocytes and HeLa cells. Astrocytes showed no inhibition by roscovitine, 59% inhibition by DRB, and 80% inhibition by flavopiridol. In control HeLa cells, high levels of inhibition were observed with roscovitine, DRB, and flavopiridol. We have ascertained the direct implication of cdk9 in Tat-induced MCP-1 expression by performing ChIP assay. These results demonstrate that cdk9 is involved in Tat-induced HIV-1 LTR, MCP-1/CCL2 gene expression.
Collapse
Affiliation(s)
- Abdelkader Khiati
- INSERM U802 and Université Paris-Sud 11, Faculté de médecine Paris-Sud, Le Kremlin-Bicêtre, France
| | | | | | | | | |
Collapse
|
12
|
Rom I, Darbinyan A, White MK, Rappaport J, Sawaya BE, Amini S, Khalili K. Activation of HIV-1 LTR by Rad51 in microglial cells. Cell Cycle 2010; 9:3715-22. [PMID: 20890127 DOI: 10.4161/cc.9.18.12930] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Infection with HIV-1 induces a variety of biological alterations to the host that are beneficial to the life cycle of the virus but may have adverse effects on the host cell. Here we demonstrate that expression of Rad51, a major component of the homologous recombination-directed DNA repair (HRR) pathway, is induced upon HIV-1 infection of microglial cells. Activation of Rad51 expression positively impacts on HIV-1 LTR transcription through a region of the viral promoter known for binding the inducible transcription factor NFκB. Rad51 showed the ability to form a complex with the p65 subunit of NFκB and regulate the level of p65 interaction with LTR DNA encompassing the κB motif. This study provides evidence for reciprocal interaction of HIV-1 and a host DNA repair protein that impacts on expression of the viral genome. These results also point to the ability of HIV-1 to recruit proteins involved in DNA repair that are necessary for retroviral DNA integration, efficient replication and prevention of viral-induced cell death.
Collapse
Affiliation(s)
- Inna Rom
- Department of Neuroscience, Center for Neurovirology, Temple University School of Medicine, Philadelphia, PA, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Liu Y, Nonnemacher MR, Wigdahl B. CCAAT/enhancer-binding proteins and the pathogenesis of retrovirus infection. Future Microbiol 2009; 4:299-321. [PMID: 19327116 DOI: 10.2217/fmb.09.4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Previous studies indicate that two upstream CCAAT/enhancer-binding protein (C/EBP) sites and C/EBPbeta are required for subtype B HIV-1 gene expression in cells of the monocyte-macrophage lineage. The mechanisms of C/EBP regulation of HIV-1 transcription and replication remain unclear. This review focuses on studies concerning the role of C/EBP factors in HIV-1, human T-cell leukemia virus type 1, and SIV transcription in various cell types and tissues cultured in vitro, animal models and during human infection. The structure and function of the C/EBPbeta gene and the related protein isoforms are discussed along with the transcription factors, coactivators, viral proteins, cytokines and chemokines that affect C/EBP function.
Collapse
Affiliation(s)
- Yujie Liu
- Department of Microbiology & Immunology, Center for Molecular Virology & Neuroimmunology, Center for Cancer Biology, Philadelphia, PA 19129, USA
| | | | | |
Collapse
|
14
|
Selliah N, Zhang M, White S, Zoltick P, Sawaya BE, Finkel TH, Cron RQ. FOXP3 inhibits HIV-1 infection of CD4 T-cells via inhibition of LTR transcriptional activity. Virology 2008; 381:161-7. [PMID: 18829063 DOI: 10.1016/j.virol.2008.08.033] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Revised: 05/15/2008] [Accepted: 08/18/2008] [Indexed: 01/28/2023]
Abstract
FOXP3 is a necessary transcription factor for the development and function of CD4+ regulatory T-cells (Tregs). The role of Tregs in HIV-1 infection remains unclear. Here, we show that expression of FOXP3 in primary human CD4 T-cells significantly inhibits HIV-1 infection. Since FOXP3 inhibits NFAT activity, and NFAT proteins contribute to HIV-1 transcription, we explore a transcriptional repressive function of HIV-1 LTR by FOXP3. Over-expression of FOXP3 in primary CD4 T-cells inhibits wild-type HIV-1 LTR reporter activity, and truncation mutants demonstrate that repression of the LTR by FOXP3 requires the dual proximal NF kappaB/NFAT binding sites. Interestingly, FOXP3 decreases binding of NFAT2 to the HIV-1 LTR in vivo. Furthermore, FOXP3 does not inhibit infection of HIV-1 NL4-3 which is mutated to disrupt transcription factor binding at either proximal NFAT or NF kappaB binding sites. These data suggest that resistance of Tregs to HIV-1 infection is due to inhibition of HIV-1 LTR transcription by FOXP3.
Collapse
Affiliation(s)
- Nithianandan Selliah
- Division of Rheumatology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Cucinotta M, Visalli M, Aguennouz M, Valenti A, Loddo S, Altucci L, Teti D. Regulation of interleukin-8 gene at a distinct site of its promoter by CCAAT enhancer-binding protein homologous protein in prostaglandin E2-treated human T cells. J Biol Chem 2008; 283:29760-9. [PMID: 18772138 DOI: 10.1074/jbc.m803145200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
For a long period of time, the transcription factor CCAAT/enhancer-binding protein homologous protein (CHOP) has been thought to inhibit transcriptional activity for its ability to interact with CCAAT enhancer-binding protein family factors, thus preventing their binding to DNA. We have previously shown that in human T lymphocytes the CHOP phosphorylation induced by prostaglandin E(2) (PGE(2))-increased interleukin-8 (IL-8) gene expression. Given the CHOP positive role in the regulation of transcription, here we have investigated the molecular mechanism(s) by which CHOP increases IL-8 gene activity under PGE(2) stimulus. Transfection experiments with mutants showed both that the CHOP transactivation domain is essential for IL-8 transcription and that the IL-8/activator protein 1 (AP-1) promoter mutated in NF-kappaB and NF-IL-6, but not in the AP-1 site, harbors essential CHOP-responsive elements. CHOP silencing confirmed its role in the IL-8 transcriptional regulation and protein production, whereas c-Jun small interfering RNA experiments showed that the PGE(2)-induced activation of IL-8 promoter is mainly c-Jun-independent. Moreover, PGE(2) induced CHOP-DNA complexes only when the entire IL-8/AP-1 promoter or the wild type sequences encompassing the AP-1 upstream region were employed. Mutations introduced in these sequences prevented the DNA-CHOP complex formation. The IL-8/AP-1 mutant promoter lacking the sequence immediately upstream the AP-1 site is PGE(2)-unresponsive. Finally, chromatin immunoprecipitation data confirmed in vivo that PGE(2) induces CHOP binding to the IL-8 promoter. Taken together, our results suggest that the increased expression of CHOP in response to PGE(2) exerts a positive transcriptional regulation of the IL-8 promoter mediated by direct binding to a novel consensus site.
Collapse
Affiliation(s)
- Maria Cucinotta
- Department of Experimental Pathology and Microbiology, University of Messina, Messina 98100, Italy
| | | | | | | | | | | | | |
Collapse
|
16
|
Cai M, Qiu D, Yuan T, Ding X, Li H, Duan L, Xu C, Li X, Wang S. Identification of novel pathogen-responsive cis-elements and their binding proteins in the promoter of OsWRKY13, a gene regulating rice disease resistance. PLANT, CELL & ENVIRONMENT 2008; 31:86-96. [PMID: 17986178 DOI: 10.1111/j.1365-3040.2007.01739.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The WRKY transcription factor superfamily controls diverse developmental and physiological processes in plants. However, little is known about the factors that directly regulate the function of WRKY genes. In this study, we identified cis-acting elements and their binding proteins of rice OsWRKY13, a gene that plays a pivotal role in disease resistance against bacterial and fungal pathogens. Two novel pathogen-responsive cis-elements, PRE2 and PRE4, were characterized from the promoter region of OsWRKY13. The two cis-elements negatively regulate gene expression without pathogen challenge, and positively regulate gene expression after pathogen-induced protein binding. OsWRKY13 binds to PRE4, which harbours a novel W-like box. Another five proteins (Rad51-like; tubby-like; SWIM zinc finger and nucleotide-binding adaptor shared by APAF-1, certain R proteins and CED-4 (NB-ARC) domain containing proteins; and an unknown protein) also bind to one of the two cis-elements. Different proteins interacting with the same cis-element appear to have different DNA-binding core sequences. These proteins localize in the nucleus and show differential expression upon pathogen challenge. These results suggest that OsWRKY13 expression is regulated by multiple factors to achieve disease resistance.
Collapse
Affiliation(s)
- Meng Cai
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
ROSATI ALESSANDRA, LEONE ARTURO, VALLE LUISDEL, AMINI SHOHREH, KHALILI KAMEL, TURCO MARIACATERINA. Evidence for BAG3 modulation of HIV-1 gene transcription. J Cell Physiol 2007; 210:676-83. [PMID: 17187345 PMCID: PMC2670777 DOI: 10.1002/jcp.20865] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A family of co-chaperone proteins that share the Bcl-2-associated athanogene (BAG) domain are involved in a number of cellular processes, including proliferation and apoptosis. Among these proteins, BAG3 has received increased attention due to its high levels in several disease models and ability to associate with Hsp70 and a number of other molecular partners. BAG3 expression is stimulated during cell response to stressful conditions, such as exposure to high temperature, heavy metals, and certain drugs. Here, we demonstrate that BAG3 expression is elevated upon HIV-1 infection of human lymphocytes and fetal microglial cells. Furthermore, BAG3 protein was detectable in the cytoplasm of reactive astrocytes in HIV-1-associated encephalopathy biopsies, suggesting that induction of BAG3 is part of the host cell response to viral infection. To assess the impact of BAG3 upregulation on HIV-1 gene expression, we performed transcription assays and demonstrated that BAG3 can suppress transcription of the HIV-1 long terminal repeat (LTR) in microglial cells. This activity was mapped to the kappaB motif of the HIV-1 LTR. Results from in vitro and in vivo binding assays revealed that BAG3 suppresses interaction of the p65 subunit of NF-kappaB with the kappaB DNA motif of the LTR. Results from binding and transcriptional assay identified the C-terminus of BAG3 as a potential domain involved in the observed inhibitory effect of BAG3 on p65 activity. These observations reveal a previously unrecognized cell response, that is, an increase in BAG3, elicited by HIV-1 infection, and may provide a new avenue for the suppression of HIV-1 gene expression.
Collapse
Affiliation(s)
- ALESSANDRA ROSATI
- Department of Pharmaceutical Sciences (DiFarma), University of Salerno, Salerno, Italy
- Department of Neuroscience and Center for Neurovirology, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - ARTURO LEONE
- Department of Pharmaceutical Sciences (DiFarma), University of Salerno, Salerno, Italy
| | - LUIS DEL VALLE
- Department of Neuroscience and Center for Neurovirology, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - SHOHREH AMINI
- Department of Neuroscience and Center for Neurovirology, Temple University School of Medicine, Philadelphia, Pennsylvania
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania
| | - KAMEL KHALILI
- Department of Neuroscience and Center for Neurovirology, Temple University School of Medicine, Philadelphia, Pennsylvania
- Correspondence to: Kamel Khalili, 1900 North 12th Street, 015-96, Room 203, Philadelphia, PA 19122. E-mail:
| | - MARIA CATERINA TURCO
- Department of Pharmaceutical Sciences (DiFarma), University of Salerno, Salerno, Italy
| |
Collapse
|
18
|
Durrant WE, Wang S, Dong X. Arabidopsis SNI1 and RAD51D regulate both gene transcription and DNA recombination during the defense response. Proc Natl Acad Sci U S A 2007; 104:4223-7. [PMID: 17360504 PMCID: PMC1820736 DOI: 10.1073/pnas.0609357104] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The plant immune response known as systemic acquired resistance (SAR) is a general defense mechanism that confers long-lasting resistance against a broad spectrum of pathogens. SAR triggers many molecular changes including accumulation of antimicrobial pathogenesis-related (PR) proteins. Transcription of PR genes in Arabidopsis is regulated by the coactivator NPR1 and the repressor SNI1. Pathogen infection also triggers an increase in somatic DNA recombination, which results in transmission of changes to the offspring of infected plants. However, it is not known how the induction of homologous recombination during SAR is controlled. Here, we show that SNI1 and RAD51D regulate both gene expression and DNA recombination. In a genetic screen for suppressors of sni1, we discovered that RAD51D is required for NPR1-independent PR gene expression. As a result, the rad51d mutant has enhanced disease susceptibility. Besides altered PR gene expression, rad51d plants are hypersensitive to DNA-damaging agents and are impaired in homologous recombination. The dual role of RAD51D and SNI1 in PR gene transcription and DNA recombination suggests a mechanistic link between the short-term defense response and a long-term survival strategy.
Collapse
Affiliation(s)
- Wendy E. Durrant
- Developmental, Cell, and Molecular Biology Group, Department of Biology, Duke University, Box 91000, Durham, NC 27708
| | - Shui Wang
- Developmental, Cell, and Molecular Biology Group, Department of Biology, Duke University, Box 91000, Durham, NC 27708
| | - Xinnian Dong
- Developmental, Cell, and Molecular Biology Group, Department of Biology, Duke University, Box 91000, Durham, NC 27708
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|