1
|
Hayashi H, Ishii M, Hasegawa Y, Taniguchi M. Critical pathomechanisms of NSAID-exacerbated respiratory disease (N-ERD) clarified by treatment with omalizumab, an anti-IgE antibody. Allergol Int 2024:S1323-8930(24)00108-4. [PMID: 39419650 DOI: 10.1016/j.alit.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/18/2024] [Accepted: 08/23/2024] [Indexed: 10/19/2024] Open
Abstract
Characteristic symptoms of NSAID-exacerbated respiratory disease (N-ERD) include asthma, chronic eosinophilic rhinosinusitis with nasal polyposis, cysteinyl LT (CysLT) overproduction and NSAIDs hypersensitivity. Some N-ERD patients present with episodic treatment-resistant extra-respiratory symptoms (CysLT-associated coronary artery vasospasm, gastroenteritis, or skin rash). Even when using standard treatments for respiratory and extra-respiratory symptoms, including systemic corticosteroids and aspirin desensitization, it is difficult to control the clinical symptoms and severe type 2 inflammation involved with mast cells, eosinophils, ILC2s, and platelet activation. Few treatment options are applicable in a clinical setting. Therefore, identifying effective treatments is essential for managing N-ERD patients who suffer from these conditions. Our previous observational study demonstrated 12-month omalizumab treatment of N-ERD was clinically effective against respiratory symptoms. Despite the remaining eosinophilia, omalizumab significantly reduced urinary LTE4 and PGD2 metabolites to near normal levels at steady state. Based on the preliminary study, we demonstrated that omalizumab induced tolerance to aspirin in N-ERD patients 3 months after therapy initiation and suppressed activation of mast cells during 24 h of initiation in a randomized manner. Moreover, omalizumab had significant efficacy against extra-respiratory symptoms at baseline (lacking aspirin exposure) as well as throughout aspirin challenge. This review addresses the latest discoveries related to N-ERD pathogenesis and the significant effectiveness of omalizumab on N-ERD as a mast cell stabilizer. Our findings regarding omalizumab-associated mast cell inhibitory effects are indirect evidence that mast cell dysregulation and, possibly, IgE are pivotal components of N-ERD.
Collapse
Affiliation(s)
- Hiroaki Hayashi
- Clinical Research Center for Allergy and Rheumatology, National Hospital Organization Sagamihara National Hospital, Sagamihara, Japan; Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Makoto Ishii
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshinori Hasegawa
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan; National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Masami Taniguchi
- Clinical Research Center for Allergy and Rheumatology, National Hospital Organization Sagamihara National Hospital, Sagamihara, Japan
| |
Collapse
|
2
|
Garcia-Ryde M, van der Burg NMD, Larsson CE, Larsson-Callerfelt AK, Westergren-Thorsson G, Bjermer L, Tufvesson E. Lung Fibroblasts from Chronic Obstructive Pulmonary Disease Subjects Have a Deficient Gene Expression Response to Cigarette Smoke Extract Compared to Healthy. Int J Chron Obstruct Pulmon Dis 2023; 18:2999-3014. [PMID: 38143920 PMCID: PMC10742772 DOI: 10.2147/copd.s422508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/16/2023] [Indexed: 12/26/2023] Open
Abstract
Background and aim Cigarette smoking is the most common cause of chronic obstructive pulmonary disease (COPD) but more mechanistic studies are needed. Cigarette smoke extract (CSE) can elicit a strong response in many COPD-related cell types, but no studies have been performed in lung fibroblasts. Therefore, we aimed to investigate the effect of CSE on gene expression in lung fibroblasts from healthy and COPD subjects. Patients and methods Primary lung fibroblasts, derived from six healthy and six COPD subjects (all current or ex-smokers), were either unstimulated (baseline) or stimulated with 30% CSE for 4 h prior to RNA isolation. The mRNA expression levels were measured using the NanoString nCounter Human Fibrosis V2 panel (760 genes). Pathway enrichment was assessed for unique gene ontology terms of healthy and COPD. Results At baseline, a difference in the expression of 17 genes was found in healthy and COPD subjects. Differential expression of genes after CSE stimulation resulted in significantly less changes in COPD lung fibroblasts (70 genes) than in healthy (207 genes), with 51 genes changed in both. COPD maintained low NOTCH signaling throughout and upregulated JUN >80%, indicating an increase in apoptosis. Healthy downregulated the Mitogen-activated protein kinase (MAPK) signaling cascade, including a ≥50% reduction in FGF2, CRK, TGFBR1 and MEF2A. Healthy also downregulated KAT6A and genes related to cell proliferation, all together indicating possible cell senescence signaling. Conclusion Overall, COPD lung fibroblasts responded to CSE stimulation with a very different and deficient expression profile compared to healthy. Highlighting that stimulated healthy cells are not an appropriate substitute for COPD cells which is important when investigating the mechanisms of COPD.
Collapse
Affiliation(s)
- Martin Garcia-Ryde
- Department of Clinical Sciences Lund, Respiratory Medicine, Allergology and Palliative Medicine, Lund University, Lund, Sweden
| | - Nicole M D van der Burg
- Department of Clinical Sciences Lund, Respiratory Medicine, Allergology and Palliative Medicine, Lund University, Lund, Sweden
| | - Carin E Larsson
- Department of Clinical Sciences Lund, Respiratory Medicine, Allergology and Palliative Medicine, Lund University, Lund, Sweden
| | | | | | - Leif Bjermer
- Department of Clinical Sciences Lund, Respiratory Medicine, Allergology and Palliative Medicine, Lund University, Lund, Sweden
| | - Ellen Tufvesson
- Department of Clinical Sciences Lund, Respiratory Medicine, Allergology and Palliative Medicine, Lund University, Lund, Sweden
| |
Collapse
|
3
|
Hayashi H, Fukutomi Y, Mitsui C, Nakatani E, Watai K, Kamide Y, Sekiya K, Tsuburai T, Ito S, Hasegawa Y, Taniguchi M. Smoking Cessation as a Possible Risk Factor for the Development of Aspirin-Exacerbated Respiratory Disease in Smokers. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2017; 6:116-125.e3. [PMID: 28583479 DOI: 10.1016/j.jaip.2017.04.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 03/24/2017] [Accepted: 04/18/2017] [Indexed: 11/16/2022]
Abstract
BACKGROUND The pathogenesis of aspirin-exacerbated respiratory disease (AERD) is characterized by the low expression of cyclooxygenase-2 (COX-2) in airway epithelia, which decreases the production of prostaglandin E2 (PGE2). Conversely, cigarette smoke stimulates COX-2 expression in airway epithelia. Therefore, it was hypothesized that the development of AERD would be suppressed by elevated PGE2 levels in smokers, and smoking cessation might increase susceptibility to AERD. OBJECTIVE The objective of this study was to evaluate the relationship between smoking and the risk of AERD development. METHODS The smoking status of patients with AERD (n = 114) was compared with 2 control groups with aspirin-tolerant asthma (ATA), patients diagnosed by a systemic aspirin provocation test (ATA-1, n = 83) and outpatients randomly selected from a large-scale dataset (ATA-2, n = 914), as well as a healthy control group (HC, n = 2313). RESULTS At the age of asthma onset, there was a low frequency of current smokers (9.7%), but a high frequency of past smokers (20.2%) in the AERD group compared with the ATA-1 (20.5% and 12.0% for current and past smokers, respectively), ATA-2 (24.5% and 10.3%, respectively), and HC group (26.2% and 12.6%, respectively). After adjustment for confounding variables, AERD was positively associated with smoking cessation between 1 and 4 years before disease onset compared with the ATA-2 group (adjusted odds ratio [aOR] 4.63, 95% confidence interval [CI]: 2.16-9.93) and the HC group (aOR 4.09, 95% CI: 2.07-8.05), implying that smoking cessation was followed by the development of AERD. CONCLUSION Smoking cessation may be a risk factor for the development of AERD.
Collapse
Affiliation(s)
- Hiroaki Hayashi
- Clinical Research Center for Allergy and Rheumatology, Sagamihara National Hospital, Sagamihara, Kanagawa, Japan; Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuma Fukutomi
- Clinical Research Center for Allergy and Rheumatology, Sagamihara National Hospital, Sagamihara, Kanagawa, Japan
| | - Chihiro Mitsui
- Clinical Research Center for Allergy and Rheumatology, Sagamihara National Hospital, Sagamihara, Kanagawa, Japan
| | - Eiji Nakatani
- Translational Research Informatics Center, Foundation for Biomedical Research and Innovation, Kobe, Japan
| | - Kentaro Watai
- Clinical Research Center for Allergy and Rheumatology, Sagamihara National Hospital, Sagamihara, Kanagawa, Japan; Department of Allergy and Clinical Immunology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yosuke Kamide
- Clinical Research Center for Allergy and Rheumatology, Sagamihara National Hospital, Sagamihara, Kanagawa, Japan
| | - Kiyoshi Sekiya
- Clinical Research Center for Allergy and Rheumatology, Sagamihara National Hospital, Sagamihara, Kanagawa, Japan
| | - Takahiro Tsuburai
- Clinical Research Center for Allergy and Rheumatology, Sagamihara National Hospital, Sagamihara, Kanagawa, Japan
| | - Satoru Ito
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshinori Hasegawa
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masami Taniguchi
- Clinical Research Center for Allergy and Rheumatology, Sagamihara National Hospital, Sagamihara, Kanagawa, Japan.
| |
Collapse
|
4
|
Ackerman SJ, Park GY, Christman JW, Nyenhuis S, Berdyshev E, Natarajan V. Polyunsaturated lysophosphatidic acid as a potential asthma biomarker. Biomark Med 2016; 10:123-35. [PMID: 26808693 PMCID: PMC4881841 DOI: 10.2217/bmm.15.93] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 09/08/2015] [Indexed: 12/13/2022] Open
Abstract
Lysophosphatidic acid (LPA), a lipid mediator in biological fluids and tissues, is generated mainly by autotaxin that hydrolyzes lysophosphatidylcholine to LPA and choline. Total LPA levels are increased in bronchoalveolar lavage fluid from asthmatic lung, and are strongly induced following subsegmental bronchoprovocation with allergen in subjects with allergic asthma. Polyunsaturated molecular species of LPA (C22:5 and C22:6) are selectively synthesized in the airways of asthma subjects following allergen challenge and in mouse models of allergic airway inflammation, having been identified and quantified by LC/MS/MS lipidomics. This review discusses current knowledge of LPA production in asthmatic lung and the potential utility of polyunsaturated LPA molecular species as novel biomarkers in bronchoalveolar lavage fluid and exhaled breath condensate of asthma subjects.
Collapse
Affiliation(s)
- Steven J Ackerman
- Department of Biochemistry & Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA
- Department of Medicine, University of Illinois at Chicago College of Medicine, Chicago, IL 60612, USA
| | - Gye Young Park
- Department of Medicine, University of Illinois at Chicago College of Medicine, Chicago, IL 60612, USA
| | - John W Christman
- Department of Medicine, Ohio State University School of Medicine, Columbus, OH 43210, USA
| | - Sharmilee Nyenhuis
- Department of Medicine, University of Illinois at Chicago College of Medicine, Chicago, IL 60612, USA
| | - Evgeny Berdyshev
- Department of Medicine, National Jewish Health, Denver, CO 80206, USA
| | - Viswanathan Natarajan
- Department of Medicine, University of Illinois at Chicago College of Medicine, Chicago, IL 60612, USA
- Department of Pharmacology, University of Illinois at Chicago College of Medicine, Chicago, IL 60612, USA
| |
Collapse
|
5
|
Comer DM, Elborn JS, Ennis M. Inflammatory and cytotoxic effects of acrolein, nicotine, acetylaldehyde and cigarette smoke extract on human nasal epithelial cells. BMC Pulm Med 2014; 14:32. [PMID: 24581246 PMCID: PMC3945717 DOI: 10.1186/1471-2466-14-32] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 02/25/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cigarette smoke induces a pro-inflammatory response in airway epithelial cells but it is not clear which of the various chemicals contained within cigarette smoke (CS) should be regarded as predominantly responsible for these effects. We hypothesised that acrolein, nicotine and acetylaldehyde, important chemicals contained within volatile cigarette smoke in terms of inducing inflammation and causing addiction, have immunomodulatory effects in primary nasal epithelial cell cultures (PNECs). METHODS PNECs from 19 healthy subjects were grown in submerged cultures and were incubated with acrolein, nicotine or acetylaldehyde prior to stimulation with Pseudomonas aeruginosa lipopolysaccharide (PA LPS). Experiments were repeated using cigarette smoke extract (CSE) for comparison. IL-8 was measured by ELISA, activation of NF-κB by ELISA and Western blotting, and caspase-3 activity by Western blotting. Apoptosis was evaluated using Annexin-V staining and the terminal transferase-mediated dUTP nick end-labeling (TUNEL) method. RESULTS CSE was pro-inflammatory after a 24 h exposure and 42% of cells were apoptotic or necrotic after this exposure time. Acrolein was pro-inflammatory for the PNEC cultures (30 μM exposure for 4 h inducing a 2.0 fold increase in IL-8 release) and also increased IL-8 release after stimulation with PA LPS. In contrast, nicotine had anti-inflammatory properties (0.6 fold IL-8 release after 50 μM exposure to nicotine for 24 h), and acetylaldehyde was without effect. Acrolein and nicotine had cellular stimulatory and anti-inflammatory effects respectively, as determined by NF-κB activation. Both chemicals increased levels of cleaved caspase 3 and induced cell death. CONCLUSIONS Acrolein is pro-inflammatory and nicotine anti-inflammatory in PNEC cultures. CSE induces cell death predominantly by apoptotic mechanisms.
Collapse
Affiliation(s)
- David M Comer
- Centre for Infection and Immunity, Health Sciences Building, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University of Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
- Respiratory Department, Belfast City Hospital, Lisburn Road, Belfast BT9 7AB, UK
| | - Joseph Stuart Elborn
- Centre for Infection and Immunity, Health Sciences Building, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University of Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
- Respiratory Department, Belfast City Hospital, Lisburn Road, Belfast BT9 7AB, UK
| | - Madeleine Ennis
- Centre for Infection and Immunity, Health Sciences Building, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University of Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| |
Collapse
|
6
|
Yin H, Zhou Y, Zhu M, Hou S, Li Z, Zhong H, Lu J, Meng T, Wang J, Xia L, Xu Y, Wu Y. Role of mitochondria in programmed cell death mediated by arachidonic acid-derived eicosanoids. Mitochondrion 2012; 13:209-24. [PMID: 23063711 DOI: 10.1016/j.mito.2012.10.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 09/24/2012] [Accepted: 10/02/2012] [Indexed: 01/28/2023]
Abstract
Arachidonic acid-derived eicosanoids from cyclooxygenases, lipoxygenases, and cytochrome P450 are important lipid mediators involved in numerous homeostatic and pathophysiological processes. Most eicosanoids act primarily on their respective cell surface G-protein coupled receptors to elicit downstream signaling in an autocrine and paracrine fashion. Emerging evidence indicates that these hormones are also critical in apoptosis in a cell/tissue specific manner. In this review, we summarize the formation of eicosanoids and their roles as mediators in apoptosis, specifically on the roles of mitochondria in mediating these events and the signaling pathways involved. The biological relevance of eicosanoid-mediated apoptosis is also discussed.
Collapse
Affiliation(s)
- Huiyong Yin
- Laboratory of Lipid Metabolism in Human Nutrition and Related Diseases, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Woodward DF, Jones RL, Narumiya S. International Union of Basic and Clinical Pharmacology. LXXXIII: classification of prostanoid receptors, updating 15 years of progress. Pharmacol Rev 2011; 63:471-538. [PMID: 21752876 DOI: 10.1124/pr.110.003517] [Citation(s) in RCA: 321] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
It is now more than 15 years since the molecular structures of the major prostanoid receptors were elucidated. Since then, substantial progress has been achieved with respect to distribution and function, signal transduction mechanisms, and the design of agonists and antagonists (http://www.iuphar-db.org/DATABASE/FamilyIntroductionForward?familyId=58). This review systematically details these advances. More recent developments in prostanoid receptor research are included. The DP(2) receptor, also termed CRTH2, has little structural resemblance to DP(1) and other receptors described in the original prostanoid receptor classification. DP(2) receptors are more closely related to chemoattractant receptors. Prostanoid receptors have also been found to heterodimerize with other prostanoid receptor subtypes and nonprostanoids. This may extend signal transduction pathways and create new ligand recognition sites: prostacyclin/thromboxane A(2) heterodimeric receptors for 8-epi-prostaglandin E(2), wild-type/alternative (alt4) heterodimers for the prostaglandin FP receptor for bimatoprost and the prostamides. It is anticipated that the 15 years of research progress described herein will lead to novel therapeutic entities.
Collapse
Affiliation(s)
- D F Woodward
- Dept. of Biological Sciences RD3-2B, Allergan, Inc., 2525 Dupont Dr., Irvine, CA 92612, USA.
| | | | | |
Collapse
|
8
|
Dave M, Attur M, Palmer G, Al-Mussawir HE, Kennish L, Patel J, Abramson SB. The antioxidant resveratrol protects against chondrocyte apoptosis via effects on mitochondrial polarization and ATP production. ACTA ACUST UNITED AC 2010; 58:2786-97. [PMID: 18759268 DOI: 10.1002/art.23799] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE To determine the effects of the antioxidant resveratrol on the functions of human chondrocytes in osteoarthritis (OA). METHODS Chondrocytes and cartilage explants were isolated from OA patients undergoing knee replacement surgery. Effects of resveratrol in the presence or absence of interleukin-1beta (IL-1beta) stimulation were assessed by measurement of prostaglandin E(2) (PGE(2)) and leukotriene B(4) (LTB(4)) synthesis, cyclooxygenase (COX) activity, matrix metalloproteinase (MMP) expression, and proteoglycan production. To explore the mechanisms of action of resveratrol, its effects on mitochondrial function and apoptosis were examined by assessing mitochondrial membrane potential, ATP levels, cytochrome c release, and annexin V staining. RESULTS Resveratrol inhibited both spontaneous and IL-1beta-induced PGE(2) production by >20% (P < 0.05) and by 80% (P < 0.001), respectively; similarly, LTB(4) production was reduced by >50% (P < 0.05). The production of PGE(2) was inhibited via a 70-90% suppression of COX-2 expression and enzyme activity (P < 0.05). Resveratrol also promoted anabolic effects in OA explant cultures, by elevating proteoglycan synthesis and decreasing production of MMPs 1, 3, and 13. Pretreatment of OA chondrocytes with resveratrol blocked mitochondrial membrane depolarization, loss of mitochondrial biomass, and IL-1beta-induced ATP depletion. Similarly, IL-1beta-mediated induction of the apoptotic markers cytochrome c and annexin V was also inhibited by resveratrol. Exogenous addition of PGE(2) abolished the protective effects of resveratrol on mitochondrial membrane integrity, ATP levels, expression of apoptotic markers, and DNA fragmentation. CONCLUSION Resveratrol protects against IL-1beta-induced catabolic effects and prevents chondrocyte apoptosis via its inhibition of mitochondrial membrane depolarization and ATP depletion. These beneficial effects of resveratrol are due, in part, to its capacity to inhibit COX-2-derived PGE(2) synthesis. Resveratrol may therefore protect against oxidant injury and apoptosis, which are main features of progressive OA.
Collapse
Affiliation(s)
- Mandar Dave
- New York University Hospital for Joint Diseases, New York, New York 10003, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Peters T, Henry PJ. Protease-activated receptors and prostaglandins in inflammatory lung disease. Br J Pharmacol 2009; 158:1017-33. [PMID: 19845685 PMCID: PMC2785524 DOI: 10.1111/j.1476-5381.2009.00449.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Revised: 06/11/2009] [Accepted: 07/08/2009] [Indexed: 12/17/2022] Open
Abstract
Protease-activated receptors (PARs) are a novel family of G protein-coupled receptors. Signalling through PARs typically involves the cleavage of an extracellular region of the receptor by endogenous or exogenous proteases, which reveals a tethered ligand sequence capable of auto-activating the receptor. A considerable body of evidence has emerged over the past 20 years supporting a prominent role for PARs in a variety of human physiological and pathophysiological processes, and thus substantial attention has been directed towards developing drug-like molecules that activate or block PARs via non-proteolytic pathways. PARs are widely expressed within the respiratory tract, and their activation appears to exert significant modulatory influences on the level of bronchomotor tone, as well as on the inflammatory processes associated with a range of respiratory tract disorders. Nevertheless, there is debate as to whether the principal response to PAR activation is an augmentation or attenuation of airways inflammation. In this context, an important action of PAR activators may be to promote the generation and release of prostanoids, such as prostglandin E(2), which have well-established anti-inflammatory effects in the lung. In this review, we primarily focus on the relationship between PARs, prostaglandins and inflammatory processes in the lung, and highlight their potential role in selected respiratory tract disorders, including pulmonary fibrosis, asthma and chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Terence Peters
- School of Medicine and Pharmacology, University of Western Australia, Nedlands, Australia
| | | |
Collapse
|
10
|
Maher SA, Birrell MA, Belvisi MG. Prostaglandin E2 mediates cough via the EP3 receptor: implications for future disease therapy. Am J Respir Crit Care Med 2009; 180:923-8. [PMID: 19729667 DOI: 10.1164/rccm.200903-0388oc] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE A significant population of patients with severe asthma and chronic obstructive pulmonary disease is less responsive to beta(2)-adrenoceptor agonists and corticosteroids, and there are possible safety issues concerning long-term use of these drugs. Inhaled prostaglandin E(2) (PGE(2)) is antiinflammatory and a bronchodilator in patients with asthma, but it also causes cough. OBJECTIVES We aimed to identify the receptor involved in PGE(2)-induced sensory nerve activation and cough using a range of in vitro and in vivo techniques. METHODS Depolarization of vagal sensory nerves (human, mouse, and guinea pig) was assessed as an indicator of sensory nerve acitivity. Cough was measured in a conscious guinea pig model. MEASUREMENTS AND MAIN RESULTS Using an extensive range of pharmacological tools, we identified that the EP(3) receptor mediates PGE(2)-induced depolarization of sensory nerves in human, mouse, and guinea pig. Further supporting evidence comes from data showing that responses to PGE(2) are virtually abolished in isolated vagus nerves from EP(3)-deficient mice (Ptger3(-/-)). Finally, we demonstrated the role of the EP(3) receptor in vivo using a selective EP(3) antagonist to attenuate PGE(2)-induced cough. CONCLUSIONS Identification of the receptor mediating PGE(2)-induced cough represents a key step in developing a drug that is antiinflammatory and a bronchodilator but without unwanted side effects.
Collapse
Affiliation(s)
- Sarah A Maher
- Respiratory Pharmacology, Airways Diseases, Imperial College London, Faculty of Medicine, National Heart and Lung Institute, Sir Alexander Fleming Building, London, SW7 2AZ, UK
| | | | | |
Collapse
|
11
|
Huang SK, White ES, Wettlaufer SH, Grifka H, Hogaboam CM, Thannickal VJ, Horowitz JC, Peters-Golden M. Prostaglandin E(2) induces fibroblast apoptosis by modulating multiple survival pathways. FASEB J 2009; 23:4317-26. [PMID: 19671668 DOI: 10.1096/fj.08-128801] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Although the lipid mediator prostaglandin E(2) (PGE(2)) exerts antifibrotic effects by inhibiting multiple fibroblast functions, its ability to regulate fibroblast survival is unknown. Here, we examined the effects of this prostanoid on apoptosis and apoptosis pathways in normal and fibrotic lung fibroblasts. As compared to medium alone, 24 h of treatment with PGE(2) increased apoptosis of normal lung fibroblasts in a dose-dependent manner (EC(50) approximately 50 nM), as measured by annexin V staining, caspase 3 activity, cleavage of poly-ADP-ribose polymerase, and single-stranded DNA levels. PGE(2) also potentiated apoptosis elicited by Fas ligand plus cycloheximide. These proapoptotic actions were dependent on signaling through the EP2/EP4 receptors and by downstream activation of both caspases 8 and 9. Silencing and gene deletion of PTEN demonstrated that the effects of PGE(2) involved decreased activity of the prosurvival molecule Akt. PGE(2) also down-regulated expression of survivin, an inhibitor of apoptosis, and increased expression of Fas. Fibroblasts from patients with pulmonary fibrosis exhibited resistance to the apoptotic effects of PGE(2). These findings show for the first time that, in contrast to its effects on many other cell types, PGE(2) promotes apoptosis in lung fibroblasts through diverse pathways. They provide another dimension by which PGE(2) may inhibit, and perhaps even reverse, fibrogenesis in patients with interstitial lung disease.
Collapse
Affiliation(s)
- Steven K Huang
- Pulmonary and Critical Care Medicine, University of Michigan, 6301 MSRB III, 1150 W. Medical Center Dr., Ann Arbor, MI 48109-5642, USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Andreasson K. Emerging roles of PGE2 receptors in models of neurological disease. Prostaglandins Other Lipid Mediat 2009; 91:104-12. [PMID: 19808012 DOI: 10.1016/j.prostaglandins.2009.04.003] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Revised: 03/25/2009] [Accepted: 04/02/2009] [Indexed: 01/08/2023]
Abstract
This review presents an overview of the emerging field of prostaglandin signaling in neurological diseases, focusing on PGE(2) signaling through its four E-prostanoid (EP) receptors. A large number of studies have demonstrated a neurotoxic function of the inducible cyclooxygenase COX-2 in a broad spectrum of neurological disease models in the central nervous system (CNS), from models of cerebral ischemia to models of neurodegeneration and inflammation. Since COX-1 and COX-2 catalyze the first committed step in prostaglandin synthesis, an effort is underway to identify the downstream prostaglandin signaling pathways that mediate the toxic effect of COX-2. Recent epidemiologic studies demonstrate that chronic COX-2 inhibition can produce adverse cerebrovascular and cardiovascular effects, indicating that some prostaglandin signaling pathways are beneficial. Consistent with this concept, recent studies demonstrate that in the CNS, specific prostaglandin receptor signaling pathways mediate toxic effects in brain but a larger number appear to mediate paradoxically protective effects. Further complexity is emerging, as exemplified by the PGE(2) EP2 receptor, where cerebroprotective or toxic effects of a particular prostaglandin signaling pathway can differ depending on the context of cerebral injury, for example, in excitotoxicity/hypoxia paradigms versus inflammatory-mediated secondary neurotoxicity. The divergent effects of prostaglandin receptor signaling will likely depend on distinct patterns and dynamics of receptor expression in neurons, endothelial cells, and glia and the specific ways in which these cell types participate in particular models of neurological injury.
Collapse
Affiliation(s)
- Katrin Andreasson
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
13
|
Steinert D, Küper C, Bartels H, Beck FX, Neuhofer W. PGE2 potentiates tonicity-induced COX-2 expression in renal medullary cells in a positive feedback loop involving EP2-cAMP-PKA signaling. Am J Physiol Cell Physiol 2008; 296:C75-87. [PMID: 19005164 DOI: 10.1152/ajpcell.00024.2008] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Cyooxygenase-2 (COX-2)-derived PGE2 is critical for the integrity and function of renal medullary cells during antidiuresis. The present study extended our previous finding that tonicity-induced COX-2 expression is further stimulated by the major COX-2 product PGE2 and investigated the underlying signaling pathways and the functional relevance of this phenomenon. Hyperosmolality stimulated COX-2 expression and activity in Madin-Darby canine kidney (MDCK) cells, a response that was further increased by PGE2-cAMP signaling, suggesting the existence of a positive feedback loop. This effect was diminished by AH-6809, an EP2 antagonist, and by the PKA inhibitor H-89, but not by AH-23848, an EP4 antagonist. The effect of PGE2 was mimicked by forskolin and dibutyryl-cAMP, suggesting that the stimulatory effect of PGE2 on COX-2 is mediated by a cAMP-PKA-dependent mechanism. Accordingly, cAMP-responsive element (CRE)-driven reporter activity paralleled the effects of PGE2, AH-6809, AH-23848, H-89, forskolin, and dibutyryl-cAMP on COX-2 expression. In addition, the stimulatory effect of PGE2 on tonicity-induced COX-2 expression was blunted in cells transfected with dominant-negative CRE binding (CREB) protein, as was the case in a COX-2 promoter reporter construct in which a putative CRE was deleted. Furthermore, PGE2 resulted in PKA-dependent phosphorylation of the pro-apoptotic protein Bad at Ser155, a mechanism that is known to inactivate Bad, which coincided with reduced caspase-3 activity during osmotic stress. Conversely, pharmacological interruption of the PGE2-EP2-cAMP-PKA pathway abolished Ser155 phosphorylation of Bad and blunted the protective effect of PGE2 on cell survival during osmotic stress. These observations indicate the existence of a positive feedback loop of PGE2 on COX-2 expression during osmotic stress, an effect that apparently is mediated by EP2-cAMP-PKA signaling, and that contributes to cell survival under hypertonic conditions.
Collapse
Affiliation(s)
- Daniela Steinert
- Department of Physiology, University of Munich, Pettenkoferstrasse 12, 80336 Munich, Germany
| | | | | | | | | |
Collapse
|
14
|
Sokolova E, Hartig R, Reiser G. Downregulation of protease-activated receptor-1 in human lung fibroblasts is specifically mediated by the prostaglandin E receptor EP2 through cAMP elevation and protein kinase A. FEBS J 2008; 275:3669-79. [PMID: 18537828 DOI: 10.1111/j.1742-4658.2008.06511.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Many cellular functions of lung fibroblasts are controlled by protease-activated receptors (PARs). In fibrotic diseases, PAR-1 plays a major role in controlling fibroproliferative and inflammatory responses. Therefore, in these diseases, regulation of PAR-1 expression plays an important role. Using the selective prostaglandin EP2 receptor agonist butaprost and cAMP-elevating agents, we show here that prostaglandin (PG)E(2), via the prostanoid receptor EP2 and subsequent cAMP elevation, downregulates mRNA and protein levels of PAR-1 in human lung fibroblasts. Under these conditions, the functional response of PAR-1 in fibroblasts is reduced. These effects are specific for PGE(2). Activation of other receptors coupled to cAMP elevation, such as beta-adrenergic and adenosine receptors, does not reproduce the effects of PGE(2). PGE(2)-mediated downregulation of PAR-1 depends mainly on protein kinase A activity, but does not depend on another cAMP effector, the exchange protein activated by cAMP. PGE(2)-induced reduction of PAR-1 level is not due to a decrease of PAR-1 mRNA stability, but rather to transcriptional regulation. The present results provide further insights into the therapeutic potential of PGE(2) to specifically control fibroblast function in fibrotic diseases.
Collapse
Affiliation(s)
- Elena Sokolova
- Institut für Neurobiochemie, Medizinische Fakultät, Otto-von-Guericke-Universität Magdeburg, Germany
| | | | | |
Collapse
|
15
|
|
16
|
Kroening PR, Barnes TW, Pease L, Limper A, Kita H, Vassallo R. Cigarette smoke-induced oxidative stress suppresses generation of dendritic cell IL-12 and IL-23 through ERK-dependent pathways. THE JOURNAL OF IMMUNOLOGY 2008; 181:1536-47. [PMID: 18606709 DOI: 10.4049/jimmunol.181.2.1536] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
IL-12p70, a heterodimer composed of p35 and p40 subunits, is a key polarizing cytokine produced by maturing dendritic cells (DCs). We report that cigarette smoke extract (CSE), an extract of soluble cigarette smoke components, suppresses both p35 and p40 production by LPS or CD40L-matured DCs. Suppression of IL-12p70 production from maturing DCs was not observed in the presence of nicotine concentrations achievable in CSE or in the circulation of smokers. The suppressed IL-12p70 protein production by CSE-conditioned DCs was restored by pretreatment of DCs or CSE with the antioxidants N-acetylcysteine and catalase. Inhibition of DC IL-12p70 by CSE required activation of ERK-dependent pathways, since inhibition of ERK abrogated the suppressive effect of CSE on IL-12 secretion. Oxidative stress and sustained ERK phosphorylation by CSE enhanced nuclear levels of the p40 transcriptional repressor c-fos in both immature and maturing DCs. Suppression of the p40 subunit by CSE also resulted in diminished production of IL-23 protein by maturing DCs. Using a murine model of chronic cigarette smoke exposure, we observed that systemic and lung DCs from mice "smokers" produced significantly less IL-12p70 and p40 protein upon maturation. This inhibitory effect was selective, since production of TNF-alpha during DC maturation was enhanced in the smokers. These data imply that oxidative stress generated by cigarette smoke exposure suppresses the generation of key cytokines by maturing DCs through the activation of ERK-dependent pathways. Some of the cigarette smoke-induced inhibitory effects on DC function may be mitigated by antioxidants.
Collapse
Affiliation(s)
- Paula R Kroening
- Department of Internal Medicine, Thoracic Diseases Research Unit, Division of Pulmonary Critical Care, Mayo Clinic and Foundation, Rochester, MN 55905, USA
| | | | | | | | | | | |
Collapse
|
17
|
Adair-Kirk TL, Atkinson JJ, Griffin GL, Watson MA, Kelley DG, DeMello D, Senior RM, Betsuyaku T. Distal airways in mice exposed to cigarette smoke: Nrf2-regulated genes are increased in Clara cells. Am J Respir Cell Mol Biol 2008; 39:400-11. [PMID: 18441282 DOI: 10.1165/rcmb.2007-0295oc] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Cigarette smoke (CS) is the main risk factor for chronic obstructive pulmonary disease (COPD). Terminal bronchioles are critical zones in the pathophysiology of COPD, but little is known about the cellular and molecular changes that occur in cells lining terminal bronchioles in response to CS. We subjected C57BL/6 mice to CS (6 d/wk, up to 6 mo), looked for morphologic changes lining the terminal bronchioles, and used laser capture microdissection to selectively isolate cells in terminal bronchioles to study gene expression. Morphologic and immunohistochemical analyses showed that Clara cell predominance remained despite 6 months of CS exposure. Since Clara cells have a role in protection against oxidative stress, we focused on the expression of antioxidant/detoxification genes using microarray analysis. Of the 35 antioxidant/detoxification genes with at least 2.5-fold increased expression in response to 6 months of CS exposure, 21 were NF-E2-related factor 2 (Nrf2)-regulated genes. Among these were cytochrome P450 1b1, glutathione reductase, thioredoxin reductase, and members of the glutathione S-transferase family, as well as Nrf2 itself. In vitro studies using immortalized murine Clara cells (C22) showed that CS induced the stabilization and nuclear translocation of Nrf2, which correlated with the induction of antioxidant and detoxification genes. Furthermore, decreasing Nrf2 expression by siRNA resulted in a corresponding decrease in CS-induced expression of several antioxidant and detoxification genes by C22 cells. These data suggest that the protective response by Clara cells to CS exposure is predominantly regulated by the transcription factor Nrf2.
Collapse
Affiliation(s)
- Tracy L Adair-Kirk
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Birrell MA, Wong S, Catley MC, Belvisi MG. Impact of tobacco-smoke on key signaling pathways in the innate immune response in lung macrophages. J Cell Physiol 2007; 214:27-37. [PMID: 17541958 DOI: 10.1002/jcp.21158] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Many of the healthcare consequences of cigarette smoking could be due to its ability to compromise the immune system, and in respiratory diseases like chronic obstructive pulmonary disease (COPD), a constant low level of infection could be responsible for some of the symptoms/pathology. The aim was to assess the impact of cigarette smoke (CS) on the release of innate effector cytokines in THP-1 cells and human lung macrophages, and to determine the molecular mechanism behind the altered response. Cells were exposed to CS with and without endotoxin stimulus, cytokines, glutathione, mitogen-activated protein kinase (MAPK) phosphorylation, IkappaB kinase-2 (IKK-2) activity, nuclear factor kappa B (NF-kappaB), and activator protein-1 (AP-1) pathway activation was measured. Attempts were made to mimic or block the effect of CS by using nicotine, nitric oxide donors/inhibitors, prostanoid inhibitors, and anti-oxidants. Results showed that CS initially delayed the production of "innate" cytokines (e.g., IL-1beta and IL-6) and reduced glutathione levels. This was associated with a reduction in NF-kappaB pathway activation, which suggested a causative link. CS also increased the phosphorylation of MAPK's and the production of IL-8 but interestingly only in stimulated cells. Exogenous glutathione treatment reversed both these effects of CS, which suggests that this molecule may play a central role. In conclusion, this data provides a novel mechanistic explanation for why smokers have increased prevalence/severity of respiratory infections. In addition, the suppression of the innate response is accompanied by an increase in the neutrophil chemoattractant, IL-8, which may suggest a link to the pathogenesis of smoking-related inflammatory disease.
Collapse
Affiliation(s)
- Mark A Birrell
- Respiratory Pharmacology, Airway Disease Section, Imperial College, National Heart and Lung Institute, London, UK
| | | | | | | |
Collapse
|
19
|
Schenning M, van Tiel CM, Wirtz KWA, Snoek GT. The anti-apoptotic MAP kinase pathway is inhibited in NIH3T3 fibroblasts with increased expression of phosphatidylinositol transfer protein β. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2007; 1773:1664-71. [PMID: 17683809 DOI: 10.1016/j.bbamcr.2007.06.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2007] [Revised: 06/18/2007] [Accepted: 06/19/2007] [Indexed: 11/24/2022]
Abstract
Mouse NIH3T3 fibroblast cells overexpressing phosphatidylinositol transfer protein beta (PI-TPbeta, SPIbeta cells) demonstrate a low rate of proliferation and a high sensitivity towards UV-induced apoptosis when compared with wtNIH3T3 cells. In contrast, SPIbetaS262A cells overexpressing a mutant PI-TPbeta that lacks the protein kinase C-dependent phosphorylation site Ser-262, demonstrate a phenotype comparable with wtNIH3T3 cells. This suggests that the phosphorylation of Ser-262 in PI-TPbeta is involved in the regulation of apoptosis. Conditioned medium (CM) from wtNIH3T3 cells contains bioactive factors, presumably arachidonic acid metabolites [H. Bunte, et al., 2006; M. Schenning, et al., 2004] that are able to protect SPIbeta cells against UV-induced apoptosis. CM from SPIbeta cells lacks this protective activity. However, after heat denaturation CM from SPIbeta cells regains a protective activity comparable with that of wtNIH3T3 cells. This indicates that CM from SPIbeta cells contains an antagonistic factor interfering with the anti-apoptotic activity present. SPIbetaS262A cells do not produce the antagonist suggesting that phosphorylation of Ser-262 is required. Moreover, in line with the apparent lack of anti-apoptotic activity, CM from SPIbeta cells does not induce the expression of COX-2 or the activation of p42/p44 MAP kinase in SPIbeta cells. In contrast, CM from wtNIH3T3 and SPIbetaS262A cells or heat-treated CM from SPIbeta cells does induce these anti-apoptotic markers. Since we have previously shown that some of the arachidonic acid metabolites present in CM from wtNIH3T3 cells are prostaglandin (PG) E(2) and PGF(2alpha), we investigated the effect of these PGs on cell survival. Although PGE(2) and PGF(2alpha) were found to protect wtNIH3T3 and SPIbetaS262A cells against UV-induced apoptosis, these PGs failed to rescue SPIbeta cells. The fact that the concentrations of PGE(2) and PGF(2alpha) in the CM from SPIbeta cells and wtNIH3T3 cells were found to be comparable suggests that the failure of these PGs to protect SPIbeta cells could render these cells more apoptosis sensitive. Concomitantly, upon incubation with PGE(2) and PGF(2alpha), an increased expression of COX-2 and activation of p42/p44 MAP kinase were observed in wtNIH3T3 and SPIbetaS262A cells but not in SPIbeta cells. Hence, it appears that specific mechanisms of cell survival are impaired in SPIbeta cells.
Collapse
Affiliation(s)
- Martijn Schenning
- Bijvoet Center, Department of Biochemistry of Lipids, Institute of Biomembranes, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| | | | | | | |
Collapse
|
20
|
Elberg G, Elberg D, Lewis TV, Guruswamy S, Chen L, Logan CJ, Chan MD, Turman MA. EP2 receptor mediates PGE2-induced cystogenesis of human renal epithelial cells. Am J Physiol Renal Physiol 2007; 293:F1622-32. [PMID: 17728378 DOI: 10.1152/ajprenal.00036.2007] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Autosomal-dominant polycystic kidney disease (ADPKD) is characterized by formation of cysts from tubular epithelial cells. Previous studies indicate that secretion of prostaglandin E2 (PGE2) into cyst fluid and production of cAMP underlie cyst expansion. However, the mechanism by which PGE2 directly stimulates cAMP formation and modulates cystogenesis is still unclear, because the particular E-prostanoid (EP) receptor mediating the PGE2 effect has not been characterized. Our goal is to define the PGE2 receptor subtype involved in ADPKD. We used a three-dimensional cell-culture system of human epithelial cells from normal and ADPKD kidneys in primary cultures to demonstrate that PGE2 induces cyst formation. Biochemical evidence gathered by using real-time RT-PCR mRNA analysis and immunodetection indicate the presence of EP2 receptor in cystic epithelial cells in ADPKD kidney. Pharmacological evidence obtained by using PGE2-selective analogs further demonstrates that EP2 mediates cAMP formation and cystogenesis. Functional evidence for a role of EP2 receptor in mediating cAMP signaling was also provided by inhibiting EP2 receptor expression with transfection of small interfering RNA in cystic epithelial cells. Our results indicate that PGE2 produced in cyst fluid binds to adjacent EP2 receptors located on the apical side of cysts and stimulates EP2 receptor expression. PGE2 binding to EP2 receptor leads to cAMP signaling and cystogenesis by a mechanism that involves protection of cystic epithelial cells from apoptosis. The role of EP2 receptor in mediating the PGE2 effect on stimulating cyst formation may have direct pharmacological implications for the treatment of polycystic kidney disease.
Collapse
MESH Headings
- Apoptosis
- Cyclic AMP/biosynthesis
- Cyclic AMP/metabolism
- Dinoprostone/metabolism
- Epithelial Cells/metabolism
- Humans
- Kidney/metabolism
- Polycystic Kidney, Autosomal Dominant/etiology
- Polycystic Kidney, Autosomal Dominant/metabolism
- Polycystic Kidney, Autosomal Dominant/pathology
- Polycystic Kidney, Autosomal Dominant/physiopathology
- Protein Isoforms/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/pharmacology
- Receptors, Prostaglandin E/antagonists & inhibitors
- Receptors, Prostaglandin E/genetics
- Receptors, Prostaglandin E/metabolism
- Receptors, Prostaglandin E, EP2 Subtype
- Signal Transduction
- Spheroids, Cellular
- Transfection
Collapse
Affiliation(s)
- Gerard Elberg
- Department of Pediatrics, The University of Oklahoma Health Sciences Center, 940 N. E. 13th St., 2B2309, Oklahoma City, OK 73104, USA.
| | | | | | | | | | | | | | | |
Collapse
|