1
|
Chen X, Yu B, Wang Z, Zhou Q, Wu Q, He J, Dai C, Li Q, Wei J. Dynamic Transcriptome Analysis of SFRP Family in Guided Bone Regeneration With Occlusive Periosteum in Swine Model. J Craniofac Surg 2024; 35:1432-1437. [PMID: 39042069 DOI: 10.1097/scs.0000000000010365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/04/2024] [Indexed: 07/24/2024] Open
Abstract
BACKGROUND A variety of congenital or acquired conditions can cause craniomaxillofacial bone defects, resulting in a heavy financial burden and psychological stress. Guided bone self-generation with periosteum-preserved has great potential for reconstructing large bone defects. METHODS A swine model of guided bone regeneration with occlusive periosteum was established, the rib segment was removed, and the periosteum was sutured to form a closed regeneration chamber. Hematoxylin and eosin staining, Masson's staining, and Safranine O-Fast Green staining were done. Nine-time points were chosen for collecting the periosteum and regenerated bone tissue for gene sequencing. The expression level of each secreted frizzled-related protein (SFRP) member and the correlations among them were analyzed. RESULTS The process of bone regeneration is almost complete 1 month after surgery, and up to 1 week after surgery is an important interval for initiating the process. The expression of each SFRP family member fluctuated greatly. The highest expression level of all members ranged from 3 days to 3 months after surgery. The expression level of SFRP2 was the highest, and the difference between 2 groups was the largest. Secreted frizzled-related protein 2 and SFRP4 showed a notable positive correlation between the control and model groups. Secreted frizzled-related protein 1, SFRP2, and SFRP4 had a significant spike in fold change at 1 month postoperatively. Secreted frizzled-related protein 1 and SFRP2 had the strongest correlation. CONCLUSIONS This study revealed the dynamic expression of the SFRP family in guided bone regeneration with occlusive periosteum in a swine model, providing a possibility to advance the clinical application of bone defect repair.
Collapse
Affiliation(s)
- Xiaoxue Chen
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Vlashi R, Zhang X, Wu M, Chen G. Wnt signaling: essential roles in osteoblast differentiation, bone metabolism and therapeutic implications for bone and skeletal disorders. Genes Dis 2022. [DOI: 10.1016/j.gendis.2022.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
|
3
|
Martínez-Gil N, Ugartondo N, Grinberg D, Balcells S. Wnt Pathway Extracellular Components and Their Essential Roles in Bone Homeostasis. Genes (Basel) 2022; 13:genes13010138. [PMID: 35052478 PMCID: PMC8775112 DOI: 10.3390/genes13010138] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 12/11/2022] Open
Abstract
The Wnt pathway is involved in several processes essential for bone development and homeostasis. For proper functioning, the Wnt pathway is tightly regulated by numerous extracellular elements that act by both activating and inhibiting the pathway at different moments. This review aims to describe, summarize and update the findings regarding the extracellular modulators of the Wnt pathway, including co-receptors, ligands and inhibitors, in relation to bone homeostasis, with an emphasis on the animal models generated, the diseases associated with each gene and the bone processes in which each member is involved. The precise knowledge of all these elements will help us to identify possible targets that can be used as a therapeutic target for the treatment of bone diseases such as osteoporosis.
Collapse
|
4
|
Zweifler LE, Koh AJ, Daignault-Newton S, McCauley LK. Anabolic actions of PTH in murine models: two decades of insights. J Bone Miner Res 2021; 36:1979-1998. [PMID: 34101904 PMCID: PMC8596798 DOI: 10.1002/jbmr.4389] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 05/26/2021] [Accepted: 06/02/2021] [Indexed: 01/19/2023]
Abstract
Parathyroid hormone (PTH) is produced by the parathyroid glands in response to low serum calcium concentrations where it targets bones, kidneys, and indirectly, intestines. The N-terminus of PTH has been investigated for decades for its ability to stimulate bone formation when administered intermittently (iPTH) and is used clinically as an effective anabolic agent for the treatment of osteoporosis. Despite great interest in iPTH and its clinical use, the mechanisms of PTH action remain complicated and not fully defined. More than 70 gene targets in more than 90 murine models have been utilized to better understand PTH anabolic actions. Because murine studies utilized wild-type mice as positive controls, a variety of variables were analyzed to better understand the optimal conditions under which iPTH functions. The greatest responses to iPTH were in male mice, with treatment starting later than 12 weeks of age, a treatment duration lasting 5-6 weeks, and a PTH dose of 30-60 μg/kg/day. This comprehensive study also evaluated these genetic models relative to the bone formative actions with a primary focus on the trabecular compartment revealing trends in critical genes and gene families relevant for PTH anabolic actions. The summation of these data revealed the gene deletions with the greatest increase in trabecular bone volume in response to iPTH. These included PTH and 1-α-hydroxylase (Pth;1α(OH)ase, 62-fold), amphiregulin (Areg, 15.8-fold), and PTH related protein (Pthrp, 10.2-fold). The deletions with the greatest inhibition of the anabolic response include deletions of: proteoglycan 4 (Prg4, -9.7-fold), low-density lipoprotein receptor-related protein 6 (Lrp6, 1.3-fold), and low-density lipoprotein receptor-related protein 5 (Lrp5, -1.0-fold). Anabolic actions of iPTH were broadly affected via multiple and diverse genes. This data provides critical insight for future research and development, as well as application to human therapeutics. © 2021 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Laura E Zweifler
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| | - Amy J Koh
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| | | | - Laurie K McCauley
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA.,Department of Pathology, Medical School, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
5
|
Schupbach D, Comeau-Gauthier M, Harvey E, Merle G. Wnt modulation in bone healing. Bone 2020; 138:115491. [PMID: 32569871 DOI: 10.1016/j.bone.2020.115491] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 12/31/2022]
Abstract
Genetic studies have been instrumental in the field of orthopaedics for finding tools to improve the standard management of fractures and delayed unions. The Wnt signaling pathway that is crucial for development and maintenance of many organs also has a very promising pathway for enhancement of bone regeneration. The Wnt pathway has been shown to have a direct effect on stem cells during bone regeneration, making Wnt a potential target to stimulate bone repair after trauma. A more complete view of how Wnt influences animal bone regeneration has slowly come to light. This review article provides an overview of studies done investigating the modulation of the canonical Wnt pathway in animal bone regeneration models. This not only includes a summary of the recent work done elucidating the roles of Wnt and β-catenin in fracture healing, but also the results of thirty transgenic studies, and thirty-eight pharmacological studies. Finally, we discuss the discontinuation of sclerostin clinical trials, ongoing clinical trials with lithium, the results of Dkk antibody clinical trials, the shift into combination therapies and the future opportunities to enhance bone repair and regeneration through the modulation of the Wnt signaling pathway.
Collapse
Affiliation(s)
- Drew Schupbach
- Department of Surgery, Division of Orthopedic Surgery, McGill University, Montreal General Hospital, 1650 Cedar Avenue, Room A10-110, Montreal, Québec H3G 1A4, Canada; Experimental Surgery, Faculty of Medicine, McGill University, Montreal General Hospital, 1650 Cedar Avenue, Room A7-117, Montreal, Québec H3G 1A4, Canada.
| | - Marianne Comeau-Gauthier
- Department of Surgery, Division of Orthopedic Surgery, McGill University, Montreal General Hospital, 1650 Cedar Avenue, Room A10-110, Montreal, Québec H3G 1A4, Canada; Experimental Surgery, Faculty of Medicine, McGill University, Montreal General Hospital, 1650 Cedar Avenue, Room A7-117, Montreal, Québec H3G 1A4, Canada.
| | - Edward Harvey
- Department of Surgery, Division of Orthopedic Surgery, McGill University, Montreal General Hospital, 1650 Cedar Avenue, Room A10-110, Montreal, Québec H3G 1A4, Canada.
| | - Geraldine Merle
- Department of Surgery, Division of Orthopedic Surgery, McGill University, Montreal General Hospital, 1650 Cedar Avenue, Room A10-110, Montreal, Québec H3G 1A4, Canada; Department of Chemical Engineering, Polytechnique Montreal, 2500, chemin de Polytechnique, Montréal, Québec H3T 1J4, Canada.
| |
Collapse
|
6
|
Yu C, Xuan M, Zhang M, Yao Q, Zhang K, Zhang X, Guo J, Song L. Postnatal deletion of β-catenin in osterix-expressing cells is necessary for bone growth and intermittent PTH-induced bone gain. J Bone Miner Metab 2018; 36:560-572. [PMID: 29124436 DOI: 10.1007/s00774-017-0873-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 09/21/2017] [Indexed: 11/28/2022]
Abstract
wnt/β-catenin signaling has been shown to influence bone homeostasis and is important for parathyroid hormone (PTH)-induced bone gain. To further understand the role of β-catenin in the early stages of osteoblastic lineage cells for postnatal bone homeostasis and the anabolic actions of PTH on bone, we examined mice with postnatal disruption of β-catenin in osterix-expressing cells (β-catenin KO mice) by mating floxed β-catenin mice with transgenic mice expressing cre under the control of the osterix promoter suppressible by doxycycline. After withdrawal of doxycycline, β-catenin KO mice developed progressive bone loss, ectopic cartilage formation, accumulation of mesenchymal stromal cells, and bone marrow adiposity. The β-catenin-defective osteoblasts sorted by flow cytometry from β-catenin KO mice exhibited decreased EdU incorporation, increased annexin V activity, and profound alterations in gene expression including wnt target genes, osteoclast regulators, and osteoblast markers. A dramatic increase in osteoclasts was observed in both neonatal and postnatal β-catenin KO mice. Intermittent administration of PTH for 4 weeks significantly increased bone mass in control mice; however, this anabolic effect of PTH was substantially blunted in β-catenin KO mice. Our data indicate that β-catenin in osterix-expressing cells is required for postnatal osteoblast differentiation, osteoblast proliferation, and bone resorption, and is essential for the anabolic actions of PTH in bone.
Collapse
Affiliation(s)
- Caixia Yu
- Department of Endocrinology, Tongji Hospital, Tongji University School of Medicine, 389 Xincun Rd, Shanghai, 200065, China
| | - Miao Xuan
- Department of Endocrinology, Tongji Hospital, Tongji University School of Medicine, 389 Xincun Rd, Shanghai, 200065, China
| | - Mingzhu Zhang
- Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Qianqian Yao
- Department of Endocrinology, Tongji Hospital, Tongji University School of Medicine, 389 Xincun Rd, Shanghai, 200065, China
| | - Keqin Zhang
- Department of Endocrinology, Tongji Hospital, Tongji University School of Medicine, 389 Xincun Rd, Shanghai, 200065, China
| | - Xiuzhen Zhang
- Department of Endocrinology, Tongji Hospital, Tongji University School of Medicine, 389 Xincun Rd, Shanghai, 200065, China
| | - Jun Guo
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Lige Song
- Department of Endocrinology, Tongji Hospital, Tongji University School of Medicine, 389 Xincun Rd, Shanghai, 200065, China.
| |
Collapse
|
7
|
Zhang X, Zhu Y, Zhang C, Liu J, Sun T, Li D, Na Q, Xian CJ, Wang L, Teng Z. miR-542-3p prevents ovariectomy-induced osteoporosis in rats via targeting SFRP1. J Cell Physiol 2018; 233:6798-6806. [PMID: 29319176 PMCID: PMC6001432 DOI: 10.1002/jcp.26430] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 01/05/2018] [Indexed: 12/13/2022]
Abstract
Secreted frizzled-related protein-1 (SFRP1) is a negative regulatory molecule of the WNT signaling pathway and serves as a therapeutic target for bone formation in osteoporosis. In this study, we first established an ovariectomized (OVX) rat model to simulate postmenopausal osteoporosis and found significant changes in miR-542-3p and sFRP1 expression by RNA sequencing and qRT-PCR. In addition, there was a significant negative correlation between miR-542-3p and sFRP1 mRNA levels in postmenopausal women with osteoporosis. We found that miR-542-3p inhibited the expression of sFRP1 mRNA by luciferase reporter assay. When the miR-542-3p binding site in sFRP1 3'UTR was deleted, it did not affect its expression. Western blot results showed that miR-542-3p inhibited the expression of SFRP1 protein. The expression of SFRP1 was significantly increased in osteoblast-induced mesenchymal stem cells (MSC), whereas the expression of miR-542-3p was significantly decreased. And miR-542-3p transfected MSCs showed a significant increase in osteoblast-specific marker expression, indicating that miR-542-3p is necessary for MSC differentiation. Inhibition of miR-542-3p reduced bone formation, confirmed miR-542-3p play a role in bone formation in vivo. In general, these data suggest that miR-542-3p play an important role in bone formation via inhibiting SFRP1 expression and inducing osteoblast differentiation.
Collapse
Affiliation(s)
- Xiguang Zhang
- Department of Orthopedic Surgery, The People's Hospital of Yuxi City, The 6th Affiliated Hospital of Kunming Medical University, Yuxi, Yunan, China
| | - Yun Zhu
- Health Screening Center, The People's Hospital of Yuxi City, The 6th Affiliated Hospital of Kunming Medical University, Yuxi, Yunan, China
| | - Chuanlin Zhang
- Department of Orthopedic Surgery, The People's Hospital of Yuxi City, The 6th Affiliated Hospital of Kunming Medical University, Yuxi, Yunan, China
| | - Jianping Liu
- Department of Orthopedic Surgery, The People's Hospital of Yuxi City, The 6th Affiliated Hospital of Kunming Medical University, Yuxi, Yunan, China
| | - Tianming Sun
- Department of Nuclear Medicine, The People's Hospital of Yuxi City, The 6th Affiliated Hospital of Kunming Medical University, Yuxi, Yunan, China
| | - Dan Li
- Department of Clinic Laboratory, The People's Hospital of Yuxi City, The 6th Affiliated Hospital of Kunming Medical University, Yuxi, Yunan, China
| | - Qiang Na
- Department of Orthopedic Surgery, The People's Hospital of Yuxi City, The 6th Affiliated Hospital of Kunming Medical University, Yuxi, Yunan, China
| | - Cory J Xian
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5001, Australia
| | - Liping Wang
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5001, Australia
| | - Zhaowei Teng
- Department of Orthopedic Surgery, The People's Hospital of Yuxi City, The 6th Affiliated Hospital of Kunming Medical University, Yuxi, Yunan, China
| |
Collapse
|
8
|
Bipolar disorder and the risk of fracture: A nationwide population-based cohort study. J Affect Disord 2017; 218:246-252. [PMID: 28477503 DOI: 10.1016/j.jad.2017.04.037] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 04/16/2017] [Accepted: 04/20/2017] [Indexed: 01/18/2023]
Abstract
BACKGROUND The co-primary aims are: 1) to compare the risk of fracture between adults with bipolar disorder and those without bipolar disorder; and 2) to assess whether lithium, anticonvulsants and antipsychotics reduce risk of fracture among individuals with bipolar disorder. METHODS The analysis herein is a population-based retrospective cohort study, utilizing the National Health Insurance (NHI) medical claims data collected between 1997 and 2013 in Taiwan. We identified 3705 cases with incident diagnoses of bipolar disorder during study period and 37,050 matched controls without bipolar diagnoses. Incident diagnosis of fracture was operationalized as any bone fracture after the diagnosis of bipolar disorder or after the matched index date for controls. RESULTS Bipolar patients had significantly higher risk of facture when compared to matched controls (17.6% versus 11.7%, respectively p<0.001). The hazard ratio (HR) was 1.33 (95% confidence interval [CI]=1.23-1.48, p<0.001) after adjusting for covariates. Persons with bipolar disorder and a prior history of psychiatric hospitalization were had higher risk for bone fracture than those without prior history of psychiatric hospitalization when compared to match controls. Higher cumulative dose of antipsychotics or mood stabilizers did not increase the risk of fracture. LIMITATIONS The diagnoses of bipolar disorder were not confirmed with structured clinical interview. Drug adherence, exact exposure dosage, smoking, lifestyle, nutrition and exercise habits were unable to be assessed in our dataset. CONCLUSIONS Bipolar disorder is associated with increased risk of fracture, and higher cumulative dose of mood stabilizers and antipsychotics did not further increase the risk of fracture.
Collapse
|
9
|
Biology of Bone Formation, Fracture Healing, and Distraction Osteogenesis. J Craniofac Surg 2017; 28:1380-1389. [DOI: 10.1097/scs.0000000000003625] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
10
|
Al-Rekabi Z, Wheeler MM, Leonard A, Fura AM, Juhlin I, Frazar C, Smith JD, Park SS, Gustafson JA, Clarke CM, Cunningham ML, Sniadecki NJ. Activation of the IGF1 pathway mediates changes in cellular contractility and motility in single-suture craniosynostosis. J Cell Sci 2015; 129:483-91. [PMID: 26659664 DOI: 10.1242/jcs.175976] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 12/06/2015] [Indexed: 12/13/2022] Open
Abstract
Insulin growth factor 1 (IGF1) is a major anabolic signal that is essential during skeletal development, cellular adhesion and migration. Recent transcriptomic studies have shown that there is an upregulation in IGF1 expression in calvarial osteoblasts derived from patients with single-suture craniosynostosis (SSC). Upregulation of the IGF1 signaling pathway is known to induce increased expression of a set of osteogenic markers that previously have been shown to be correlated with contractility and migration. Although the IGF1 signaling pathway has been implicated in SSC, a correlation between IGF1, contractility and migration has not yet been investigated. Here, we examined the effect of IGF1 activation in inducing cellular contractility and migration in SSC osteoblasts using micropost arrays and time-lapse microscopy. We observed that the contractile forces and migration speeds of SSC osteoblasts correlated with IGF1 expression. Moreover, both contractility and migration of SSC osteoblasts were directly affected by the interaction of IGF1 with IGF1 receptor (IGF1R). Our results suggest that IGF1 activity can provide valuable insight for phenotype-genotype correlation in SSC osteoblasts and might provide a target for therapeutic intervention.
Collapse
Affiliation(s)
- Zeinab Al-Rekabi
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98195, USA Seattle Children's Research Institute, Center for Developmental Biology and Regenerative Medicine, Seattle, WA 98101, USA
| | - Marsha M Wheeler
- Department of Genome Sciences, University of Washington, Seattle, WA 98105, USA
| | - Andrea Leonard
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98195, USA
| | - Adriane M Fura
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
| | - Ilsa Juhlin
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98195, USA
| | - Christopher Frazar
- Department of Genome Sciences, University of Washington, Seattle, WA 98105, USA
| | - Joshua D Smith
- Department of Genome Sciences, University of Washington, Seattle, WA 98105, USA
| | - Sarah S Park
- Seattle Children's Research Institute, Center for Developmental Biology and Regenerative Medicine, Seattle, WA 98101, USA
| | - Jennifer A Gustafson
- Seattle Children's Research Institute, Center for Developmental Biology and Regenerative Medicine, Seattle, WA 98101, USA
| | - Christine M Clarke
- Seattle Children's Research Institute, Center for Developmental Biology and Regenerative Medicine, Seattle, WA 98101, USA
| | - Michael L Cunningham
- Seattle Children's Research Institute, Center for Developmental Biology and Regenerative Medicine, Seattle, WA 98101, USA Division of Craniofacial Medicine and the Department of Pediatrics, University of Washington, Seattle, WA 98105, USA
| | - Nathan J Sniadecki
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98195, USA Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
| |
Collapse
|
11
|
Xu H, Duan J, Ning D, Li J, Liu R, Yang R, Jiang JX, Shang P. Role of Wnt signaling in fracture healing. BMB Rep 2015; 47:666-72. [PMID: 25301020 PMCID: PMC4345510 DOI: 10.5483/bmbrep.2014.47.12.193] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Indexed: 01/08/2023] Open
Abstract
The Wnt signaling pathway is well known to play major roles in skeletal development and homeostasis. In certain aspects, fracture repair mimics the process of bone embryonic development. Thus, the importance of Wnt signaling in fracture healing has become more apparent in recent years. Here, we summarize recent research progress in the area, which may be conducive to the development of Wnt-based therapeutic strategies for bone repair. [BMB Reports 2014; 47(12): 666-672]
Collapse
Affiliation(s)
- Huiyun Xu
- Key Laboratory for Space Biosciences & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi Province 710072, People's Republic of China
| | - Jing Duan
- Key Laboratory for Space Biosciences & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi Province 710072, People's Republic of China
| | - Dandan Ning
- Key Laboratory for Space Biosciences & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi Province 710072, People's Republic of China
| | - Jingbao Li
- Key Laboratory for Space Biosciences & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi Province 710072, People's Republic of China
| | - Ruofei Liu
- Key Laboratory for Space Biosciences & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi Province 710072, People's Republic of China
| | - Ruixin Yang
- Key Laboratory for Space Biosciences & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi Province 710072, People's Republic of China
| | - Jean X Jiang
- Department of Biochemistry, University of Texas Health Science Center at San Antonio, Texas 78229, the United States
| | - Peng Shang
- Key Laboratory for Space Biosciences & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi Province 710072, People's Republic of China
| |
Collapse
|
12
|
Brommage R, Liu J, Hansen GM, Kirkpatrick LL, Potter DG, Sands AT, Zambrowicz B, Powell DR, Vogel P. High-throughput screening of mouse gene knockouts identifies established and novel skeletal phenotypes. Bone Res 2014; 2:14034. [PMID: 26273529 PMCID: PMC4472125 DOI: 10.1038/boneres.2014.34] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 07/29/2014] [Accepted: 07/31/2014] [Indexed: 12/13/2022] Open
Abstract
Screening gene function in vivo is a powerful approach to discover novel drug targets. We present high-throughput screening (HTS) data for 3 762 distinct global gene knockout (KO) mouse lines with viable adult homozygous mice generated using either gene-trap or homologous recombination technologies. Bone mass was determined from DEXA scans of male and female mice at 14 weeks of age and by microCT analyses of bones from male mice at 16 weeks of age. Wild-type (WT) cagemates/littermates were examined for each gene KO. Lethality was observed in an additional 850 KO lines. Since primary HTS are susceptible to false positive findings, additional cohorts of mice from KO lines with intriguing HTS bone data were examined. Aging, ovariectomy, histomorphometry and bone strength studies were performed and possible non-skeletal phenotypes were explored. Together, these screens identified multiple genes affecting bone mass: 23 previously reported genes (Calcr, Cebpb, Crtap, Dcstamp, Dkk1, Duoxa2, Enpp1, Fgf23, Kiss1/Kiss1r, Kl (Klotho), Lrp5, Mstn, Neo1, Npr2, Ostm1, Postn, Sfrp4, Slc30a5, Slc39a13, Sost, Sumf1, Src, Wnt10b), five novel genes extensively characterized (Cldn18, Fam20c, Lrrk1, Sgpl1, Wnt16), five novel genes with preliminary characterization (Agpat2, Rassf5, Slc10a7, Slc26a7, Slc30a10) and three novel undisclosed genes coding for potential osteoporosis drug targets.
Collapse
Affiliation(s)
| | - Jeff Liu
- Lexicon Pharmaceuticals , The Woodlands, TX, USA
| | | | | | | | | | | | | | - Peter Vogel
- Lexicon Pharmaceuticals , The Woodlands, TX, USA
| |
Collapse
|
13
|
Saidak Z, Le Henaff C, Azzi S, Marty C, Marie PJ. Low-dose PTH increases osteoblast activity via decreased Mef2c/Sost in senescent osteopenic mice. J Endocrinol 2014; 223:25-33. [PMID: 25056116 DOI: 10.1530/joe-14-0249] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Intermittent administration of parathyroid hormone (PTH) 1-34 at a standard dose has been shown to induce anabolic effects in bone. However, whether low-dose PTH promotes bone formation during senescence is unknown. To address this issue, we determined the effects of low-dose PTH and analysed the underlying mechanisms in prematurely senescent mice that display osteopenia. Treatment of 9-week-old Samp6 mice for 6 weeks with PTH at a standard dose (100 μg/kg per day) increased vertebral and femoral bone mass and improved bone microarchitecture as a result of increased bone-forming surfaces and mineral apposition rate (MAR). At a tenfold lower dose (10 μg/kg per day), PTH increased axial bone volume and trabecular thickness, as detected by bone histomorphometry but not by micro-computed tomography analysis. This anabolic effect resulted from increased osteoblast activity, as reflected by increased serum N-terminal propeptide of type 1 procollagen (P1NP) levels and MAR, with unchanged bone-forming surface or osteoblast surface. Mechanistically, low-dose PTH increased the expression of osteoblast markers in bone marrow stromal cells and mature osteoblasts, which was associated with increased expression of the Wnt effector Wisp1. Moreover, low-dose PTH decreased the expression of the Mef2c transcription factor, resulting in decreased Sost expression in osteoblasts/osteocytes. These results indicate that PTH at a low dose is effective at promoting bone formation and increased bone volume in senescent osteopenic mice through increased osteoblast activity and modulation of specific Wnt effectors, which raises the potential therapeutic use of intermittent PTH at low dose to increase bone forming activity and bone mass in skeletal senescence.
Collapse
Affiliation(s)
- Zuzana Saidak
- UMR-1132 InsermHôpital Lariboisière, 2 Rue Ambroise Paré, 75475 Paris Cedex 10, FranceUniversité Paris DiderotSorbonne Paris Cité, Paris, France UMR-1132 InsermHôpital Lariboisière, 2 Rue Ambroise Paré, 75475 Paris Cedex 10, FranceUniversité Paris DiderotSorbonne Paris Cité, Paris, France
| | - Carole Le Henaff
- UMR-1132 InsermHôpital Lariboisière, 2 Rue Ambroise Paré, 75475 Paris Cedex 10, FranceUniversité Paris DiderotSorbonne Paris Cité, Paris, France UMR-1132 InsermHôpital Lariboisière, 2 Rue Ambroise Paré, 75475 Paris Cedex 10, FranceUniversité Paris DiderotSorbonne Paris Cité, Paris, France
| | - Sofia Azzi
- UMR-1132 InsermHôpital Lariboisière, 2 Rue Ambroise Paré, 75475 Paris Cedex 10, FranceUniversité Paris DiderotSorbonne Paris Cité, Paris, France UMR-1132 InsermHôpital Lariboisière, 2 Rue Ambroise Paré, 75475 Paris Cedex 10, FranceUniversité Paris DiderotSorbonne Paris Cité, Paris, France
| | - Caroline Marty
- UMR-1132 InsermHôpital Lariboisière, 2 Rue Ambroise Paré, 75475 Paris Cedex 10, FranceUniversité Paris DiderotSorbonne Paris Cité, Paris, France UMR-1132 InsermHôpital Lariboisière, 2 Rue Ambroise Paré, 75475 Paris Cedex 10, FranceUniversité Paris DiderotSorbonne Paris Cité, Paris, France
| | - Pierre J Marie
- UMR-1132 InsermHôpital Lariboisière, 2 Rue Ambroise Paré, 75475 Paris Cedex 10, FranceUniversité Paris DiderotSorbonne Paris Cité, Paris, France UMR-1132 InsermHôpital Lariboisière, 2 Rue Ambroise Paré, 75475 Paris Cedex 10, FranceUniversité Paris DiderotSorbonne Paris Cité, Paris, France
| |
Collapse
|
14
|
Abou-Khalil R, Colnot C. Cellular and molecular bases of skeletal regeneration: what can we learn from genetic mouse models? Bone 2014; 64:211-21. [PMID: 24709685 DOI: 10.1016/j.bone.2014.03.046] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 03/19/2014] [Accepted: 03/26/2014] [Indexed: 10/25/2022]
Abstract
Although bone repairs through a very efficient regenerative process in 90% of the patients, many factors can cause delayed or impaired healing. To date, there are no reliable biological parameters to predict or diagnose bone repair defects. Orthopedic surgeons mostly base their diagnoses on radiographic analyses. With the recent progress in our understanding of the bone repair process, new methods may be envisioned. Animal models have allowed us to define the key steps of bone regeneration and the biological and mechanical factors that may influence bone healing in positive or negative ways. Most importantly, small animal models such as mice have provided powerful tools to apprehend the genetic bases of normal and impaired bone healing. The current review presents a state of the art of the genetically modified mouse models that have advanced our understanding of the cellular and molecular components of bone regeneration and repair. The review illustrates the use of these models to define the role of inflammation, skeletal cell lineages, signaling pathways, the extracellular matrix, osteoclasts and angiogenesis. These genetic mouse models promise to change the field of orthopedic surgery to help establish genetic predispositions for delayed repair, develop models of non-union that mimic the human conditions and elaborate new therapeutic approaches to enhance bone regeneration.
Collapse
Affiliation(s)
- Rana Abou-Khalil
- INSERM UMR1163, Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, Paris, France
| | - Céline Colnot
- INSERM UMR1163, Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, Paris, France.
| |
Collapse
|
15
|
Wang Y, Lin B. In silico investigations of potential anabolic treatments in multiple myeloma-induced bone disease. Bone 2013; 55:132-49. [PMID: 23416846 DOI: 10.1016/j.bone.2013.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 12/17/2012] [Accepted: 02/06/2013] [Indexed: 01/02/2023]
Abstract
No anabolic drugs are currently approved to treat multiple myeloma (MM)-induced bone disease and the anti-MM agent bortezomib exhibits the anabolic effects in the clinic. In this study, we focus on investigating potential anabolic treatments of MM-induced bone disease using our previously proposed MM-bone model, with the goal for clarifying the underlying molecular/cellular mechanisms. Firstly, a variety of virtual drug treatments are explored by the parametric study to clarify the anabolic-related molecular/cellular mechanisms. The real drug (i.e., bortezomib) treatments are further examined by developing an integrated model with bortezomib to validate the clarified anabolic-related molecular/cellular mechanisms. The simulated responses to the bortezomib treatments that are validated by the clinical data are consistent with the simulated responses to the virtual drug treatments. Our study clarifies that the anabolic effects in the treatment of MM-induced bone disease are associated with promoting the differentiation of bone marrow stromal cells (BMSC) and inhibiting the apoptosis of active osteoblasts, while promoting the differentiation of osteoblast precursors is instead suggested to be associated with the anti-catabolic effects. Compared with the individual anabolic therapies, the anabolic therapies that promote the differentiation of BMSC in combination with the anti-MM/anti-catabolic therapies are found to induce a greater increase in the bone volume, while the anabolic therapies that inhibit the apoptosis of active osteoblasts in combination with the anti-MM/anti-catabolic therapies induce a lower increase in the bone volume. The simulations also suggest that the direct inhibition of bortezomib on the osteoclast activity is probably a redundant mechanism.
Collapse
Affiliation(s)
- Yan Wang
- Department of Infrastructure Engineering, School of Engineering, University of Melbourne, Melbourne, VIC 3010, Australia.
| | | |
Collapse
|
16
|
WNT signaling in bone homeostasis and disease: from human mutations to treatments. Nat Med 2013; 19:179-92. [PMID: 23389618 DOI: 10.1038/nm.3074] [Citation(s) in RCA: 1448] [Impact Index Per Article: 131.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 12/18/2012] [Indexed: 12/11/2022]
Abstract
Low bone mass and strength lead to fragility fractures, for example, in elderly individuals affected by osteoporosis or children with osteogenesis imperfecta. A decade ago, rare human mutations affecting bone negatively (osteoporosis-pseudoglioma syndrome) or positively (high-bone mass phenotype, sclerosteosis and Van Buchem disease) have been identified and found to all reside in components of the canonical WNT signaling machinery. Mouse genetics confirmed the importance of canonical Wnt signaling in the regulation of bone homeostasis, with activation of the pathway leading to increased, and inhibition leading to decreased, bone mass and strength. The importance of WNT signaling for bone has also been highlighted since then in the general population in numerous genome-wide association studies. The pathway is now the target for therapeutic intervention to restore bone strength in millions of patients at risk for fracture. This paper reviews our current understanding of the mechanisms by which WNT signalng regulates bone homeostasis.
Collapse
|
17
|
Dore RK. Long-term safety, efficacy, and patient acceptability of teriparatide in the management of glucocorticoid-induced osteoporosis. Patient Prefer Adherence 2013; 7:435-46. [PMID: 23717037 PMCID: PMC3663438 DOI: 10.2147/ppa.s31067] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Glucocorticoids are commonly prescribed medications to treat multiple diseases across many medical specialties. One of the most common yet largely unappreciated side effect of glucocorticoid use is increased risk of fracture. Many different therapies are indicated to prevent and treat this condition; many guidelines exist that suggest appropriate use of both glucocorticoids and the medications approved to prevent this common side effect of glucocorticoid therapy. Nevertheless, 30%-50% of patients on long-term glucocorticoid therapy sustain a fracture. Teriparatide, recombinant human parathyroid hormone (1-34), is a daily self-injectable therapy for 24 months approved for use in patients taking long-term glucocorticoids. Teriparatide has been shown to increase bone mineral density and reduce vertebral fracture risk in glucocorticoid-treated patients. Glucocorticoids have many adverse effects on bone that teriparatide has been shown to prevent or negate. Given the fact that preventive therapy for glucocorticoid-induced osteoporosis is often not prescribed, one wonders whether a daily self-injectable therapy for this condition would be prescribed by physicians and accepted by patients. This article reviews the epidemiology, pathophysiology, treatment, guidelines, and persistence data (when available) for patients with glucocorticoid-induced osteoporosis treated with teriparatide.
Collapse
Affiliation(s)
- Robin K Dore
- David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Correspondence: Robin K Dore, David Geffen School of Medicine, University of California, 12791 Newport Ave #201, Tustin, CA 92780, USA Email
| |
Collapse
|
18
|
Fei Y, Hurley MM. Role of fibroblast growth factor 2 and Wnt signaling in anabolic effects of parathyroid hormone on bone formation. J Cell Physiol 2012; 227:3539-45. [PMID: 22378151 DOI: 10.1002/jcp.24075] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Osteoporosis poses enormous health and economic burden worldwide. One of the very few anabolic agents for osteoporosis is parathyroid hormone (PTH). Although great progress has been made since the FDA approved PTH in 2002, the detailed mechanisms of the bone anabolic effects of intermittent PTH treatment is still not well understood. PTH bone anabolic effect is regulated by extracellular factors. Maximal bone anabolic effect of PTH requires fibroblast growth factor 2 (FGF2) signaling, which might be mediated by transcription factor activating transcription factor 4 (ATF4). Maximal bone anabolic effect of PTH also requires Wnt signaling. Particularly, Wnt antagonists such as sclerostin, dickkopf 1 (DKK1) and secreted frizzled related protein 1 (sFRP1) are promising targets to increase bone formation. Interestingly, FGF2 signaling modulates Wnt/β-Catenin signaling pathway in bone. Therefore, multiple signaling pathways utilized by PTH are cross talking and working together to promote bone formation. Extensive studies on the mechanisms of action of PTH will help to identify new pathways that regulate bone formation, to improve available agents to stimulate bone formation, and to identify potential new anabolic agents for osteoporosis.
Collapse
Affiliation(s)
- Yurong Fei
- Department of Medicine, University of Connecticut Health Center, Farmington, CT 06030, USA
| | | |
Collapse
|
19
|
Walker EC, Poulton IJ, McGregor NE, Ho PWM, Allan EH, Quach JM, Martin TJ, Sims NA. Sustained RANKL response to parathyroid hormone in oncostatin M receptor-deficient osteoblasts converts anabolic treatment to a catabolic effect in vivo. J Bone Miner Res 2012; 27:902-12. [PMID: 22190112 DOI: 10.1002/jbmr.1506] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Parathyroid hormone (PTH) is the only approved anabolic agent for osteoporosis treatment. It acts via osteoblasts to stimulate both osteoclast formation and bone formation, with the balance between these two activities determined by the mode of administration. Oncostatin M (OSM), a gp130-dependent cytokine expressed by osteoblast lineage cells, has similar effects and similar gene targets in the osteoblast lineage. In this study, we investigated whether OSM might participate in anabolic effects of PTH. Microarray analysis and quantitative real-time polymerase chain reaction (qPCR) of PTH-treated murine stromal cells and primary calvarial osteoblasts identified significant regulation of gp130 and gp130-dependent coreceptors and ligands, including a significant increase in OSM receptor (OSMR) expression. To determine whether OSMR signaling is required for PTH anabolic action, 6-week-old male Osmr(-/-) mice and wild-type (WT) littermates were treated with hPTH(1-34) for 3 weeks. In WT mice, PTH increased trabecular bone volume and trabecular thickness. In contrast, the same treatment had a catabolic effect in Osmr(-/-) mice, reducing both trabecular bone volume and trabecular number. This was not explained by any alteration in the increased osteoblast formation and mineral apposition rate in response to PTH in Osmr(-/-) compared with WT mice. Rather, PTH treatment doubled osteoclast surface in Osmr(-/-) mice, an effect not observed in WT mice. Consistent with this finding, when osteoclast precursors were cultured in the presence of osteoblasts, more osteoclasts were formed in response to PTH when Osmr(-/-) osteoblasts were used. Neither PTH1R mRNA levels nor cAMP response to PTH were modified in Osmr(-/-) osteoblasts. However, RANKL induction in PTH-treated Osmr(-/-) osteoblasts was sustained at least until 24 hours after PTH exposure, an effect not observed in WT osteoblasts. These data indicate that the transient RANKL induction by intermittent PTH administration, which is associated with its anabolic action, is changed to a prolonged induction in OSMR-deficient osteoblasts, resulting in bone destruction.
Collapse
Affiliation(s)
- Emma C Walker
- St. Vincent's Institute of Medical Research, Melbourne, Victoria, Australia
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Redlich K, Smolen JS. Inflammatory bone loss: pathogenesis and therapeutic intervention. Nat Rev Drug Discov 2012; 11:234-50. [PMID: 22378270 DOI: 10.1038/nrd3669] [Citation(s) in RCA: 556] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bone is a tissue undergoing continuous building and degradation. This remodelling is a tightly regulated process that can be disturbed by many factors, particularly hormonal changes. Chronic inflammation can also perturb bone metabolism and promote increased bone loss. Inflammatory diseases can arise all over the body, including in the musculoskeletal system (for example, rheumatoid arthritis), the intestine (for example, inflammatory bowel disease), the oral cavity (for example, periodontitis) and the lung (for example, cystic fibrosis). Wherever inflammatory diseases occur, systemic effects on bone will ensue, as well as increased fracture risk. Here, we discuss the cellular and signalling pathways underlying, and strategies for therapeutically interfering with, the inflammatory loss of bone.
Collapse
Affiliation(s)
- Kurt Redlich
- Division of Rheumatology, Department of Medicine 3, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria.
| | | |
Collapse
|
21
|
Redlich K, Smolen JS. Inflammatory bone loss: pathogenesis and therapeutic intervention. Nat Rev Drug Discov 2012. [DOI: 78495111110.1038/nrd3669' target='_blank'>'"<>78495111110.1038/nrd3669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [78495111110.1038/nrd3669','', '10.1002/jcp.20834')">Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2022]
78495111110.1038/nrd3669" />
|
22
|
Murrills RJ, Fukayama S, Boschelli F, Matteo JJ, Owens J, Golas JM, Patel D, Lane G, Liu YB, Carter L, Jussif J, Spaulding V, Wang YD, Boschelli DH, McKew JC, Li XJ, Lockhead S, Milligan C, Kharode YP, Diesl V, Bai Y, Follettie M, Bex FJ, Komm B, Bodine PVN. Osteogenic effects of a potent Src-over-Abl-selective kinase inhibitor in the mouse. J Pharmacol Exp Ther 2011; 340:676-87. [PMID: 22171089 DOI: 10.1124/jpet.111.185793] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Src-null mice have higher bone mass because of decreased bone resorption and increased bone formation, whereas Abl-null mice are osteopenic, because of decreased bone formation. Compound I, a potent inhibitor of Src in an isolated enzyme assay (IC(50) 0.55 nM) and a Src-dependent cell growth assay, with lower activity on equivalent Abl-based assays, potently, but biphasically, accelerated differentiation of human mesenchymal stem cells to an osteoblast phenotype (1-10 nM). Compound I (≥0.1 nM) also activated osteoblasts and induced bone formation in isolated neonatal mouse calvariae. Compound I required higher concentrations (100 nM) to inhibit differentiation and activity of osteoclasts. Transcriptional profiling (TxP) of calvaria treated with 1 μM compound I revealed down-regulation of osteoclastic genes and up-regulation of matrix genes and genes associated with the osteoblast phenotype, confirming compound I's dual effects on bone resorption and formation. In addition, calvarial TxP implicated calcitonin-related polypeptide, β (β-CGRP) as a potential mediator of compound I's osteogenic effect. In vivo, compound I (1 mg/kg s.c.) increased vertebral trabecular bone volume 21% (microcomputed tomography) in intact female mice. Increased trabecular volume was also detected histologically in a separate bone, the femur, particularly in the secondary spongiosa (100% increase), which underwent a 171% increase in bone formation rate, a 73% increase in mineralizing surface, and a 59% increase in mineral apposition rate. Similar effects were observed in ovariectomized mice with established osteopenia. We conclude that the Src inhibitor compound I is osteogenic, presumably because of its potent stimulation of osteoblast differentiation and activation, possibly mediated by β-CGRP.
Collapse
Affiliation(s)
- Richard J Murrills
- Department of Osteoporosis and Frailty, Women's Health and Musculoskeletal Biology, Wyeth Research, Collegeville, Pennsylvania, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Update on Wnt signaling in bone cell biology and bone disease. Gene 2011; 492:1-18. [PMID: 22079544 DOI: 10.1016/j.gene.2011.10.044] [Citation(s) in RCA: 292] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 10/13/2011] [Accepted: 10/20/2011] [Indexed: 12/17/2022]
Abstract
For more than a decade, Wnt signaling pathways have been the focus of intense research activity in bone biology laboratories because of their importance in skeletal development, bone mass maintenance, and therapeutic potential for regenerative medicine. It is evident that even subtle alterations in the intensity, amplitude, location, and duration of Wnt signaling pathways affects skeletal development, as well as bone remodeling, regeneration, and repair during a lifespan. Here we review recent advances and discrepancies in how Wnt/Lrp5 signaling regulates osteoblasts and osteocytes, introduce new players in Wnt signaling pathways that have important roles in bone development, discuss emerging areas such as the role of Wnt signaling in osteoclastogenesis, and summarize progress made in translating basic studies to clinical therapeutics and diagnostics centered around inhibiting Wnt pathway antagonists, such as sclerostin, Dkk1 and Sfrp1. Emphasis is placed on the plethora of genetic studies in mouse models and genome wide association studies that reveal the requirement for and crucial roles of Wnt pathway components during skeletal development and disease.
Collapse
|
24
|
Abstract
The past decade has seen rapid advancement in the dissection of the molecular events and players in the development and homeostasis of mineralized tissues, that is, teeth and bones. Much of this is due to research efforts toward the regeneration of these organs and also to develop treatments for pathologies of bone, especially osteoporosis. Of late, great interest has been focused on the Wnt family of proteins and their involvement in tooth and bone development and in the regulation of postnatal bone mass. The purpose of this review is to summarize these findings and to explore new areas of Wnt research such as Wnt?bone morphogenetic protein interactions and the exciting revelation of systemic serotonin being involved in bone mass regulation.
Collapse
Affiliation(s)
- Kevin A Tompkins
- Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
25
|
Robling AG, Kedlaya R, Ellis SN, Childress PJ, Bidwell JP, Bellido T, Turner CH. Anabolic and catabolic regimens of human parathyroid hormone 1-34 elicit bone- and envelope-specific attenuation of skeletal effects in Sost-deficient mice. Endocrinology 2011; 152:2963-75. [PMID: 21652726 PMCID: PMC3138236 DOI: 10.1210/en.2011-0049] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PTH is a potent calcium-regulating factor that has skeletal anabolic effects when administered intermittently or catabolic effects when maintained at consistently high levels. Bone cells express PTH receptors, but the cellular responses to PTH in bone are incompletely understood. Wnt signaling has recently been implicated in the osteo-anabolic response to the hormone. Specifically, the Sost gene, a major antagonist of Wnt signaling, is down-regulated by PTH exposure. We investigated this mechanism by treating Sost-deficient mice and their wild-type littermates with anabolic and catabolic regimens of PTH and measuring the skeletal responses. Male Sost(+/+) and Sost(-/-) mice were injected daily with human PTH 1-34 (0, 30, or 90 μg/kg) for 6 wk. Female Sost(+/+) and Sost(-/-) mice were continuously infused with vehicle or high-dose PTH (40 μg/kg · d) for 3 wk. Dual energy x-ray absorptiometry-derived measures of intermittent PTH (iPTH)-induced bone gain were impaired in Sost(-/-) mice. Further probing revealed normal or enhanced iPTH-induced cortical bone formation rates but concomitant increases in cortical porosity among Sost(-/-) mice. Distal femur trabecular bone was highly responsive to iPTH in Sost(-/-) mice. Continuous PTH (cPTH) infusion resulted in equal bone loss in Sost(+/+) and Sost(-/-) mice as measured by dual energy x-ray absorptiometry. However, distal femur trabecular bone, but not lumbar spine trabecular bone, was spared the bone-wasting effects of cPTH in Sost(-/-) mice. These results suggest that changes in Sost expression are not required for iPTH-induced anabolism. iPTH-induced resorption of cortical bone might be overstimulated in Sost-deficient environments. Furthermore, Sost deletion protects some trabecular compartments, but not cortical compartments, from bone loss induced by high-dose PTH infusion.
Collapse
Affiliation(s)
- Alexander G Robling
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, 635 Barnhill Drive, MS 5035, Indianapolis, Indiana 46202, USA.
| | | | | | | | | | | | | |
Collapse
|
26
|
Cartilaginous repair of full-thickness articular cartilage defects is induced by the intermittent activation of PTH/PTHrP signaling. Osteoarthritis Cartilage 2011; 19:886-94. [PMID: 21571083 DOI: 10.1016/j.joca.2011.04.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 03/05/2011] [Accepted: 04/16/2011] [Indexed: 02/02/2023]
Abstract
OBJECTIVE We studied the effects of the transient activation of parathyroid hormone (PTH)/PTH-related peptide (PTHrP) signaling during the repair of 5-mm-diameter full-thickness defects of articular cartilage in the rabbit. MATERIALS AND METHODS Cylindrical full-thickness articular cartilage defects of 5mm in diameter were artificially created in the femoral trochlea of male adolescent Japanese white rabbits using a hand-drill. Recombinant human PTH(1-84) was then administered into the joint cavity continuously or intermittently for 2 weeks post-injury. The reparative tissues were histologically examined at 2, 4, and 8 weeks, and were also immunohistochemically examined for type II collagen. Double immunostaining analysis was also performed for the PTH/PTHrP receptor and proliferating cell nuclear antigen (PCNA) in the regenerating tissues. RESULTS No evidence of cartilage formation was evident throughout the period of the experiments in injured animals administered saline alone. In contrast, cartilage formation occurred at 4 weeks in both the continuous and intermittent PTH-treated defects. At 8 weeks post-injury, for the intermittently treated defects, the regenerated cartilage successfully resurfaced the defects and the original bone-articular cartilage junction was recovered. In contrast, the defects were covered with fibrous or fibrocartilaginous tissues in the continuously administered group. PCNA and PTH/PTHrP receptor-double positive mesenchymal cells were significantly increased in both the continuous and intermittent PTH-treated defects at 2 weeks post-injury. CONCLUSIONS The present results suggest that the transient activation and release from PTH/PTHrP signaling during the early stages of the cartilage repair process facilitates the induction of regenerative chondrogenesis in full-thickness articular cartilage defects.
Collapse
|
27
|
Jilka RL, Almeida M, Ambrogini E, Han L, Roberson PK, Weinstein RS, Manolagas SC. Decreased oxidative stress and greater bone anabolism in the aged, when compared to the young, murine skeleton with parathyroid hormone administration. Aging Cell 2010; 9:851-67. [PMID: 20698835 DOI: 10.1111/j.1474-9726.2010.00616.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Because of recent insights into the pathogenesis of age-related bone loss, we investigated whether intermittent parathyroid hormone (PTH) administration antagonizes the molecular mechanisms of the adverse effects of aging on bone. Parathyroid hormone produced a greater increase in vertebral trabecular bone mineral density and bone volume as well as a greater expansion of the endocortical bone surface in the femur of 26- when compared to 6 -month-old female C57BL/6 mice. Moreover, PTH increased trabecular connectivity in vertebrae, and the toughness of both vertebrae and femora in old, but not young, mice. Parathyroid hormone also increased the rate of bone formation and reduced osteoblast apoptosis to a greater extent in the old mice. Most strikingly, PTH reduced reactive oxygen species, p66(Shc) phosphorylation, and expression of the lipoxygenase Alox15, and it increased glutathione and stimulated Wnt signaling in bone of old mice. Parathyroid hormone also antagonized the effects of oxidative stress on p66(Shc) phosphorylation, Forkhead Box O transcriptional activity, osteoblast apoptosis, and Wnt signaling in vitro. In contrast, administration of the antioxidants N-acetyl cysteine or pegylated catalase reduced osteoblast progenitors and attenuated proliferation and Wnt signaling. These results suggest that PTH has a greater bone anabolic efficacy in old age because in addition to its other positive actions on bone formation, it antagonizes the age-associated increase in oxidative stress and its adverse effects on the birth and survival of osteoblasts. On the other hand, ordinary antioxidants cannot restore bone mass in old age because they slow remodeling and attenuate osteoblastogenesis by interfering with Wnt signaling.
Collapse
Affiliation(s)
- Robert L Jilka
- Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences, Little Rock, 72205, USA.
| | | | | | | | | | | | | |
Collapse
|
28
|
Yavropoulou MP, Papapoulos SE. Targeting the Wnt signaling pathway for the development of novel therapies for osteoporosis. Expert Rev Endocrinol Metab 2010; 5:711-722. [PMID: 30764023 DOI: 10.1586/eem.10.48] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A number of anti-osteoporotic drugs, predominantly inhibitors of bone resorption, are currently used in the management of patients with osteoporosis to reduce the risk of fractures. While the management of the disease has improved significantly, there are still unmet needs, mainly due to a lack of agents able to replace bone that has already been lost. Human and animal genetics have identified the pivotal role of the Wnt signaling pathway in the regulation of bone formation by the osteoblasts and have made it a very attractive target for the development of novel treatments for osteoporosis. In this article, we review evidence that supports the targeting of components of the Wnt signaling pathway for the design of bone-forming treatments for osteoporosis.
Collapse
Affiliation(s)
- Maria P Yavropoulou
- a Department of Endocrinology and Metabolic Diseases, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Socrates E Papapoulos
- a Department of Endocrinology and Metabolic Diseases, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
- b
| |
Collapse
|
29
|
Mason JJ, Williams BO. SOST and DKK: Antagonists of LRP Family Signaling as Targets for Treating Bone Disease. J Osteoporos 2010; 2010:460120. [PMID: 20948575 PMCID: PMC2951123 DOI: 10.4061/2010/460120] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Revised: 04/27/2010] [Accepted: 05/26/2010] [Indexed: 11/22/2022] Open
Abstract
The study of rare human genetic disorders has often led to some of the most significant advances in biomedical research. One such example was the body of work that resulted in the identification of the Low Density Lipoprotein-Related Protein (LRP5) as a key regulator of bone mass. Point mutations were identified that encoded forms of LRP5 associated with very high bone mass (HBM). HBM patients live to a normal age and do not appear to have increased susceptibility to carcinogenesis or other disease. Thus, devising methods to mimic the molecular consequences of this mutation to treat bone diseases associated with low bone mass is a promising avenue to pursue. Two groups of agents related to putative LRP5/6 functions are under development. One group, the focus of this paper, is based on antagonizing the functions of putative inhibitors of Wnt signaling, Dickkopf-1 (DKK1), and Sclerostin (SOST). Another group of reagents under development is based on the observation that LRP5 may function to control bone mass by regulating the secretion of serotonin from the enterrochromaffin cells of the duodenum.
Collapse
Affiliation(s)
- James J. Mason
- Center for Skeletal Disease Research, Van Andel Research Institute, 333 Bostwick NE, Grand Rapids, MI 49503, USA,Laboratory of Orthopaedic Cell and Tissue Mechanics, Van Andel Research Institute, 333 Bostwick NE, Grand Rapids, MI 49503, USA
| | - Bart O. Williams
- Center for Skeletal Disease Research, Van Andel Research Institute, 333 Bostwick NE, Grand Rapids, MI 49503, USA,Laboratory of Cell Signaling and Carcinogenesis, Van Andel Research Institute, 333 Bostwick NE, Grand Rapids, MI 49503, USA,*Bart O. Williams:
| |
Collapse
|
30
|
Abstract
IMPORTANCE OF THE FIELD Bones play many roles in the body, providing structure, protecting organs, anchoring muscles and storing calcium. Over 100 million people worldwide suffer from bone diseases, mainly osteoporosis, cancer-related bone loss, osteoarthritis and inflammatory arthritis. Osteoporosis itself has no specific symptoms, and the main consequence is the increased risk of bone fractures. Therefore, the prevention of bone diseases is important to maintain the quality of life in the human society. However, treatment options are still insufficient. AREAS COVERED IN THIS REVIEW This review article gives a summary of the low molecular mass modulators of bone diseases targets disclosed in patent applications and articles, mainly during the last 5 years. WHAT THE READER WILL GAIN Readers will rapidly gain an overview of these modulators not only for historical targets, but also of emerging and re-visited targets. Readers will also be able to see the current research trend and the main players in this field. TAKE HOME MESSAGE Drug discovery for bone diseases has made progress in the last years. The research area has dynamically shifted from historical targets (bisphosphonate, parathyroid hormone and calcitonin) to newly confirmed targets or targets re-visited which were biologically validated in the past. Cathepsin K inhibitors should be very close to launching in the market.
Collapse
Affiliation(s)
- Keiichi Masuya
- Novartis Institutes for BioMedical Research, Basel, Switzerland.
| | | |
Collapse
|
31
|
Anastasilakis AD, Polyzos SA, Avramidis A, Toulis KA, Papatheodorou A, Terpos E. The effect of teriparatide on serum Dickkopf-1 levels in postmenopausal women with established osteoporosis. Clin Endocrinol (Oxf) 2010; 72:752-7. [PMID: 19832854 DOI: 10.1111/j.1365-2265.2009.03728.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Parathyroid hormone increases the differentiation of osteoblast precursors through canonical wingless (Wnt) signalling, resulting in an osteoanabolic effect. We aimed to evaluate serum levels of the Wnt-inhibitor Dickkopf-1 (Dkk-1) in postmenopausal women with established osteoporosis and their changes with teriparatide (TPTD - human recombinant PTH 1-34). DESIGN AND PATIENTS A total of 31 postmenopausal Caucasian women with established osteoporosis (mean age 66.3 +/- 1.4 years) received daily injections of 20 microg TPTD for 18 months. Follow-up was continued for another 6 months after treatment discontinuation (total duration of treatment 24 months). MEASUREMENTS Serum samples for total calcium (Ca), intact PTH (iPTH), bone-specific alkaline phosphatase, C-terminal cross-linking telopeptide of type 1 collagen (CTx) and Dkk-1 were obtained at baseline, and at 6, 18 and 24 months after TPTD initiation. Lumbar spine bone mineral density (BMD) was measured before and after 18 months of TPTD treatment. A total of 16 age- and gender-matched healthy controls were also analysed at baseline. RESULTS Serum Dkk-1 levels at baseline were significantly higher in osteoporotic women compared with that in controls (P < 0.002). Dkk-1 increased significantly during TPTD administration (P < 0.044) and decreased to baseline 6 months after TPTD discontinuation. Dkk-1 change was positively correlated to Ca (r = 0.530, P = 0.004) and negatively correlated to iPTH change (r = -0.398, P = 0.040). There was no correlation between Dkk-1 and BMD changes. CONCLUSIONS Our data suggest that Dkk-1 levels are increased in women with postmenopausal osteoporosis. TPTD therapy results in further increase of Dkk-1 that may be compensative to TPTD-induced enhanced Wnt signalling.
Collapse
|
32
|
Kramer I, Keller H, Leupin O, Kneissel M. Does osteocytic SOST suppression mediate PTH bone anabolism? Trends Endocrinol Metab 2010; 21:237-44. [PMID: 20074973 DOI: 10.1016/j.tem.2009.12.002] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2009] [Revised: 12/06/2009] [Accepted: 12/09/2009] [Indexed: 02/02/2023]
Abstract
Parathyroid hormone (PTH) has bone anabolic activity when administered intermittently, affecting cells of the osteoblastic lineage at various stages, yet much remains to be learned about precisely how PTH promotes osteoblastic bone formation. Recent discoveries revealed that PTH causes transcriptional suppression of the osteocyte marker gene SOST, which encodes the potent secreted bone formation inhibitor, sclerostin. This review addresses whether osteocytes, terminally differentiated cells of the osteoblastic lineage, which are entrapped within the mineralized bone matrix, contribute to PTH-induced bone formation responses via regulation of sclerostin levels, and discusses recent evidence on how the bone anabolic responses elicited by intermittent PTH treatment or by sclerostin inhibition overlap and diverge.
Collapse
Affiliation(s)
- Ina Kramer
- Musculoskeletal Disease Area, Novartis Institutes for BioMedical Research, CH-4002 Basel, Switzerland
| | | | | | | |
Collapse
|
33
|
Romero G, Sneddon WB, Yang Y, Wheeler D, Blair HC, Friedman PA. Parathyroid hormone receptor directly interacts with dishevelled to regulate beta-Catenin signaling and osteoclastogenesis. J Biol Chem 2010; 285:14756-63. [PMID: 20212039 DOI: 10.1074/jbc.m110.102970] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bone growth and remodeling depend upon the opposing rates of bone formation and resorption. These functions are regulated by intrinsic seven transmembrane-spanning receptors, the parathyroid hormone receptor (PTH1R) and frizzled (FZD), through their respective ligands, parathyroid hormone (PTH) and Wnt. FZD activation of canonical beta-catenin signaling requires the adapter protein Dishevelled (Dvl). We identified a Dvl-binding motif in the PTH1R. Here, we report that the PTH1R activates the beta-catenin pathway by directly recruiting Dvl, independent of Wnt or LRP5/6. PTH1R coimmunoprecipitated with Dvl. Deleting the carboxyl-terminal PTH1R PDZ-recognition domain did not abrogate PTH1R-Dvl interactions; nor did truncating the receptor at position 480. However, further deletion eliminating the putative Dvl recognition domain abolished PTH1R interactions with Dvl. PTH activated beta-catenin in a time- and concentration-dependent manner and translocated beta-catenin to the nucleus. beta-Catenin activation was inhibited by Dvl2 dominant negatives and by short hairpin RNA sequences targeted against Dvl2. PTH-induced osteoclastogenesis was also inhibited by Dvl2 dominant negative mutants. These findings demonstrate that G protein-coupled receptors other than FZD directly activate beta-catenin signaling, thereby mimicking many of the functions of the canonical Wnt-FZD pathway. The distinct modes whereby FZD and PTH1R activate beta-catenin control convergent or divergent effects on osteoblast differentiation, and osteoclastogenesis may arise from PTH1R-induced second messenger phosphorylation.
Collapse
Affiliation(s)
- Guillermo Romero
- Laboratory for G Protein-coupled Receptor Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | | | |
Collapse
|
34
|
Affiliation(s)
- Natalie A Sims
- St. Vincent's Institute and Department of Medicine at St. Vincent's Hospital, The University of Melbourne, Fitzroy, Victoria, Australia
| |
Collapse
|
35
|
Yao W, Cheng Z, Shahnazari M, Dai W, Johnson ML, Lane NE. Overexpression of secreted frizzled-related protein 1 inhibits bone formation and attenuates parathyroid hormone bone anabolic effects. J Bone Miner Res 2010; 25:190-9. [PMID: 19594295 PMCID: PMC3153380 DOI: 10.1359/jbmr.090719] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Revised: 05/04/2009] [Accepted: 07/06/2009] [Indexed: 11/30/2022]
Abstract
Secreted frizzled-related protein 1 (sFRP1) is an antagonist of Wnt signaling, an important pathway in maintaining bone homeostasis. In this study we evaluated the skeletal phenotype of mice overexpressing sFRP1 (sFRP1 Tg) and the interaction of parathyroid hormone (PTH) treatment and sFRP1 (over)expression. Bone mass and microarchitecture were measured by micro-computed tomography (microCT). Osteoblastic and osteoclastic cell maturation and function were assessed in primary bone marrow cell cultures. Bone turnover was assessed by biochemical markers and dynamic bone histomorphometry. Real-time PCR was used to monitor the expression of several genes that regulate osteoblast maturation and function in whole bone. We found that trabecular bone mass measurements in distal femurs and lumbar vertebral bodies were 22% and 51% lower in female and 9% and 33% lower in male sFRP1 Tg mice, respectively, compared with wild-type (WT) controls at 3 months of age. Genes associated with osteoblast maturation and function, serum bone formation markers, and surface based bone formation were significantly decreased in sFRP1 Tg mice of both sexes. Bone resorption was similar between sFRP1 Tg and WT females and was higher in sFRP1 Tg male mice. Treatment with hPTH(1-34) (40 microg/kg/d) for 2 weeks increased trabecular bone volume in WT mice (females: +30% to 50%; males: +35% to 150%) compared with sFRP1 Tg mice (females: +5%; males: +18% to 54%). Percentage increases in bone formation also were lower in PTH-treated sFRP1 Tg mice compared with PTH-treated WT mice. In conclusion, overexpression of sFRP1 inhibited bone formation as well as attenuated PTH anabolic action on bone. The gender differences in the bone phenotype of the sFRP1 Tg animal warrants further investigation.
Collapse
Affiliation(s)
- Wei Yao
- Department of Medicine, UC Davis Medical Center, Sacramento, CA 94110, USA.
| | | | | | | | | | | |
Collapse
|
36
|
Abstract
Intermittent parathyroid hormone (PTH) treatment is a potent bone anabolic principle that suppresses expression of the bone formation inhibitor Sost. We addressed the relevance of Sost suppression for PTH-induced bone anabolism in vivo using mice with altered Sost gene dosage. Six-month-old Sost overexpressing and 2-month-old Sost deficient male mice and their wild-type littermates were subjected to daily injections of 100 microg/kg PTH(1-34) or vehicle for a 2-month period. A follow-up study was performed in Sost deficient mice using 40 and 80 microg/kg PTH(1-34). Animals were sacrificed 4 hours after the final PTH administration and Sost expression in long bone diaphyses was determined by qPCR. Bone changes were analyzed in vivo in the distal femur metaphysis by pQCT and ex vivo in the tibia and lumbar spine by DXA. Detailed ex vivo analyses of the femur were performed by pQCT, microCT, and histomorphometry. Overexpression of Sost resulted in osteopenia and Sost deletion in high bone mass. As shown before, PTH suppressed Sost in wild-type mice. PTH treatment induced substantial increases in bone mineral density, content, and cortical thickness and in aging wild-type mice also led to cancellous bone gain owing to amplified bone formation rates. PTH-induced bone gain was blunted at all doses and skeletal sites in Sost overexpressing and deficient mice owing to attenuated bone formation rates, whereas bone resorption was not different from that in PTH-treated wild-type controls. These data suggest that suppression of the bone formation inhibitor Sost by intermittent PTH treatment contributes to PTH bone anabolism.
Collapse
|
37
|
Modulation of Wnt signaling through inhibition of secreted frizzled-related protein I (sFRP-1) with N-substituted piperidinyl diphenylsulfonyl sulfonamides: part II. Bioorg Med Chem 2009; 18:190-201. [PMID: 19932972 DOI: 10.1016/j.bmc.2009.11.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Revised: 10/29/2009] [Accepted: 11/02/2009] [Indexed: 01/03/2023]
Abstract
Piperidinyl diphenylsulfonyl sulfonamides are a novel class of molecules that have inhibitory binding affinity for sFRP-1. As a secreted protein sFRP-1 inhibits the function of the secreted Wnt glycoprotein. Therefore, as inhibitors of sFRP-1 these small molecules facilitate the Wnt/beta-catenin canonical signaling pathway. Details of the structure-activity relationships and biological activity of this structural class of compounds will be discussed.
Collapse
|
38
|
Misra K, Matise MP. A critical role for sFRP proteins in maintaining caudal neural tube closure in mice via inhibition of BMP signaling. Dev Biol 2009; 337:74-83. [PMID: 19850029 DOI: 10.1016/j.ydbio.2009.10.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Revised: 10/08/2009] [Accepted: 10/08/2009] [Indexed: 10/20/2022]
Abstract
Both the BMP and Wnt pathways have been implicated in directing aspects of dorsal neural tube closure and cell fate specification. However, the mechanisms that control the diverse responses to these signals are poorly understood. In this study, we provide genetic and functional evidence that the secreted sFRP1 and sFRP2 proteins, which have been primarily implicated as negative regulators of Wnt signaling, can also antagonize BMP signaling in the caudal neural tube and that this function is critical to maintain proper neural tube closure and dorsal cell fate segregation. Our studies thus reveal a novel role for specific sFRP proteins in balancing the response of cells to two critical extracellular signaling pathways.
Collapse
Affiliation(s)
- Kamana Misra
- Department of Neuroscience & Cell Biology, Robert Wood Johnson Medical School, University of Medicine & Dentistry of New Jersey, 675 Hoes Lane, Piscataway, NJ 08854, USA.
| | | |
Collapse
|
39
|
Gaur T, Wixted JJ, Hussain S, O'Connell SL, Morgan EF, Ayers DC, Komm BS, Bodine PV, Stein GS, Lian JB. Secreted frizzled related protein 1 is a target to improve fracture healing. J Cell Physiol 2009; 220:174-81. [PMID: 19301255 DOI: 10.1002/jcp.21747] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Genetic studies have identified a high bone mass of phenotype in both human and mouse when canonical Wnt signaling is increased. Secreted frizzled related protein 1 (sFRP1) is one of several Wnt antagonists and among the loss-of-function mouse models in which 32-week-old mice exhibit a high bone mass phenotype. Here we show that impact fracture healing is enhanced in this mouse model of increased Wnt signaling at a physiologic level in young (8 weeks) sFRP1(-/-) mice which do not yet exhibit significant increases in BMD. In vivo deletion of sFRP1 function improves fracture repair by promoting early bone union without adverse effects on the quality of bone tissue reflected by increased mechanical strength. We observe a dramatic reduction of the cartilage callous, increased intramembranous bone formation with bone bridging by 14 days, and early bone remodeling during the 28-day fracture repair process in the sFRP1(-/-) mice. Our molecular analyses of gene markers indicate that the effect of sFRP1 loss-of-function during fracture repair is to accelerate bone healing after formation of the initial hematoma by directing mesenchymal stem cells into the osteoblast lineage via the canonical pathway. Further evidence to support this conclusion is the observation of maximal sFRP1 levels in the cartilaginous callus of a WT mouse. Hence sFRP1(-/-) mouse progenitor cells are shifted directly into the osteoblast lineage. Thus, developing an antagonist to specifically inhibit sFRP1 represents a safe target for stimulating fracture repair and bone formation in metabolic bone disorders, osteoporosis and aging.
Collapse
Affiliation(s)
- Tripti Gaur
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Migliaccio S, Brama M, Malavolta N. Management of glucocorticoids-induced osteoporosis: role of teriparatide. Ther Clin Risk Manag 2009; 5:305-10. [PMID: 19536312 PMCID: PMC2697534 DOI: 10.2147/tcrm.s3940] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Glucocorticoids (GC)-induced osteoporosis (GIOP) is the most common cause of secondary osteoporosis, which leads to an increased fracture risk in patients. The normal bone turnover depends on a balance between osteoblasts and osteoclasts activity and GC can cause a rapid bone loss, decreasing bone formation and increasing bone resorption. The decreased bone formation is mainly due to the GC-induced apoptosis of both osteoblasts and osteocytes, while the increased bone resorption is due to the increased life-span of pre-existing osteoclasts. Bisphosphonates are clearly effective in preventing and treating GIOP but anabolic therapeutic strategies are the new promising therapeutic alternative. Experimental and clinical studies indicate that teriparatide, the active (1–34) parathyroid hormone (PTH) molecule, is efficacious for the treatment of GIOP, being able to induce an increase in bone mass in these patients. Intermittent administration of human PTH (1–34) stimulates bone formation by increasing osteoblast number. Additionally, human PTH (1–34) modulates the level and/or activity of locally produced growth factors and cytokines. Teriparatide has been demonstrated in several clinical studies to significantly decrease the incidence of fractures in patients affected by GIOP. It has recently received an indication for GIOP and its label indication has also been expanded.
Collapse
Affiliation(s)
- Silvia Migliaccio
- Dipartimento di Fisiopatologia Medica, Policlinico Umberto I, Università degli Studi Sapienza di Roma, Italy
| | | | | |
Collapse
|
41
|
Kansara M, Tsang M, Kodjabachian L, Sims NA, Trivett MK, Ehrich M, Dobrovic A, Slavin J, Choong PFM, Simmons PJ, Dawid IB, Thomas DM. Wnt inhibitory factor 1 is epigenetically silenced in human osteosarcoma, and targeted disruption accelerates osteosarcomagenesis in mice. J Clin Invest 2009; 119:837-51. [PMID: 19307728 DOI: 10.1172/jci37175] [Citation(s) in RCA: 223] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Accepted: 01/21/2009] [Indexed: 02/06/2023] Open
Abstract
Wnt signaling increases bone mass by stimulating osteoblast lineage commitment and expansion and forms the basis for novel anabolic therapeutic strategies being developed for osteoporosis. These strategies include derepression of Wnt signaling by targeting secreted Wnt pathway antagonists, such as sclerostin. However, such therapies are associated with safety concerns regarding an increased risk of osteosarcoma, the most common primary malignancy of bone. Here, we analyzed 5 human osteosarcoma cell lines in a high-throughput screen for epigenetically silenced tumor suppressor genes and identified Wnt inhibitory factor 1 (WIF1), which encodes an endogenous secreted Wnt pathway antagonist, as a candidate tumor suppressor gene. In vitro, WIF1 suppressed beta-catenin levels in human osteosarcoma cell lines, induced differentiation of human and mouse primary osteoblasts, and suppressed the growth of mouse and human osteosarcoma cell lines. Wif1 was highly expressed in the developing and mature mouse skeleton, and, although it was dispensable for normal development, targeted deletion of mouse Wif1 accelerated development of radiation-induced osteosarcomas in vivo. In primary human osteosarcomas, silencing of WIF1 by promoter hypermethylation was associated with loss of differentiation, increased beta-catenin levels, and increased proliferation. These data lead us to suggest that derepression of Wnt signaling by targeting secreted Wnt antagonists in osteoblasts may increase susceptibility to osteosarcoma.
Collapse
Affiliation(s)
- Maya Kansara
- Ian Potter Foundation Centre for Cancer Genetics and Preventative Medicine, and Sir Donald and Lady Trescowthick Laboratories, Peter MacCallumCancer Centre, Melbourne, Victoria, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Moore WJ, Kern JC, Bhat R, Commons TJ, Fukayama S, Goljer I, Krishnamurthy G, Magolda RL, Nogle L, Pitts K, Stauffer B, Trybulski EJ, Welmaker GS, Wilson M, Bodine PVN. Modulation of Wnt signaling through inhibition of secreted frizzled-related protein I (sFRP-1) with N-substituted piperidinyl diphenylsulfonyl sulfonamides. J Med Chem 2009; 52:105-16. [PMID: 19072540 DOI: 10.1021/jm801144h] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The diphenylsulfonyl sulfonamide scaffold represented by 1 (WAY-316606) are small molecule inhibitors of the secreted protein sFRP-1, an endogenous antagonist of the secreted glycoprotein Wnt. Modulators of the Wnt pathway have been proposed as anabolic agents for the treatment of osteoporosis or other bone-related disorders. Details of the structure-activity relationships and biological activity from the first structural class of this scaffold will be discussed.
Collapse
Affiliation(s)
- William J Moore
- Chemical and Screening Sciences, Wyeth Research, Collegeville, Pennsylvania 19426, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Recent discoveries in humans and mice have revealed that the Wnt (Wingless and Int-1) signaling pathway is responsible for a complex array of functions in maintaining bone homeostasis. The Wnt proteins are key modulators of mesenchymal lineage specification and regulate most aspects of osteoblast physiology and postnatal bone acquisition by controlling the differentiation and activity of osteoblasts and osteoclasts. Initial reports have indicated that activators of Wnt signaling are potent promoters of osteogenesis; however, systemic hyperactivation of the canonical Wnt pathway could potentially accelerate neoplastic transformation and subsequent tumor growth. Alternatively, recent investigations of natural soluble antagonists of Wnt signaling in bone suggest the possibilities of bone-specific therapies targeting the negative regulators of Wnt pathway, especially sclerostin. With this new knowledge, novel pharmacologic interventions that alter Wnt signaling are being evaluated for the management of osteoporosis. In this article, we briefly describe the Wnt signaling elements, their characterized role in bone, and summarize the current knowledge on the potential to enhance bone formation through the manipulation of Wnt signaling antagonists.
Collapse
Affiliation(s)
- Mohammad Shahnazari
- Department of Medicine, UC Davis Medical Center, 4800 Second Avenue, Suite 2600, Sacramento, CA 95817, USA
| | | | | | | |
Collapse
|
44
|
Ogita M, Rached MT, Dworakowski E, Bilezikian JP, Kousteni S. Differentiation and proliferation of periosteal osteoblast progenitors are differentially regulated by estrogens and intermittent parathyroid hormone administration. Endocrinology 2008; 149:5713-23. [PMID: 18617606 PMCID: PMC2584601 DOI: 10.1210/en.2008-0369] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The periosteum is now widely recognized as a homeostatic and therapeutic target for actions of sex steroids and intermittent PTH administration. The mechanisms by which estrogens suppress but PTH promotes periosteal expansion are not known. In this report, we show that intermittent PTH(1-34) promotes differentiation of periosteal osteoblast precursors as evidenced by the stimulation of the expression or activity of alkaline phosphatase as well as of targets of the bone morphogenetic protein 2 (BMP-2) and Wnt pathways. In contrast, 17beta-estradiol (E2) had no effect by itself. However, it attenuated PTH- or BMP-2-induced differentiation of primary periosteal osteoblast progenitors. Administration of intermittent PTH to ovariectomized mice induced rapid phosphorylation of the BMP-2 target Smad1/5/8 in the periosteum. A replacement dose of E2 had no effect by itself but suppressed PTH-induced phosphorylation of Smad1/5/8. In contrast to its effects to stimulate periosteal osteoblast differentiation, PTH promoted and subsequently suppressed proliferation of periosteal osteoblast progenitors in vitro and in vivo. E2 promoted proliferation and attenuated the antiproliferative effect of PTH. Both hormones protected periosteal osteoblasts from apoptosis induced by various proapoptotic agents. These observations suggest that the different effects of PTH and estrogens on the periosteum result from opposing actions on the recruitment of early periosteal osteoblast progenitors. Intermittent PTH promotes osteoblast differentiation from periosteum-derived mesenchymal progenitors through ERK-, BMP-, and Wnt-dependent signaling pathways. Estrogens promote proliferation of early osteoblast progenitors but inhibit their differentiation by osteogenic agents such as PTH or BMP-2.
Collapse
Affiliation(s)
- Mami Ogita
- Department of Medicine, Columbia University, New York, New York 10032, USA
| | | | | | | | | |
Collapse
|
45
|
Trevant B, Gaur T, Hussain S, Symons J, Komm BS, Bodine PVN, Stein GS, Lian JB. Expression of secreted frizzled related protein 1, a Wnt antagonist, in brain, kidney, and skeleton is dispensable for normal embryonic development. J Cell Physiol 2008; 217:113-26. [PMID: 18498122 DOI: 10.1002/jcp.21482] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Secreted frizzled related protein-1 (sFRP1), an antagonist of Wnt signaling, regulates cell proliferation, differentiation and apoptosis and negatively regulates bone formation. The spatial and temporal pattern of endogenous sFRP1 expression and loss-of-function were examined in the sFRP1-LacZ knock-in mouse (sFRP1-/-) during embryonic development and post-natal growth. beta-gal activity representing sFRP1 expression is robust in brain, skeleton, kidney, eye, spleen, abdomen, heart and somites in early embryos, but sFRP1 gene inactivation in these tissues did not compromise normal embryonic and post-natal development. Kidney histology revealed increased numbers of glomeruli in KO mice, observed after 5 years of breeding. In the skeleton, we show sFRP1 expression is found in relation to the mineralizing front of bone tissue during skeletal development from E15.5 to birth. Trabecular bone volume and bone mineral density in the sFRP1-/- mouse compared to WT was slightly increased during post-natal growth. Calvarial osteoblasts from newborn sFRP1-/- mice exhibited a 20% increase in cell proliferation and differentiation at the early stages of osteoblast maturation. sFRP1 expression was observed in osteoclasts, but this did not affect osteoclast number or activity. These findings have identified functions for sFRP1 in kidney and bone that are not redundant with other sFRPs. In summary, the absence of major organ abnormalities, the enhanced bone formation and a normal life span with no detection of spontaneous tumors suggests that targeting sFRP1 can be used as a therapeutic strategy for increasing bone mass in metabolic bone disorders or promoting fracture healing by modulating Wnt signaling.
Collapse
Affiliation(s)
- Brune Trevant
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
BACKGROUND Selective serotonin reuptake inhibitors (SSRIs), benzodiazepines, and antipsychotics have each been associated with an increased risk of fracture in older individuals. The aim of this study was to better define the magnitude of fracture risk with psychotropic medications and to determine whether a dose-effect relationship exists. METHODS Population-based administrative databases were used to examine psychotropic medication exposure and fractures in persons aged 50 years and older in Manitoba between 1996 and 2004. Persons with osteoporotic fractures (vertebral, wrist, or hip [n = 15,792]) were compared with controls (3 controls for each case matched for age, sex, ethnicity, and comorbidity [n = 47,289]). Medications examined included antidepressants (SSRIs vs other monoamines), antipsychotics, lithium, and benzodiazepines. RESULTS Selective serotonin reuptake inhibitors were associated with the highest adjusted odds of osteoporotic fractures (odds ratio [OR] = 1.45; 95% confidence interval [CI], 1.32-1.59). Other monoamine antidepressants (OR = 1.15; 95% CI, 1.07-1.24) and benzodiazepines (OR = 1.10; 95% CI, 1.04-1.16) were also associated with greater fracture risk, although the relationship was weaker. Lithium was associated with lower fracture risk (OR = 0.63; 95% CI, 0.43-0.93), whereas the relationship with antipsychotics was not significant in the models that adjusted for diagnoses. A dose-effect relationship was seen with SSRIs and benzodiazepines. CONCLUSIONS This study provides novel insight into the relationship between fractures and psychotropic medications in the elderly. Selective serotonin reuptake inhibitors seem to have a greater risk than other psychotropic classes, and higher doses may further increase that risk. Lithium seems to be protective against fractures.
Collapse
|
47
|
Abstract
Continuous exposure to parathyroid hormone (PTH) is associated with catabolic effects, whereas intermittent exposure to low doses of PTH is associated with anabolic effects. By controlling osteoblast function, PTH increases bone formation on cancellous, endocortical, and periosteal bone surfaces. In general, PTH does not affect the replication of uncommitted osteoblast progenitors but suppresses proliferation of committed osteoprogenitors. Intermittent PTH promotes osteoblast differentiation, in part, by its ability to promote exit from the cell cycle, to activate Wnt signaling in osteoblasts, and to inhibit the Wnt antagonist sclerostin in osteocytes. Insulin-like growth factor-1 is also required for the actions of PTH to increase osteoblast numbers. Intermittent PTH prolongs osteoblast survival in rodents by mechanisms that involve activation and proteolytic degradation of Runx2. PTH's ability to orchestrate a dynamic range of signaling cascades that determine osteoblast fate may explain both its catabolic and beneficial actions on the skeleton.
Collapse
Affiliation(s)
- Stavroula Kousteni
- Department of Medicine, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY 10032, USA
| | | |
Collapse
|
48
|
Khosla S, Westendorf JJ, Oursler MJ. Building bone to reverse osteoporosis and repair fractures. J Clin Invest 2008; 118:421-8. [PMID: 18246192 DOI: 10.1172/jci33612] [Citation(s) in RCA: 293] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
An important, unfilled clinical need is the development of new approaches to improve fracture healing and to treat osteoporosis by increasing bone mass. Recombinant forms of bone morphogenetic protein 2 (BMP2) and BMP7 are FDA approved to promote spinal fusion and fracture healing, respectively, and the first FDA-approved anabolic drug for osteoporosis, parathyroid hormone, increases bone mass when administered intermittently but can only be given to patients in the US for two years. As we discuss here, the tremendous explosion over the last two decades in our fundamental understanding of the mechanisms of bone remodeling has led to the prospect of mechanism-based anabolic therapies for bone disorders.
Collapse
Affiliation(s)
- Sundeep Khosla
- Endocrine Research Unit, College of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | | | | |
Collapse
|
49
|
Abstract
Canonical Wnt signaling is central to normal bone homeostasis, and secretion of Wnt signaling inhibitors by multiple myeloma (MM) cells contributes to MM-related bone resorption and disease progression. The aim of this study was to test the effect of Wnt3a on bone disease and growth of MM cells in vitro and in vivo. Although Wnt3a activated canonical signaling in the majority of MM cell lines and primary cells tested, Wnt3a had no effect on MM cell growth in vitro. Moreover, forced expression of Wnt3a in H929 MM cells conferred no growth advantage over empty vector-transfected cells in vitro or importantly when grown subcutaneously in severe combined immunodeficient (SCID) mice. Importantly, although H929 cells stably expressing an empty vector injected into human bone grew rapidly and induced a marked reduction in bone mineral density, bones engrafted with Wnt3a-expressing H929 cells were preserved, exhibited increased osteoblast-to-osteoclast ratios, and reduced tumor burden. Likewise, treatment of myelomatous SCID-hu mice, carrying primary disease, with recombinant Wnt3a stimulated bone formation and attenuated MM growth. These results provide further support of the potential anabolic and anti-MM effects of enhancing Wnt signaling in the bone.
Collapse
|
50
|
|