1
|
Foroughi K, Jahanbani S, Khaksari M, Shayannia A. Obestatin attenuated methamphetamine-induced PC12 cells neurotoxicity via inhibiting autophagy and apoptosis. Hum Exp Toxicol 2019; 39:301-310. [PMID: 31726888 DOI: 10.1177/0960327119886036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Methamphetamine (METH) is an illicit dopaminergic neurotoxin and is an extremely addictive psychostimulant drug that influences monoamine neurotransmitter system of the brain and is responsible for enhancing energy and satisfaction and feelings of alertness. Long-lasting exposure to METH causes psychosis and increases the risk of Parkinson's disease. Studies have revealed that obestatin (OB) is a novel endogenous ligand, which may have neuroprotective effects. Hence, we hypothesized that OB might appropriately limit METH-induced neurotoxicity via the control of apoptotis and autophagy. In the current study, PC12 cells were exposed to both METH (0.5, 1, 2, 3, 4, and 6 mmol/L) and pretreatment OB (1, 10, 100, and 200 nmol/L) in vitro for 24 h to determine appropriate dose, and then downstream pathways were measured to investigate apoptosis and autophagy. The results have shown that OB reduced the apoptotic response post-METH exposure in PC12 cells by developing cell viability and diminishing apoptotic rates. Furthermore, the study has exhibited OB decreased gene expression of Beclin-1 by real-time polymerase chain reaction and LC3-II by Western blotting in METH-induced PC12 cells, which demonstrated that autophagy is reduced. The study is proposed that OB is useful in reducing oxidative stress, which may also play an essential role in the regulation of METH-triggered apoptotic response. So these data indicate that OB could potentially alleviate METH-induced neurotoxicity via the reduction of apoptotic and autophagy responses.
Collapse
Affiliation(s)
- K Foroughi
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - S Jahanbani
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - M Khaksari
- Addiction Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| | - A Shayannia
- Department of Medical Biotechnology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| |
Collapse
|
2
|
Mele C, Samà MT, Bisoffi AA, Caputo M, Bullara V, Mai S, Walker GE, Prodam F, Marzullo P, Aimaretti G, Pagano L. Circulating adipokines and metabolic setting in differentiated thyroid cancer. Endocr Connect 2019; 8:997-1006. [PMID: 31252407 PMCID: PMC6652238 DOI: 10.1530/ec-19-0262] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 06/17/2019] [Indexed: 12/18/2022]
Abstract
The associative link relating insulin resistance (IR) and adipokines to the occurrence and phenotype of differentiated thyroid cancer (DTC) is unknown. The aim of this study was to evaluate the relationship between IR and adipokines in DTC patients, as compared with carriers of benign thyroid diseases (BTD) and healthy controls. This observational study enrolled 77 subjects phenotyped as DTC (N = 30), BTD (N = 27) and healthy subjects (N = 20). Each subject underwent preoperative analysis of anthropometric parameters, thyroid function and autoimmunity, insulin resistance (HOMA-IR) and levels of unacylated (UAG) and acylated ghrelin (AG), obestatin, leptin and adiponectin. Multivariate regression models were used to test the predictive role of metabolic correlates on thyroid phenotypes and DTC extension. The three groups showed similar age, gender distribution, smoking habit, BMI and thyroid parameters. Obestatin was significantly higher in DTC group compared to BTD (P < 0.05) and control subjects (P < 0.0001). DTC and BTD groups showed higher levels of UAG (P < 0.01) and AG (P < 0.05). Leptin levels were comparable between groups, whereas adiponectin levels were lower in DTC compared to BTD group (P < 0.0001) and controls (P < 0.01). In parallel, HOMA-IR was higher in DTC than BTD (P < 0.05) and control group (P < 0.01). Stepwise multivariable regression analysis showed that obestatin and UAG were independent predictors of DTC (P = 0.01 for both). In an analysis restricted to the DTC group, obestatin levels were associated with the absence of lymph node metastases (P < 0.05). Our results highlight a potential association between metabolic setting, circulating adipokines and thyroid cancer phenotype.
Collapse
Affiliation(s)
- Chiara Mele
- Division of Endocrinology, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
- Division of General Medicine, Istituto Auxologico Italiano, IRCCS, S. Giuseppe Hospital, Piancavallo di Oggebbio (VB), Italy
- Correspondence should be addressed to C Mele:
| | - Maria Teresa Samà
- Division of Endocrinology, University Hospital ‘Maggiore della Carità’, Novara, Italy
| | - Alessandro Angelo Bisoffi
- Division of Endocrinology, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Marina Caputo
- Division of Endocrinology, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Valentina Bullara
- Division of Endocrinology, University Hospital ‘Maggiore della Carità’, Novara, Italy
| | - Stefania Mai
- Laboratory of Metabolic Research, Istituto Auxologico Italiano, IRCCS, S. Giuseppe Hospital, Piancavallo di Oggebbio (VB), Italy
| | | | - Flavia Prodam
- Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Paolo Marzullo
- Division of Endocrinology, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
- Division of General Medicine, Istituto Auxologico Italiano, IRCCS, S. Giuseppe Hospital, Piancavallo di Oggebbio (VB), Italy
| | - Gianluca Aimaretti
- Division of Endocrinology, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Loredana Pagano
- Division of Endocrinology, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
- Division of Endocrinology, Diabetology and Metabolism, Department of Medical Sciences, University of Turin, Turin, Italy
| |
Collapse
|
3
|
Mirarab E, Hojati V, Vaezi G, Shiravi A, Khaksari M. Obestatin inhibits apoptosis and astrogliosis of hippocampal neurons following global cerebral ischemia reperfusion via antioxidant and anti-inflammatory mechanisms. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2019; 22:617-622. [PMID: 31231488 PMCID: PMC6570752 DOI: 10.22038/ijbms.2019.34118.8110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Objective(s): Obestatin is a newly discovered peptide with antioxidant activities in different animal models. Recent studies have shown that Obestatin inhibits apoptosis following cardiac ischemia/reperfusion injury. Brain ischemia/reperfusion induces irreversible damage especially in the hippocampus area. This study aimed at examining the protective impact of Obestatin on apoptosis, protein expression and reactive astrogliosis level in hippocampal CA1 region of rat following transient global cerebral ischemia. Materials and Methods: Forty-eight male Wistar rats were randomly assigned into 4 groups (sham, ischemia/reperfusion, ischemia/reperfusion+ Obestatin 1, and 5 µg/kg, n=12). Ischemia induced occlusion of both common carotid arteries for 20 min. Obestatin 1 and 5 µg/kg were injected intraperitoneally at the beginning of reperfusion period and 24 and 48 hr after reperfusion. Assessment of the antioxidant enzymes and tumor necrosis factor alpha (TNF-α) was performed by ELISA method. Caspase-3 and glial fibrillary acidic protein (GFAP) proteins expression levels were evaluated by immunohistochemical staining 7 days after ischemia. Results: Based on the result of the current study, lower superoxide dismutase (SOD) and glutathione (GSH) (P<0.05) and higher malondialdehyde (MDA) and TNF-α levels were observed in the ischemia group than those of the sham group (P<0.01). Obestatin treatment could increase both SOD and GSH (P<0.05) and reduce MDA and TNF-α (P<0.05) versus the ischemia group. Moreover, obestatin could significantly decrease caspase-3 and GFAP positive cells in the CA1 region of hippocampus (P<0.01). Conclusion: Obestatin exerts protective effects against ischemia injury by inhibition of astrocytes activation and decreases neuronal cell apoptosis via its antioxidant properties.
Collapse
Affiliation(s)
- Elahe Mirarab
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Vida Hojati
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Golamhassan Vaezi
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | | | - Mehdi Khaksari
- School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| |
Collapse
|
4
|
Li W, Chang M, Qiu M, Chen Y, Zhang X, Li Q, Cui C. Exogenous obestatin decreases beta-cell apoptosis and alfa-cell proliferation in high fat diet and streptozotocin induced type 2 diabetic rats. Eur J Pharmacol 2019; 851:36-42. [PMID: 30776368 DOI: 10.1016/j.ejphar.2019.02.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 02/14/2019] [Accepted: 02/15/2019] [Indexed: 12/31/2022]
Abstract
Type 2 diabetes is a chronic metabolic disease characterized by progressive decrease of islet cell function. Delaying the process of islet failure remains a challenging goal in diabetes care. Previous studies have confirmed the role of obestatin, a gut peptide that belongs to ghrelin family, in the mediation of glucose metabolism. This study aimed to observe the long term effects of exogenous obestatin on glucose metabolism in type 2 diabetes rat model. Type 2 diabetic rat model was set up by high-fat diet (60%) followed by a low dose of streptozotocin intra-peritoneal injection. Exogenous obestatin was administered at a dose of 20 nmol/kg for 12 weeks by intraperitoneal injection. Compared to placebo group (saline intraperitoneal injection), obestatin treatment decreased the glucagon levels and increased the c-peptide levels. Furthermore, obestatin treatment led to a significant restoration of islet morphology, increasing insulin and reducing glucagon expressions. Apoptosis assay showed a reduction in the number of TUNEL positive-cells. The up-regulation of Akt and GSK3β in pancreas was confirmed by Real-Time PCR. These results demonstrated that obestatin might have a potential therapeutic relevance in improving islet cell function, including increasing insulin secretion through inhibiting beta cell apoptosis and decreasing glucagon secretion by inhibiting alfa cell proliferation in type 2 diabetes. In spite of its role in these phenomena, it is necessary to further discuss, especially regarding the role of obestatin on glucagon.
Collapse
Affiliation(s)
- Wensong Li
- Department of Infectious Disease, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Manli Chang
- Department of Laboratory Medicine, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Mingli Qiu
- Department of Endocrinology and Metabolism, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Yangli Chen
- Department of Endocrinology and Metabolism, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Xiaochen Zhang
- Department of Endocrinology and Metabolism, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Qiang Li
- Department of Endocrinology and Metabolism, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Can Cui
- Department of Endocrinology and Metabolism, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China.
| |
Collapse
|
5
|
Słupecka-Ziemilska M, Grzesiak P, Jank M, Majewska A, Rak A, Kowalczyk P, Kato I, Kuwahara A, Woliński J. Small intestinal development in suckling rats after enteral obestatin administration. PLoS One 2018; 13:e0205994. [PMID: 30339696 PMCID: PMC6195281 DOI: 10.1371/journal.pone.0205994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 10/04/2018] [Indexed: 11/19/2022] Open
Abstract
This study investigated the effect of enteral administration of obestatin on the development of small intestine, as well as oxidative stress markers and trancriptomic profile of gastrointestinal genes. Suckling rats were assigned to 3 groups treated with: C-saline solution; OL-obestatin (125 nmol/kg BW); OH-obestatin (250 nmol/kg BW) administered twice daily, from the 14th to the 21st day of life. Enteral administration of obestatin in both studied doses had no effect neither on the body weight of animals nor the BMI calculated in the day of euthanasia. Compared to the control group (C), treatment with obestatin resulted in significant changes in the histometry of the small intestinal wall as well as intestinal epithelial cell remodeling. The observed changes and their possible implications for intestinal development were dependent on the dosage of peptide. The enteral administration of high dose (OH) of obestatin significantly decreased its expression in the stomach and increased markers of oxidative stress. The gene profile revealed MAPK3 (mitogen-activated protein kinase-3) as the key regulator gene for obestatin action in the gastrointestinal track. In conclusion, we have showed that enteral administration of obestatin influences the gut mucosa remodeling. It is also suggested that the administration of high dose (OH) has inhibitory effect on the intestinal maturation of suckling rats.
Collapse
Affiliation(s)
- Monika Słupecka-Ziemilska
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Jabłonna, Poland
| | - Paulina Grzesiak
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Jabłonna, Poland
| | - Michał Jank
- Division of Pharmacology and Toxicology, Department of Pre-Clinical Sciences, Faculty of Veterinary Sciences, Warsaw University of Life Sciences SGGW-WULS, Warsaw, Poland
| | - Alicja Majewska
- Department of Physiological Sciences, Faculty of Veterinary Sciences, Warsaw University of Life Sciences SGGW-WULS, Warsaw, Poland
| | - Agnieszka Rak
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Paweł Kowalczyk
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Jabłonna, Poland
| | - Ikuo Kato
- Department of Medical Biochemistry, Kobe Pharmaceutical University, Kobe, Japan
| | - Atsukazu Kuwahara
- Laboratory of Physiology, Institute for Environmental Sciences and Graduate School of Nutritional and Environmental Science, University of Shizuoka, Shizuoka, Japan
| | - Jarosław Woliński
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Jabłonna, Poland
| |
Collapse
|
6
|
Gargantini E, Lazzari L, Settanni F, Taliano M, Trovato L, Gesmundo I, Ghigo E, Granata R. Obestatin promotes proliferation and survival of adult hippocampal progenitors and reduces amyloid-β-induced toxicity. Mol Cell Endocrinol 2016; 422:18-30. [PMID: 26586206 DOI: 10.1016/j.mce.2015.11.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 11/05/2015] [Accepted: 11/07/2015] [Indexed: 12/31/2022]
Abstract
The ghrelin gene-derived peptide obestatin promotes survival in different cell types through a yet undefined receptor; however, its potential neuroprotective activities are still unknown. Here, obestatin effects were investigated on proliferation and survival of adult rat hippocampal progenitor cells (AHPs). Obestatin immunoreactivity was found in AHPs; moreover, obestatin binding to AHPs was displaced by the GLP-1R agonist Ex-4 and antagonist Ex-9. Furthermore, obestatin increased cell proliferation and survival in growth factor deprived medium and inhibited apoptosis; these effects were blocked by Ex-9. The underlying mechanisms involved Gαs/cAMP/PKA/CREB signaling, phosphorylation of ERK1/2 and PI3K/Akt, and the PI3K targets GSK-3β/β-catenin and mTOR. Obestatin also counteracted Aβ1-42-induced detrimental effects through inhibition of GSK-3β activity and Tau hyperphosphorylation, main hallmarks of neuronal death in Alzheimer's disease. These findings indicate a novel protective role for obestatin in AHPs and candidate this peptide as potential therapeutic target for increasing neurogenesis and for approaching neurodegenerative disorders.
Collapse
Affiliation(s)
- Eleonora Gargantini
- Laboratory of Molecular and Cellular Endocrinology, University of Torino, 10126 Torino, Italy; Division of Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Torino, 10126 Torino, Italy
| | - Laura Lazzari
- Laboratory of Molecular and Cellular Endocrinology, University of Torino, 10126 Torino, Italy; Division of Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Torino, 10126 Torino, Italy
| | - Fabio Settanni
- Laboratory of Molecular and Cellular Endocrinology, University of Torino, 10126 Torino, Italy; Division of Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Torino, 10126 Torino, Italy
| | - Marina Taliano
- Laboratory of Molecular and Cellular Endocrinology, University of Torino, 10126 Torino, Italy; Division of Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Torino, 10126 Torino, Italy
| | - Letizia Trovato
- Laboratory of Molecular and Cellular Endocrinology, University of Torino, 10126 Torino, Italy; Division of Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Torino, 10126 Torino, Italy
| | - Iacopo Gesmundo
- Laboratory of Molecular and Cellular Endocrinology, University of Torino, 10126 Torino, Italy; Division of Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Torino, 10126 Torino, Italy
| | - Ezio Ghigo
- Division of Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Torino, 10126 Torino, Italy
| | - Riccarda Granata
- Laboratory of Molecular and Cellular Endocrinology, University of Torino, 10126 Torino, Italy; Division of Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Torino, 10126 Torino, Italy.
| |
Collapse
|
7
|
Koç M, Kumral ZNÖ, Özkan N, Memi G, Kaçar Ö, Bilsel S, Çetinel Ş, Yeğen BÇ. Obestatin improves ischemia/reperfusion-induced renal injury in rats via its antioxidant and anti-apoptotic effects: role of the nitric oxide. Peptides 2014; 60:23-31. [PMID: 25086266 DOI: 10.1016/j.peptides.2014.07.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 07/21/2014] [Accepted: 07/21/2014] [Indexed: 01/23/2023]
Abstract
Obestatin was shown to have anti-inflammatory effects in several inflammatory models. To elucidate the potential renoprotective effects of obestatin, renal I/R injury was induced in male Sprague Dawley rats by placing a clamp across left renal artery for 60min following a right nephrectomy. Clamp was released and the rats were injected with either saline or obestatin (10, 30, 100μg/kg). In some experiments, obestatin (10μg/kg) was administered with L-NAME (10mg/kg) or L-Nil (0.36mg/kg). Following a 24-h reperfusion, the rats were decapitated to measure serum creatinine and nitrite/nitrate levels, renal malondialdehyde (MDA), glutathione (GSH) levels and myeloperoxidase (MPO) activity and to assess cortical necrosis and apoptosis scores. Obestatin treatment reduced I/R-induced increase in creatinine levels, renal MPO activity and renal MDA levels, while renal GSH levels were significantly increased by obestatin. Histological analysis revealed that severe I/R injury and high apoptosis score in the kidney samples of saline-treated rats were significantly reduced and the cortical/medullary injury was ameliorated by obestatin. Expression of eNOS, which was increased by I/R injury, was further increased by obestatin, while serum NO levels were significantly decreased. iNOS inhibitor L-Nil reduced oxidative renal damage and improved the functional and histopathological parameters. I/R-induced elevation in eNOS expression, which was further increased by obestatin, was depressed by L-NAME and L-Nil treatments. The present data demonstrate that obestatin ameliorates renal I/R-injury by its possible anti-oxidative, anti-inflammatory and anti-apoptotic properties, which appear to involve the suppression of neutrophil accumulation and modulation of NO metabolism.
Collapse
Affiliation(s)
- Mehmet Koç
- Marmara University School of Medicine, Department of Internal Medicine, Division of Nephrology, Istanbul, Turkey; Marmara University School of Medicine, Department of Physiology, Istanbul, Turkey
| | | | - Naziye Özkan
- Marmara University School of Medicine, Department of Histology, Istanbul, Turkey
| | - Gülsün Memi
- Kırklareli University Health School, Kırklareli, Turkey
| | - Ömer Kaçar
- Marmara University School of Medicine, Department of Biochemistry, Istanbul, Turkey
| | - Serpil Bilsel
- Marmara University School of Medicine, Department of Biochemistry, Istanbul, Turkey
| | - Şule Çetinel
- Marmara University School of Medicine, Department of Histology, Istanbul, Turkey
| | - Berrak Ç Yeğen
- Marmara University School of Medicine, Department of Physiology, Istanbul, Turkey.
| |
Collapse
|
8
|
Tang S, Dong X, Zhang W. Obestatin changes proliferation, differentiation and apoptosis of porcine preadipocytes. ANNALES D'ENDOCRINOLOGIE 2014; 75:1-9. [PMID: 24534601 DOI: 10.1016/j.ando.2013.10.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 10/25/2013] [Indexed: 01/04/2023]
Abstract
Obestatin, originally identified and purified from rat stomach extracts, was reported to bind to orphan G protein-coupled receptor, GPR39, and inhibit appetite and gastric motility. This study was conducted to investigate the effects of porcine obestatin on proliferation, differentiation and apoptosis of porcine preadipocytes isolated from subcutaneous fat of piglets. At indicated times of culture, morphology of preadipocytes and accumulated lipid droplets within the cells were identified by invert microscope. After treating with obestatin (0, 0.1, 1, 10 and 100nM), cell proliferation was measured by MTT method and protein expression of CCAAT/enhancer binding protein-α (C/EBPα), peroxisome proliferator-activated receptor-γ (PPARγ), Caspase-7 and Caspase-9 was determined by Western Blot, mRNA expression of GPR39 and Caspase-3 was analyzed by RT-PCR, and the activity of Caspase-3 was measured by spectrophotometric method. The results showed that obestatin had no effect on GPR39 expression, while promotes the optical density (OD) value of cells, enhanced protein expression of PPARγ and C/EBPa, decreased mRNA expression and activity of Caspase-3, and inhibited protein expression of Caspase-7 and Caspase-9 in a dose-dependent manner. These results suggested that obestatin enhances proliferation and differentiation of preadipocytes promoting PPARγ and C/EBPa expression, and inhibiting preadipocyte apoptosis by decreasing expression of Caspase-3, Caspase-7 and Caspase-9.
Collapse
Affiliation(s)
- Shengqiu Tang
- College of Yingdong agricultural science and engineering, Shaoguan university, Daxue road, Zhenjiang district, Shaoguan 512005, China
| | - Xiaoying Dong
- College of Yingdong agricultural science and engineering, Shaoguan university, Daxue road, Zhenjiang district, Shaoguan 512005, China.
| | - Wei Zhang
- Hubei Key laboratory of animal embryo and molecular breeding, Hubei academy of agricultural science, Wuhan 430064, China
| |
Collapse
|
9
|
Protection of MES23.5 dopaminergic cells by obestatin is mediated by proliferative rather than anti-apoptotic action. Neurosci Bull 2014; 30:118-24. [PMID: 24478041 DOI: 10.1007/s12264-013-1405-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 09/24/2013] [Indexed: 12/14/2022] Open
Abstract
Obestatin is an endogenous peptide sharing a precursor with ghrelin. This study aims to investigate whether and how obestatin protects MES23.5 dopaminergic cells against 1-methyl-4-phenylpyridinium (MPP(+))-induced neurotoxicity. MES23.5 cells were pretreated with obestatin (10(-13)-10(-6) mol/L) for 20 min prior to incubation with 200 μmol/L MPP(+) for 12 or 24 h, or treated with obestatin alone (10(-13) to 10(-6) mol/L) for 0, 6, 12, and 24 h. The methyl thiazolyl tetrazolium (MTT) assay was used to measure cell viability. Flow cytometry was used to measure the caspase-3 activity and the mitochondrial transmembrane potential. Proliferating cell nuclear antigen (PCNA) protein levels were determined by Western blotting. Obestatin (10(-13) to 10(-7) mol/L) pretreatment blocked or even reversed the MPP(+)-induced reduction of viability in MES23.5 cells, but had no effect on MPP(+)-induced mitochondrial transmembrane potential collapse and caspase-3 activation. When applied alone, obestatin increased viability. Elevated PCNA levels occurred with 10(-7), 10(-9), 10(-11) and 10(-13) mol/L obestatin treatment for 12 h. The results suggest that the protective effects of obestatin against MPP(+) in MES23.5 cells are due to its proliferation-promoting rather than anti-apoptotic effects.
Collapse
|
10
|
Ugarte M, Osborne NN, Brown LA, Bishop PN. Iron, zinc, and copper in retinal physiology and disease. Surv Ophthalmol 2013; 58:585-609. [DOI: 10.1016/j.survophthal.2012.12.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 12/09/2012] [Accepted: 12/11/2012] [Indexed: 12/26/2022]
|
11
|
Yoshida K, Fujino H, Otake S, Seira N, Regan JW, Murayama T. Induction of cyclooxygenase-2 expression by prostaglandin E2 stimulation of the prostanoid EP4 receptor via coupling to Gαi and transactivation of the epidermal growth factor receptor in HCA-7 human colon cancer cells. Eur J Pharmacol 2013; 718:408-17. [DOI: 10.1016/j.ejphar.2013.08.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 07/17/2013] [Accepted: 08/14/2013] [Indexed: 11/28/2022]
|
12
|
Ren G, He Z, Cong P, Yu J, Qin Y, Chen Y, Liu X. Effect of TAT-obestatin on proliferation, differentiation, apoptosis and lipolysis in 3T3-L1 preadipocytes. J Pept Sci 2013; 19:684-91. [PMID: 24106000 DOI: 10.1002/psc.2550] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 07/17/2013] [Accepted: 08/13/2013] [Indexed: 12/11/2022]
Abstract
It has been reported that obestatin regulates adipocyte metabolism via receptors on the cell surface. We wondered whether obestatin can interact with intracellular components that activated signalling pathways in adipocytes. Because obestatin (human) only presents one lysine (at position 10), which cannot penetrate the cell membrane, therefore, we used a cell-permeable peptide TAT (49-57) as a vector to carry obestatin across the cell membrane. The goal of this study was to further understand the function of obestatin after penetrating the cell membrane. Our results showed that TAT-obestatin could cross the 3T3-L1 cell membrane in the absence of cytotoxicity. TAT-obestatin showed no effect on the proliferation of 3T3-L1 preadipocytes. In contrast, obestatin significantly stimulated proliferation at a dose of 10(-11) M and 10(-13) M. In addition, TAT-obestatin demonstrated a more potent inhibitory effect on cell apoptosis induced by serum starvation than that of obestatin. During the progress of adipocyte differentiation, TAT-obestatin and obestatin had no effect on adipogenesis. In the lipolysis assay, TAT-obestatin significantly increased glycerol and free fatty acid release from 3T3-L1 adipocytes after 3 h treatment but showed no significant effect on lipolysis after 24 h and 48 h of treatment. In contrast, obestatin (10(-7) M) had no effect on glycerol release after 3, 24 and 48 h of treatment. The difference between the effect of TAT-obestatin and obestatin on adipocytes metabolism indicated that TAT-obestatin may trigger intracellular signalling as well as signalling at the cell membrane.
Collapse
Affiliation(s)
- Guangcai Ren
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | | | | | | | | | | | | |
Collapse
|
13
|
Lipták N, Dochnal R, Csabafi K, Szakács J, Szabó G. Obestatin prevents analgesic tolerance to morphine and reverses the effects of mild morphine withdrawal in mice. ACTA ACUST UNITED AC 2013; 186:77-82. [DOI: 10.1016/j.regpep.2013.07.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 04/26/2013] [Accepted: 07/13/2013] [Indexed: 01/04/2023]
|
14
|
Smitka K, Papezova H, Vondra K, Hill M, Hainer V, Nedvidkova J. The role of "mixed" orexigenic and anorexigenic signals and autoantibodies reacting with appetite-regulating neuropeptides and peptides of the adipose tissue-gut-brain axis: relevance to food intake and nutritional status in patients with anorexia nervosa and bulimia nervosa. Int J Endocrinol 2013; 2013:483145. [PMID: 24106499 PMCID: PMC3782835 DOI: 10.1155/2013/483145] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 07/11/2013] [Indexed: 12/13/2022] Open
Abstract
Eating disorders such as anorexia (AN) and bulimia nervosa (BN) are characterized by abnormal eating behavior. The essential aspect of AN is that the individual refuses to maintain a minimal normal body weight. The main features of BN are binge eating and inappropriate compensatory methods to prevent weight gain. The gut-brain-adipose tissue (AT) peptides and neutralizing autoantibodies play an important role in the regulation of eating behavior and growth hormone release. The mechanisms for controlling food intake involve an interplay between gut, brain, and AT. Parasympathetic, sympathetic, and serotoninergic systems are required for communication between brain satiety centre, gut, and AT. These neuronal circuits include neuropeptides ghrelin, neuropeptide Y (NPY), peptide YY (PYY), cholecystokinin (CCK), leptin, putative anorexigen obestatin, monoamines dopamine, norepinephrine (NE), serotonin, and neutralizing autoantibodies. This extensive and detailed report reviews data that demonstrate that hunger-satiety signals play an important role in the pathogenesis of eating disorders. Neuroendocrine dysregulations of the AT-gut-brain axis peptides and neutralizing autoantibodies may result in AN and BN. The circulating autoantibodies can be purified and used as pharmacological tools in AN and BN. Further research is required to investigate the orexigenic/anorexigenic synthetic analogs and monoclonal antibodies for potential treatment of eating disorders in clinical practice.
Collapse
Affiliation(s)
- Kvido Smitka
- Institute of Endocrinology, Laboratory of Clinical and Experimental Neuroendocrinology, Narodni 8, 116 94 Prague 1, Czech Republic
| | - Hana Papezova
- Psychiatric Clinic, First Faculty of Medicine, Charles University, Ke Karlovu 11, 121 08 Prague 2, Czech Republic
| | - Karel Vondra
- Institute of Endocrinology, Laboratory of Clinical and Experimental Neuroendocrinology, Narodni 8, 116 94 Prague 1, Czech Republic
| | - Martin Hill
- Institute of Endocrinology, Laboratory of Clinical and Experimental Neuroendocrinology, Narodni 8, 116 94 Prague 1, Czech Republic
| | - Vojtech Hainer
- Institute of Endocrinology, Laboratory of Clinical and Experimental Neuroendocrinology, Narodni 8, 116 94 Prague 1, Czech Republic
| | - Jara Nedvidkova
- Institute of Endocrinology, Laboratory of Clinical and Experimental Neuroendocrinology, Narodni 8, 116 94 Prague 1, Czech Republic
- *Jara Nedvidkova:
| |
Collapse
|
15
|
Chopin LK, Seim I, Walpole CM, Herington AC. The ghrelin axis--does it have an appetite for cancer progression? Endocr Rev 2012; 33:849-91. [PMID: 22826465 DOI: 10.1210/er.2011-1007] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ghrelin, the endogenous ligand for the GH secretagogue receptor (GHSR), is a peptide hormone with diverse physiological roles. Ghrelin regulates GH release, appetite and feeding, gut motility, and energy balance and also has roles in the cardiovascular, immune, and reproductive systems. Ghrelin and the GHSR are expressed in a wide range of normal and tumor tissues, and a fluorescein-labeled, truncated form of ghrelin is showing promise as a biomarker for prostate cancer. Plasma ghrelin levels are generally inversely related to body mass index and are unlikely to be useful as a biomarker for cancer, but may be useful as a marker for cancer cachexia. Some single nucleotide polymorphisms in the ghrelin and GHSR genes have shown associations with cancer risk; however, larger studies are required. Ghrelin regulates processes associated with cancer, including cell proliferation, apoptosis, cell migration, cell invasion, inflammation, and angiogenesis; however, the role of ghrelin in cancer is currently unclear. Ghrelin has predominantly antiinflammatory effects and may play a role in protecting against cancer-related inflammation. Ghrelin and its analogs show promise as treatments for cancer-related cachexia. Further studies using in vivo models are required to determine whether ghrelin has a role in cancer progression.
Collapse
Affiliation(s)
- Lisa K Chopin
- Ghrelin Research Group, Institute of Health and Biomedical Innovation, Queensland University of Technology and Australian Prostate Cancer Research Centre-Queensland, Brisbane, Queensland 4001, Australia.
| | | | | | | |
Collapse
|
16
|
Abstract
Biomarkers are biologic compounds that are easily accessible and reflect normal physiology or pathology. They are useful in a variety of clinical situations that involve detection of subclinical disease, risk stratification, preoperative planning, and monitoring treatment. A useful intervention needs to exist for a biomarker to be an effective tool. Many compounds have been investigated as potential biomarkers for the diagnosis and surveillance of uterine leiomyomas. Most of these compounds demonstrate subtle differences among patients when leiomyomas are compared with controls. The compounds investigated lack the diagnostic accuracy necessary to add any benefit to the current available modalities used to diagnose and monitor uterine leiomyomas.
Collapse
Affiliation(s)
- Gary Levy
- Program in Reproductive and Adult Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-1109, USA
| | | | | | | | | |
Collapse
|
17
|
Aragno M, Mastrocola R, Ghé C, Arnoletti E, Bassino E, Alloatti G, Muccioli G. Obestatin induced recovery of myocardial dysfunction in type 1 diabetic rats: underlying mechanisms. Cardiovasc Diabetol 2012; 11:129. [PMID: 23066908 PMCID: PMC3537569 DOI: 10.1186/1475-2840-11-129] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 09/21/2012] [Indexed: 01/17/2023] Open
Abstract
Background The aim of this study was to investigate whether obestatin (OB), a peptide mediator encoded by the ghrelin gene exerting a protective effect in ischemic reperfused heart, is able to reduce cardiac dysfunctions in adult diabetic rats. Methods Diabetes was induced by STZ injection (50 mg/kg) in Wistar rats (DM). OB was administered (25 μg/kg) twice a day for 6 weeks. Non-diabetic (ND) rats and DM rats were distributed into four groups: untreated ND, OB-treated ND, untreated DM, OB-treated DM. Cardiac contractility and ß-adrenergic response were studied on isolated papillary muscles. Phosphorylation of AMPK, Akt, ERK1/2 and GSK3ß as well ß-1 adrenoreceptors levels were detected by western blot, while α-MHC was measured by RT-PCR. Results OB preserved papillary muscle contractility (85 vs 27% of ND), ß-adrenergic response (103 vs 65% of ND), as well ß1-adrenoreceptors and α-MHC levels in diabetic myocardial tissue. Moreover, OB up-regulated the survival kinases Akt and ERK1/2, and enhanced AMPK and GSK3ß phosphorylation. OB corrected oxidative unbalance, reduced pro-inflammatory cytokine TNF-α plasma levels, NFkB translocation and pro-fibrogenic factors expression in diabetic myocardium. Conclusions OB displays a significant beneficial effect against the alterations of contractility and ß-adrenergic response in the heart of STZ-treated diabetic rats, which was mainly associated with the ability of OB to up-regulate the transcription of ß1-adrenergic receptors and α-MHC; this protective effect was accompanied by the ability to restore oxidative balance and to promote phosphorylation/modulation of AMPK and pro-survival kinases such as Akt, ERK1/2 and GSK3ß.
Collapse
Affiliation(s)
- Manuela Aragno
- Department of Experimental Medicine and Oncology, University of Turin, Corso Raffaello 30, Turin, 10125, Italy.
| | | | | | | | | | | | | |
Collapse
|
18
|
Alén BO, Nieto L, Gurriarán-Rodríguez U, Mosteiro CS, Álvarez-Pérez JC, Otero-Alén M, Camiña JP, Gallego R, García-Caballero T, Martín-Pastor M, Casanueva FF, Jiménez-Barbero J, Pazos Y. The NMR structure of human obestatin in membrane-like environments: insights into the structure-bioactivity relationship of obestatin. PLoS One 2012; 7:e45434. [PMID: 23056203 PMCID: PMC3464274 DOI: 10.1371/journal.pone.0045434] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 08/17/2012] [Indexed: 11/23/2022] Open
Abstract
The quest for therapeutic applications of obestatin involves, as a first step, the determination of its 3D solution structure and the relationship between this structure and the biological activity of obestatin. On this basis, we have employed a combination of circular dichroism (CD), nuclear magnetic resonance (NMR) spectroscopy, and modeling techniques to determine the solution structure of human obestatin (1). Other analogues, including human non-amidated obestatin (2) and the fragment peptides (6–23)-obestatin (3), (11–23)-obestatin (4), and (16–23)-obestatin (5) have also been scrutinized. These studies have been performed in a micellar environment to mimic the cell membrane (sodium dodecyl sulfate, SDS). Furthermore, structural-activity relationship studies have been performed by assessing the in vitro proliferative capabilities of these peptides in the human retinal pigmented epithelial cell line ARPE-19 (ERK1/2 and Akt phosphorylation, Ki67 expression, and cellular proliferation). Our findings emphasize the importance of both the primary structure (composition and size) and particular segments of the obestatin molecule that posses significant α-helical characteristics. Additionally, details of a species-specific role for obestatin have also been hypothesized by comparing human and mouse obestatins (1 and 6, respectively) at both the structural and bioactivity levels.
Collapse
Affiliation(s)
- Begoña O. Alén
- Área de Endocrinología Molecular y Celular, Instituto de Investigación Sanitaria (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CB06/03), Instituto de Salud Carlos III, Santiago de Compostela, Spain
- Universidad de Santiago de Compostela, Santiago de Compostela, Spain
| | - Lidia Nieto
- Centro de Investigaciones Biológicas, CIB-CSIC, Madrid, Spain
| | - Uxía Gurriarán-Rodríguez
- Área de Endocrinología Molecular y Celular, Instituto de Investigación Sanitaria (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CB06/03), Instituto de Salud Carlos III, Santiago de Compostela, Spain
- Universidad de Santiago de Compostela, Santiago de Compostela, Spain
| | - Carlos S. Mosteiro
- Área de Endocrinología Molecular y Celular, Instituto de Investigación Sanitaria (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CB06/03), Instituto de Salud Carlos III, Santiago de Compostela, Spain
| | - Juan C. Álvarez-Pérez
- Área de Endocrinología Molecular y Celular, Instituto de Investigación Sanitaria (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CB06/03), Instituto de Salud Carlos III, Santiago de Compostela, Spain
- Universidad de Santiago de Compostela, Santiago de Compostela, Spain
| | - María Otero-Alén
- Instituto de Investigación Sanitaria (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS), Santiago de Compostela, Spain
| | - Jesús P. Camiña
- Área de Endocrinología Molecular y Celular, Instituto de Investigación Sanitaria (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CB06/03), Instituto de Salud Carlos III, Santiago de Compostela, Spain
| | - Rosalía Gallego
- Universidad de Santiago de Compostela, Santiago de Compostela, Spain
- Instituto de Investigación Sanitaria (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS), Santiago de Compostela, Spain
| | - Tomás García-Caballero
- Universidad de Santiago de Compostela, Santiago de Compostela, Spain
- Instituto de Investigación Sanitaria (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS), Santiago de Compostela, Spain
| | - Manuel Martín-Pastor
- Instituto de Investigación Sanitaria (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS), Santiago de Compostela, Spain
- Unidad de Resonancia Magnética, RIAIDT, Universidad de Santiago de Compostela, Campus Sur, Santiago de Compostela, Spain
| | - Felipe F. Casanueva
- Área de Endocrinología Molecular y Celular, Instituto de Investigación Sanitaria (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CB06/03), Instituto de Salud Carlos III, Santiago de Compostela, Spain
- Universidad de Santiago de Compostela, Santiago de Compostela, Spain
| | | | - Yolanda Pazos
- Área de Endocrinología Molecular y Celular, Instituto de Investigación Sanitaria (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CB06/03), Instituto de Salud Carlos III, Santiago de Compostela, Spain
- * E-mail:
| |
Collapse
|
19
|
Agnew AJ, Robinson E, McVicar CM, Harvey AP, Ali IHA, Lindsay JE, McDonald DM, Green BD, Grieve DJ. The gastrointestinal peptide obestatin induces vascular relaxation via specific activation of endothelium-dependent NO signalling. Br J Pharmacol 2012; 166:327-38. [PMID: 22035179 DOI: 10.1111/j.1476-5381.2011.01761.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND AND PURPOSE Obestatin is a recently discovered gastrointestinal peptide with established metabolic actions, which is linked to diabetes and may exert cardiovascular benefits. Here we aimed to investigate the specific effects of obestatin on vascular relaxation. EXPERIMENTAL APPROACH Cumulative relaxation responses to obestatin peptides were assessed in rat isolated aorta and mesenteric artery (n≥ 8) in the presence and absence of selective inhibitors. Complementary studies were performed in cultured bovine aortic endothelial cells (BAEC). KEY RESULTS Obestatin peptides elicited concentration-dependent relaxation in both aorta and mesenteric artery. Responses to full-length obestatin(1-23) were greater than those to obestatin(1-10) and obestatin(11-23). Obestatin(1-23)-induced relaxation was attenuated by endothelial denudation, l-NAME (NOS inhibitor), high extracellular K(+) , GDP-β-S (G-protein inhibitor), MDL-12,330A (adenylate cyclase inhibitor), wortmannin (PI3K inhibitor), KN-93 (CaMKII inhibitor), ODQ (guanylate cyclase inhibitor) and iberiotoxin (BK(Ca) blocker), suggesting that it is mediated by an endothelium-dependent NO signalling cascade involving an adenylate cyclase-linked GPCR, PI3K/PKB, Ca(2+) -dependent eNOS activation, soluble guanylate cyclase and modulation of vascular smooth muscle K(+) . Supporting data from BAEC indicated that nitrite production, intracellular Ca(2+) and PKB phosphorylation were increased after exposure to obestatin(1-23). Relaxations to obestatin(1-23) were unaltered by inhibitors of candidate endothelium-derived hyperpolarizing factors (EDHFs) and combined SK(Ca) /IK(Ca) blockade, suggesting that EDHF-mediated pathways were not involved. CONCLUSIONS AND IMPLICATIONS Obestatin produces significant vascular relaxation via specific activation of endothelium-dependent NO signalling. These actions may be important in normal regulation of vascular function and are clearly relevant to diabetes, a condition characterized by endothelial dysfunction and cardiovascular complications.
Collapse
Affiliation(s)
- Andrew J Agnew
- School of Biological Sciences, Queen's University Belfast, Belfast, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Seim I, Walpole C, Amorim L, Josh P, Herington A, Chopin L. The expanding roles of the ghrelin-gene derived peptide obestatin in health and disease. Mol Cell Endocrinol 2011; 340:111-7. [PMID: 21459124 DOI: 10.1016/j.mce.2011.03.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 03/23/2011] [Accepted: 03/25/2011] [Indexed: 01/18/2023]
Abstract
Obestatin is a 23 amino acid, ghrelin gene-derived peptide hormone produced in the stomach and a range of other tissues throughout the body. While it was initially reported that obestatin opposed the actions of ghrelin with regards to appetite and food intake, it is now clear that obestatin is not an endogenous ghrelin antagonist, but it is a multi-functional peptide hormone in its own right. In this review we will discuss the controversies associated with the discovery of obestatin and explore emerging central and peripheral roles of obestatin, which includes adipogenesis, pancreatic homeostasis and cancer.
Collapse
Affiliation(s)
- Inge Seim
- Queensland University of Technology, Queensland, Brisbane, Australia
| | | | | | | | | | | |
Collapse
|
21
|
Lacquaniti A, Donato V, Chirico V, Buemi A, Buemi M. Obestatin: An Interesting but Controversial Gut Hormone. ANNALS OF NUTRITION AND METABOLISM 2011; 59:193-9. [DOI: 10.1159/000334106] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2011] [Accepted: 09/30/2011] [Indexed: 12/14/2022]
|
22
|
Popovics P, Stewart AJ. GPR39: a Zn(2+)-activated G protein-coupled receptor that regulates pancreatic, gastrointestinal and neuronal functions. Cell Mol Life Sci 2011; 68:85-95. [PMID: 20812023 PMCID: PMC11114682 DOI: 10.1007/s00018-010-0517-1] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 08/16/2010] [Accepted: 08/17/2010] [Indexed: 10/19/2022]
Abstract
GPR39 is a vertebrate G protein-coupled receptor related to the ghrelin/neurotensin receptor subfamily. The receptor is expressed in a range of tissues including the pancreas, gut/gastrointestinal tract, liver, kidney and in some regions of the brain. GPR39 was initially thought to be the cognitive receptor for the peptide hormone, obestatin. However, subsequent in vitro studies have failed to demonstrate binding of this peptide to the receptor. Zn(2+) has been shown to be a potent stimulator of GPR39 activity via the Gα(q), Gα(12/13) and Gα(s) pathways. The potency and specificity of Zn(2+) in activating GPR39 suggest it to be a physiologically important agonist. GPR39 is now emerging as an important transducer of autocrine and paracrine Zn(2+) signals, impacting upon cellular processes such as insulin secretion, gastric emptying, neurotransmission and epithelial repair. This review focuses on the molecular, structural and biological properties of GPR39 and its various physiological functions.
Collapse
Affiliation(s)
- Petra Popovics
- School of Medicine, University of St Andrews, Medical and Biological Sciences Building, St Andrews, Fife KY16 9TF UK
| | - Alan J. Stewart
- School of Medicine, University of St Andrews, Medical and Biological Sciences Building, St Andrews, Fife KY16 9TF UK
| |
Collapse
|
23
|
Alloatti G, Arnoletti E, Bassino E, Penna C, Perrelli MG, Ghé C, Muccioli G. Obestatin affords cardioprotection to the ischemic-reperfused isolated rat heart and inhibits apoptosis in cultures of similarly stressed cardiomyocytes. Am J Physiol Heart Circ Physiol 2010; 299:H470-81. [DOI: 10.1152/ajpheart.00800.2009] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Obestatin, a newly discovered peptide encoded by the ghrelin gene, induces the expression of genes regulating pancreatic β-cell differentiation, insulin biosynthesis, and glucose metabolism. It also activates antiapoptotic signaling pathways such as phosphoinositide 3-kinase (PI3K) and ERK1/2 in pancreatic β-cells and human islets. Since these kinases have been shown to protect against myocardial injury, we sought to investigate whether obestatin would exert cardioprotective effects. Both isolated perfused rat heart and cultured cardiomyocyte models of ischemia-reperfusion (I/R) were used to measure infarct size and cell apoptosis as end points of injury. The presence of specific obestatin receptors on cardiac cells as well as the signaling pathways underlying the obestatin effect were also studied. In the isolated heart, the addition of rat obestatin-(1–23) before ischemia reduced infarct size and contractile dysfunction in a concentration-dependent manner, whereas obestatin-(23–1), a synthetic analog with an inverse aminoacid sequence, was ineffective. The cardioprotective effect of obestatin-(1–23) was observed at concentrations of 10–50 nmol/l and was abolished by inhibiting PI3K or PKC by the addition of wortmannin (100 nmol/l) or chelerythrine, (5 μmol/l), respectively. In rat H9c2 cardiac cells or isolated ventricular myocytes subjected to I/R, 50 nmol/l obestatin-(1–23) reduced cardiomyocyte apoptosis and reduced caspase-3 activation; the antiapoptotic effect was blocked by the inhibition of PKC, PI3K, or ERK1/2 pathways. In keeping with these functional findings, radioreceptor binding results revealed the presence of specific high-affinity obestatin-binding sites, mainly localized on membranes of the ventricular myocardium and cardiomyocytes. Our data suggest that, by acting on specific receptors, obestatin-(1–23) activates PI3K, PKC-ε, PKC-δ, and ERK1/2 signaling and protects cardiac cells against myocardial injury and apoptosis induced by I/R.
Collapse
Affiliation(s)
- Giuseppe Alloatti
- Department of Animal and Human Biology,
- Istituto Nazionale per la Ricerca Cardiovascolare, Bologna, Italy
| | - Elisa Arnoletti
- Division of Pharmacology, Department of Anatomy, Pharmacology and Forensic Medicine, and
| | | | - Claudia Penna
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy; and
| | - Maria Giulia Perrelli
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy; and
| | - Corrado Ghé
- Division of Pharmacology, Department of Anatomy, Pharmacology and Forensic Medicine, and
| | - Giampiero Muccioli
- Division of Pharmacology, Department of Anatomy, Pharmacology and Forensic Medicine, and
| |
Collapse
|
24
|
Chen CY, Doong ML, Li CP, Liaw WJ, Lee HF, Chang FY, Lin HC, Lee SD. A novel simultaneous measurement method to assess the influence of intracerebroventricular obestatin on colonic motility and secretion in conscious rats. Peptides 2010; 31:1113-7. [PMID: 20338205 DOI: 10.1016/j.peptides.2010.03.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Revised: 03/17/2010] [Accepted: 03/17/2010] [Indexed: 12/14/2022]
Abstract
Obestatin, a novel putative 23-amino acid peptide, is derived from mammalian preproghrelin gene via a bioinformatics approach. Although obestatin regulates thirst, sleep, memory, anxiety, activates cortical neurons in the brain and stimulate proliferation of retinal pigment epithelial cells, there is no study to explore its central impacts on the lower gut motility and secretion. We investigated the influence of intracerebroventricular (ICV) injection of obestatin on rat colonic motor and secretory functions. Colonic transit time, fecal pellet output and fecal content were assessed in freely fed, conscious rats, which were implanted with ICV and colonic catheters chronically. Human/rat corticotropin-releasing factor (h/rCRF) was applied as a stimulatory inducer of colonic motility and secretion. ICV injection of obestatin (0.1, 0.3, 1.0 nmol/rat) did not modify the colonic transit time, whereas ICV injection of h/rCRF (0.3 nmol/rat) significantly shortened colonic transit time. ICV obestatin in any dose we tested did not affect the fecal pellet output, frequency of watery diarrhea, total fecal weight, fecal dried solid weight, or fecal fluid weight in the first hour post-injection, either. In contrast, ICV injection of h/rCRF effectively stimulated fecal pellet output, as well as increased total fecal weight, fecal dried solid weight and fecal fluid weight during the first hour post-injection, compared to ICV saline controls. In conclusion, using our novel simultaneous measurement method, acutely central administration of obestatin exhibits no influence on colonic motility and secretion in conscious rats.
Collapse
Affiliation(s)
- Chih-Yen Chen
- Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Cheung WW, Mak RH. Ghrelin in chronic kidney disease. INTERNATIONAL JOURNAL OF PEPTIDES 2010; 2010:567343. [PMID: 20721357 PMCID: PMC2915808 DOI: 10.1155/2010/567343] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/14/2009] [Accepted: 02/08/2010] [Indexed: 01/24/2023]
Abstract
Patients with chronic kidney disease (CKD) often exhibit symptoms of anorexia and cachexia, which are associated with decreased quality of life and increased mortality. Chronic inflammation may be an important mechanism for the development of anorexia, cachexia, renal osteodystrophy, and increased cardiovascular risk in CKD. Ghrelin is a gastric hormone. The biological effects of ghrelin are mediated through the growth hormone secretagogue receptor (GHSR). The salutary effects of ghrelin on food intake and meal appreciation suggest that ghrelin could be an effective treatment for anorexic CKD patients. In addition to its appetite-stimulating effects, ghrelin has been shown to possess anti-inflammatory properties. The known metabolic effects of ghrelin and the potential implications in CKD will be discussed in this review. The strength, shortcomings, and unanswered questions related to ghrelin treatment in CKD will be addressed.
Collapse
Affiliation(s)
- Wai W. Cheung
- Division of Pediatric Nephrology, Department of Pediatrics, University of California San Diego, 9500 Gilman Drive, Mail code no. 0634, La Jolla, CA 92093-0634, USA
| | - Robert H. Mak
- Division of Pediatric Nephrology, Department of Pediatrics, University of California San Diego, 9500 Gilman Drive, Mail code no. 0634, La Jolla, CA 92093-0634, USA
| |
Collapse
|
26
|
Chen CY, Asakawa A, Fujimiya M, Lee SD, Inui A. Ghrelin gene products and the regulation of food intake and gut motility. Pharmacol Rev 2010; 61:430-81. [PMID: 20038570 DOI: 10.1124/pr.109.001958] [Citation(s) in RCA: 161] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
A breakthrough using "reverse pharmacology" identified and characterized acyl ghrelin from the stomach as the endogenous cognate ligand for the growth hormone (GH) secretagogue receptor (GHS-R) 1a. The unique post-translational modification of O-n-octanoylation at serine 3 is the first in peptide discovery history and is essential for GH-releasing ability. Des-acyl ghrelin, lacking O-n-octanoylation at serine 3, is also produced in the stomach and remains the major molecular form secreted into the circulation. The third ghrelin gene product, obestatin, a novel 23-amino acid peptide identified from rat stomach, was found by comparative genomic analysis. Three ghrelin gene products actively participate in modulating appetite, adipogenesis, gut motility, glucose metabolism, cell proliferation, immune, sleep, memory, anxiety, cognition, and stress. Knockdown or knockout of acyl ghrelin and/or GHS-R1a, and overexpression of des-acyl ghrelin show benefits in the therapy of obesity and metabolic syndrome. By contrast, agonism of acyl ghrelin and/or GHS-R1a could combat human anorexia-cachexia, including anorexia nervosa, chronic heart failure, chronic obstructive pulmonary disease, liver cirrhosis, chronic kidney disease, burn, and postsurgery recovery, as well as restore gut dysmotility, such as diabetic or neurogenic gastroparesis, and postoperative ileus. The ghrelin acyl-modifying enzyme, ghrelin O-Acyltransferase (GOAT), which attaches octanoate to serine-3 of ghrelin, has been identified and characterized also from the stomach. To date, ghrelin is the only protein to be octanylated, and inhibition of GOAT may have effects only on the stomach and is unlikely to affect the synthesis of other proteins. GOAT may provide a critical molecular target in developing novel therapeutics for obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Chih-Yen Chen
- Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Japan
| | | | | | | | | |
Collapse
|
27
|
Seim I, Amorim L, Walpole C, Carter S, Chopin LK, Herington AC. Ghrelin gene-related peptides: Multifunctional endocrine / autocrine modulators in health and disease. Clin Exp Pharmacol Physiol 2010; 37:125-31. [DOI: 10.1111/j.1440-1681.2009.05241.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
Pazos Y, Alvarez CJP, Camiña JP, Al-Massadi O, Seoane LM, Casanueva FF. Role of obestatin on growth hormone secretion: An in vitro approach. Biochem Biophys Res Commun 2009; 390:1377-81. [PMID: 19895783 DOI: 10.1016/j.bbrc.2009.10.163] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Accepted: 10/30/2009] [Indexed: 02/01/2023]
Abstract
Obestatin, the ghrelin-associated peptide, showed to activate MAPK signaling with no effect on Akt nor cell proliferating activity in rat tumor somatotroph cells (growth cells, GC). A sequential analysis of the obestatin transmembrane signaling pathway indicated a route involving the consecutive activation of G(i), PI3k, novel PKCepsilon, and Src for ERK1/2 activation. Furthermore, obestatin treatment triggers growth hormone (GH) release in the first 30min, being more acute at 15min. At 1h, obestatin treated cells showed the same levels in GH secretion than controls. Added to this functionality, obestatin was secreted by GC cells. Based on the capacity to stimulate GH release from somatotroph cells, obestatin may act directly in the pituitary through an autocrine/paracrine mechanism.
Collapse
Affiliation(s)
- Yolanda Pazos
- Area de Endocrinología Molecular y Celular, Instituto de Investigación Sanitaria (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Santiago de Compostela, Spain.
| | | | | | | | | | | |
Collapse
|
29
|
Ghrelin and obestatin levels in type 2 diabetic patients with and without delayed gastric emptying. Dig Dis Sci 2009; 54:2161-6. [PMID: 19082715 DOI: 10.1007/s10620-008-0622-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2008] [Accepted: 11/03/2008] [Indexed: 12/12/2022]
Abstract
Alterations in the neurohumoral regulation of the upper intestine may change rhythmicity and pattern of ghrelin and obestatin, the latter presumably antagonizing ghrelin effects. Five nongastroparetic diabetic patients and five with gastroparesis were investigated. Over 390 min including breakfast and lunch, ghrelin was significantly lower in patients with gastroparesis compared with in those without (P = 0.015). Ghrelin subsequent to lunch decreased significantly (P = 0.011) in patients without gastroparesis, but not in gastroparetic patients (P = 0.669). Obestatin was similar in both groups and unchanged. No significant differences in ghrelin-to-obestatin ratio were observed (P = 0.530). Loss of rhythmicity in the ghrelin levels of gastroparetic diabetics highlights the importance of integrity of the neurohumoral-intestinal axis. Stable diurnal obestatin levels do not support the concept of interaction between ghrelin and obestatin in terms of regulation of food intake and gastric emptying.
Collapse
|
30
|
Abstract
AbstractThe aim of this study is to investigate the mechanism of positive inotropic effect of obestatin on in vitro heart preparations of Rana ridibunda frog. The application of increasing amounts of obestatin in the concentration range from 1 μmol/l to 1 μmol/l significantly enhances the force of contraction of excised and cannulated frog hearts. This effect was partially reduced in the presence of prazosin (3 μmol/l). Propranolol (30 μmol/l), pertussis toxin (2 ng/ml) and the specific inhibitor of cAMP-dependent protein kinase (PKA) Rp-adenosine 3′,5′-cyclic monophosphothioate triethylamine (30 μmol/l) completely blocked the obestatin-induced increase of the force of frog heart contractions. It is concluded that, via its receptor molecule, obestatin activates neuronal pertussis toxin sensitive G-protein(s) that further enhance the secretion of epinephrine from sympathetic neurons. This epinephrine activates mainly the myocardial β-adrenoreceptors and PKA downstream targets, and is responsible for the observed positive inotropic effect of obestatin. An alternative explanation of our data is that obestatin directly enhances the effect of myocardial β-adrenergic signaling.
Collapse
|
31
|
Seim I, Herington AC, Chopin LK. New insights into the molecular complexity of the ghrelin gene locus. Cytokine Growth Factor Rev 2009; 20:297-304. [DOI: 10.1016/j.cytogfr.2009.07.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
32
|
Annemie VD, Debby VD, Valentijn V, Bart DS, Walter L, Liliane S, Peter Paul DD. Central administration of obestatin fails to show inhibitory effects on food and water intake in mice. ACTA ACUST UNITED AC 2009; 156:77-82. [DOI: 10.1016/j.regpep.2009.04.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2008] [Revised: 04/06/2009] [Accepted: 04/29/2009] [Indexed: 11/29/2022]
|
33
|
Dong XY, He JM, Tang SQ, Li HY, Jiang QY, Zou XT. Is GPR39 the natural receptor of obestatin? Peptides 2009; 30:431-8. [PMID: 18977259 DOI: 10.1016/j.peptides.2008.09.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2008] [Revised: 08/25/2008] [Accepted: 09/25/2008] [Indexed: 12/15/2022]
Abstract
GPR39, an orphan receptor belonging to the family of G protein-coupled receptors, was originally reported to be the receptor of obestatin. However recently, numerous reports have questioned this conclusion. In mammals, GPR39 was reported to be involved in the regulation of gastrointestinal and the metabolic functions. In this article, a latest and brief review on the receptor family, structure, distribution and physiological functions of GPR39 has been reported.
Collapse
Affiliation(s)
- Xiao-Ying Dong
- College of Yingdong Bioengineering, Shaoguan University, Daxue Avenue, Zhenjiang District, Shaoguan 512005, China
| | | | | | | | | | | |
Collapse
|
34
|
Ren AJ, Guo ZF, Wang YK, Lin L, Zheng X, Yuan WJ. Obestatin, obesity and diabetes. Peptides 2009; 30:439-44. [PMID: 18992781 DOI: 10.1016/j.peptides.2008.10.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2008] [Revised: 10/04/2008] [Accepted: 10/06/2008] [Indexed: 01/07/2023]
Abstract
The high prevalence of obesity and diabetes will lead to higher rates of morbidity and mortality. It is well known that ghrelin plays a potential role in obesity and diabetes. Obestatin, a novel 23 amino acid amidated peptide encoded by the same gene that encodes ghrelin, was initially reported to have opposite actions to ghrelin in the regulation of food intake, emptying of the stomach and body weight. Recent work suggests that obestatin also regulate beta-cell survival and insulin secretion. The ghrelin-obestatin system is, therefore, a promising target for the developing of new drugs for the treatment of obesity and diabetes. This review summarizes the interrelationship between obestatin, obesity and diabetes.
Collapse
Affiliation(s)
- An-Jing Ren
- Department of Physiology, Second Military Medical University, Shanghai 200433, China
| | | | | | | | | | | |
Collapse
|
35
|
Wu ZQ, Wang WG, Wang ZG, Zheng Q. Roles of obestatin and its receptor in regulation of gastrointestinal motility. Shijie Huaren Xiaohua Zazhi 2008; 16:2974-2979. [DOI: 10.11569/wcjd.v16.i26.2974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Obestatin, a novel 23-amino acid amidated brain/gut peptide synthesized in the stomach, was initially reported to reduce food intake, body weight gain and gastric emptying and suppress intestinal motility through an interaction with the orphan G-protein coupled receptor GPR39. Obestatin is derived from the same gene product as ghrelin by differential posttranslational processing and modification, which exerts effects opposite to those of ghrelin. However, recent reports have shown that the above findings had been questioned by several groups. According to the controversy that obestatin is unlikely to be the endogenous ligand for GPR39 and obestatin has no impacts on gastrointestinal motility, this paper reviews the studies related to obestatin and GPR39 and its impacts on gastrointestinal motility.
Collapse
|
36
|
Chen CY, Chien EJ, Chang FY, Lu CL, Luo JC, Lee SD. Impacts of peripheral obestatin on colonic motility and secretion in conscious fed rats. Peptides 2008; 29:1603-8. [PMID: 18565623 DOI: 10.1016/j.peptides.2008.05.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Revised: 05/03/2008] [Accepted: 05/07/2008] [Indexed: 12/14/2022]
Abstract
Obestatin, a novel putative 23-amino acid peptide, was found to be derived from a mammalian preproghrelin gene by using a bioinformatics approach. Although the effects of obestatin on food intake and upper gut motility remain controversial, no studies have been carried out to explore its influence on lower gut motility and secretion. We investigated the impacts of intravenous (IV) injection of obestatin on rat colonic motor and secretory functions. Colonic transit time, fecal pellet output, and fecal content were measured in freely fed, conscious rats, which were chronically implanted with IV and colonic catheters. To test the validity of this animal model, human/rat corticotropin-releasing factor (h/rCRF) served as a stimulatory inducer of colonic motility and secretion. IV injection of obestatin (45, 100, and 300 nmol/kg) did not affect the colonic transit time, whereas IV injection of h/rCRF (30 nmol/kg) effectively accelerated colonic transit time. IV obestatin, in every dose we tested, also did not modify fecal pellet output, frequency of watery diarrhea, total fecal weight, fecal dried solid weight, or fecal fluid weight in the first hour after injection. On the other hand, IV injection of h/rCRF significantly enhanced fecal pellet output, as well as increased the frequency of watery diarrhea, total fecal weight, fecal dried solid weight, and fecal fluid weight during the first hour after injection compared with IV saline controls. In conclusion, peripheral obestatin administration has no impact on colonic motility and secretion in conscious fed rats.
Collapse
Affiliation(s)
- C Y Chen
- Division of Gastroenterology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.
| | | | | | | | | | | |
Collapse
|
37
|
Kim MO, Na SI, Lee MY, Heo JS, Han HJ. Epinephrine increases DNA synthesis via ERK1/2s through cAMP, Ca(2+)/PKC, and PI3K/Akt signaling pathways in mouse embryonic stem cells. J Cell Biochem 2008; 104:1407-20. [PMID: 18275042 DOI: 10.1002/jcb.21716] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Epinephrine is a catecholamine that plays important roles in regulating a wide variety of physiological systems by acting through the adrenergic receptors (ARs). The cellular responses to AR stimulation are mediated through various signaling pathways. Therefore, this study examined the effects of epinephrine on DNA synthesis and related signaling molecules in mouse embryonic stem cells (ESCs). Epinephrine increased DNA synthesis in a dose- and time-dependent manner, as determined by the level of [(3)H]-thymidine incorporation. AR subtypes (alpha1(A), alpha2(A), beta1, beta2, and beta3) were expressed in mouse ESCs and their expression levels were increased by epinephrine. In this experiment, epinephrine increased cAMP levels, intracellular Ca(2+) concentration ([Ca(2+)](i)), and translocation of protein kinase C (PKC) from the cytosol to the membrane compartment. In addition, we observed Akt phosphorylation in response to epinephrine; this was stimulated by phosphorylation of the epidermal growth factor receptor (EGFR). Epinephrine also induced phosphorylation of ERK1/2 (p44/42 MAPKs), while inhibition of PKC or Akt blocked this phosphorylation. Epinephrine increased the mRNA levels of proto-oncogenes (c-fos, c-jun, c-myc), while inhibition of ERK1/2 decreased these mRNA levels. In experiments aimed at examining the involvement of cell cycle regulatory proteins, epinephrine increased the levels of cyclin E/cyclin-dependent kinase 2 (CDK2) and cyclin D1/cyclin-dependent kinase 4 (CDK4). In conclusion, epinephrine stimulates DNA synthesis via ERK1/2 through cAMP, Ca(2+)/PKC, and PI3K/Akt signaling pathways in mouse ESCs.
Collapse
Affiliation(s)
- Mi Ok Kim
- Department of Veterinary Physiology, Biotherapy Human Resources Center (BK 21), College of Veterinary Medicine, Chonnam National University, Gwangju 500-757, Korea
| | | | | | | | | |
Collapse
|
38
|
Soares JB, Leite-Moreira AF. Ghrelin, des-acyl ghrelin and obestatin: three pieces of the same puzzle. Peptides 2008; 29:1255-70. [PMID: 18396350 DOI: 10.1016/j.peptides.2008.02.018] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2008] [Revised: 02/24/2008] [Accepted: 02/26/2008] [Indexed: 12/26/2022]
Abstract
The major active product of ghrelin gene is a 28-amino acid peptide acylated at the serine 3 position with an octanoyl group, called simply ghrelin. Ghrelin has a multiplicity of physiological functions, affecting GH release, food intake, energy and glucose homeostasis, gastrointestinal, cardiovascular, pulmonary and immune function, cell proliferation and differentiation and bone physiology. Nevertheless, recent developments have shown that ghrelin gene can generate various bioactive molecules besides ghrelin, mainly des-acyl ghrelin and obestatin, obtained from alternative splicing or from extensive post-translational modification. Although their receptors have not yet been identified, they have already proven to be active, having intriguingly subtle but opposite physiological actions to ghrelin. This suggests the existence of a novel endocrine system with multiple effector elements which not only may have opposite actions but may regulate the action of each other. In this review, we summarize the steps which lead to the production of the different ghrelin gene products and examine the most significant differences between them in terms of structure and actions.
Collapse
Affiliation(s)
- João-Bruno Soares
- Department of Physiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | | |
Collapse
|
39
|
Guo ZF, Ren AJ, Zheng X, Qin YW, Cheng F, Zhang J, Wu H, Yuan WJ, Zou L. Different responses of circulating ghrelin, obestatin levels to fasting, re-feeding and different food compositions, and their local expressions in rats. Peptides 2008; 29:1247-54. [PMID: 18400333 DOI: 10.1016/j.peptides.2008.02.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Revised: 02/24/2008] [Accepted: 02/26/2008] [Indexed: 02/06/2023]
Abstract
Obestatin, a sibling of ghrelin derived from preproghrelin, opposes several physiological actions of ghrelin. Our previous study has demonstrated that both plasma ghrelin and obestatin levels were decreased significantly 2h after food intake in human. To further expand current knowledge, we investigated the temporal profiles of their levels in ad libitum fed rats, 48h fasted rats and 48h fasted rats refed 2h with a standard chow, crude fiber, 50% glucose or water, and their expressions in stomach, liver and pancreatic islets immunohistochemically. Plasma ghrelin and obestatin levels were measured by EIA. Plasma leptin, insulin and glucose levels were also evaluated. Both plasma ghrelin and obestatin levels increased significantly in fasted rats compared with ad libitum fed rats. The ingestion of standard chow produced a profound and sustained suppression of ghrelin levels, whereas plasma obestatin levels decreased significantly but recovered quickly. Intake of crude fiber or 50% glucose, however, produced a more profound and sustained suppression of obestatin levels, though they had relatively less impact on ghrelin levels. Plasma glucose was the only independent predictor of ghrelin levels, obestatin levels, and ghrelin to obestatin ratios. Obestatin immunoreactivity was detected in the fundus of stomach, liver and pancreatic islets, with roughly similar patterns of distribution to ghrelin. These data show quantitative and qualitative differences in circulating ghrelin and obestatin responses to the short-term feeding status and nutrient composition, and may support a role for obestatin in regulating metabolism and energy homeostasis.
Collapse
Affiliation(s)
- Zhi-Fu Guo
- Department of Cardiovascular Diseases, Changhai Hospital, Second Military Medical University, Shanghai 200433, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Rocha-Sousa A, Falcão-Reis F, Leite-Moreira AF. The obestatin/ghrelin system as a novel regulatory mechanism of iris muscle contraction. Curr Eye Res 2008; 33:73-9. [PMID: 18214744 DOI: 10.1080/02713680701791058] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
PURPOSE To evaluate obestatin and ghrelin effects on iris muscle contraction. MATERIALS AND METHODS Obestatin (10(-5) M) or ghrelin (10(-5) M) were tested on two consecutive carbachol-or epinephrine-elicited contractions of iris rabbit sphincter or dilator muscles. Ghrelin and obestatin effects on iris muscles basal tension were also tested, and their effects on iris sphincter EFS-elicited contraction were evaluated. RESULTS Compared with the first, tension of the second carbachol-induced contraction of the iris sphincter decreased 11.5+/-5.5% in the vehicle group, increased 19.0+/-10.2% in presence of obestatin, and remained unchanged by ghrelin. Epinephrine-induced contractions were not affected by obestatin or ghrelin. EFS-elicited contractions were decreased 9.3+/-3.2% by ghrelin. Basal tension of the iris sphincter decreased 21.7+/-3.7% in presence of ghrelin (10(-5) M), while that of the dilator decreased 14.1+/-5.0% in presence of obestatin (10(-5) M). CONCLUSION This study suggests that obestatin potentiates the cholinergic contraction of the iris sphincter and relaxes the iris dilator muscles.
Collapse
Affiliation(s)
- A Rocha-Sousa
- Laboratory of Physiology, Faculty of Medicine, University of Porto, Portugal.
| | | | | |
Collapse
|
41
|
Granata R, Settanni F, Gallo D, Trovato L, Biancone L, Cantaluppi V, Nano R, Annunziata M, Campiglia P, Arnoletti E, Ghè C, Volante M, Papotti M, Muccioli G, Ghigo E. Obestatin promotes survival of pancreatic beta-cells and human islets and induces expression of genes involved in the regulation of beta-cell mass and function. Diabetes 2008; 57:967-79. [PMID: 18162507 DOI: 10.2337/db07-1104] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Obestatin is a newly discovered peptide encoded by the ghrelin gene whose biological functions are poorly understood. We investigated obestatin effect on survival of beta-cells and human pancreatic islets and the underlying signaling pathways. RESEARCH DESIGN AND METHODS beta-Cells and human islets were used to assess obestatin effect on cell proliferation, survival, apoptosis, intracellular signaling, and gene expression. RESULTS Obestatin showed specific binding on HIT-T15 and INS-1E beta-cells, bound to glucagon-like peptide-1 receptor (GLP-1R), and recognized ghrelin binding sites. Obestatin exerted proliferative, survival, and antiapoptotic effects under serum-deprived conditions and interferon-gamma/tumor necrosis factor-alpha/interleukin-1 beta treatment, particularly at pharmacological concentrations. Ghrelin receptor antagonist [D-Lys(3)]-growth hormone releasing peptide-6 and anti-ghrelin antibody prevented obestatin-induced survival in beta-cells and human islets. beta-Cells and islet cells released obestatin, and addition of anti-obestatin antibody reduced their viability. Obestatin increased beta-cell cAMP and activated extracellular signal-related kinase 1/2 (ERK1/2) and phosphatidylinositol 3-kinase (PI 3-kinase)/Akt; its antiapoptotic effect was blocked by inhibition of adenylyl cyclase/cAMP/protein kinase A (PKA), PI 3-kinase/Akt, and ERK1/2 signaling. Moreover, obestatin upregulated GLP-1R mRNA and insulin receptor substrate-2 (IRS-2) expression and phosphorylation. The GLP-1R antagonist exendin-(9-39) reduced obestatin effect on beta-cell survival. In human islets, obestatin, whose immunoreactivity colocalized with that of ghrelin, promoted cell survival and blocked cytokine-induced apoptosis through cAMP increase and involvement of adenylyl cyclase/cAMP/PKA signaling. Moreover, obestatin 1) induced PI 3-kinase/Akt, ERK1/2, and also cAMP response element-binding protein phosphorylation; 2) stimulated insulin secretion and gene expression; and 3) upregulated GLP-1R, IRS-2, pancreatic and duodenal homeobox-1, and glucokinase mRNA. CONCLUSIONS These results indicate that obestatin promotes beta-cell and human islet cell survival and stimulates the expression of main regulatory beta-cell genes, identifying a new role for this peptide within the endocrine pancreas.
Collapse
Affiliation(s)
- Riccarda Granata
- Laboratory of Molecular and Cellular Endocrinology, Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Turin, Corso Dogliotti, 14-10126 Turin, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Tang SQ, Jiang QY, Zhang YL, Zhu XT, Shu G, Gao P, Feng DY, Wang XQ, Dong XY. Obestatin: its physicochemical characteristics and physiological functions. Peptides 2008; 29:639-45. [PMID: 18325633 DOI: 10.1016/j.peptides.2008.01.012] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2007] [Revised: 01/02/2008] [Accepted: 01/04/2008] [Indexed: 12/14/2022]
Abstract
Obestatin, a novel 23 amino acid amidated peptide encoded by the same gene with ghrelin, was initially reported to reduce food intake, body weight gain, gastric emptying and suppress intestinal motility through an interaction with the orphan receptor GPR39. However, recently reports have shown that above findings had been questioned by several groups. Further studies explained that obestatin was involved in inhibiting thirst and anxiety, improving memory, regulating sleep, affecting cell proliferation, and increasing the secretion of pancreatic juice enzymes. We also identified that obestatin could stimulate piglet liver and adipose cell proliferation, and inhibit the secretion of IGF-I. According to the controversy over the effects and the cognate ligand of obestatin, here we provide the latest review on the structure, distribution and physiological functions of obestatin.
Collapse
Affiliation(s)
- Sheng-Qiu Tang
- Laboratory of Animal Physiology and Biochemistry, College of Animal Science, South China Agriculture University, Wushan Avenue, Tianhe District, Guangzhou 510642, China
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Zhang JV, Jahr H, Luo CW, Klein C, Van Kolen K, Ver Donck L, De A, Baart E, Li J, Moechars D, Hsueh AJW. Obestatin induction of early-response gene expression in gastrointestinal and adipose tissues and the mediatory role of G protein-coupled receptor, GPR39. Mol Endocrinol 2008; 22:1464-75. [PMID: 18337590 DOI: 10.1210/me.2007-0569] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Obestatin was identified as a brain/gut peptide hormone encoded by the ghrelin gene and found to interact with the G protein-coupled receptor, GPR39. We investigated target cells for obestatin based on induction of an early-response gene c-fos in different tissues. After ip injection of obestatin, c-fos staining was found in the nuclei of gastric mucosa, intestinal villi, white adipose tissues, hepatic cords, and kidney tubules. Immunohistochemical analyses using GPR39 antibodies further revealed cytoplasmic staining in these tissues. In cultured 3T3-L1 cells, treatment with obestatin, but not motilin, induced c-fos expression. In these preadipocytes, treatment with obestatin also stimulated ERK1/2 phosphorylation. Because phenotypes of GPR39 null mice are partially consistent with a role of GPR39 in mediating obestatin actions, we hypothesized that inconsistencies on the binding of iodinated obestatin to GPR39 are due to variations in the bioactivity of iodinated obestatin. We obtained monoiodoobestatin after HPLC purification and demonstrated its binding to jejunum, stomach, ileum, pituitary, and white adipose tissue. Furthermore, human embryonic kidney 293T cells transfected with plasmids encoding human or mouse GPR39 or a human GPR39 isoform, but not the ghrelin receptor, exhibited high-affinity binding to monoiodoobestatin. Binding studies using jejunum homogenates and recombinant GPR39 revealed obestatin-specific displacement curves. Furthermore, treatment with obestatin induced c-fos expression in gastric mucosa of wild-type, but not GPR39 null, mice, underscoring a mediating role of this receptor in obestatin actions. The present findings indicate that obestatin is a metabolic hormone capable of binding to GPR39 to regulate the functions of diverse gastrointestinal and adipose tissues.
Collapse
Affiliation(s)
- Jian V Zhang
- Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Effect of peripheral obestatin on food intake and gastric emptying in ghrelin-knockout mice. Br J Pharmacol 2008; 153:1550-7. [PMID: 18204478 DOI: 10.1038/sj.bjp.0707683] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND AND PURPOSE The finding that obestatin, a peptide encoded by the ghrelin gene, opposes ghrelin's stimulatory effect on food intake and gastric emptying has been questioned. The effect of obestatin has been mostly investigated in fasted rodents, a condition associated with high blood levels of ghrelin which may mask the effect of obestatin. We therefore investigated the effect of obestatin on food intake, gastric emptying and gastric contractility in ghrelin knockout mice. EXPERIMENTAL APPROACH The effect of obestatin on 6-h cumulative food intake was studied in fasted wildtype (ghrelin+/+) and ghrelin knockout (ghrelin-/-) mice. In both genotypes, the effect of obestatin and/or ghrelin was studied in vivo on gastric emptying measured with the (14)C-octanoic acid breath test and in vitro on neural responses elicited by electrical field stimulation (EFS) of fundic smooth muscle strips. KEY RESULTS Administration of obestatin did not influence fasting-induced hyperphagia or gastric emptying in both genotypes. Injection of ghrelin accelerated gastric emptying in ghrelin+/+ and ghrelin-/- mice but the effect was not reversed by co-injection with obestatin. In fundic strips from ghrelin+/+ and ghrelin-/- mice, ghrelin increased EFS-induced contractions, but obestatin was without effect. However, co-administration with obestatin tended to reduce the excitatory effect of ghrelin in both genotypes. CONCLUSIONS AND IMPLICATIONS In ghrelin-/- mice, obestatin failed to affect food intake and gastric motility. These results suggest that endogenous ghrelin does not mask the effect of obestatin and confirm that obestatin administered peripherally is not a major regulator of satiety signalling or gut motility.
Collapse
|
45
|
Pazos Y, Alvarez CJP, Camiña JP, Casanueva FF. Stimulation of extracellular signal-regulated kinases and proliferation in the human gastric cancer cells KATO-III by obestatin. Growth Factors 2007; 25:373-81. [PMID: 18365868 DOI: 10.1080/08977190801889313] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Obestatin, the ghrelin-associated peptide, activates cell proliferation in the gastric cancer cell line KATO-III. The results showed that this peptide induced cell proliferation by mitogen-activated kinase kinase/extracellular signal-regulated kinases1/2 (ERK1/2) phosphorylation. A sequential analysis of the obestatin transmembrane signalling pathway indicated that the ERK1/2 activity is partially blocked after preincubation of the cells with pertussis toxin, as well as by wortmannin (an inhibitor of phosphoinositide 3-kinase (PI3K)), staurosporine (an inhibitor of protein kinase C (PKC)) and 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP2, which inhibits the non receptor tyrosine kinase Src). Upon administration of obestatin, the intracellular levels of phospho-PKCepsilon- and theta-isoenzymes rise with similar time-courses, from which PKCepsilon appears to be the responsible for ERK1/2 response. Based on the experimental data, a signalling pathway involving the consecutive activation of G(i), PI3K, novel PKCepsilon and Src for ERK1/2 activation is proposed. These results point to a functionally active peptide that regulates proliferation of the gastric cancer cells KATO-III.
Collapse
Affiliation(s)
- Yolanda Pazos
- Molecular Endocrinology, Research Area, Complejo Hospitalario Universitario de Santiago, (CHUS), Santiago de Compostela, Spain.
| | | | | | | |
Collapse
|
46
|
Scrima M, Campiglia P, Esposito C, Gomez-Monterrey I, Novellino E, D'Ursi AM. Obestatin conformational features: A strategy to unveil obestatin’s biological role? Biochem Biophys Res Commun 2007; 363:500-5. [PMID: 17904104 DOI: 10.1016/j.bbrc.2007.08.200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2007] [Accepted: 08/28/2007] [Indexed: 11/23/2022]
Abstract
Obestatin and its derivative Ob(11-23) are recently discovered peptides produced in the rat stomach. They have proven to be involved in the regulation of energy balance, inhibiting feeding, causing reductions in food intake, body weight and jejunal contraction in rodents. The G-protein coupled receptor, GPR39, was originally proposed as being an obestatin target receptor, but this remains controversial. As such, the molecular mechanism for obestatin's effects in vivo is still uncertain. Here we report the CD and NMR conformational analysis of obestatin and Ob(11-23). Both peptides assume a regular secondary structure in the C-terminal region of the molecule. In this region, structural elements similar to other GPCR binding neuropeptides support the identity of obestatin as a new and functionally autonomous GPCR ligand. Conversely sequence and conformational specificity point to a new farmacoforic structure, on which innovative derivatives with a potential role in the treatment of obesity can be designed and synthetized.
Collapse
Affiliation(s)
- Mario Scrima
- Department of Pharmaceutical Sciences, University of Salerno, I-84084 Fisciano, Italy
| | | | | | | | | | | |
Collapse
|
47
|
Seim I, Collet C, Herington AC, Chopin LK. Revised genomic structure of the human ghrelin gene and identification of novel exons, alternative splice variants and natural antisense transcripts. BMC Genomics 2007; 8:298. [PMID: 17727735 PMCID: PMC2014779 DOI: 10.1186/1471-2164-8-298] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2007] [Accepted: 08/30/2007] [Indexed: 12/04/2022] Open
Abstract
Background Ghrelin is a multifunctional peptide hormone expressed in a range of normal tissues and pathologies. It has been reported that the human ghrelin gene consists of five exons which span 5 kb of genomic DNA on chromosome 3 and includes a 20 bp non-coding first exon (20 bp exon 0). The availability of bioinformatic tools enabling comparative analysis and the finalisation of the human genome prompted us to re-examine the genomic structure of the ghrelin locus. Results We have demonstrated the presence of an additional novel exon (exon -1) and 5' extensions to exon 0 and 1 using comparative in silico analysis and have demonstrated their existence experimentally using RT-PCR and 5' RACE. A revised exon-intron structure demonstrates that the human ghrelin gene spans 7.2 kb and consists of six rather than five exons. Several ghrelin gene-derived splice forms were detected in a range of human tissues and cell lines. We have demonstrated ghrelin gene-derived mRNA transcripts that do not code for ghrelin, but instead may encode the C-terminal region of full-length preproghrelin (C-ghrelin, which contains the coding region for obestatin) and a transcript encoding obestatin-only. Splice variants that differed in their 5' untranslated regions were also found, suggesting a role of these regions in the post-transcriptional regulation of preproghrelin translation. Finally, several natural antisense transcripts, termed ghrelinOS (ghrelin opposite strand) transcripts, were demonstrated via orientation-specific RT-PCR, 5' RACE and in silico analysis of ESTs and cloned amplicons. Conclusion The sense and antisense alternative transcripts demonstrated in this study may function as non-coding regulatory RNA, or code for novel protein isoforms. This is the first demonstration of putative obestatin and C-ghrelin specific transcripts and these findings suggest that these ghrelin gene-derived peptides may also be produced independently of preproghrelin. This study reveals several novel aspects of the ghrelin gene and suggests that the ghrelin locus is far more complex than previously recognised.
Collapse
Affiliation(s)
- Inge Seim
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| | - Chris Collet
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| | - Adrian C Herington
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| | - Lisa K Chopin
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| |
Collapse
|
48
|
Zhang JV, Klein C, Ren PG, Kass S, Donck LV, Moechars D, Hsueh AJW. Response to Comment on "Obestatin, a Peptide Encoded by the Ghrelin Gene, Opposes Ghrelin's Effects on Food Intake". Science 2007. [DOI: 10.1126/science.1137136] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|