1
|
Gedar Totuk OM, Yildiz E, Mollica A, Kabadayi K, Sahin A. The opioid peptide biphalin modulates human corneal epithelial wound healing in vitro. J Fr Ophtalmol 2021; 44:1403-1412. [PMID: 34446298 DOI: 10.1016/j.jfo.2020.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/29/2020] [Accepted: 09/11/2020] [Indexed: 10/20/2022]
Abstract
PURPOSE Analgesic drugs, including nonselective opioids and non-steroidal anti-inflammatory drugs, should be used with great precautions to relieve pain after trauma to the corneal epithelium because of their unfavorable effects on wound healing. Biphalin is a synthetic opioid peptide that has been demonstrated to possess a strong analgesic effect on rodents. The purpose of this study is to investigate the effects of biphalin on human corneal epithelial wound healing. METHODS An immortalized human corneal epithelial cell (HCEC) culture was used to analyze the effects of biphalin on wound healing. The toxicity of biphalin at various concentrations was measured by the MTT assay. The effects of 1μM and 10μM biphalin on wound closure, cell migration and proliferation were tested in an in vitro scratch assay of HCECs. Naloxone, a non-selective competitive opioid receptor antagonist, was also used to inhibit the effects of biphalin in all experiments. RESULTS Biphalin did not cause any toxic effect on HCECs at concentrations lower than 100μM at various incubation time points. Biphalin significantly increased wound healing at 1μM concentration in an in vitro scratch assay of HCECs (P<0.05). It also significantly increased migration of HCECs (P<0.01). There was no significant difference between the biphalin and control groups of HCECs in the Ki67 proliferation assay. CONCLUSION Biphalin, which is a synthetic opioid peptide, promotes corneal epithelial wound healing by increasing cell migration. This role should be evaluated in further in vivo and clinical studies.
Collapse
Affiliation(s)
- O M Gedar Totuk
- Department of Ophthalmology, Bahçeşehir University School of Medicine, Istanbul, 34734, Turkey.
| | - E Yildiz
- Research Center for Translational Medicine, Koç University, Istanbul, 34010, Turkey.
| | - A Mollica
- Department of Pharmacy, Università degli Studi G. d'Annunzio Chieti e Pescara, Chieti, 66100, Italy.
| | - K Kabadayi
- Bahçeşehir University School of Medicine, Istanbul, 34734, Turkey.
| | - A Sahin
- Department of Ophthalmology, Koc University Medical School, Istanbul, 34010, Turkey.
| |
Collapse
|
2
|
Zhang H, Zhang X, Hong X, Tong X. Homogeneity or heterogeneity, the paradox of neurovascular pericytes in the brain. Glia 2021; 69:2474-2487. [PMID: 34152032 PMCID: PMC8453512 DOI: 10.1002/glia.24054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 05/25/2021] [Accepted: 06/11/2021] [Indexed: 11/11/2022]
Abstract
Pericytes are one of the main components of the neurovascular unit. They play a critical role in regulating blood flow, blood–brain barrier permeability, neuroinflammation, and neuronal activity. In the central nervous system (CNS), pericytes are classified into three subtypes, that is, ensheathing, mesh, and thin‐strand pericytes, based on their distinct morphologies and region‐specific distributions. However, whether these three types of pericytes exhibit heterogeneity or homogeneity with regard to membrane properties has been understudied to date. Here, we combined bulk RNA sequencing analysis with electrophysiological methods to demonstrate that the three subtypes of pericytes share similar electrical membrane properties in the CNS, suggesting a homogenous population of neurovascular pericytes in the brain. Furthermore, we identified an inwardly rectifying potassium channel subtype Kir4.1 functionally expressed in pericytes. Electrophysiological patch clamp recordings indicate that Kir4.1 channel currents in pericytes represent a small portion of the K+ macroscopic currents in physiological conditions. However, a significant augmentation of Kir4.1 currents in pericytes was induced when the extracellular K+ was elevated to pathological levels, suggesting pericytes Kir4.1 channels might play an important role as K+ sensors and contribute to K+ homeostasis in local neurovascular networks in pathology.
Collapse
Affiliation(s)
- Huimin Zhang
- Center for Brain Science of Shanghai Children's Medical Center, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao Zhang
- Center for Brain Science of Shanghai Children's Medical Center, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoqi Hong
- Center for Brain Science of Shanghai Children's Medical Center, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoping Tong
- Center for Brain Science of Shanghai Children's Medical Center, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Luo F, Xu R, Song G, Xue D, He X, Xia Y. Alleviation of TGF-β1 induced tubular epithelial-mesenchymal transition via the δ-opioid receptor. FEBS J 2020; 288:1243-1258. [PMID: 32563195 DOI: 10.1111/febs.15459] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 02/16/2020] [Accepted: 06/16/2020] [Indexed: 02/06/2023]
Abstract
Renal fibrosis is a common pathological feature of progressive chronic kidney disease (CKD). It is indicated that transforming growth factor-β1 (TGF-β1) plays as a central mediator in renal fibrosis. The present study aimed to investigate the role of δ-opioid receptor (DOR) on renal fibrosis of the rat renal proximal tubular epithelial cell line (NRK-52E) induced by TGF-β1 and to elucidate its underlying mechanism, as well as its involvement in signaling pathways. Cells were treated with TGF-β1 (10 ng·mL-1 ), along with a specific DOR agonist (UFP-512) or naltrindole (a DOR antagonist). Cell viability and morphology, as well as cell migration, were measured after drug administration. Western blotting was employed to examine the extracellular matrix (ECM) protein Fibronectin, and the tubular epithelial-mesenchymal transition (EMT) markers (E-cadherin and α-smooth muscle actin (α-SMA)), signal transducer (p-Smad3), and EMT-regulatory gene (Snail). The expression level of phosphorylated Akt and p38 was also examined. Our results showed that TGF-β1 induced fibroblastic appearance and increased the expression of Fibronectin, α-SMA, P-Smad3, and Snail, while it decreased the expression of E-cadherin in NRK-52E cells. Moreover, TGF-β1 induced the activation of Akt and p38 MAPK signaling pathways. DOR activation was found to efficiently block morphological changes and cell migration, as long as the expression changes of Fibronectin, E-cadherin, α-SMA, P-Smad3, Snail, P-Akt, and P-p38 were induced by TGF-β1. These findings suggest that DOR may serve as an antifibrotic factor for renal proximal tubule cells by inhibiting the fibrosis process via TGF-β/Smad, Akt, and p38 MAPK signaling pathways.
Collapse
Affiliation(s)
- Fengbao Luo
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Renfang Xu
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Guanglai Song
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Dong Xue
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Xiaozhou He
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Ying Xia
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai, China
| |
Collapse
|
4
|
Chen YM, He XZ, Wang SM, Xia Y. δ-Opioid Receptors, microRNAs, and Neuroinflammation in Cerebral Ischemia/Hypoxia. Front Immunol 2020; 11:421. [PMID: 32269564 PMCID: PMC7109255 DOI: 10.3389/fimmu.2020.00421] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 02/24/2020] [Indexed: 12/26/2022] Open
Abstract
Hypoxia and ischemia are the main underlying pathogenesis of stroke and other neurological disorders. Cerebral hypoxia and/or ischemia (e.g., stroke) can lead to neuronal injury/death and eventually cause serious neurological disorders or even death in the patients. Despite knowing these serious consequences, there are limited neuroprotective strategies against hypoxic and ischemic insults in clinical settings. Recent studies indicate that microRNAs (miRNAs) are of great importance in regulating cerebral responses to hypoxic/ischemic stress in addition to the neuroprotective effect of the δ-opioid receptor (DOR). Moreover, new discovery shows that DOR can regulate miRNA expression and inhibit inflammatory responses to hypoxia/ischemia. We, therefore, summarize available data in current literature regarding the role of DOR and miRNAs in regulating the neuroinflammatory responses in this article. In particular, we focus on microglia activation, cytokine production, and the relevant signaling pathways triggered by cerebral hypoxia/ischemia. The intent of this review article is to provide a novel clue for developing new strategies against neuroinflammatory injury resulting from cerebral hypoxia/ischemia.
Collapse
Affiliation(s)
- Yi-Meng Chen
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Xiao-Zhou He
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Shu-Ming Wang
- Department of Anesthesiology, University of Connecticut, Mansfield, CT, United States
| | - Ying Xia
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Luo F, Xu R, Song G, Lu H, He X, Xia Y. The δ-Opioid Receptor Differentially Regulates MAPKs and Anti-inflammatory Cytokines in Rat Kidney Epithelial Cells Under Hypoxia. Front Physiol 2020; 10:1572. [PMID: 32038276 PMCID: PMC6985288 DOI: 10.3389/fphys.2019.01572] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 12/16/2019] [Indexed: 11/13/2022] Open
Abstract
Hypoxic injury is one of the most important factors in progressive kidney disorders. Since we have found that δ-opioid receptor (DOR) is neuroprotective against hypoxic stress through a differential regulation of mitogen-activated protein kinases (MAPKs) and anti-inflammatory cytokines, we asked if DOR that is highly expressed in the kidney can modulate renal MAPKs and anti-inflammatory cytokines under hypoxia. We exposed cultured rat kidney epithelial cells (NRK-52E) to prolonged hypoxia (1% O2) with applications of specific DOR agonist or/and antagonist to examine if DOR affects hypoxia-induced changes in MAPKs and anti-inflammatory cytokines. The results showed that endogenous DOR expression remained unchanged under hypoxia, while DOR activation with UFP-512 (a specific DOR agonist) reversed the hypoxia-induced up-regulation of ERK1/2 and p38 phosphorylation. DOR inhibition with naltrindole had no appreciable effect on the hypoxia-induced changes in ERK1/2 phosphorylation, but increased p38 phosphorylation. DOR inhibition with naltrindole attenuated the effects of DOR activation on the changes in ERK1/2 and p38 phosphorylation in hypoxia. Moreover, DOR activation/inhibition differentially affected the expression of transcriptional repressor B-cell lymphoma 6 (Bcl-6), anti-inflammatory cytokines tristetraprolin (TTP), and interleukin-10 (IL-10). Taken together, our novel data suggest that DOR activation differentially regulates ERK1/2, p38, Bcl-6, TTP, and IL-10 in the renal cells under hypoxia.
Collapse
Affiliation(s)
- Fengbao Luo
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Renfang Xu
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Guanglai Song
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Hao Lu
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Xiaozhou He
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Ying Xia
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai, China
| |
Collapse
|
6
|
Güney Ş, Dinçer S, Göktaş G, Take-Kaplanoğlu G. Neuroprotective role of delta opioid receptors in hypoxic preconditioning. Turk J Med Sci 2019; 49:1568-1576. [PMID: 31652039 PMCID: PMC7018290 DOI: 10.3906/sag-1810-51] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 08/04/2019] [Indexed: 12/15/2022] Open
Abstract
Background/aim The purpose of the present study was to explore the neuroprotective role of delta opioid receptors (DOR) in the rat cortex in hypoxic preconditioning. Materials and methods Rats were randomly divided into 8 groups: control (C), sham (S), hypoxic preconditioning (PC), severe hypoxia (SH), PC + SH, PC + SH + Saline (PS), PC + SH + DPDPE (DPDPE, selective DOR agonist), PC + SH + NT (NT, Naltrindole, selective DOR antagonist). Drugs were administered intracerebroventrically. Twenty four h after the end of 3 consecutive days of PC (10% O2, 2 h/day), the rats were subjected to severe hypoxia (7% O2 for 3 h). Bcl-2 and cyt-c were measured by western blot, and caspase-3 was observed immunohistochemically. Results Bcl-2 expressions in the PC group were higher than in control, SH, and PC + SH groups. Even though there were no significant differences between the groups in terms of cyt-c levels, caspase-3 immunoreactivity of cortical neurons and glial cells in the severe hypoxia and NT groups were higher than in the control, sham, and hypoxic preconditioning groups. DPDPE administration diminished caspase-3 immunoreactivity compared with all of the severe hypoxia groups. Conclusions These results suggest that cortical cells are resistant to apoptosis via increased expression of Bcl-2 and decreased immunoreactivity of caspase-3 in the cortex, and that DOR is involved in neuroprotection induced by hypoxic preconditioning via the caspase-3 pathway in cortical neurons.
Collapse
Affiliation(s)
- Şevin Güney
- Department of Physiology, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Sibel Dinçer
- Department of Physiology, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Güleser Göktaş
- Department of Histology and Embryology, Faculty of Medicine, Lokman Hekim University, Ankara, Turkey
| | - Gülnur Take-Kaplanoğlu
- Department of Histology and Embryology, Faculty of Medicine, Gazi University, Ankara, Turkey
| |
Collapse
|
7
|
δ-Opioid Receptor-Nrf-2-Mediated Inhibition of Inflammatory Cytokines in Neonatal Hypoxic-Ischemic Encephalopathy. Mol Neurobiol 2018; 56:5229-5240. [PMID: 30560518 DOI: 10.1007/s12035-018-1452-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 12/07/2018] [Indexed: 12/11/2022]
Abstract
Neonatal hypoxic-ischemic encephalopathy (HIE) causes serious neurological disability; there are, however, currently few promising therapies for it. We have recently shown that δ-opioid receptor (DOR) is neuroprotective by downregulating TNF-α. Since hypoxia-ischemia (HI) triggers a robust inflammatory response, which exacerbates HI brain damage, we investigated, in this study, whether DOR activation could regulate inflammatory cytokine expression, thereby playing a protective effect on the neonatal brain under HI. Twenty-five neonatal rats were randomly divided into five groups: (1) control (control); (2) HI; (3) HI with saline (HI + NS); (4) DOR activation with UFP-512 (a potent and specific DOR agonist) under HI conditions (HI + U); and (5) DOR inhibition using NT treatment under HI conditions (HI + NT). The rats were sacrificed by decapitation at 24 h after HI, and their brains were rapidly removed for measurements. The protein expression of TNF-α, IL-6, ICAM-1, IL-10, IL-18, NQO-1, Nrf-2, and HO-1 was measured using Western blot. In the hemispheres exposed to HI, DOR activation significantly decreased the expressions of TNF-α, IL-6, and ICAM-1 in the cortex, while it significantly increased IL-10 and had no effect on IL-18 in the same region. In contrast, DOR had no appreciable effect on inflammatory cytokine expression in non-cortical tissues including hippocampal, subcortical, and cerebellar tissues. Moreover, HI stress triggered an upregulation of Nrf-2 nuclear protein as well as some of its downstream anti-inflammatory genes such as HO-1 and NQO-1 in the cortex, while DOR activation further augmented such a protective reaction against HI injury. DOR plays an important role in protecting against HI by regulating the expression of inflammatory and anti-inflammatory cytokines in the cortex, which is likely mediated by the Nrf-2/HO-1/NQO-1 signaling.
Collapse
|
8
|
Prolonged DADLE exposure epigenetically promotes Bcl-2 expression and elicits neuroprotection in primary rat cortical neurons via the PI3K/Akt/NF-κB pathway. Acta Pharmacol Sin 2018; 39:1582-1589. [PMID: 29795362 DOI: 10.1038/aps.2018.7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 01/02/2018] [Indexed: 01/09/2023] Open
Abstract
Both in vivo and in vitro studies have shown the beneficial effects of the delta-opioid receptor (DOR) on neurodegeneration in hypoxia/ischemia. We previously reported that DOR stimulation with [(D-Ala2, D-Leu5) enkephalin] (DADLE), a potent DOR agonist, for both a short (minutes) and long (days) time has notable protective effects against sodium azide (NaN3)-induced cell injury in primary cultured rat cortical neurons. We further demonstrated that short-term DADLE stimulation increased neuronal survival through the PKC-mitochondrial ERK pathway. However, the mechanisms underlying long-term neuroprotection by DADLE remain unclear. Here, we showed that DOR stimulation with DADLE (0.1 μmol/L) for 2 d selectively activates the PI3K/Akt/NF-κB pathway in NaN3-treated neurons; this activation increased Bcl-2 expression, attenuated Cyto c release and promoted neuronal survival. Further investigation revealed that sustained DADLE stimulation increased Bcl-2 expression by enhancing NF-κB binding to the Bcl-2 promoter and upregulating the histone acetylation levels of the Bcl-2 promoter. Our results demonstrate that prolonged DADLE exposure epigenetically promotes Bcl-2 expression and elicits neuroprotective effects in the NaN3 model via the PI3K/Akt/NF-κB pathway.
Collapse
|
9
|
Xu Y, Zhi F, Peng Y, Shao N, Khiati D, Balboni G, Yang Y, Xia Y. δ-Opioid Receptor Activation Attenuates Hypoxia/MPP +-Induced Downregulation of PINK1: a Novel Mechanism of Neuroprotection Against Parkinsonian Injury. Mol Neurobiol 2018; 56:252-266. [PMID: 29687347 DOI: 10.1007/s12035-018-1043-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 03/27/2018] [Indexed: 12/22/2022]
Abstract
There is emerging evidence suggesting that neurotoxic insults and hypoxic/ischemic injury are underlying causes of Parkinson's disease (PD). Since PTEN-induced kinase 1 (PINK1) dysfunction is involved in the molecular genesis of PD and since our recent studies have demonstrated that the δ-opioid receptor (DOR) induced neuroprotection against hypoxic and 1-methyl-4-phenyl-pyridimium (MPP+) insults, we sought to explore whether DOR protects neuronal cells from hypoxic and/or MPP+ injury via the regulation of PINK1-related pathways. Using highly differentiated rat PC12 cells exposed to either severe hypoxia (0.5-1% O2) for 24-48 h or varying concentrations of MPP+, we found that both hypoxic and MPP+ stress reduced the level of PINK1 expression, while incubation with the specific DOR agonist UFP-512 reversed this reduction and protected the cells from hypoxia and/or MPP+-induced injury. However, the DOR-mediated cytoprotection largely disappeared after knocking down PINK1 by PINK1 small interfering RNA. Moreover, we examined several important signaling molecules related to cell survival and apoptosis and found that DOR activation attenuated the hypoxic and/or MPP+-induced reduction in phosphorylated Akt and inhibited the activation of cleaved caspase-3, whereas PINK1 knockdown largely deprived the cell of the DOR-induced effects. Our novel data suggests a unique mechanism underlying DOR-mediated cytoprotection against hypoxic and MPP+ stress via a PINK1-mediated regulation of signaling.
Collapse
Affiliation(s)
- Yuan Xu
- Department of Neurosurgery, The First People's Hospital of Changzhou, Changzhou, Jiangsu, China.,Modern Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Feng Zhi
- Department of Neurosurgery, The First People's Hospital of Changzhou, Changzhou, Jiangsu, China.,Modern Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Ya Peng
- Department of Neurosurgery, The First People's Hospital of Changzhou, Changzhou, Jiangsu, China
| | - Naiyuan Shao
- Department of Neurosurgery, The First People's Hospital of Changzhou, Changzhou, Jiangsu, China
| | - Dhiaedin Khiati
- Royal College of Surgeons of Ireland - Medical University of Bahrain, Busaiteen, Bahrain
| | - Gianfranco Balboni
- Department of Life and Environment Sciences, University of Cagliari, Cagliari, Italy
| | - Yilin Yang
- Department of Neurosurgery, The First People's Hospital of Changzhou, Changzhou, Jiangsu, China. .,Modern Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China.
| | - Ying Xia
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai, China.
| |
Collapse
|
10
|
Ou Y, Weber SG. Higher Aminopeptidase Activity Determined by Electroosmotic Push-Pull Perfusion Contributes to Selective Vulnerability of the Hippocampal CA1 Region to Oxygen Glucose Deprivation. ACS Chem Neurosci 2018; 9:535-544. [PMID: 29078045 DOI: 10.1021/acschemneuro.7b00326] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
It has been known for over a century that the hippocampus, the center for learning and memory in the brain, is selectively vulnerable to ischemic damage, with the CA1 being more vulnerable than the CA3. It is also known that leucine enkephalin, or YGGFL, is neuroprotective. We hypothesized that the extracellular hydrolysis of YGGFL may be greater in the CA1 than the CA3, which would lead to the observed difference in susceptibility to ischemia. In rat organotypic hippocampal slice cultures, we estimated the Michaelis constant and the maximum velocity for membrane-bound aminopeptidase activity in the CA1 and CA3 regions. Using electroosmotic push-pull perfusion and offline capillary liquid chromatography, we inferred enzyme activity based on the production rate of GGFL, a natural and inactive product of the enzymatic hydrolysis of YGGFL. We found nearly 3-fold higher aminopeptidase activity in the CA1 than the CA3. The aminopeptidase inhibitor bestatin significantly reduced hydrolysis of YGGFL in both regions by increasing apparent Km. Based on propidium iodide cell death measurements 24 h after oxygen-glucose deprivation, we demonstrate that inhibition of aminopeptidase activity using bestatin selectively protected CA1 against delayed cell death due to oxygen-glucose deprivation and that this neuroprotection occurs through enkephalin-dependent pathways.
Collapse
Affiliation(s)
- Yangguang Ou
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Stephen G. Weber
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
11
|
Elevation of Proenkephalin 143–183 in Cerebrospinal Fluid in Moyamoya Disease. World Neurosurg 2018; 109:e446-e459. [DOI: 10.1016/j.wneu.2017.09.204] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/29/2017] [Accepted: 09/30/2017] [Indexed: 01/25/2023]
|
12
|
Su D, Wang M, Ye C, Fang J, Duan Y, Zhang Z, Hua Q, Shi C, Zhang L, Zhang R, Xie X. One-step generation of mice carrying a conditional allele together with an HA-tag insertion for the delta opioid receptor. Sci Rep 2017; 7:44476. [PMID: 28300205 PMCID: PMC5353682 DOI: 10.1038/srep44476] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 02/09/2017] [Indexed: 12/11/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are important modulators of many physiological functions and excellent drug targets for many diseases. However, to study the functions of endogenous GPCRs is still a challenging task, partially due to the low expression level of GPCRs and the lack of highly potent and selective GPCR antibodies. Overexpression or knock-in of tagged GPCRs, or knockout of specific GPCRs in mice, are common strategies used to study the in vivo functions of these receptors. However, generating separate mice carrying tagged GPCRs or conditional alleles for GPCRs is labor intensive, and requires additional breeding costs. Here we report the generation of mice carrying an HA-tagged DOR (delta opioid receptor) flanked by LoxP sequences at the endogenous DOR locus using a single recombination step, aided by the TALEN system. These animals can be used directly to study the expression, localization, protein-protein interaction and signal transduction of endogenous DOR using anti-HA antibodies. By crossing with mice expressing tissue-specific Cre, these mice can also generate offspring with DOR knockout within specific tissues. These mice are powerful tools to study the in vivo functions of DOR. Furthermore, the gene modification strategy could also be used to study the functions of many other GPCRs.
Collapse
Affiliation(s)
- Dongru Su
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-based Bio-medicine, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Min Wang
- CAS Key Laboratory of Receptor Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Chenli Ye
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-based Bio-medicine, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Jiahui Fang
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-based Bio-medicine, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yanhui Duan
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-based Bio-medicine, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Zhenghong Zhang
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-based Bio-medicine, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Qiuhong Hua
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-based Bio-medicine, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Changjie Shi
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-based Bio-medicine, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Lihong Zhang
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-based Bio-medicine, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Ru Zhang
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-based Bio-medicine, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Xin Xie
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-based Bio-medicine, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.,CAS Key Laboratory of Receptor Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| |
Collapse
|
13
|
Grant Liska M, Crowley MG, Lippert T, Corey S, Borlongan CV. Delta Opioid Receptor and Peptide: A Dynamic Therapy for Stroke and Other Neurological Disorders. Handb Exp Pharmacol 2017; 247:277-299. [PMID: 28315071 DOI: 10.1007/164_2017_7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Research of the opioid system and its composite receptors and ligands has revealed its promise as a potential therapy for neurodegenerative diseases such as stroke and Parkinson's Disease. In particular, delta opioid receptors (DORs) have been elucidated as a therapeutically distinguished subset of opioid receptors and a compelling target for novel intervention techniques. Research is progressively shedding light on the underlying mechanism of DORs and has revealed two mechanisms of DOR neuroprotection; DORs function to maintain ionic homeostasis and also to trigger endogenous neuroprotective pathways. Delta opioid agonists such as (D-Ala2, D-Leu5) enkephalin (DADLE) have been shown to promote neuronal survival and decrease apoptosis, resulting in a substantial amount of research for its application as a neurological therapeutic. Most notably, DADLE has demonstrated significant potential to reduce cell death following ischemic events. Current research is working to reveal the complex mechanisms of DADLE's neuroprotective properties. Ultimately, our knowledge of the DOR receptors and agonists has made the opioid system a promising target for therapeutic intervention in many neurological disorders.
Collapse
Affiliation(s)
- M Grant Liska
- Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, Tampa, FL, 33612, USA
| | - Marci G Crowley
- Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, Tampa, FL, 33612, USA
| | - Trenton Lippert
- Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, Tampa, FL, 33612, USA
| | - Sydney Corey
- Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, Tampa, FL, 33612, USA
| | - Cesar V Borlongan
- Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, Tampa, FL, 33612, USA.
| |
Collapse
|
14
|
Lesniak A, Pick CG, Misicka A, Lipkowski AW, Sacharczuk M. Biphalin protects against cognitive deficits in a mouse model of mild traumatic brain injury (mTBI). Neuropharmacology 2016; 101:506-18. [DOI: 10.1016/j.neuropharm.2015.10.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Revised: 10/07/2015] [Accepted: 10/08/2015] [Indexed: 11/29/2022]
|
15
|
Chao D, Wang Q, Balboni G, Ding G, Xia Y. Attenuating Ischemic Disruption of K+ Homeostasis in the Cortex of Hypoxic-Ischemic Neonatal Rats: DOR Activation vs. Acupuncture Treatment. Mol Neurobiol 2015; 53:7213-7227. [DOI: 10.1007/s12035-015-9621-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 12/07/2015] [Indexed: 12/29/2022]
|
16
|
Liang J, Chao D, Sandhu HK, Yu Y, Zhang L, Balboni G, Kim DH, Xia Y. δ-Opioid receptors up-regulate excitatory amino acid transporters in mouse astrocytes. Br J Pharmacol 2015; 171:5417-30. [PMID: 25052197 DOI: 10.1111/bph.12857] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 07/07/2014] [Accepted: 07/17/2014] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE Astrocytic excitatory amino acid transporters (EAATs) regulate extracellular glutamate concentrations and play a role in preventing neuroexcitotoxicity. As the δ-opioid receptor (DOP receptor) is neuroprotective against excitotoxic injury, we determined whether DOP receptor activation up-regulates EAAT expression and function. EXPERIMENTAL APPROACH We measured mRNA and protein expression of EAAT1, EAAT2 and EAAT3 in cultured mouse astrocytes exposed to a specific DOP receptor agonist (UFP-512) with or without a DOP receptor antagonist, DOP receptor siRNA or inhibitors of PKC, PKA, PI3K, p38, MAPK, MEK and ERK, and evaluated the function of EAATs by measuring glutamate uptake. KEY RESULTS Astrocytic DOP receptor mRNA and protein were suppressed by DOP receptor siRNA knockdown. DOP receptor activation increased mRNA and protein expression of EAAT1 and EAAT2, but not EAAT3, thereby enhancing glutamate uptake of astrocytes. DOP receptor-induced EAAT1 and EAAT2 expression was largely reversed by DOP receptor antagonist naltrindole or by DOP receptor siRNA knockdown, and suppressed by inhibitors of MEK, ERK and p38. DOP receptor-accelerated glutamate uptake was inhibited by EAAT blockers, DOP receptor siRNA knockdown or inhibitors of MEK, ERK or p38. In contrast, inhibitors of PKA, PKC or PI3K had no significant effect on DOP receptor-induced EAAT expression. CONCLUSIONS AND IMPLICATIONS DOP receptor activation up-regulates astrocytic EAATs via MEK-ERK-p38 signalling, suggesting a critical role for DOP receptors in the regulation of astrocytic EAATs and protection against neuroexcitotoxicity. As decreased EAAT expression contributes to pathophysiology in many neurological diseases, including amyotrophic lateral sclerosis, our findings present a new platform for potential treatments of these diseases.
Collapse
Affiliation(s)
- Jianfeng Liang
- Department of Neurosurgery, The University of Texas Medical School at Houston, Houston, TX, USA; Yale University School of Medicine, New Haven, CT, USA; Department of Neurosurgery, China-Japan Friendship Hospital, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Yang L, Islam MR, Karamyan VT, Abbruscato TJ. In vitro and in vivo efficacy of a potent opioid receptor agonist, biphalin, compared to subtype-selective opioid receptor agonists for stroke treatment. Brain Res 2015; 1609:1-11. [PMID: 25801116 DOI: 10.1016/j.brainres.2015.03.022] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 02/03/2015] [Accepted: 03/12/2015] [Indexed: 12/31/2022]
Abstract
To meet the challenge of identification of new treatments for stroke, this study was designed to evaluate a potent, nonselective opioid receptor (OR) agonist, biphalin, in comparison to subtype selective OR agonists, as a potential neuroprotective drug candidate using in vitro and in vivo models of ischemic stroke. Our in vitro approach included mouse primary neuronal cells that were challenged with glutamate and hypoxic/aglycemic (H/A) conditions. We observed that 10nM biphalin, exerted a statistically significant neuroprotective effect after glutamate challenge, compared to all selective opioid agonists, according to lactate dehydrogenase (LDH) and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays. Moreover, 10nM biphalin provided superior neuroprotection after H/A-reoxygenation compared to selective opioid agonists in all cases. Our in vitro investigations were supported by in vivo studies which indicate that the nonselective opioid agonist, biphalin, achieves enhanced neuroprotective potency compared to any of the selective opioid agonists, evidenced by reduced edema and infarct ratios. Reduction of edema and infarction was accompanied by neurological improvement of the animals in two independent behavioral tests. Collectively these data strongly suggest that concurrent agonist stimulation of mu, kappa and delta ORs with biphalin is neuroprotective and superior to neuroprotection by activation of any single OR subtype.
Collapse
Affiliation(s)
- Li Yang
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, 1300 S Coulter Drive, Amarillo, TX 79106, USA; Center for Blood-Brain Barrier Research, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Mohammad R Islam
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, 1300 S Coulter Drive, Amarillo, TX 79106, USA; Center for Blood-Brain Barrier Research, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Vardan T Karamyan
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, 1300 S Coulter Drive, Amarillo, TX 79106, USA; Center for Blood-Brain Barrier Research, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Thomas J Abbruscato
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, 1300 S Coulter Drive, Amarillo, TX 79106, USA; Center for Blood-Brain Barrier Research, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA.
| |
Collapse
|
18
|
Cao S, Chao D, Zhou H, Balboni G, Xia Y. A novel mechanism for cytoprotection against hypoxic injury: δ-opioid receptor-mediated increase in Nrf2 translocation. Br J Pharmacol 2015; 172:1869-81. [PMID: 25439010 DOI: 10.1111/bph.13031] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 11/24/2014] [Accepted: 11/27/2014] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND AND PURPOSE Hypoxia/reoxygenation induces synthesis of reactive oxygen species (ROS) which can attack macromolecules and cause brain injury. The transcription factor, nuclear factor (erythroid-derived 2)-like 2, (Nrf2), ia potent activator of genes with an antioxidant responsive element and Nrf2 can counteract oxidative injury by increasing expression of several antioxidative genes in response to ROS stress. Here, we show that activation of the δ-opioid receptor (DOR) increasedNrf2 protein expression and translocation, thereby leading to cytoprotection. EXPERIMENTAL APPROACH We used HEK293t cells exposed to 0.5% O2 for 16 h and then reoxygenated for 4 h as a model of hypoxia-reperfusion (H/R) injury. Real time PCR, Western blotting, siRNA and immunohistochemical techniques were used to follow Nrf2 expression and activity. Cell viability and damage (as LDH leakage) were also measured. KEY RESULTS H/R injury triggered Nrf2 translocation into the nucleus and up-regulated expression of several downstream genes, relevant to antioxidation, such as NAD(P)H quinone oxidoreductase (NQO1). Incubation with the DOR agonist UFP-512 enhanced Nrf2 protein expression and translocation and up-regulated its downstream genes in normoxia and further increased Nrf2 expression and translocation after H/R, protecting the cells against loss of viability and damage. The effect of UFP-512 on Nrf2 nuclear translocation was blocked by the DOR antagonist, naltrindole. Also, DOR-mediated cytoprotection was strongly inhibited after transfection of HEK293t cells with Nrf2 siRNA. CONCLUSIONS AND IMPLICATIONS The DOR agonist UFP-512 was cytoprotective against H/R injury and this effect was partly dependent on DOR-mediated increase in Nrf2 function.
Collapse
Affiliation(s)
- Shan Cao
- Department of Neurosurgery, University of Texas Medical School at Houston, Houston, Texas, USA; Department of Clinical Pharmacology, Xiangya Hospital and Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, Hunan, China
| | | | | | | | | |
Collapse
|
19
|
δ-Opioid Receptors and Inflammatory Cytokines in Hypoxia: Differential Regulation Between Glial and Neuron-Like Cells. Transl Stroke Res 2014; 5:476-83. [DOI: 10.1007/s12975-014-0342-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 02/21/2014] [Accepted: 03/25/2014] [Indexed: 10/25/2022]
|
20
|
Chen F, Qi Z, Luo Y, Hinchliffe T, Ding G, Xia Y, Ji X. Non-pharmaceutical therapies for stroke: mechanisms and clinical implications. Prog Neurobiol 2014; 115:246-69. [PMID: 24407111 PMCID: PMC3969942 DOI: 10.1016/j.pneurobio.2013.12.007] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 12/19/2013] [Accepted: 12/27/2013] [Indexed: 12/14/2022]
Abstract
Stroke is deemed a worldwide leading cause of neurological disability and death, however, there is currently no promising pharmacotherapy for acute ischemic stroke aside from intravenous or intra-arterial thrombolysis. Yet because of the narrow therapeutic time window involved, thrombolytic application is very restricted in clinical settings. Accumulating data suggest that non-pharmaceutical therapies for stroke might provide new opportunities for stroke treatment. Here we review recent research progress in the mechanisms and clinical implications of non-pharmaceutical therapies, mainly including neuroprotective approaches such as hypothermia, ischemic/hypoxic conditioning, acupuncture, medical gases and transcranial laser therapy. In addition, we briefly summarize mechanical endovascular recanalization devices and recovery devices for the treatment of the chronic phase of stroke and discuss the relative merits of these devices.
Collapse
Affiliation(s)
- Fan Chen
- Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing, Beijing 100053, China
| | - Zhifeng Qi
- Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing, Beijing 100053, China
| | - Yuming Luo
- Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing, Beijing 100053, China
| | - Taylor Hinchliffe
- The Vivian L. Smith Department of Neurosurgery, The University of Texas Medical School at Houston, Houston, TX 77030, USA
| | - Guanghong Ding
- Shanghai Research Center for Acupuncture and Meridian, Shanghai 201203, China
| | - Ying Xia
- The Vivian L. Smith Department of Neurosurgery, The University of Texas Medical School at Houston, Houston, TX 77030, USA.
| | - Xunming Ji
- Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing, Beijing 100053, China.
| |
Collapse
|
21
|
Chen T, Li J, Chao D, Sandhu HK, Liao X, Zhao J, Wen G, Xia Y. δ-Opioid receptor activation reduces α-synuclein overexpression and oligomer formation induced by MPP(+) and/or hypoxia. Exp Neurol 2014; 255:127-36. [PMID: 24613828 DOI: 10.1016/j.expneurol.2014.02.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 02/14/2014] [Accepted: 02/21/2014] [Indexed: 02/07/2023]
Abstract
Hypoxic/ischemic brain injury is a potential cause of Parkinson's disease (PD) with ɑ-synuclein playing a critical role in the pathophysiology. Since δ-opioid receptor (DOR) is neuroprotective against hypoxic/ischemic insults, we sought to determine if DOR regulates ɑ-synuclein under hypoxia and/or MPP(+) stress. We found that in HEK293 cells 1) MPP(+) in normoxia enhanced ɑ-synuclein expression and the formation of ɑ-synuclein oligomers thereby causing cytotoxic injury; 2) hypoxia at 1% O2 for 48h or at 0.5% O2 for 24h also induced ɑ-synuclein overexpression and its oligomer formation with cell injury; 3) however, hypoxia at 1% O2 for 24h, though increasing ɑ-synuclein expression, did not cause ɑ-synuclein oligomer formation and cell injury; 4) UFP-512 mediated DOR activation markedly attenuated the hypoxic cell injury and ɑ-synuclein overexpression, which was largely attenuated by DOR antagonism with naltrindole or siRNA "knock-down" of the DOR; and 5) DOR activation enhanced CREB phosphorylation and prevented the collapse of mitochondrial membrane potential (△ψm). These findings suggest that DOR activation attenuates MPP(+) or severe hypoxia induced ɑ-synuclein expression/aggregation via a CREB pathway.
Collapse
Affiliation(s)
- Tao Chen
- Department of Neurosurgery, The University of Texas Medical School at Houston, Houston, TX 77030, USA; Department of Neurology, Hainan General Hospital, Haikou, Hainan 570311, China
| | - Jessica Li
- Department of Neurosurgery, The University of Texas Medical School at Houston, Houston, TX 77030, USA
| | - Dongman Chao
- Department of Neurosurgery, The University of Texas Medical School at Houston, Houston, TX 77030, USA
| | - Harleen K Sandhu
- Department of Neurosurgery, The University of Texas Medical School at Houston, Houston, TX 77030, USA
| | - Xiaoping Liao
- Department of Neurology, Hainan General Hospital, Haikou, Hainan 570311, China
| | - Jianlong Zhao
- Department of Neurology, Hainan General Hospital, Haikou, Hainan 570311, China
| | - Guoqiang Wen
- Department of Neurology, Hainan General Hospital, Haikou, Hainan 570311, China
| | - Ying Xia
- Department of Neurosurgery, The University of Texas Medical School at Houston, Houston, TX 77030, USA.
| |
Collapse
|
22
|
Fenoy AJ, Goetz L, Chabardès S, Xia Y. Deep brain stimulation: are astrocytes a key driver behind the scene? CNS Neurosci Ther 2014; 20:191-201. [PMID: 24456263 DOI: 10.1111/cns.12223] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2013] [Revised: 12/05/2013] [Accepted: 12/07/2013] [Indexed: 01/02/2023] Open
Abstract
Despite its widespread use, the underlying mechanism of deep brain stimulation (DBS) remains unknown. Once thought to impart a "functional inactivation", there is now increasing evidence showing that DBS actually can both inhibit neurons and activate axons, generating a wide range of effects. This implies that the mechanisms that underlie DBS work not only locally but also at the network level. Therefore, not only may DBS induce membrane or synaptic plastic changes in neurons over a wide network, but it may also trigger cellular and molecular changes in other cells, especially astrocytes, where, together, the glial-neuronal interactions may explain effects that are not clearly rationalized by simple activation/inhibition theories alone. Recent studies suggest that (1) high-frequency stimulation (HFS) activates astrocytes and leads to the release of gliotransmitters that can regulate surrounding neurons at the synapse; (2) activated astrocytes modulate synaptic activity and increase axonal activation; (3) activated astrocytes can signal further astrocytes across large networks, contributing to observed network effects induced by DBS; (4) activated astrocytes can help explain the disparate effects of activation and inhibition induced by HFS at different sites; (5) astrocytes contribute to synaptic plasticity through long-term potentiation (LTP) and depression (LTD), possibly helping to mediate the long-term effects of DBS; and (6) DBS may increase delta-opioid receptor activity in astrcoytes to confer neuroprotection. Together, the plastic changes in these glial-neuronal interactions network-wide likely underlie the range of effects seen, from the variable temporal latencies to observed effect to global activation patterns. This article reviews recent research progress in the literature on how astrocytes play a key role in DBS efficacy.
Collapse
Affiliation(s)
- Albert J Fenoy
- Department of Neurosurgery, Mischer Neuroscience Institute, University of Texas Medical School at Houston, Houston, TX, USA
| | | | | | | |
Collapse
|
23
|
Nash B, Meucci O. Functions of the chemokine receptor CXCR4 in the central nervous system and its regulation by μ-opioid receptors. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2014; 118:105-28. [PMID: 25175863 PMCID: PMC4369781 DOI: 10.1016/b978-0-12-801284-0.00005-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Activation of the G protein-coupled receptor CXCR4 by its chemokine ligand CXCL12 regulates a number of physiopathological functions in the central nervous system, during development as well as later in life. In addition to the more classical roles of the CXCL12/CXCR4 axis in the recruitment of immune cells or migration and proliferation of neural precursor cells, recent studies suggest that CXCR4 signaling also modulates synaptic function and neuronal survival in the mature brain, through direct and indirect effects on neurons and glia. These effects, which include regulation of glutamate receptors and uptake, and of dendritic spine density, can significantly alter the ability of neurons to face excitotoxic insults. Therefore, they are particularly relevant to neurodegenerative diseases featuring alterations of glutamate neurotransmission, such as HIV-associated neurocognitive disorders. Importantly, CXCR4 signaling can be dysregulated by HIV viral proteins, host HIV-induced factors, and opioids. Potential mechanisms of opioid regulation of CXCR4 include heterologous desensitization, transcriptional regulation and changes in receptor expression levels, opioid-chemokine receptor dimer or heteromer formation, and the newly described modulation by the protein ferritin heavy chain-all leading to inhibition of CXCR4 signaling. After reviewing major effects of chemokines and opioids in the CNS, this chapter discusses chemokine-opioid interactions in neuronal and immune cells, focusing on their potential contribution to HIV-associated neurocognitive disorders.
Collapse
Affiliation(s)
- Bradley Nash
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Olimpia Meucci
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA; Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
24
|
Jain N, Gupta A, N M. An insight into neurophysiology of pulpal pain: facts and hypotheses. Korean J Pain 2013; 26:347-55. [PMID: 24156000 PMCID: PMC3800706 DOI: 10.3344/kjp.2013.26.4.347] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 09/03/2013] [Indexed: 11/30/2022] Open
Abstract
Pain and pain control are important to the dental profession because the general perception of the public is that dental treatment and pain go hand in hand. Successful dental treatment requires that the source of pain be detected. If the origin of pain is not found, inappropriate dental care and, ultimately, extraction may result. Pain experienced before, during, or after endodontic therapy is a serious concern to both patients and endodontists, and the variability of discomfort presents a challenge in terms of diagnostic methods, endodontic therapy, and endodontic knowledge. This review will help clinicians understand the basic neurophysiology of pulpal pain and other painful conditions of the dental pulp that are not well understood.
Collapse
Affiliation(s)
- Niharika Jain
- Department of Conservative Dentistry & Endodontics, Hitkarni Dental College & Hospital, Jabalpur, India
| | | | | |
Collapse
|
25
|
Staples M, Acosta S, Tajiri N, Pabon M, Kaneko Y, Borlongan CV. Delta opioid receptor and its peptide: a receptor-ligand neuroprotection. Int J Mol Sci 2013; 14:17410-9. [PMID: 23979422 PMCID: PMC3794733 DOI: 10.3390/ijms140917410] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 08/15/2013] [Accepted: 08/19/2013] [Indexed: 11/29/2022] Open
Abstract
In pursuit of neurological therapies, the opioid system, specifically delta opioid receptors and delta opioid peptides, demonstrates promising therapeutic potential for stroke, Parkinson’s disease, and other degenerative neurological conditions. Recent studies offer strong evidence in support of the therapeutic use of delta opioid receptors, and provide insights into the underlying mechanisms of action. Delta opioid receptors have been shown to confer protective effects by mediating ionic homeostasis and activating endogenous neuroprotective pathways. Additionally, delta opioid agonists such as (D-Ala 2, D-Leu 5) enkephalin (DADLE) have been shown to decrease apoptosis and promote neuronal survival. In its entirety, the delta opioid system represents a promising target for neural therapies.
Collapse
Affiliation(s)
- Meaghan Staples
- Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, Tampa, FL 33612, USA.
| | | | | | | | | | | |
Collapse
|
26
|
Tian X, Guo J, Zhu M, Li M, Wu G, Xia Y. δ-Opioid receptor activation rescues the functional TrkB receptor and protects the brain from ischemia-reperfusion injury in the rat. PLoS One 2013; 8:e69252. [PMID: 23844255 PMCID: PMC3699518 DOI: 10.1371/journal.pone.0069252] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 06/13/2013] [Indexed: 01/19/2023] Open
Abstract
OBJECTIVES δ-opioid receptor (DOR) activation reduced brain ischemic infarction and attenuated neurological deficits, while DOR inhibition aggravated the ischemic damage. The underlying mechanisms are, however, not well understood yet. In this work, we asked if DOR activation protects the brain against ischemic injury through a brain-derived neurotrophic factor (BDNF) -TrkB pathway. METHODS We exposed adult male Sprague-Dawley rats to focal cerebral ischemia, which was induced by middle cerebral artery occlusion (MCAO). DOR agonist TAN-67 (60 nmol), antagonist Naltrindole (100 nmol) or artificial cerebral spinal fluid was injected into the lateral cerebroventricle 30 min before MCAO. Besides the detection of ischemic injury, the expression of BDNF, full-length and truncated TrkB, total CREB, p-CREB, p-ATF and CD11b was detected by Western blot and fluorescence immunostaining. RESULTS DOR activation with TAN-67 significantly reduced the ischemic volume and largely reversed the decrease in full-length TrkB protein expression in the ischemic cortex and striatum without any appreciable change in cerebral blood flow, while the DOR antagonist Naltrindole aggregated the ischemic injury. However, the level of BDNF remained unchanged in the cortex, striatum and hippocampus at 24 hours after MCAO and did not change in response to DOR activation or inhibition. MCAO decreased both total CREB and pCREB in the striatum, but not in the cortex, while DOR inhibition promoted a further decrease in total and phosphorylated CREB in the striatum and decreased pATF-1 expression in the cortex. In addition, MCAO increased CD11b expression in the cortex, striatum and hippocampus, and DOR activation specifically attenuated the ischemic increase in the cortex but not in the striatum and hippocampus. CONCLUSIONS DOR activation rescues TrkB signaling by reversing ischemia/reperfusion induced decrease in the full-length TrkB receptor and reduces brain injury in ischemia/reperfusion.
Collapse
MESH Headings
- Activating Transcription Factor 1/metabolism
- Animals
- Blotting, Western
- Brain/blood supply
- Brain/drug effects
- Brain/metabolism
- Brain Ischemia/complications
- Brain Ischemia/metabolism
- Brain-Derived Neurotrophic Factor/metabolism
- CD11b Antigen/metabolism
- Cerebrovascular Circulation/drug effects
- Cyclic AMP Response Element-Binding Protein/metabolism
- Infarction, Middle Cerebral Artery/complications
- Infarction, Middle Cerebral Artery/metabolism
- Male
- Naltrexone/analogs & derivatives
- Naltrexone/pharmacology
- Quinolines/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptor, trkB/metabolism
- Receptors, Opioid, delta/agonists
- Receptors, Opioid, delta/antagonists & inhibitors
- Receptors, Opioid, delta/metabolism
- Reperfusion Injury/etiology
- Reperfusion Injury/metabolism
Collapse
Affiliation(s)
- Xuesong Tian
- State Key Laboratory of Medical Neurobiology, Department of Integrative Medicine and Neurobiology, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Neurosurgery, University of Texas Medical School at Houston, Houston, Texas, United States of America
| | - Jingchun Guo
- State Key Laboratory of Medical Neurobiology, Department of Integrative Medicine and Neurobiology, Shanghai Medical College, Fudan University, Shanghai, China
- Laboratory of Molecular Neurology, Shanghai Research Center for Acupuncture and Meridians, Shanghai, China
- * E-mail: (JG) (YX)
| | - Min Zhu
- State Key Laboratory of Medical Neurobiology, Department of Integrative Medicine and Neurobiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Minwei Li
- State Key Laboratory of Medical Neurobiology, Department of Integrative Medicine and Neurobiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Gencheng Wu
- State Key Laboratory of Medical Neurobiology, Department of Integrative Medicine and Neurobiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ying Xia
- Department of Neurosurgery, University of Texas Medical School at Houston, Houston, Texas, United States of America
- * E-mail: (JG) (YX)
| |
Collapse
|
27
|
He X, Sandhu HK, Yang Y, Hua F, Belser N, Kim DH, Xia Y. Neuroprotection against hypoxia/ischemia: δ-opioid receptor-mediated cellular/molecular events. Cell Mol Life Sci 2013; 70:2291-303. [PMID: 23014992 PMCID: PMC11113157 DOI: 10.1007/s00018-012-1167-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 09/08/2012] [Accepted: 09/10/2012] [Indexed: 12/24/2022]
Abstract
Hypoxic/ischemic injury remains the most dreaded cause of neurological disability and mortality. Despite the humbling experiences due to lack of promising therapy, our understanding of the complex cascades underlying the neuronal insult has led to advances in basic science research. One of the most noteworthy has been the effect of opioid receptors, especially the delta-opioid receptor (DOR), on hypoxic/ischemic neurons. Our recent studies, and those of others worldwide, present strong evidence that sheds light on DOR-mediated neuroprotection in the brain, especially in the cortex. The mechanisms of DOR neuroprotection are broadly categorized as: (1) stabilization of the ionic homeostasis, (2) inhibition of excitatory transmitter release, (3) attenuation of disrupted neuronal transmission, (4) increase in antioxidant capacity, (5) regulation of intracellular pathways-inhibition of apoptotic signals and activation of pro-survival signaling, (6) regulation of specific gene and protein expression, and (7) up-regulation of endogenous opioid release and/or DOR expression. Depending upon the severity and duration of hypoxic/ischemic insult, the release of endogenous opioids and DOR expression are regulated in response to the stress, and DOR signaling acts at multiple levels to confer neuronal tolerance to harmful insult. The phenomenon of DOR neuroprotection offers a potential clue for a promising target that may have significant clinical implications in our quest for neurotherapeutics.
Collapse
Affiliation(s)
- Xiaozhou He
- The Third Clinical College of Suzhou University, Changzhou, Jiangsu China
| | - Harleen K. Sandhu
- The Vivian L Smith Department of Neurosurgery, The University of Texas Medical School at Houston, Houston, 77030 TX USA
| | - Yilin Yang
- The Third Clinical College of Suzhou University, Changzhou, Jiangsu China
| | - Fei Hua
- The Third Clinical College of Suzhou University, Changzhou, Jiangsu China
| | - Nathalee Belser
- The Vivian L Smith Department of Neurosurgery, The University of Texas Medical School at Houston, Houston, 77030 TX USA
| | - Dong H. Kim
- The Vivian L Smith Department of Neurosurgery, The University of Texas Medical School at Houston, Houston, 77030 TX USA
| | - Ying Xia
- The Vivian L Smith Department of Neurosurgery, The University of Texas Medical School at Houston, Houston, 77030 TX USA
| |
Collapse
|
28
|
He X, Yang Y, Zhi F, Moore ML, Kang X, Chao D, Wang R, Balboni G, Salvadori S, Kim DH, Xia Y. δ-Opioid receptor activation modified microRNA expression in the rat kidney under prolonged hypoxia. PLoS One 2013; 8:e61080. [PMID: 23596515 PMCID: PMC3626642 DOI: 10.1371/journal.pone.0061080] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 03/05/2013] [Indexed: 12/25/2022] Open
Abstract
Hypoxic/ischemic injury to kidney is a frequently encountered clinical problem with limited therapeutic options. Since microRNAs are differentially involved in hypoxic/ischemic events and δ-opioid receptor (DOR) activation is known to protect against hypoxic/ischemic injury, we speculated on the involvement of DOR activation in altering the microRNA (miRNA) expression in kidney under hypoxic condition. We selected 31 miRNAs based on microarray data for quantitative PCR analysis. Among them, 14 miRNAs were significantly altered after prolonged hypoxia, DOR activation or a combination of both. We found that 1) DOR activation alters miRNA expression profiles in normoxic conditions; 2) hypoxia differentially alters miRNA expression depending on the duration of hypoxia; and 3) DOR activation can modify hypoxia-induced changes in miRNA expression. For example, 10-day hypoxia reduced the level of miR-212 by over 70%, while DOR activation could mimic such reduction even in normoxic kidney. In contrast, the same stress increased miR-29a by >100%, which was reversed following DOR activation. These first data suggest that hypoxia comprehensively modifies the miRNA profile within the kidney, which can be mimicked or modified by DOR activation. Ascertaining the targeted pathways that regulate the diverse cellular and molecular functions of miRNA may provide new insights into potential therapies for hypoxic/ischemic injury of the kidney.
Collapse
Affiliation(s)
- Xiaozhou He
- Research Institute of Modern Medicine, The Third Clinical College of Soochow University, Changzhou, Jiangsu, People’s Republic of China
| | - Yilin Yang
- Research Institute of Modern Medicine, The Third Clinical College of Soochow University, Changzhou, Jiangsu, People’s Republic of China
| | - Feng Zhi
- Research Institute of Modern Medicine, The Third Clinical College of Soochow University, Changzhou, Jiangsu, People’s Republic of China
| | - Meredith L. Moore
- Department of Neurosurgery, The University of Texas Medical School at Houston, Houston, Texas, United States of America
| | - Xuezhi Kang
- Laboratory of Molecular Neurology, Shanghai Research Center for Acupuncture and Meridians, Shanghai, People’s Republic of China
| | - Dongman Chao
- Department of Neurosurgery, The University of Texas Medical School at Houston, Houston, Texas, United States of America
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Rong Wang
- Research Institute of Modern Medicine, The Third Clinical College of Soochow University, Changzhou, Jiangsu, People’s Republic of China
| | - Gianfranco Balboni
- Department of Life and Environment Sciences, University of Cagliari, Cagliari, Italy
| | - Severo Salvadori
- Department of Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy
| | - Dong H. Kim
- Department of Neurosurgery, The University of Texas Medical School at Houston, Houston, Texas, United States of America
| | - Ying Xia
- Department of Neurosurgery, The University of Texas Medical School at Houston, Houston, Texas, United States of America
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
29
|
Chao D, Shen X, Xia Y. From Acupuncture to Interaction between δ-Opioid Receptors and Na (+) Channels: A Potential Pathway to Inhibit Epileptic Hyperexcitability. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2013; 2013:216016. [PMID: 23662118 PMCID: PMC3638623 DOI: 10.1155/2013/216016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 11/10/2012] [Accepted: 12/13/2012] [Indexed: 11/17/2022]
Abstract
Epilepsy is one of the most common neurological disorders affecting about 1% of population. Although the precise mechanism of its pathophysiological changes in the brain is unknown, epilepsy has been recognized as a disorder of brain excitability characterized by recurrent unprovoked seizures that result from the abnormal, excessive, and synchronous activity of clusters of nerve cells in the brain. Currently available therapies, including medical, surgical, and other strategies, such as ketogenic diet and vagus nerve stimulation, are symptomatic with their own limitations and complications. Seeking new strategies to cure this serious disorder still poses a big challenge to the field of medicine. Our recent studies suggest that acupuncture may exert its antiepileptic effects by normalizing the disrupted neuronal and network excitability through several mechanisms, including lowering the overexcited neuronal activity, enhancing the inhibitory system, and attenuating the excitatory system in the brain via regulation of the interaction between δ -opioid receptors (DOR) and Na(+) channels. This paper reviews the progress in this field and summarizes new knowledge based on our work and those of others.
Collapse
Affiliation(s)
- Dongman Chao
- The University of Texas Medical School at Houston, Houston, TX 77030, USA
- Yale University School of Medicine, New Haven, CT 06520, USA
- Shanghai Research Center for Acupuncture and Meridians, Shanghai 201203, China
| | - Xueyong Shen
- Shanghai Research Center for Acupuncture and Meridians, Shanghai 201203, China
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ying Xia
- The University of Texas Medical School at Houston, Houston, TX 77030, USA
- Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
30
|
Effects of the neoclerodane Hardwickiic acid on the presynaptic opioid receptors which modulate noradrenaline and dopamine release in mouse central nervous system. Neurochem Int 2013; 62:354-9. [DOI: 10.1016/j.neuint.2013.01.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 01/15/2013] [Accepted: 01/18/2013] [Indexed: 11/17/2022]
|
31
|
δ-opioid receptor activation and microRNA expression of the rat cortex in hypoxia. PLoS One 2012; 7:e51524. [PMID: 23272113 PMCID: PMC3521741 DOI: 10.1371/journal.pone.0051524] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 11/01/2012] [Indexed: 11/19/2022] Open
Abstract
Prolonged hypoxic/ischemic stress may cause cortical injury and clinically manifest as a neurological disability. Activation of the δ-opioid receptor (DOR) may induce cortical protection against hypoxic/ischemic insults. However, the mechanisms underlying DOR protection are not clearly understood. We have recently found that DOR activation modulates the expression of microRNAs (miRNAs) in the kidney exposed to hypoxia, suggesting that DOR protection may involve a miRNA mechanism. To determine if the miRNAs expressed in the cortex mediated DOR neuroprotection, we examined 19 miRNAs that were previously identified as hypoxia- and DOR-regulated miRNAs in the kidney, in the rat cortex treated with UFP-512, a potent and specific DOR agonist under hypoxic condition. Of the 19 miRNAs tested, 17 were significantly altered by hypoxia and/or DOR activation with the direction and amplitude varying depending on hypoxic duration and times of DOR treatment. Expression of several miRNAs such as miR-29b, -101b, -298, 324-3p, -347 and 466b was significantly depressed after 24 hours of hypoxia. Similar changes were seen in normoxic condition 24 hours after DOR activation with one-time treatment of UFP-512. In contrast, some miRNAs were more tolerant to hypoxic stress and showed significant reduction only with 5-day (e.g., miR-31 and -186) or 10-day (e.g., miR-29a, let-7f and -511) exposures. In addition, these miRNAs had differential responses to DOR activation. Other miRNAs like miRs-363* and -370 responded only to the combined exposure to hypoxia and DOR treatment, with a notable reduction of >70% in the 5-day group. These data suggest that cortical miRNAs are highly yet differentially sensitive to hypoxia. DOR activation can modify, enhance or resolve the changes in miRNAs that target HIF, ion transport, axonal guidance, free radical signaling, apoptosis and many other functions.
Collapse
|
32
|
Feng Y, He X, Yang Y, Chao D, Lazarus LH, Xia Y. Current research on opioid receptor function. Curr Drug Targets 2012; 13:230-46. [PMID: 22204322 DOI: 10.2174/138945012799201612] [Citation(s) in RCA: 205] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Revised: 08/09/2011] [Accepted: 08/12/2011] [Indexed: 12/11/2022]
Abstract
The use of opioid analgesics has a long history in clinical settings, although the comprehensive action of opioid receptors is still less understood. Nonetheless, recent studies have generated fresh insights into opioid receptor-mediated functions and their underlying mechanisms. Three major opioid receptors (μ-opioid receptor, MOR; δ-opioid receptor, DOR; and κ-opioid receptor, KOR) have been cloned in many species. Each opioid receptor is functionally sub-classified into several pharmacological subtypes, although, specific gene corresponding each of these receptor subtypes is still unidentified as only a single gene has been isolated for each opioid receptor. In addition to pain modulation and addiction, opioid receptors are widely involved in various physiological and pathophysiological activities, including the regulation of membrane ionic homeostasis, cell proliferation, emotional response, epileptic seizures, immune function, feeding, obesity, respiratory and cardiovascular control as well as some neurodegenerative disorders. In some species, they play an essential role in hibernation. One of the most exciting findings of the past decade is the opioid-receptor, especially DOR, mediated neuroprotection and cardioprotection. The upregulation of DOR expression and DOR activation increase the neuronal tolerance to hypoxic/ischemic stress. The DOR signal triggers (depending on stress duration and severity) different mechanisms at multiple levels to preserve neuronal survival, including the stabilization of homeostasis and increased pro-survival signaling (e.g., PKC-ERK-Bcl 2) and antioxidative capacity. In the heart, PKC and KATP channels are involved in the opioid receptor-mediated cardioprotection. The DOR-mediated neuroprotection and cardioprotection have the potential to significantly alter the clinical pharmacology in terms of prevention and treatment of life-threatening conditions like stroke and myocardial infarction. The main purpose of this article is to review the recent work done on opioids and their receptor functions. It shall provide an informative reference for better understanding the opioid system and further elucidation of the opioid receptor function from a physiological and pharmacological point of view.
Collapse
Affiliation(s)
- Yuan Feng
- Yale University School of Medicine, New Haven, CT, USA
| | | | | | | | | | | |
Collapse
|
33
|
Chao D, He X, Yang Y, Bazzy-Asaad A, Lazarus LH, Balboni G, Kim DH, Xia Y. DOR activation inhibits anoxic/ischemic Na+ influx through Na+ channels via PKC mechanisms in the cortex. Exp Neurol 2012; 236:228-39. [PMID: 22609332 DOI: 10.1016/j.expneurol.2012.05.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 04/11/2012] [Accepted: 05/09/2012] [Indexed: 01/17/2023]
Abstract
Activation of delta-opioid receptors (DOR) is neuroprotective against hypoxic/ischemic injury in the cortex, which is at least partially related to its action against hypoxic/ischemic disruption of ionic homeostasis that triggers neuronal injury. Na(+) influx through TTX-sensitive voltage-gated Na(+) channels may be a main mechanism for hypoxia-induced disruption of K(+) homeostasis, with DOR activation attenuating the disruption of ionic homeostasis by targeting voltage-gated Na(+) channels. In the present study we examined the role of DOR in the regulation of Na(+) influx in anoxia and simulated ischemia (oxygen-glucose deprivation) as well as the effect of DOR activation on the Na(+) influx induced by a Na(+) channel opener without anoxic/ischemic stress and explored a potential PKC mechanism underlying the DOR action. We directly measured extracellular Na(+) activity in mouse cortical slices with Na(+) selective electrodes and found that (1) anoxia-induced Na(+) influx occurred mainly through TTX-sensitive Na(+) channels; (2) DOR activation inhibited the anoxia/ischemia-induced Na(+) influx; (3) veratridine, a Na(+) channel opener, enhanced the anoxia-induced Na(+) influx; this could be attenuated by DOR activation; (4) DOR activation did not reduce the anoxia-induced Na(+) influx in the presence of chelerythrine, a broad-spectrum PKC blocker; and (5) DOR effects were blocked by PKCβII peptide inhibitor, and PKCθ pseudosubstrate inhibitor, respectively. We conclude that DOR activation inhibits anoxia-induced Na(+) influx through Na(+) channels via PKC (especially PKCβII and PKCθ isoforms) dependent mechanisms in the cortex.
Collapse
Affiliation(s)
- Dongman Chao
- The Third Medical College of Soochow University, Changzhou, Jiangsu 213003, PR China
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Chao D, He X, Yang Y, Balboni G, Salvadori S, Kim DH, Xia Y. Hydrogen sulfide induced disruption of Na+ homeostasis in the cortex. Toxicol Sci 2012; 128:198-208. [PMID: 22474073 DOI: 10.1093/toxsci/kfs125] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Maintenance of ionic balance is essential for neuronal functioning. Hydrogen sulfide (H(2)S), a known toxic environmental gaseous pollutant, has been recently recognized as a gasotransmitter involved in numerous biological processes and is believed to play an important role in the neural activities under both physiological and pathological conditions. However, it is unclear if it plays any role in maintenance of ionic homeostasis in the brain under physiological/pathophysiological conditions. Here, we report by directly measuring Na(+) activity using Na(+) selective electrodes in mouse cortical slices that H(2)S donor sodium hydrosulfide (NaHS) increased Na(+) influx in a concentration-dependent manner. This effect could be partially blocked by either Na(+) channel blocker or N-methyl-D-aspartate receptor (NMDAR) blocker alone or almost completely abolished by coapplication of both blockers but not by non-NMDAR blocker. These data suggest that increased H(2)S in pathophysiological conditions, e.g., hypoxia/ischemia, potentially causes a disruption of ionic homeostasis by massive Na(+) influx through Na(+) channels and NMDARs, thus injuring neural functions. Activation of delta-opioid receptors (DOR), which reduces Na(+) currents/influx in normoxia, had no effect on H(2)S-induced Na(+) influx, suggesting that H(2)S-induced disruption of Na(+) homeostasis is resistant to DOR regulation and may play a major role in neuronal injury in pathophysiological conditions, e.g., hypoxia/ischemia.
Collapse
Affiliation(s)
- Dongman Chao
- The Vivan L. Smith Department of Neurosurgery, The University of Texas Medical School at Houston, Houston, Texas 77030, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
INTRODUCTION Although endomorphins-1 (EM-1; H-Tyr-Pro-Phe-Trp-NH(2)) and -2 (EM-2; H-Tyr-Pro-Phe-Phe-NH(2)) are primarily considered agonists for the μ-opioid receptor (MOR), systematic alterations to specific residues provided antagonists and ligands with mixed μ/δ-opioid properties, suitable for application to health-related topics. While the application of endomorphins as antinociceptive agents and numerous biological endpoints were experimentally delineated in laboratory animals and in vitro, clinical use is currently absent. However, structural alterations provide enhanced stability; formation of MOR antagonists or mixed and dual μ/δ-acting ligands could find considerable therapeutic potential. AREAS COVERED This review attempts to succinctly provide insight on the development and bioactivity of endomorphin analogues during the past decade. Rational design approaches will focus on the engineering of endomorphin agonists, antagonists and mixed ligands for their application as a multi-target ligand. EXPERT OPINION Aside from alleviating pain, EM analogues open new horizons in the treatment of medical syndromes involving neural reward mechanisms and extraneural regulation effects on homeostasis. Highly selective MOR antagonists may be promising to reduce inflammation, attenuate addiction to drugs and excess consumption of high-caloric food, ameliorate alcoholism, affect the immune system and combat opioid bowel dysfunction.
Collapse
Affiliation(s)
- Lawrence H Lazarus
- National Institute of Environmental Health Sciences, Laboratory of Toxicology and Pharmacology, 111 South TW Alexander Drive, Research Triangle Park, NC 27709, USA.
| | | |
Collapse
|
36
|
Feng Y, He X, Yang Y, Chen J, Yin K, Xia Y. Effect of delta-opioid receptor over-expression on cortical expression of GABAA receptor alpha1-subunit in hypoxia. CHINESE J PHYSIOL 2011; 54:118-23. [PMID: 21789893 DOI: 10.4077/cjp.2011.amm047] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Recent studies show that both delta-opioid receptors (DOR) and GABA receptors play a neuroprotective role in the mature cortex. Since we have observed that DOR over-expression renders the cortex more tolerant to hypoxic stress, we asked whether DOR over-expression affects GABA receptors expression in the cortex under hypoxia. As the first step, we investigated the expression of GABAA receptor alpha1-subunit (GABAA Ralpha1, the most abundant alpha-subunit of GABA receptors in the adult brain) in the mouse cortex with transgenic DOR over-expression after hypoxia. The results showed that GABAA Ralpha1 expression was lower in the transgenic than wild-type cortex, suggesting that DOR overexpression induces an inhibitory effect on GABAA receptor expression. Hypoxia for 1-3 days significantly increased GABAA Ralpha1 expression in the wild-type cortex, which may be an adaptive strategy for protecting the cortex against hypoxic stress. Interestingly, such increase was not found in the transgenic cortex with DOR over-expression. This may represent an interactive regulation in the transgenic cortex to efficiently balance energy production and consumption for better adaptation to hypoxic environment. Since DOR over-expression increases cortical tolerance to hypoxia, an increase in GABA receptors expression (an energy-costing process) may not be necessary in the cortex with DOR over-expression.
Collapse
Affiliation(s)
- Yuan Feng
- First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | | | | | | | | | | |
Collapse
|
37
|
Zhu M, Li M, Yang F, Ou X, Ren Q, Gao H, Zhu C, Guo J. Mitochondrial ERK plays a key role in δ-opioid receptor neuroprotection against acute mitochondrial dysfunction. Neurochem Int 2011; 59:739-48. [PMID: 21864608 DOI: 10.1016/j.neuint.2011.08.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Revised: 07/06/2011] [Accepted: 08/05/2011] [Indexed: 12/13/2022]
Abstract
It is well established that stimulating delta-opioid receptor (DOR) with its specific agonists elicits neuroprotection against hypoxia/ischemia. Mitochondrial dysfunction plays a key role in hypoxic neuronal injury, but the effects of DOR activation on mitochondrial dysfunction in neurons are poorly elucidated. In this investigation, we studied the effects of [D-Ala2, D-Leu5] enkephalin (DADLE), a potent DOR agonist, on acute mitochondrial dysfunction and ensuing cell damage induced by sodium azide in primary rat cortical neuronal cultures, and explored possible mechanisms underlying. Here, we show that DADLE reverses NaN(3)-induced acute mitochondrial dysfunction by selectively activating DOR, mainly including mitochondrial membrane depolarization, mitochondrial Ca(2+) overload and reactive oxygen species generation. DOR stimulation also inhibits cytochrome c release and caspase-3 activation, and attenuates neuronal death caused by acute NaN(3) insults. Furthermore, DOR activation with DADLE protects neurons from acute NaN(3) insults mainly through PKC-ERK pathway, and mitochondrial ERK activation is especially required for DOR neuroprotection against acute mitochondrial dysfunction.
Collapse
Affiliation(s)
- Min Zhu
- State Key Laboratory of Medical Neurobiology, Department of Neurobiology, Shanghai Medical College of Fudan University, Shanghai 200032, PR China
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Duan YL, Wang SY, Zeng QW, Su DS, Li W, Wang XR, Zhao Z. Astroglial reaction to delta opioid peptide [D-Ala2, D-Leu5] enkephalin confers neuroprotection against global ischemia in the adult rat hippocampus. Neuroscience 2011; 192:81-90. [PMID: 21745540 DOI: 10.1016/j.neuroscience.2011.06.067] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 06/14/2011] [Accepted: 06/23/2011] [Indexed: 01/19/2023]
Abstract
Delta opioid receptor (DOR) is essential for neuronal survival against hypoxic/ischemic damages. However, current understanding on how DOR activation affects astrocytic functions under ischemia remains incomplete. The present study investigated the astroglial responses to [d-Ala2, d-Leu5] enkephalin (DADLE) (a selective DOR agonist)-induced DOR activation after global cerebral ischemia. Adult male rats were preimplanted with intracerebral cannula and subjected to global ischemia for 10 min. The rats were divided into four groups: normal group (without any procedure), sham group (sham procedure with intracerebroventricular injection of ACSF), I/R group (ischemia procedure with intracerebroventricular injection of ACSF) and DAD-treated group (ischemia procedure with intracerebroventricular injection of DADLE). Hippocampal CA1 neuronal survival and activation of astrocytes were measured in the animals at 72 h post-ischemia. The distribution and phenotypes of p-Akt and active caspase-3 were also determined. The ischemic injury resulted in a significant neuronal loss and an increase in the dying astrocytes in the hippocampal CA1 region as compared with those in the sham animals (200.7±22.7/mm(2) vs. 6.6±3.1/mm(2), P<0.001). Improved neuronal survival in the DAD-treated animals was evident, which was accompanied by less dying astrocytes and enhanced astrocytes reaction with more active astrocytes than that in the I/R group (267.6±13.2/mm(2) vs. 157.0±18.1/mm(2), P<0.01) and a significantly increased immunoreactivity of p-Akt. However, the active caspase-3 positive cells were also evident in DAD-treated group (313.0±23.1/mm(2)) and significantly increased as compared with those of the sham group (159.0±15.8/mm(2), P<0.001) or I/R group (193.6±26.2/mm(2), P<0.01). Most of the active caspase-3-expressing cells were colabeled with glial fibrillary acidic protein (GFAP), an astrocytes marker. We conclude that the post-ischemic treatment with DADLE promotes beneficial astrocytes activation and induces astroglial apoptosis 72 h after reperfusion which may be involved in reducing their harmful effect to neurons survival.
Collapse
Affiliation(s)
- Y-L Duan
- Key Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, East China Normal University, Shanghai 200062, China
| | | | | | | | | | | | | |
Collapse
|
39
|
Turner SMF, Johnson SM. Delta-opioid receptor activation prolongs respiratory motor output during oxygen-glucose deprivation in neonatal rat spinal cord in vitro. Neuroscience 2011; 187:70-83. [PMID: 21571044 DOI: 10.1016/j.neuroscience.2011.04.059] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Revised: 03/31/2011] [Accepted: 04/29/2011] [Indexed: 10/18/2022]
Abstract
Delta opioid receptor (DOR) activation protects the adult mammalian brain during oxygen-glucose deprivation (OGD), but it is not known whether neonatal spinal motor circuits are also protected. Also, it is unclear whether the timing of spinal DOR activation relative to spinal OGD is important for neuroprotection. Thus, a split-bath in vitro neonatal rat brainstem/spinal cord preparation was used to record spontaneous respiratory motor output from cervical (C4-C5) and thoracic (T5-T6) ventral spinal roots while exposing only the spinal cord to OGD solution (0 mM glucose, bubbled with 95% N(2)/5% CO(2)) or DOR agonist drugs (DADLE, DPDPE). Spinal OGD solution application caused respiratory motor output frequency and amplitude to decrease until all activity was abolished (i.e. end-point times) after 25.9±1.4 min (cervical) and 25.2±1.4 min (thoracic). Spinal DOR activation via DPDPE (1.0 μM) prior-to and during spinal OGD increased cervical and thoracic end-point times to 35-48 min. Spinal DADLE or DPDPE (1.0 μM) application 15 min following spinal OGD onset increased cervical and thoracic end-point times to 36-45 min. Brief spinal DPDPE (1.0 μM) application for 10 min at 25 min before spinal OGD onset increased cervical and thoracic end-point times to 41-46 min. Overall, the selective DOR agonist, DPDPE, was more effective at increasing end-point times than DADLE. Naltrindole (DOR antagonist; 10 μM) pretreatment blocked DPDPE-dependent increase in end-point times, suggesting that DOR activation was required. Spinal naloxone (1.0 μM) application before and during spinal OGD also increased end-point times to 31-33 min, but end-point times were not altered by Mu opioid receptor (MOR) activation or DOR activation/MOR blockade, indicating that there are complex interactions between OGD and opioid signaling pathways. These data suggest DOR activation before, during, and after spinal OGD protects central motor networks and may provide neuroprotection during unpredictable perinatal ischemic events.
Collapse
Affiliation(s)
- S M F Turner
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA
| | | |
Collapse
|
40
|
Yang L, Wang H, Shah K, Karamyan VT, Abbruscato TJ. Opioid receptor agonists reduce brain edema in stroke. Brain Res 2011; 1383:307-16. [DOI: 10.1016/j.brainres.2011.01.083] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 01/21/2011] [Accepted: 01/21/2011] [Indexed: 10/18/2022]
|
41
|
Nandhu MS, Naijil G, Smijin S, Jayanarayanan S, Paulose CS. Opioid system functional regulation in neurological disease management. J Neurosci Res 2011; 88:3215-21. [PMID: 20734417 DOI: 10.1002/jnr.22463] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
There is increasing evidence to suggest a role for the opioid system in the control of pathophysiology of neurological disorders (Alzheimer's, Parkinson's, and Huntington's diseases, spinal cord injury, epilepsy, hypoxia, and autism). Resuscitation of the altered expression of the opioid system in various neurological disorders is of therapeutic importance. Such treatment may be beneficial in ameliorating the clinical symptoms of the disorder. This Mini-Review provides a brief update on opioid system regulation in neurological disorders and focuses on the opioids' pharmacological importance.
Collapse
Affiliation(s)
- M S Nandhu
- Molecular Neurobiology and Cell Biology Unit, Centre for Neuroscience, Department of Biotechnology, Cochin University of Science and Technology, Cochin, Kerala, India
| | | | | | | | | |
Collapse
|
42
|
Johnson SM, Turner SMF. Protecting motor networks during perinatal ischemia: the case for delta-opioid receptors. Ann N Y Acad Sci 2010; 1198:260-70. [PMID: 20536941 DOI: 10.1111/j.1749-6632.2010.05434.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Perinatal ischemia is a common clinical problem with few successful therapies to prevent neuronal damage. Delta opioid receptor (DOR) activation is a versatile, evolutionarily conserved, endogenous neuroprotective mechanism that blocks several steps in the deleterious cascade of neurological events during ischemia. DOR activation prior to ischemia or severe hypoxia is neuroprotective in spinal motor networks, as well as cortical, cerebellar, and hippocampal neural networks. In addition to providing acute and long-lasting neuroprotection against ischemia, DOR activation appears to provide neuroprotection when given before, during, or following the onset of ischemia. Finally, DORs can be upregulated by several physiological and experimental perturbations. Potential adverse side effects affecting motor control, such as respiratory depression and seizures, are not well established in young mammals and may be mitigated by altering drug choice and method of drug administration. The unique features of DOR-dependent neuroprotection make it an attractive potential therapy that may be given to at-risk pregnant mothers shortly before delivery to provide long-lasting neuroprotection against unpredictable perinatal ischemic events.
Collapse
Affiliation(s)
- Stephen M Johnson
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin, USA.
| | | |
Collapse
|
43
|
Effects of intracerebroventricular application of the delta opioid receptor agonist [D-Ala2, D-Leu5] enkephalin on neurological recovery following asphyxial cardiac arrest in rats. Neuroscience 2010; 168:531-42. [PMID: 20167252 DOI: 10.1016/j.neuroscience.2010.02.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 01/22/2010] [Accepted: 02/11/2010] [Indexed: 11/23/2022]
Abstract
The delta opioid receptor (DOR) agonist [D-Ala2, D-Leu5] enkephalin (DADLE) has been implicated as a novel neuroprotective agent in the CNS. The current study was designed to evaluate the effects of intracerebroventricular (ICV) application of DADLE on neurological outcomes following asphyxial cardiac arrest (CA) in rats. Male Sprague-Dawley rats were randomly assigned to four groups: Sham group, CA group, DADLE group (DADLE+CA), and Naltrindole group (Naltrindole and DADLE+CA). All drugs were administered into the left cerebroventricle 30 min before CA. CA was induced by 8-min asphyxiation and the animals were resuscitated with a standardized method. DOR protein expression in the hippocampus was significantly increased in the CA group at 1 h after restoration of spontaneous circulation (ROSC) compared with the Sham group. As time progressed, expression of DOR proteins decreased gradually in the CA group. Treatment with DADLE alone or co-administration with Naltrindole reversed the down-regulation of DOR proteins in the hippocampus induced by CA at 24 h after ROSC. Compared with the CA group, the DADLE group had persistently better neurological functional recovery, as assessed by neurological deficit score (NDS) and Morris water maze trials. The number of surviving hippocampal CA1 neurons in the DADLE group was significantly higher than those in the CA group. However, administration of Naltrindole abolished most of the neuroprotective effects of DADLE. We conclude that ICV administration of DADLE 30 min before asphyxial CA has significant protective effects in attenuating hippocampal CA1 neuronal damage and neurological impairments, and that DADLE executes its effects mainly through DOR.
Collapse
|
44
|
Chao D, Xia Y. Ionic storm in hypoxic/ischemic stress: can opioid receptors subside it? Prog Neurobiol 2009; 90:439-70. [PMID: 20036308 DOI: 10.1016/j.pneurobio.2009.12.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2009] [Revised: 09/10/2009] [Accepted: 12/17/2009] [Indexed: 12/17/2022]
Abstract
Neurons in the mammalian central nervous system are extremely vulnerable to oxygen deprivation and blood supply insufficiency. Indeed, hypoxic/ischemic stress triggers multiple pathophysiological changes in the brain, forming the basis of hypoxic/ischemic encephalopathy. One of the initial and crucial events induced by hypoxia/ischemia is the disruption of ionic homeostasis characterized by enhanced K(+) efflux and Na(+)-, Ca(2+)- and Cl(-)-influx, which causes neuronal injury or even death. Recent data from our laboratory and those of others have shown that activation of opioid receptors, particularly delta-opioid receptors (DOR), is neuroprotective against hypoxic/ischemic insult. This protective mechanism may be one of the key factors that determine neuronal survival under hypoxic/ischemic condition. An important aspect of the DOR-mediated neuroprotection is its action against hypoxic/ischemic disruption of ionic homeostasis. Specially, DOR signal inhibits Na(+) influx through the membrane and reduces the increase in intracellular Ca(2+), thus decreasing the excessive leakage of intracellular K(+). Such protection is dependent on a PKC-dependent and PKA-independent signaling pathway. Furthermore, our novel exploration shows that DOR attenuates hypoxic/ischemic disruption of ionic homeostasis through the inhibitory regulation of Na(+) channels. In this review, we will first update current information regarding the process and features of hypoxic/ischemic disruption of ionic homeostasis and then discuss the opioid-mediated regulation of ionic homeostasis, especially in hypoxic/ischemic condition, and the underlying mechanisms.
Collapse
Affiliation(s)
- Dongman Chao
- Yale University School of Medicine, Department of Pediatrics, New Haven, CT 06520, USA
| | | |
Collapse
|
45
|
Kang X, Chao D, Gu Q, Ding G, Wang Y, Balboni G, Lazarus LH, Xia Y. delta-Opioid receptors protect from anoxic disruption of Na+ homeostasis via Na+ channel regulation. Cell Mol Life Sci 2009; 66:3505-16. [PMID: 19756387 PMCID: PMC3061309 DOI: 10.1007/s00018-009-0136-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Revised: 08/03/2009] [Accepted: 08/18/2009] [Indexed: 12/30/2022]
Abstract
Hypoxic/ischemic disruption of ionic homeostasis is a critical trigger of neuronal injury/death in the brain. There is, however, no promising strategy against such pathophysiologic change to protect the brain from hypoxic/ischemic injury. Here, we present a novel finding that activation of delta-opioid receptors (DOR) reduced anoxic Na+ influx in the mouse cortex, which was completely blocked by DOR antagonism with naltrindole. Furthermore, we co-expressed DOR and Na+ channels in Xenopus oocytes and showed that DOR expression and activation indeed play an inhibitory role in Na+ channel regulation by decreasing the amplitude of sodium currents and increasing activation threshold of Na+ channels. Our results suggest that DOR protects from anoxic disruption of Na+ homeostasis via Na+ channel regulation. These data may potentially have significant impacts on understanding the intrinsic mechanism of neuronal responses to stress and provide clues for better solutions of hypoxic/ischemic encephalopathy, and for the exploration of acupuncture mechanism since acupuncture activates opioid system.
Collapse
Affiliation(s)
- Xuezhi Kang
- Shanghai Research Center for Acupuncture and Meridians, Shanghai, China
| | - Dongman Chao
- Yale University School of Medicine, 333 Cedar Street, LMP 3107, New Haven, CT 06520 USA
| | - Quanbao Gu
- Shanghai Research Center for Acupuncture and Meridians, Shanghai, China
| | - Guanghong Ding
- Shanghai Research Center for Acupuncture and Meridians, Shanghai, China
| | - Yingwei Wang
- Shanghai Jiaotong University College of Medicine, Shanghai, China
| | | | - Lawrence H. Lazarus
- National Institute of Environmental Health Sciences, Research Triangle Park, USA
| | - Ying Xia
- Yale University School of Medicine, 333 Cedar Street, LMP 3107, New Haven, CT 06520 USA
| |
Collapse
|
46
|
Yang Y, Xia X, Zhang Y, Wang Q, Li L, Luo G, Xia Y. delta-Opioid receptor activation attenuates oxidative injury in the ischemic rat brain. BMC Biol 2009; 7:55. [PMID: 19709398 PMCID: PMC2754429 DOI: 10.1186/1741-7007-7-55] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Accepted: 08/26/2009] [Indexed: 02/06/2023] Open
Abstract
Background We have recently shown that δ-opioid receptors (DORs) play an important role in neuroprotection from hypoxic injury via the regulation of extracellular signaling-regulated kinase (ERK) and cytochrome c release. Since ERK and cytochrome c are differentially involved in caspase signaling of oxidative injury that significantly contributes to neuronal damage in ischemia/reperfusion, we considered if DOR activation protects the ischemic brain by attenuating oxidative injury. Results We observed that, in a model of cerebral ischemia with middle cerebral artery occlusion, DOR activation increased the activity of major antioxidant enzymes, glutathione peroxidase and superoxide dismutase, and decreased malondialdehyde and nitric oxide levels in the cortex exposed to cerebral ischemia/reperfusion. In addition, DOR activation reduced caspase 3 expression, though it did not significantly affect the increase in interleukin (IL)1β and tumor necrosis factor (TNF)α expression at the same timepoint. PD98059, an inhibitor of mitogen-activated protein kinase (MAPK) extracellular signaling-regulated kinase kinase, accelerated animal death during ischemia/reperfusion. Conclusion DOR activation attenuates oxidative injury in the brain exposed to ischemia/reperfusion by enhancing antioxidant ability and inhibiting caspase activity, which provides novel insights into the mechanism of DOR neuroprotection.
Collapse
Affiliation(s)
- Yilin Yang
- Third Clinical College of Schoow University, Changzhou, Jiangsu, PR China.
| | | | | | | | | | | | | |
Collapse
|
47
|
Chao D, Balboni G, Lazarus LH, Salvadori S, Xia Y. Na+ mechanism of delta-opioid receptor induced protection from anoxic K+ leakage in the cortex. Cell Mol Life Sci 2009; 66:1105-15. [PMID: 19189047 PMCID: PMC2704459 DOI: 10.1007/s00018-009-8759-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Activation of delta-opioid receptors (DOR) attenuates anoxic K(+) leakage and protects cortical neurons from anoxic insults by inhibiting Na(+) influx. It is unknown, however, which pathway(s) that mediates the Na(+) influx is the target of DOR signal. In the present work, we found that, in the cortex, (1) DOR protection was largely dependent on the inhibition of anoxic Na(+) influxes mediated by voltage-gated Na(+) channels; (2) DOR activation inhibited Na(+) influx mediated by ionotropic glutamate N-methyl-D-aspartate (NMDA) receptors, but not that by non-NMDA receptors, although both played a role in anoxic K(+) derangement; and (3) DOR activation had little effect on Na(+)/Ca(2+) exchanger-based response to anoxia. We conclude that DOR activation attenuates anoxic K(+) derangement by restricting Na(+) influx mediated by Na(+) channels and NMDA receptors, and that non-NMDA receptors and Na(+)/Ca(2+) exchangers, although involved in anoxic K(+) derangement in certain degrees, are less likely the targets of DOR signal.
Collapse
Affiliation(s)
- D. Chao
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520 USA
| | - G. Balboni
- Department of Toxicology, University of Cagliari, 09124 Cagliari, Italy
- Medicinal Chemistry Group, Laboratory of Pharmacology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709 USA
| | - L. H. Lazarus
- Medicinal Chemistry Group, Laboratory of Pharmacology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709 USA
| | - S. Salvadori
- Department of Pharmaceutical Sciences and Biotechnology Center, University of Ferrara, 44100 Ferrara, Italy
| | - Y. Xia
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520 USA
| |
Collapse
|
48
|
Delta-opioid receptor expression in the ventral tegmental area protects against elevated alcohol consumption. J Neurosci 2009; 28:12672-81. [PMID: 19036960 DOI: 10.1523/jneurosci.4569-08.2008] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Alcoholism is a complex and debilitating syndrome affecting approximately 140 million people worldwide. However, not everyone who consumes ethanol develops abuse, raising the possibility that some individuals have a protective mechanism that inhibits elevated alcohol consumption. We tested the hypothesis that the delta-opioid receptor (DOR) plays such a protective role. Here we show that DOR activity in the ventral tegmental area (VTA) robustly decreases ethanol consumption in rats and that these effects depend on baseline ethanol consumption. Intra-VTA microinjection of the DOR agonist DPDPE decreases drinking, particularly in low-drinking animals. Furthermore, VTA microinjection of the DOR selective antagonist TIPP-Psi increases drinking in low, but not high, drinkers and this increase is blocked by comicroinjection of the GABA(A) antagonist bicuculline. Using electrophysiological techniques we found that in VTA brain slices from drinking rats DPDPE presynaptically inhibits GABA(A) receptor mediated IPSCs in low drinkers, but not in high drinkers or naive animals, most likely through activation of DORs on GABA terminals. This DOR-mediated inhibition of IPSCs also correlates inversely with behavioral correlates of anxiety measured in the elevated plus maze. In contrast, presynaptic inhibition of VTA GABA(A) IPSCs by the mu-opioid receptor agonist DAMGO is significantly reduced in both high- and low-drinking rats (<30%) compared with age-matched nondrinking controls (>70%). Together, our findings demonstrate the protective nature of VTA DORs and identify an important new target for therapeutic intervention for alcoholism.
Collapse
|
49
|
Pamenter ME, Buck LT. delta-Opioid receptor antagonism induces NMDA receptor-dependent excitotoxicity in anoxic turtle cortex. ACTA ACUST UNITED AC 2008; 211:3512-7. [PMID: 18931323 DOI: 10.1242/jeb.021949] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
delta-Opioid receptor (DOR) activation is neuroprotective against short-term anoxic insults in the mammalian brain. This protection may be conferred by inhibition of N-methyl-d-aspartate receptors (NMDARs), whose over-activation during anoxia otherwise leads to a deleterious accumulation of cytosolic calcium ([Ca(2+)](c)), severe membrane potential (E(m)) depolarization and excitotoxic cell death (ECD). Conversely, NMDAR activity is decreased by approximately 50% with anoxia in the cortex of the painted turtle, and large elevations in [Ca(2+)](c), severe E(m) depolarization and ECD are avoided. DORs are expressed in high quantity throughout the turtle brain relative to the mammalian brain; however, the role of DORs in anoxic NMDAR regulation has not been investigated in turtles. We examined the effect of DOR blockade with naltrindole (1-10 micromol l(-1)) on E(m), NMDAR activity and [Ca(2+)](c) homeostasis in turtle cortical neurons during normoxia and the transition to anoxia. Naltrindole potentiated normoxic NMDAR currents by 78+/-5% and increased [Ca(2+)](c) by 13+/-4%. Anoxic neurons treated with naltrindole were strongly depolarized, NMDAR currents were potentiated by 70+/-15%, and [Ca(2+)](c) increased 5-fold compared with anoxic controls. Following naltrindole washout, E(m) remained depolarized and [Ca(2+)](c) became further elevated in all neurons. The naltrindole-mediated depolarization and increased [Ca(2+)](c) were prevented by NMDAR antagonism or by perfusion of the G(i) protein agonist mastoparan-7, which also reversed the naltrindole-mediated potentiation of NMDAR currents. Together, these data suggest that DORs mediate NMDAR activity in a G(i)-dependent manner and prevent deleterious NMDAR-mediated [Ca(2+)](c) influx during anoxic insults in the turtle cortex.
Collapse
Affiliation(s)
- Matthew E Pamenter
- Department of Pediatrics and Neuroscience, University of California San Diego, La Jolla, CA 92093, USA
| | | |
Collapse
|
50
|
Abstract
This paper is the thirtieth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2007 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia; stress and social status; tolerance and dependence; learning and memory; eating and drinking; alcohol and drugs of abuse; sexual activity and hormones, pregnancy, development and endocrinology; mental illness and mood; seizures and neurologic disorders; electrical-related activity and neurophysiology; general activity and locomotion; gastrointestinal, renal and hepatic functions; cardiovascular responses; respiration and thermoregulation; and immunological responses.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, 65-30 Kissena Blvd.,Flushing, NY 11367, United States.
| |
Collapse
|