1
|
Nuñez-Rios JD, Ulrich H, Díaz-Muñoz M, Lameu C, Vázquez-Cuevas FG. Purinergic system in cancer stem cells. Purinergic Signal 2023:10.1007/s11302-023-09976-5. [PMID: 37966629 DOI: 10.1007/s11302-023-09976-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 10/25/2023] [Indexed: 11/16/2023] Open
Abstract
Accumulating evidence supports the idea that cancer stem cells (CSCs) are those with the capacity to initiate tumors, generate phenotypical diversity, sustain growth, confer drug resistance, and orchestrate the spread of tumor cells. It is still controversial whether CSCs originate from normal stem cells residing in the tissue or cancer cells from the tumor bulk that have dedifferentiated to acquire stem-like characteristics. Although CSCs have been pointed out as key drivers in cancer, knowledge regarding their physiology is still blurry; thus, research focusing on CSCs is essential to designing novel and more effective therapeutics. The purinergic system has emerged as an important autocrine-paracrine messenger system with a prominent role at multiple levels of the tumor microenvironment, where it regulates cellular aspects of the tumors themselves and the stromal and immune systems. Recent findings have shown that purinergic signaling also participates in regulating the CSC phenotype. Here, we discuss updated information regarding CSCs in the purinergic system and present evidence supporting the idea that elements of the purinergic system expressed by this subpopulation of the tumor represent attractive pharmacological targets for proposing innovative anti-cancer therapies.
Collapse
Affiliation(s)
- J D Nuñez-Rios
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla #3001, Juriquilla Querétaro, Querétaro, CP 76230, México
| | - H Ulrich
- Department of Biochemistry, Chemistry Institute, University of São Paulo (USP), São Paulo, Brazil
| | - M Díaz-Muñoz
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla #3001, Juriquilla Querétaro, Querétaro, CP 76230, México
| | - C Lameu
- Department of Biochemistry, Chemistry Institute, University of São Paulo (USP), São Paulo, Brazil
| | - F G Vázquez-Cuevas
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla #3001, Juriquilla Querétaro, Querétaro, CP 76230, México.
| |
Collapse
|
2
|
Liu JP, Liu SC, Hu SQ, Lu JF, Wu CL, Hu DX, Zhang WJ. ATP ion channel P2X purinergic receptors in inflammation response. Biomed Pharmacother 2023; 158:114205. [PMID: 36916431 DOI: 10.1016/j.biopha.2022.114205] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/19/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
Different studies have confirmed that P2X purinergic receptors play a key role in inflammation. Activation of P2X purinergic receptors can release inflammatory cytokines and participate in the progression of inflammatory diseases. In an inflammatory microenvironment, cells can release a large amount of ATP to activate P2X receptors, open non-selective cation channels, activate multiple intracellular signaling, release multiple inflammatory cytokines, amplify inflammatory response. While P2X4 and P2X7 receptors play an important role in the process of inflammation. P2X4 receptor can mediate the activation of microglia involved in neuroinflammation, and P2X7 receptor can mediate different inflammatory cells to mediate the progression of tissue-wide inflammation. At present, the role of P2X receptors in inflammatory response has been widely recognized and affirmed. Therefore, in this paper, we discussed the role of P2X receptors-mediated inflammation. Moreover, we also described the effects of some antagonists (such as A-438079, 5-BDBD, A-804598, A-839977, and A-740003) on inflammation relief by antagonizing the activities of P2X receptors.
Collapse
Affiliation(s)
- Ji-Peng Liu
- Department of Gastrointestinal surgery, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province 343000, China
| | - Si-Cheng Liu
- Department of Gastrointestinal surgery, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province 343000, China
| | - Shi-Qi Hu
- Queen Mary College, Nanchang University, Nanchang City, Jiangxi Province 343000, China
| | - Jia-Feng Lu
- Basic medical school, Nanchang University, Nanchang City, Jiangxi Province 343000, China
| | - Chang-Lei Wu
- Department of Gastrointestinal surgery, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province 343000, China
| | - Dong-Xia Hu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province 343000, China.
| | - Wen-Jun Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province 343000, China.
| |
Collapse
|
3
|
Kaur J, Dora S. Purinergic signaling: Diverse effects and therapeutic potential in cancer. Front Oncol 2023; 13:1058371. [PMID: 36741002 PMCID: PMC9889871 DOI: 10.3389/fonc.2023.1058371] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/02/2023] [Indexed: 01/19/2023] Open
Abstract
Regardless of improved biological insights and therapeutic advances, cancer is consuming multiple lives worldwide. Cancer is a complex disease with diverse cellular, metabolic, and physiological parameters as its hallmarks. This instigates a need to uncover the latest therapeutic targets to advance the treatment of cancer patients. Purines are building blocks of nucleic acids but also function as metabolic intermediates and messengers, as part of a signaling pathway known as purinergic signaling. Purinergic signaling comprises primarily adenosine triphosphate (ATP) and adenosine (ADO), their analogous membrane receptors, and a set of ectonucleotidases, and has both short- and long-term (trophic) effects. Cells release ATP and ADO to modulate cellular function in an autocrine or paracrine manner by activating membrane-localized purinergic receptors (purinoceptors, P1 and P2). P1 receptors are selective for ADO and have four recognized subtypes-A1, A2A, A2B, and A3. Purines and pyrimidines activate P2 receptors, and the P2X subtype is ligand-gated ion channel receptors. P2X has seven subtypes (P2X1-7) and forms homo- and heterotrimers. The P2Y subtype is a G protein-coupled receptor with eight subtypes (P2Y1/2/4/6/11/12/13/14). ATP, its derivatives, and purinoceptors are widely distributed in all cell types for cellular communication, and any imbalance compromises the homeostasis of the cell. Neurotransmission, neuromodulation, and secretion employ fast purinergic signaling, while trophic purinergic signaling regulates cell metabolism, proliferation, differentiation, survival, migration, invasion, and immune response during tumor progression. Thus, purinergic signaling is a prospective therapeutic target in cancer and therapy resistance.
Collapse
Affiliation(s)
- Jasmeet Kaur
- Department of Biophysics, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Sanchit Dora
- Department of Biophysics, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| |
Collapse
|
4
|
Aria H, Rezaei M, Nazem S, Daraei A, Nikfar G, Mansoori B, Bahmanyar M, Tavassoli A, Vakil MK, Mansoori Y. Purinergic receptors are a key bottleneck in tumor metabolic reprogramming: The prime suspect in cancer therapeutic resistance. Front Immunol 2022; 13:947885. [PMID: 36072596 PMCID: PMC9444135 DOI: 10.3389/fimmu.2022.947885] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/04/2022] [Indexed: 11/13/2022] Open
Abstract
ATP and other nucleoside phosphates have specific receptors named purinergic receptors. Purinergic receptors and ectonucleotidases regulate various signaling pathways that play a role in physiological and pathological processes. Extracellular ATP in the tumor microenvironment (TME) has a higher level than in normal tissues and plays a role in cancer cell growth, survival, angiogenesis, metastasis, and drug resistance. In this review, we investigated the role of purinergic receptors in the development of resistance to therapy through changes in tumor cell metabolism. When a cell transforms to neoplasia, its metabolic processes change. The metabolic reprogramming modified metabolic feature of the TME, that can cause impeding immune surveillance and promote cancer growth. The purinergic receptors contribute to therapy resistance by modifying cancer cells' glucose, lipid, and amino acid metabolism. Limiting the energy supply of cancer cells is one approach to overcoming resistance. Glycolysis inhibitors which reduce intracellular ATP levels may make cancer cells more susceptible to anti-cancer therapies. The loss of the P2X7R through glucose intolerance and decreased fatty acid metabolism reduces therapeutic resistance. Potential metabolic blockers that can be employed in combination with other therapies will aid in the discovery of new anti-cancer immunotherapy to overcome therapy resistance. Therefore, therapeutic interventions that are considered to inhibit cancer cell metabolism and purinergic receptors simultaneously can potentially reduce resistance to treatment.
Collapse
Affiliation(s)
- Hamid Aria
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Marzieh Rezaei
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shima Nazem
- Department of Laboratory Medicine, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abdolreza Daraei
- Department of Medical Genetics, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Ghasem Nikfar
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Behnam Mansoori
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Maryam Bahmanyar
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Alireza Tavassoli
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Mohammad Kazem Vakil
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Yaser Mansoori
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
- Department of Medical Genetics, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|
5
|
Hua SQ, Hu JL, Zou FL, Liu JP, Luo HL, Hu DX, Wu LD, Zhang WJ. P2X7 receptor in inflammation and pain. Brain Res Bull 2022; 187:199-209. [PMID: 35850190 DOI: 10.1016/j.brainresbull.2022.07.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/15/2022] [Accepted: 07/13/2022] [Indexed: 11/02/2022]
Abstract
Different studies have confirmed P2X7 receptor-mediated inflammatory mediators play a key role in the development of pain. P2X7 receptor activation can induce the development of pain by mediating the release of inflammatory mediators. In view of the fact that P2X7 receptor is expressed in the nervous system and immune system, it is closely related to the stability and maintenance of the nervous system function. ATP activates P2X7 receptor, opens non-selective cation channels, activates multiple intracellular signaling, releases multiple inflammatory cytokines, and induces pain. At present, the role of P2X7 receptor in inflammatory response and pain has been widely recognized and affirmed. Therefore, in this paper, we discussed the pathological mechanism of P2X7 receptor-mediated inflammation and pain, focused on the internal relationship between P2X7 receptor and pain. Moreover, we also described the effects of some antagonists on pain relief by inhibiting the activities of P2X7 receptor. Thus, targeting to inhibit activation of P2X7 receptor is expected to become another potential target for the relief of pain.
Collapse
Affiliation(s)
- Shi-Qi Hua
- Nanchang University, Nanchang City 343000, Jiangxi Province, China
| | - Jia-Ling Hu
- Emergency Department, The Second Affiliated Hospital, Nanchang University, Nanchang City 343000, Jiangxi Province, China
| | - Fei-Long Zou
- Gastrointestinal Surgery, The Second Affiliated Hospital, Nanchang University, Nanchang City 343000, Jiangxi Province, China
| | - Ji-Peng Liu
- Gastrointestinal Surgery, The Second Affiliated Hospital, Nanchang University, Nanchang City 343000, Jiangxi Province, China
| | - Hong-Liang Luo
- Gastrointestinal Surgery, The Second Affiliated Hospital, Nanchang University, Nanchang City 343000, Jiangxi Province, China
| | - Dong-Xia Hu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang City 343000, Jiangxi Province, China.
| | - Li-Dong Wu
- Emergency Department, The Second Affiliated Hospital, Nanchang University, Nanchang City 343000, Jiangxi Province, China.
| | - Wen-Jun Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang City 343000, Jiangxi Province, China.
| |
Collapse
|
6
|
Xu MX, Zhao GL, Hu X, Zhou H, Li SY, Li F, Miao Y, Lei B, Wang Z. P2X7/P2X4 Receptors Mediate Proliferation and Migration of Retinal Microglia in Experimental Glaucoma in Mice. Neurosci Bull 2022; 38:901-915. [PMID: 35254644 PMCID: PMC9352844 DOI: 10.1007/s12264-022-00833-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 12/13/2021] [Indexed: 10/18/2022] Open
Abstract
Microglia are involved in the inflammatory response and retinal ganglion cell damage in glaucoma. Here, we investigated how microglia proliferate and migrate in a mouse model of chronic ocular hypertension (COH). In COH retinas, the microglial proliferation that occurred was inhibited by the P2X7 receptor (P2X7R) blocker BBG or P2X7R knockout, but not by the P2X4R blocker 5-BDBD. Treatment of primary cultured microglia with BzATP, a P2X7R agonist, mimicked the effects of cell proliferation and migration in COH retinas through the intracellular MEK/ERK signaling pathway. Transwell migration assays showed that the P2X4R agonist CTP induced microglial migration, which was completely blocked by 5-BDBD. In vivo and in vitro experiments demonstrated that ATP, released from activated Müller cells through connexin43 hemichannels, acted on P2X7R to induce microglial proliferation, and acted on P2X4R/P2X7R (mainly P2X4R) to induce microglial migration. Our results suggest that inhibiting the interaction of Müller cells and microglia may attenuate microglial proliferation and migration in glaucoma.
Collapse
|
7
|
Zhang J, Wang Z, Zhang D, Pan Y, Liu X, Qiao X, Cui W, Dong L. Integrative Analysis Reveals a miRNA-mRNA Regulatory Network and Potential Causative Agents in the Asthmatic Airway Epithelium. J Asthma Allergy 2021; 14:1307-1321. [PMID: 34744440 PMCID: PMC8566008 DOI: 10.2147/jaa.s331090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/30/2021] [Indexed: 12/12/2022] Open
Abstract
Background During asthma progression, the intricate molecular networks, including microRNA (miRNA) transcriptional regulation in airway epithelium, remain largely undefined. The abnormal expression of miRNAs in asthmatic airway epithelium is a recent and fast-growing area in developing diagnostic and therapeutic targets for asthma. Material and Methods Analyses were conducted to compare airway epithelial miRNAs and gene expression between patients with asthma and healthy subjects from three datasets (two for miRNAs expression profiles and one for gene expression profile). The interactions network between differentially expressed (DE)-miRNAs and mRNAs was further identified for functional analysis. To verify the involvement and functions of all the identified miRNAs in asthma, we constructed two cellular models of asthma. The most promising causal miRNA candidate, miR-1246, was examined in an in vitro system to explore its targets and roles in asthma pathophysiology. Results Through integrative analysis, we obtained six miRNAs with 31 validated target genes in airway epithelium associated with asthma. Next, we confirmed that these miRNAs were all associated with asthma progression by in vitro functional experiments. They may participate in eosinophilic inflammation (miR-92b-3p, miR-1246, miR-197-3p, and miR-124-5p) or remodeling (miR-197-3p, miR-193a-5p, miR-1246, and miR-92b-3p). Additionally, some other non-screened valuable miRNAs were also examined and identified (miR-21-5p and miR-19b-3p), and some detected in blood correlated with the disease status. Furthermore, we found that miR-1246 could directly target POSTN and influence epithelial-to-mesenchymal transition and fibrosis in airway epithelial cells. Conclusion We constructed a preliminary epithelial regulatory network in asthma based on six identified miRNAs and their valuable target genes. Candidate factors in the biological miRNA-mRNA network in airway epithelium may provide further information on the pathogenesis of asthma. Strikingly, among all screened miRNAs, miR-1246, which could interact with POSTN may have multifunctional effects in the course of asthma and be a promising agent for asthma treatment and molecular subtyping.
Collapse
Affiliation(s)
- Jintao Zhang
- Department of Respiratory, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Zihan Wang
- Department of Respiratory, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Dong Zhang
- Department of Respiratory, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Yun Pan
- Department of Respiratory, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Xiaofei Liu
- Department of Respiratory, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Xinrui Qiao
- Department of Respiratory, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Wenjing Cui
- Department of Respiratory, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Liang Dong
- Department of Respiratory, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China.,Department of Respiratory, Shandong Provincial Qianfoshan Hospital, Shandong University, The First Affiliated Hospital of Shandong First Medical University, Shandong Institute of Respiratory Diseases, Jinan, People's Republic of China
| |
Collapse
|
8
|
Thiel G, Schmidt T, Rössler OG. Ca 2+ Microdomains, Calcineurin and the Regulation of Gene Transcription. Cells 2021; 10:cells10040875. [PMID: 33921430 PMCID: PMC8068893 DOI: 10.3390/cells10040875] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 12/18/2022] Open
Abstract
Ca2+ ions function as second messengers regulating many intracellular events, including neurotransmitter release, exocytosis, muscle contraction, metabolism and gene transcription. Cells of a multicellular organism express a variety of cell-surface receptors and channels that trigger an increase of the intracellular Ca2+ concentration upon stimulation. The elevated Ca2+ concentration is not uniformly distributed within the cytoplasm but is organized in subcellular microdomains with high and low concentrations of Ca2+ at different locations in the cell. Ca2+ ions are stored and released by intracellular organelles that change the concentration and distribution of Ca2+ ions. A major function of the rise in intracellular Ca2+ is the change of the genetic expression pattern of the cell via the activation of Ca2+-responsive transcription factors. It has been proposed that Ca2+-responsive transcription factors are differently affected by a rise in cytoplasmic versus nuclear Ca2+. Moreover, it has been suggested that the mode of entry determines whether an influx of Ca2+ leads to the stimulation of gene transcription. A rise in cytoplasmic Ca2+ induces an intracellular signaling cascade, involving the activation of the Ca2+/calmodulin-dependent protein phosphatase calcineurin and various protein kinases (protein kinase C, extracellular signal-regulated protein kinase, Ca2+/calmodulin-dependent protein kinases). In this review article, we discuss the concept of gene regulation via elevated Ca2+ concentration in the cytoplasm and the nucleus, the role of Ca2+ entry and the role of enzymes as signal transducers. We give particular emphasis to the regulation of gene transcription by calcineurin, linking protein dephosphorylation with Ca2+ signaling and gene expression.
Collapse
|
9
|
Purinergic Signaling in the Hallmarks of Cancer. Cells 2020; 9:cells9071612. [PMID: 32635260 PMCID: PMC7407645 DOI: 10.3390/cells9071612] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 06/29/2020] [Accepted: 07/02/2020] [Indexed: 12/12/2022] Open
Abstract
Cancer is a complex expression of an altered state of cellular differentiation associated with severe clinical repercussions. The effort to characterize this pathological entity to understand its underlying mechanisms and visualize potential therapeutic strategies has been constant. In this context, some cellular (enhanced duplication, immunological evasion), metabolic (aerobic glycolysis, failure in DNA repair mechanisms) and physiological (circadian disruption) parameters have been considered as cancer hallmarks. The list of these hallmarks has been growing in recent years, since it has been demonstrated that various physiological systems misfunction in well-characterized ways upon the onset and establishment of the carcinogenic process. This is the case with the purinergic system, a signaling pathway formed by nucleotides/nucleosides (mainly adenosine triphosphate (ATP), adenosine (ADO) and uridine triphosphate (UTP)) with their corresponding membrane receptors and defined transduction mechanisms. The dynamic equilibrium between ATP and ADO, which is accomplished by the presence and regulation of a set of ectonucleotidases, defines the pro-carcinogenic or anti-cancerous final outline in tumors and cancer cell lines. So far, the purinergic system has been recognized as a potential therapeutic target in cancerous and tumoral ailments.
Collapse
|
10
|
Kopp R, Krautloher A, Ramírez-Fernández A, Nicke A. P2X7 Interactions and Signaling - Making Head or Tail of It. Front Mol Neurosci 2019; 12:183. [PMID: 31440138 PMCID: PMC6693442 DOI: 10.3389/fnmol.2019.00183] [Citation(s) in RCA: 159] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 07/11/2019] [Indexed: 12/14/2022] Open
Abstract
Extracellular adenine nucleotides play important roles in cell-cell communication and tissue homeostasis. High concentrations of extracellular ATP released by dying cells are sensed as a danger signal by the P2X7 receptor, a non-specific cation channel. Studies in P2X7 knockout mice and numerous disease models have demonstrated an important role of this receptor in inflammatory processes. P2X7 activation has been shown to induce a variety of cellular responses that are not usually associated with ion channel function, for example changes in the plasma membrane composition and morphology, ectodomain shedding, activation of lipases, kinases, and transcription factors, as well as cytokine release and apoptosis. In contrast to all other P2X family members, the P2X7 receptor contains a long intracellular C-terminus that constitutes 40% of the whole protein and is considered essential for most of these effects. So far, over 50 different proteins have been identified to physically interact with the P2X7 receptor. However, few of these interactions have been confirmed in independent studies and for the majority of these proteins, the interaction domains and the physiological consequences of the interactions are only poorly described. Also, while the structure of the P2X7 extracellular domain has recently been resolved, information about the organization and structure of its C-terminal tail remains elusive. After shortly describing the structure and assembly of the P2X7 receptor, this review gives an update of the identified or proposed interaction domains within the P2X7 C-terminus, describes signaling pathways in which this receptor has been involved, and provides an overlook of the identified interaction partners.
Collapse
Affiliation(s)
- Robin Kopp
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Anna Krautloher
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Antonio Ramírez-Fernández
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Annette Nicke
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, LMU Munich, Munich, Germany
| |
Collapse
|
11
|
Backes TM, Rössler OG, Hui X, Grötzinger C, Lipp P, Thiel G. Stimulation of TRPV1 channels activates the AP-1 transcription factor. Biochem Pharmacol 2018; 150:160-169. [PMID: 29452097 DOI: 10.1016/j.bcp.2018.02.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 02/08/2018] [Indexed: 02/09/2023]
Abstract
Transient receptor potential vanilloid 1 (TRPV1) channels were originally described as the receptors of capsaicin, the main constituent of hot chili pepper. The biological functions of TRPV1 channels include pain sensation and inflammatory thermal hyperalgesia. Here, we show that stimulation of HEK293 cells expressing TRPV1 channels (H2C1 cells) with capsaicin or the TRPV1 ligand resiniferatoxin activated transcription mediated by the transcription factor AP-1. No cell death was occurring under these experimental conditions. The AP-1 activity was not altered in capsaicin or resiniferatoxin-stimulated HEK293 cells lacking TRPV1. We identified the AP-1 DNA binding site as the capsaicin/resiniferatoxin-responsive element. Stimulation with the TRPV1 ligand N-arachidonoyldopamine increased AP-1 activity in a TRPV1-dependent and TRPV1-independent manner. Stimulation of TRPV1 channels induced an influx of Ca2+ into the cells and this rise in intracellular Ca2+ was essential for activating AP-1 in capsaicin or resiniferatoxin-stimulated cells. N-arachidonoyldopamine stimulation induced a rise in intracellular Ca2+ in a TRPV-1 dependent and independent manner. AP-1 is a dimeric transcription factor, composed of proteins of the c-Jun, c-Fos and ATF families. Stimulation of TRPV1 channels with capsaicin increased c-Jun and c-Fos biosynthesis in H2C1 cells. The signal transduction of capsaicin, leading to enhanced AP-1-mediated transcription, required extracellular signal-regulated protein kinase ERK1/2 as a signal transducer and the activation of the transcription factors c-Jun and ternary complex factor. Together, these data suggest that the intracellular functions of TRPV1 stimulation may rely on the activation of a stimulus-regulated protein kinase and stimulus-responsive transcription factors.
Collapse
Affiliation(s)
- Tobias M Backes
- Department of Medical Biochemistry and Molecular Biology, Saarland University Medical Faculty, D-66421 Homburg, Germany
| | - Oliver G Rössler
- Department of Medical Biochemistry and Molecular Biology, Saarland University Medical Faculty, D-66421 Homburg, Germany
| | - Xin Hui
- Anatomy and Cell Biology, Saarland University Medical Faculty, D-66421 Homburg, Germany
| | - Carsten Grötzinger
- Department of Internal Medicine, Division of Hepatology and Gastroenterology, Charité, D-13353 Berlin, Germany
| | - Peter Lipp
- Anatomy and Cell Biology, Saarland University Medical Faculty, D-66421 Homburg, Germany
| | - Gerald Thiel
- Department of Medical Biochemistry and Molecular Biology, Saarland University Medical Faculty, D-66421 Homburg, Germany.
| |
Collapse
|
12
|
Simo-Cheyou ER, Tan JJ, Grygorczyk R, Srivastava AK. STIM-1 and ORAI-1 channel mediate angiotensin-II-induced expression of Egr-1 in vascular smooth muscle cells. J Cell Physiol 2017; 232:3496-3509. [PMID: 28105751 DOI: 10.1002/jcp.25810] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 01/18/2017] [Accepted: 01/18/2017] [Indexed: 12/21/2022]
Abstract
An upregulation of Egr-1 expression has been reported in models of atherosclerosis and intimal hyperplasia and, various vasoactive peptides and growth promoting stimuli have been shown to induce the expression of Egr-1 in vascular smooth muscle cells (VSMC). Angiotensin-II (Ang-II) is a key vasoactive peptide that has been implicated in the pathogenesis of vascular diseases. Ang-II elevates intracellular Ca2+ through activation of the store-operated calcium entry (SOCE) involving an inositol-3-phosphate receptor (IP3R)-coupled depletion of endoplasmic reticular Ca2+ and a subsequent activation of the stromal interaction molecule 1 (STIM-1)/Orai-1 complex. However, the involvement of IP3R/STIM-1/Orai-1-Ca2+ -dependent signaling in Egr-1 expression in VSMC remains unexplored. Therefore, in the present studies, we have examined the role of Ca2+ signaling in Ang-II-induced Egr-1 expression in VSMC and investigated the contribution of STIM-1 or Orai-1 in mediating this response. 2-aminoethoxydiphenyl borate (2-APB), a dual non-competitive antagonist of IP3R and inhibitor of SOCE, decreased Ang-II-induced Ca2+ release and attenuated Ang-II-induced enhanced expression of Egr-1 protein and mRNA levels. Egr-1 upregulation was also suppressed following blockade of calmodulin and CaMKII. Furthermore, RNA interference-mediated depletion of STIM-1 or Orai-1 attenuated Ang-II-induced Egr-1 expression as well as Ang-II-induced phosphorylation of ERK1/2 and CREB. In addition, siRNA-induced silencing of CREB resulted in a reduction in the expression of Egr-1 stimulated by Ang-II. In summary, our data demonstrate that Ang-II-induced Egr-1 expression is mediated by STIM-1/Orai-1/Ca2+ -dependent signaling pathways in A-10 VSMC.
Collapse
MESH Headings
- Angiotensin II/pharmacology
- Animals
- Calcium Channel Blockers/pharmacology
- Calcium Signaling/drug effects
- Calcium-Calmodulin-Dependent Protein Kinase Type 2/antagonists & inhibitors
- Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism
- Calmodulin/antagonists & inhibitors
- Calmodulin/metabolism
- Cell Line
- Cyclic AMP Response Element-Binding Protein/metabolism
- Dose-Response Relationship, Drug
- Early Growth Response Protein 1/genetics
- Early Growth Response Protein 1/metabolism
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Inositol 1,4,5-Trisphosphate Receptors/antagonists & inhibitors
- Inositol 1,4,5-Trisphosphate Receptors/metabolism
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- ORAI1 Protein/genetics
- ORAI1 Protein/metabolism
- Phosphorylation
- Protein Kinase Inhibitors/pharmacology
- RNA Interference
- Rats
- Stromal Interaction Molecule 1/genetics
- Stromal Interaction Molecule 1/metabolism
- Time Factors
- Transfection
- Up-Regulation
Collapse
Affiliation(s)
- Estelle R Simo-Cheyou
- Laboratory of Cellular Signaling, Montreal Diabetes Research Center, Quebec, Canada
- CHUM-Research Center (CRCHUM), Quebec, Canada
- Faculty of Medicine, Department of Nutrition, University of Montreal, Quebec, Canada
| | - Ju Jing Tan
- CHUM-Research Center (CRCHUM), Quebec, Canada
| | - Ryszard Grygorczyk
- CHUM-Research Center (CRCHUM), Quebec, Canada
- Faculty of Medicine, Department of Medicine, University of Montreal, Quebec, Canada
| | - Ashok K Srivastava
- Laboratory of Cellular Signaling, Montreal Diabetes Research Center, Quebec, Canada
- CHUM-Research Center (CRCHUM), Quebec, Canada
- Faculty of Medicine, Department of Nutrition, University of Montreal, Quebec, Canada
- Faculty of Medicine, Department of Medicine, University of Montreal, Quebec, Canada
| |
Collapse
|
13
|
Rabadi M, Kim M, Li H, Han SJ, Choi Y, D'Agati V, Lee HT. ATP induces PAD4 in renal proximal tubule cells via P2X7 receptor activation to exacerbate ischemic AKI. Am J Physiol Renal Physiol 2017; 314:F293-F305. [PMID: 29021225 DOI: 10.1152/ajprenal.00364.2017] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We previously demonstrated that renal tubular peptidylarginine deiminase-4 (PAD4) is induced after ischemia-reperfusion (IR) injury and this induction of PAD4 exacerbates ischemic acute kidney injury (AKI) by promoting renal tubular inflammation and neutrophil infiltration. However, the mechanisms of renal tubular PAD4 induction after IR remain unknown. Here, we tested the hypothesis that ATP, a proinflammatory danger-associated molecular pattern (DAMP) ligand released from necrotic cells after IR injury, induces renal tubular PAD4 and exacerbates ischemic AKI via P2 purinergic receptor activation. ATP as well as ATPγS (a nonmetabolizable ATP analog) induced PAD4 mRNA, protein, and activity in human and mouse renal proximal tubule cells. Supporting the hypothesis that ATP induces renal tubular PAD4 via P2X7 receptor activation, A804598 (a selective P2X7 receptor antagonist) blocked the ATP-mediated induction of renal tubular PAD4 whereas BzATP (a selective P2X7 receptor agonist) mimicked the effects of ATP by inducing renal tubular PAD4 expression and activity. Moreover, ATP-mediated calcium influx in renal proximal tubule cells was blocked by A804598 and was mimicked by BzATP. P2X7 activation by BzATP also induced PAD4 expression and activity in mouse kidney in vivo. Finally, supporting a critical role for PAD4 in P2X7-mediated exacerbation of renal injury, BzATP exacerbated ischemic AKI in PAD4 wild-type mice but not in PAD4-deficient mice. Taken together, our studies show that ATP induces renal tubular PAD4 via P2X7 receptor activation to exacerbate renal tubular inflammation and injury after IR.
Collapse
Affiliation(s)
- May Rabadi
- Department of Anesthesiology, College of Physicians and Surgeons of Columbia University , New York, New York
| | - Mihwa Kim
- Department of Anesthesiology, College of Physicians and Surgeons of Columbia University , New York, New York
| | - Hongmei Li
- Department of Anesthesiology, College of Physicians and Surgeons of Columbia University , New York, New York
| | - Sang Jun Han
- Department of Anesthesiology, College of Physicians and Surgeons of Columbia University , New York, New York
| | - Yewoon Choi
- Department of Anesthesiology, College of Physicians and Surgeons of Columbia University , New York, New York
| | - Vivette D'Agati
- Department of Pathology, College of Physicians and Surgeons of Columbia University , New York, New York
| | - H Thomas Lee
- Department of Anesthesiology, College of Physicians and Surgeons of Columbia University , New York, New York
| |
Collapse
|
14
|
Thiel G, Rubil S, Lesch A, Guethlein LA, Rössler OG. Transient receptor potential TRPM3 channels: Pharmacology, signaling, and biological functions. Pharmacol Res 2017; 124:92-99. [DOI: 10.1016/j.phrs.2017.07.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 07/12/2017] [Accepted: 07/12/2017] [Indexed: 12/13/2022]
|
15
|
Ledderose C, Hefti MM, Chen Y, Bao Y, Seier T, Li L, Woehrle T, Zhang J, Junger WG. Adenosine arrests breast cancer cell motility by A3 receptor stimulation. Purinergic Signal 2016; 12:673-685. [PMID: 27577957 PMCID: PMC5124008 DOI: 10.1007/s11302-016-9531-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 08/15/2016] [Indexed: 02/06/2023] Open
Abstract
In neutrophils, adenosine triphosphate (ATP) release and autocrine purinergic signaling regulate coordinated cell motility during chemotaxis. Here, we studied whether similar mechanisms regulate the motility of breast cancer cells. While neutrophils and benign human mammary epithelial cells (HMEC) form a single leading edge, MDA-MB-231 breast cancer cells possess multiple leading edges enriched with A3 adenosine receptors. Compared to HMEC, MDA-MB-231 cells overexpress the ectonucleotidases ENPP1 and CD73, which convert extracellular ATP released by the cells to adenosine that stimulates A3 receptors and promotes cell migration with frequent directional changes. However, exogenous adenosine added to breast cancer cells or the A3 receptor agonist IB-MECA dose-dependently arrested cell motility by simultaneous stimulation of multiple leading edges, doubling cell surface areas and significantly reducing migration velocity by up to 75 %. We conclude that MDA-MB-231 cells, HMEC, and neutrophils differ in the purinergic signaling mechanisms that regulate their motility patterns and that the subcellular distribution of A3 adenosine receptors in MDA-MB-231 breast cancer cells contributes to dysfunctional cell motility. These findings imply that purinergic signaling mechanisms may be potential therapeutic targets to interfere with the motility of breast cancer cells in order to reduce the spread of cancer cells and the risk of metastasis.
Collapse
Affiliation(s)
- Carola Ledderose
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA
| | - Marco M Hefti
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA
| | - Yu Chen
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA
| | - Yi Bao
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA
| | - Thomas Seier
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA
| | - Linglin Li
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA
| | - Tobias Woehrle
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA
| | - Jingping Zhang
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA
| | - Wolfgang G Junger
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA.
- Ludwig Boltzmann Institute for Traumatology, Vienna, 1200, Austria.
| |
Collapse
|
16
|
Yester JW, Bryan L, Waters MR, Mierzenski B, Biswas DD, Gupta AS, Bhardwaj R, Surace MJ, Eltit JM, Milstien S, Spiegel S, Kordula T. Sphingosine-1-phosphate inhibits IL-1-induced expression of C-C motif ligand 5 via c-Fos-dependent suppression of IFN-β amplification loop. FASEB J 2015; 29:4853-65. [PMID: 26246404 DOI: 10.1096/fj.15-275180] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 07/27/2015] [Indexed: 12/15/2022]
Abstract
The neuroinflammation associated with multiple sclerosis involves activation of astrocytes that secrete and respond to inflammatory mediators such as IL-1. IL-1 stimulates expression of many chemokines, including C-C motif ligand (CCL) 5, that recruit immune cells, but it also stimulates sphingosine kinase-1, an enzyme that generates sphingosine-1-phosphate (S1P), a bioactive lipid mediator essential for inflammation. We found that whereas S1P promotes IL-1-induced expression of IL-6, it inhibits IL-1-induced CCL5 expression in astrocytes. This inhibition is mediated by the S1P receptor (S1PR)-2 via an inhibitory G-dependent mechanism. Consistent with this surprising finding, infiltration of macrophages into sites of inflammation increased significantly in S1PR2(-/-) animals. However, activation of NF-κB, IFN regulatory factor-1, and MAPKs, all of which regulate CCL5 expression in response to IL-1, was not diminished by the S1P in astrocytes. Instead, S1PR2 stimulated inositol 1,4,5-trisphosphate-dependent Ca(++) release and Elk-1 phosphorylation and enhanced c-Fos expression. In our study, IL-1 induced the IFNβ production that supports CCL5 expression. An intriguing finding was that S1P induced c-Fos-inhibited CCL5 directly and also indirectly through inhibition of the IFN-β amplification loop. We propose that in addition to S1PR1, which promotes inflammation, S1PR2 mediates opposing inhibitory functions that limit CCL5 expression and diminish the recruitment of immune cells.
Collapse
Affiliation(s)
- Jessie W Yester
- *Department of Biochemistry and Molecular Biology, Department of Physiology and Biophysics, and Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Lauren Bryan
- *Department of Biochemistry and Molecular Biology, Department of Physiology and Biophysics, and Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Michael R Waters
- *Department of Biochemistry and Molecular Biology, Department of Physiology and Biophysics, and Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Bartosz Mierzenski
- *Department of Biochemistry and Molecular Biology, Department of Physiology and Biophysics, and Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Debolina D Biswas
- *Department of Biochemistry and Molecular Biology, Department of Physiology and Biophysics, and Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Angela S Gupta
- *Department of Biochemistry and Molecular Biology, Department of Physiology and Biophysics, and Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Reetika Bhardwaj
- *Department of Biochemistry and Molecular Biology, Department of Physiology and Biophysics, and Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Michael J Surace
- *Department of Biochemistry and Molecular Biology, Department of Physiology and Biophysics, and Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Jose M Eltit
- *Department of Biochemistry and Molecular Biology, Department of Physiology and Biophysics, and Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Sheldon Milstien
- *Department of Biochemistry and Molecular Biology, Department of Physiology and Biophysics, and Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Sarah Spiegel
- *Department of Biochemistry and Molecular Biology, Department of Physiology and Biophysics, and Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Tomasz Kordula
- *Department of Biochemistry and Molecular Biology, Department of Physiology and Biophysics, and Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| |
Collapse
|
17
|
Lesch A, Rubil S, Thiel G. Activation and inhibition of transient receptor potential TRPM3-induced gene transcription. Br J Pharmacol 2014; 171:2645-58. [PMID: 24895737 DOI: 10.1111/bph.12524] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND AND PURPOSE Transient receptor potential-3 (TRPM3) channels function as Ca2+ permeable cation channels. While the natural ligands for these channels are still unknown, several compounds have been described that either activate or inhibit TRPM3 channel activity. experimental approach: We assessed TRPM3-mediated gene transcription, which relies on the induction of intracellular signalling to the nucleus following activation of TRPM3 channels. Activator protein-1 (AP-1) and Egr-1-responsive reporter genes were integrated into the chromatin of the cells. This strategy enabled us to analyse gene transcription of the AP-1 and Egr-1-responsive reporter genes that were packed into an ordered chromatin structure. KEY RESULTS The neurosteroid pregnenolone sulfate strikingly up-regulated AP-1 and Egr-1 transcriptional activity, while nifedipine and D-erythro-sphingosine, also putative activators of TRPM3 channels, exhibited either no or TRPM3-independent effects on gene transcription. In addition, pregnenolone sulfate robustly enhanced the transcriptional activation potential of the ternary complex factor Elk-1. Pregnenolone sulfate-induced activation of gene transcription was blocked by treatment with mefenamic acid and, to a lesser extent, by the polyphenol naringenin. In contrast, progesterone, pregnenolone and rosiglitazone reduced AP-1 activity in the cells, but had no inhibitory effect on Egr-1 activity in pregnenolone sulfate-stimulated cells. CONCLUSION AND IMPLICATIONS Pregnenolone sulfate is a powerful activator of TRPM3-mediated gene transcription, while transcription is completely inhibited by mefenamic acid in cells expressing activated TRPM3 channels. Both compounds are valuable tools for further investigating the biological functions of TRPM3 channels.
Collapse
|
18
|
Oxidative stress induced by P2X7 receptor stimulation in murine macrophages is mediated by c-Src/Pyk2 and ERK1/2. Biochim Biophys Acta Gen Subj 2013; 1830:4650-9. [PMID: 23711511 DOI: 10.1016/j.bbagen.2013.05.023] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 05/11/2013] [Accepted: 05/15/2013] [Indexed: 12/20/2022]
Abstract
BACKGROUND Activation of ATP-gated P2X7 receptors (P2X7R) in macrophages leads to production of reactive oxygen species (ROS) by a mechanism that is partially characterized. Here we used J774 cells to identify the signaling cascade that couples ROS production to receptor stimulation. METHODS J774 cells and mP2X7-transfected HEK293 cells were stimulated with Bz-ATP in the presence and absence of extracellular calcium. Protein inhibitors were used to evaluate the physiological role of various kinases in ROS production. In addition, phospho-antibodies against ERK1/2 and Pyk2 were used to determine activation of these two kinases. RESULTS ROS generation in either J774 or HEK293 cells (expressing P2X7, NOX2, Rac1, p47phox and p67phox) was strictly dependent on calcium entry via P2X7R. Stimulation of P2X7R activated Pyk2 but not calmodulin. Inhibitors of MEK1/2 and c-Src abolished ERK1/2 activation and ROS production but inhibitors of PI3K and p38 MAPK had no effect on ROS generation. PKC inhibitors abolished ERK1/2 activation but barely reduced the amount of ROS produced by Bz-ATP. In agreement, the amount of ROS produced by PMA was about half of that produced by Bz-ATP. CONCLUSIONS Purinergic stimulation resulted in calcium entry via P2X7R and subsequent activation of the PKC/c-Src/Pyk2/ERK1/2 pathway to produce ROS. This signaling mechanism did not require PI3K, p38 MAPK or calmodulin. GENERAL SIGNIFICANCE ROS is generated in order to kill invading pathogens, thus elucidating the mechanism of ROS production in macrophages and other immune cells allow us to understand how our body copes with microbial infections.
Collapse
|
19
|
Chao CC, Huang CC, Lu DY, Wong KL, Chen YR, Cheng TH, Leung YM. Ca2+ store depletion and endoplasmic reticulum stress are involved in P2X7 receptor-mediated neurotoxicity in differentiated NG108-15 cells. J Cell Biochem 2012; 113:1377-85. [PMID: 22134903 DOI: 10.1002/jcb.24010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
P2X7 receptor (P2X7R) activation by extracellular ATP triggers influx of Na(+) and Ca(2+), cytosolic Ca(2+) overload and consequently cytotoxicity. Whether disturbances in endoplasmic reticulum (ER) Ca(2+) homeostasis and ER stress are involved in P2X7R-mediated cell death is unknown. In this study, a P2X7R agonist (BzATP) was used to activate P2X7R in differentiated NG108-15 neuronal cells. In a concentration-dependent manner, application of BzATP (10-100 µM) immediately raised cytosolic Ca(2+) concentration ([Ca(2+)]i) and caused cell death after a 24-h incubation. P2X7R activation for 2 h did not cause cell death but resulted in a sustained reduction in ER Ca2+ pool size, as evidenced by a diminished cyclopiazonic acid-induced Ca(2+) discharge (fura 2 assay) and a lower fluorescent signal in cells loaded with Mag-fura 2 (ER-specific Ca(2+)-fluorescent dye). Furthermore, P2X7R activation (2 h) led to the appearance of markers of ER stress [phosphorylated α subunit of eukaryotic initiation factor 2 (p-eIF2α) and C/EBP homologous protein (CHOP)] and apoptosis (cleaved caspase 3). Xestospongin C (XeC), an antagonist of inositol-1,4,5-trisphosphate (IP3) receptor (IP3R), strongly inhibited BzATP-triggered [Ca(2+)]i elevation, suggesting that the latter involved Ca(2+) release via IP3R. XeC pretreatment not only attenuated the reduction in Ca(2+) pool size in BzATP-treated cells, but also rescued cell death and prevented BzATP-induced appearance of ER stress and apoptotic markers. These novel observations suggest that P2X7R activation caused not only Ca(2+) overload, but also Ca(2+) release via IP3R, sustained Ca(2+) store depletion, ER stress and eventually apoptotic cell death.
Collapse
Affiliation(s)
- Chia-Chia Chao
- Department of Life Sciences, National Chung Hsing University, Taichung, 402, Taiwan
| | | | | | | | | | | | | |
Collapse
|
20
|
Rothe K, Solinski HJ, Boekhoff I, Gudermann T, Breit A. Morphine Activates the E Twenty Six-Like Transcription Factor-1/Serum Response Factor Pathway via Extracellular Signal-Regulated Kinases 1/2 in F11 Cells Derived from Dorsal Root Ganglia Neurons. J Pharmacol Exp Ther 2012; 342:41-52. [DOI: 10.1124/jpet.112.192757] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
21
|
Florkowska M, Tymoszuk P, Balwierz A, Skucha A, Kochan J, Wawro M, Stalinska K, Kasza A. EGF activates TTP expression by activation of ELK-1 and EGR-1 transcription factors. BMC Mol Biol 2012; 13:8. [PMID: 22433566 PMCID: PMC3342124 DOI: 10.1186/1471-2199-13-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 03/20/2012] [Indexed: 01/04/2023] Open
Abstract
Background Tristetraprolin (TTP) is a key mediator of processes such as inflammation resolution, the inhibition of autoimmunity and in cancer. It carries out this role by the binding and degradation of mRNA transcripts, thereby decreasing their half-life. Transcripts modulated by TTP encode proteins such as cytokines, pro-inflammatory agents and immediate-early response proteins. TTP can also modulate neoplastic phenotypes in many cancers. TTP is induced and functionally regulated by a spectrum of both pro- and anti-inflammatory cytokines, mitogens and drugs in a MAPK-dependent manner. So far the contribution of p38 MAPK to the regulation of TTP expression and function has been best described. Results Our results demonstrate the induction of the gene coding TTP (ZFP36) by EGF through the ERK1/2-dependent pathway and implicates the transcription factor ELK-1 in this process. We show that ELK-1 regulates ZFP36 expression by two mechanisms: by binding the ZFP36 promoter directly through ETS-binding site (+ 883 to +905 bp) and by inducing expression of EGR-1, which in turn increases ZFP36 expression through sequences located between -111 and -103 bp. Conclusions EGF activates TTP expression via ELK-1 and EGR-1 transcription factors.
Collapse
|
22
|
Interaction of purinergic receptors with GPCRs, ion channels, tyrosine kinase and steroid hormone receptors orchestrates cell function. Purinergic Signal 2011; 8:91-103. [PMID: 21887492 DOI: 10.1007/s11302-011-9260-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 08/16/2011] [Indexed: 01/26/2023] Open
Abstract
Extracellular purines and pyrimidines have emerged as key regulators of a wide range of physiological and pathophysiological cellular processes acting through P1 and P2 cell surface receptors. Increasing evidence suggests that purinergic receptors can interact with and/or modulate the activity of other classes of receptors and ion channels. This review will focus on the interactions of purinergic receptors with other GPCRs, ion channels, receptor tyrosine kinases, and steroid hormone receptors. Also, the signal transduction pathways regulated by these complexes and their new functional properties are discussed.
Collapse
|
23
|
Lenertz LY, Gavala ML, Zhu Y, Bertics PJ. Transcriptional control mechanisms associated with the nucleotide receptor P2X7, a critical regulator of immunologic, osteogenic, and neurologic functions. Immunol Res 2011; 50:22-38. [PMID: 21298493 PMCID: PMC3203638 DOI: 10.1007/s12026-011-8203-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The nucleotide receptor P2X(7) is an attractive therapeutic target and potential biomarker for multiple inflammatory and neurologic disorders, and it is expressed in several immune, osteogenic, and neurologic cell types. Aside from its role in the nervous system, it is activated by ATP released at sites of tissue damage, inflammation, and infection. Ligand binding to P2X(7) stimulates many cell responses, including calcium fluxes, MAPK activation, inflammatory mediator release, and apoptosis. Much work has centered on P2X(7) action in cell death and mediator processing (e.g., pro-interleukin-1 cleavage by the inflammasome), but the contribution of P2X(7) to transcriptional regulation is less well defined. This review will focus on the growing evidence for the importance of nucleotide-mediated gene expression, highlight several animal models, human genetic, and clinical studies that support P2X(7) as a therapeutic target, and discuss the latest developments in anti-P2X(7) clinical trials.
Collapse
Affiliation(s)
- Lisa Y. Lenertz
- Department of Biomolecular Chemistry, School of Medicine and Public Health, The University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Monica L. Gavala
- Department of Biomolecular Chemistry, School of Medicine and Public Health, The University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Yiming Zhu
- Department of Biomolecular Chemistry, School of Medicine and Public Health, The University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Paul J. Bertics
- Department of Biomolecular Chemistry, School of Medicine and Public Health, The University of Wisconsin-Madison, Madison, Wisconsin 53706
| |
Collapse
|
24
|
Gavala ML, Hill LM, Lenertz LY, Karta MR, Bertics PJ. Activation of the transcription factor FosB/activating protein-1 (AP-1) is a prominent downstream signal of the extracellular nucleotide receptor P2RX7 in monocytic and osteoblastic cells. J Biol Chem 2010; 285:34288-98. [PMID: 20813842 PMCID: PMC2962527 DOI: 10.1074/jbc.m110.142091] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 08/30/2010] [Indexed: 01/25/2023] Open
Abstract
Activation of the ionotropic P2RX7 nucleotide receptor by extracellular ATP has been implicated in modulating inflammatory disease progression. Continuous exposure of P2RX7 to ligand can result in apoptosis in many cell types, including monocytic cells, whereas transient activation of P2RX7 is linked to inflammatory mediator production and the promotion of cell growth. Given the rapid hydrolysis of ATP in the circulation and interstitial space, transient activation of P2RX7 appears critically important for its action, yet its effects on gene expression are unclear. The present study demonstrates that short-term stimulation of human and mouse monocytic cells as well as mouse osteoblasts with P2RX7 agonists substantially induces the expression of several activating protein-1 (AP-1) members, particularly FosB. The potent activation of FosB after P2RX7 stimulation is especially noteworthy considering that little is known concerning the role of FosB in immunological regulation. Interestingly, the magnitude of FosB activation induced by P2RX7 stimulation appears greater than that observed with other known inducers of FosB expression. In addition, we have identified a previously unrecognized role for FosB in osteoblasts with respect to nucleotide-induced expression of cyclooxygenase-2 (COX-2), which is the rate-limiting enzyme in prostaglandin biosynthesis from arachidonic acid and is critical for osteoblastic differentiation and immune behavior. The present studies are the first to link P2RX7 action to FosB/AP-1 regulation in multiple cell types, including a role in nucleotide-induced COX-2 expression, and support a role for FosB in the control of immune and osteogenic function by P2RX7.
Collapse
Affiliation(s)
- Monica L. Gavala
- From the Program in Molecular and Cellular Pharmacology and
- the Department of Biomolecular Chemistry, University of Wisconsin School of Medicine, Madison, Wisconsin 53706
| | - Lindsay M. Hill
- From the Program in Molecular and Cellular Pharmacology and
- the Department of Biomolecular Chemistry, University of Wisconsin School of Medicine, Madison, Wisconsin 53706
| | - Lisa Y. Lenertz
- the Department of Biomolecular Chemistry, University of Wisconsin School of Medicine, Madison, Wisconsin 53706
| | - Maya R. Karta
- From the Program in Molecular and Cellular Pharmacology and
- the Department of Biomolecular Chemistry, University of Wisconsin School of Medicine, Madison, Wisconsin 53706
| | - Paul J. Bertics
- From the Program in Molecular and Cellular Pharmacology and
- the Department of Biomolecular Chemistry, University of Wisconsin School of Medicine, Madison, Wisconsin 53706
| |
Collapse
|
25
|
Friedle SA, Brautigam VM, Nikodemova M, Wright ML, Watters JJ. The P2X7-Egr pathway regulates nucleotide-dependent inflammatory gene expression in microglia. Glia 2010; 59:1-13. [PMID: 20878769 DOI: 10.1002/glia.21071] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Accepted: 08/09/2010] [Indexed: 01/14/2023]
Abstract
Microglial hyperactivity contributes to neuronal damage resulting from CNS injury and disease. Therefore, a better understanding of endogenous microglial receptor systems that can be exploited to modulate their inflammatory functions is important if better, neuroprotective therapeutics are to be designed. Previous studies from our lab and others have demonstrated that the P2X7 purinergic receptor agonist BzATP attenuates microglial inflammatory mediator production stimulated by lipopolysaccharide (LPS), suggesting that purinergic receptors may be one such receptor system that can be used for manipulating microglial activation. However, although P2X7 receptor activation is well recognized to regulate processing and release of cytokines, little is known concerning its role in regulating the transcription of inflammatory genes, nor the molecular mechanisms underlying these transcriptional effects. In the present studies, we identify that the transcription factors early growth response (Egr)-1, -2 and -3 are downstream signaling targets of P2X7 receptors in microglia, and that their activation is sensitive to MEK and p38 mitogen-activated protein kinase (MAPK) inhibitors. Moreover, using RNAi, we demonstrate that Egr factors and P2X7 receptors are necessary for BzATP-mediated attenuation of iNOS, and stimulation of TNF-α and IL-6 gene expression. BzATP also attenuates neuronal death induced by LPS conditioned medium, and P2X7 receptors are required for this effect. These studies are the first to identify Egr factors as regulators of inflammatory gene expression following P2X7 receptor activation, and suggest that P2X7 receptors may utilize the MAPK-Egr pathway to exert differential effects on microglial inflammatory activities which are beneficial to neuron survival.
Collapse
Affiliation(s)
- S A Friedle
- Program in Cellular and Molecular Biology, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | | | |
Collapse
|
26
|
Hill LM, Gavala ML, Lenertz LY, Bertics PJ. Extracellular ATP may contribute to tissue repair by rapidly stimulating purinergic receptor X7-dependent vascular endothelial growth factor release from primary human monocytes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 185:3028-34. [PMID: 20668222 PMCID: PMC3156583 DOI: 10.4049/jimmunol.1001298] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Extracellular ATP has been proposed to act as a danger signal to alert the immune system of cell damage. Release of high local concentrations of ATP activates the nucleotide receptor, purinergic receptor X7 (P2RX7), on monocytic cells, which promotes the processing/release of proinflammatory mediators. Although the proinflammatory actions of P2RX7 are well recognized, little is known regarding the potential function of P2RX7 in repair responses. Because the resolution of inflammation is characterized by monocytic cell-dependent production of proangiogenic factors, we evaluated the contribution of P2RX7 to this process. We observed that both short-term and long-term P2RX7 activation promotes the robust release of vascular endothelial growth factor from primary human monocytes. This vascular endothelial growth factor release is calcium dependent and associated with reactive oxygen species production. This previously unrecognized action of P2RX7 suggests that it may not only participate in inflammation and cell death, but that it is also likely to be important in the control of angiogenesis and wound repair.
Collapse
Affiliation(s)
- Lindsay M. Hill
- Molecular & Cellular Pharmacology, University of Wisconsin, Madison, WI 53706
| | - Monica L. Gavala
- Dept of Biomolecular Chemistry, University of Wisconsin, Madison, WI 53706
| | - Lisa Y. Lenertz
- Dept of Biomolecular Chemistry, University of Wisconsin, Madison, WI 53706
| | - Paul J. Bertics
- Dept of Biomolecular Chemistry, University of Wisconsin, Madison, WI 53706
| |
Collapse
|
27
|
Egr-1-A Ca(2+)-regulated transcription factor. Cell Calcium 2010; 47:397-403. [PMID: 20303171 DOI: 10.1016/j.ceca.2010.02.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Revised: 02/11/2010] [Accepted: 02/16/2010] [Indexed: 12/01/2022]
Abstract
The biosynthesis of the zinc finger transcription factor Egr-1 is stimulated by many extracellular signaling molecules including hormones, neurotransmitters, growth and differentiation factors. The Egr-1 gene represents a convergence point for many intracellular signaling cascades. An increase of the intracellular Ca(2+) concentration, by activating ionotropic or Galpha(q/11)-coupled receptors or voltage-gated L-type Ca(2+) channels, is often the prerequisite for enhanced Egr-1 gene transcription. This increase has been observed following stimulation with extracellular signaling molecules including ATP, glutamate, thrombin, carbachol, gonadotropin-releasing hormone, or glucose. Egr-1 is thus a Ca(2+) regulated transcription factor - similar to CREB, NFAT, NF-kappaB and others. This review also discusses the importance of the cytoplasmic and nuclear Ca(2+) concentration in transcriptional regulation of the Egr-1 gene.
Collapse
|
28
|
Rössler OG, Thiel G. Thrombin induces Egr-1 expression in fibroblasts involving elevation of the intracellular Ca2+ concentration, phosphorylation of ERK and activation of ternary complex factor. BMC Mol Biol 2009; 10:40. [PMID: 19432968 PMCID: PMC2686679 DOI: 10.1186/1471-2199-10-40] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Accepted: 05/11/2009] [Indexed: 01/18/2023] Open
Abstract
Background The serine protease thrombin catalyzes fibrin clot formation by converting fibrinogen into fibrin. Additionally, thrombin stimulation leads to an activation of stimulus-responsive transcription factors in different cell types, indicating that the gene expression pattern is changed in thrombin-stimulated cells. The objective of this study was to analyze the signaling cascade leading to the expression of the zinc finger transcription factor Egr-1 in thrombin-stimulated lung fibroblasts. Results Stimulation of 39M1-81 fibroblasts with thrombin induced a robust and transient biosynthesis of Egr-1. Reporter gene analysis revealed that the newly synthesized Egr-1 was biologically active. The signaling cascade connecting thrombin stimulation with Egr-1 gene expression required elevated levels of cytosolic Ca2+, the activation of diacylgycerol-dependent protein kinase C isoenzymes, and the activation of extracellular signal-regulated protein kinase (ERK). Stimulation of the cells with thrombin triggered the phosphorylation of the transcription factor Elk-1. Expression of a dominant-negative mutant of Elk-1 completely prevented Egr-1 expression in stimulated 39M1-81 cells, indicating that Elk-1 or related ternary complex factors connect the intracellular signaling cascade elicited by activation of protease-activated receptors with transcription of the Egr-1 gene. Lentiviral-mediated expression of MAP kinase phosphatase-1, a dual-specific phosphatase that dephosphorylates and inactivates ERK in the nucleus, prevented Elk-1 phosphorylation and Egr-1 biosynthesis in thrombin stimulated 39M1-81 cells, confirming the importance of nuclear ERK and Elk-1 for the upregulation of Egr-1 expression in thrombin-stimulated lung fibroblasts. 39M1-81 cells additionally express M1 muscarinic acetylcholine receptors. A comparison between the signaling cascades induced by thrombin or carbachol showed no differences, except that signal transduction via M1 muscarinic acetylcholine receptors required the transactivation of the EGF receptor, while thrombin signaling did not. Conclusion This study shows that stimulus-transcription coupling in thrombin-treated lung fibroblasts relies on the elevation of the intracellular Ca2+-concentration and the activation of PKC and ERK. In the nucleus, ternary complex factors function as key proteins linking the intracellular signaling cascade with enhanced transcription of the Egr-1 gene. This study further shows that the dominant-negative Elk-1 mutant is a valuable tool to study Elk-1-mediated gene transcription.
Collapse
Affiliation(s)
- Oliver G Rössler
- Department of Medical Biochemistry and Molecular Biology, University of Saarland Medical Center, Homburg, Germany
| | | |
Collapse
|
29
|
Cell signaling via the P2X(7) nucleotide receptor: linkage to ROS production, gene transcription, and receptor trafficking. Purinergic Signal 2009; 5:175-87. [PMID: 19263245 DOI: 10.1007/s11302-009-9133-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Accepted: 09/16/2008] [Indexed: 12/20/2022] Open
Abstract
Extracellular nucleotides can act as important intercellular signals in diverse biological processes, including the enhanced production of factors that are key to immune response regulation. One receptor that binds extracellular adenosine triphosphate released at sites of infection and injury is P2X(7), which is an ionotrophic receptor that can also lead to the formation of a non-specific pore, activate multiple mitogen-activated protein kinases (MAPKs), and stimulate the production of immune mediators including interleukin family members and reactive oxygen species (ROS). In the present report, we have investigated the signaling mechanisms by which P2X(7) promotes monocytic cell mediator production and induces transcription factor expression/phosphorylation, as well as how receptor-associated pore activity is regulated by intracellular trafficking. We report that P2X(7) stimulates ROS production in macrophages through the MAPKs ERK1/2 and the nicotinamide adenine dinucleotide phosphate oxidase complex, activates several transcription factors including cyclic-AMP response element-binding protein and components of the activating protein-1 complex, and contains specific sequences within its intracellular C-terminus that appear critical for its activity. Altogether, these data further implicate P2X(7) activation and signaling as a fundamental modulator of macrophage immune responses.
Collapse
|
30
|
Gavala ML, Pfeiffer ZA, Bertics PJ. The nucleotide receptor P2RX7 mediates ATP-induced CREB activation in human and murine monocytic cells. J Leukoc Biol 2008; 84:1159-71. [PMID: 18625910 DOI: 10.1189/jlb.0907612] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Nucleotide receptors serve as sensors of extracellular ATP and are important for immune function. The nucleotide receptor P2RX7 is a cell-surface, ligand-gated cation channel that has been implicated in many diseases, including arthritis, granuloma formation, sepsis, and tuberculosis. These disorders are often exacerbated by excessive mediator release from activated macrophages in the inflammatory microenvironment. Although P2RX7 activation can modulate monocyte/macrophage-induced inflammatory events, the relevant molecular mechanisms are poorly understood. Previous studies suggest that MAPK cascades and transcriptional control via CREB-linked pathways regulate the inflammatory capacity of monocytic cells. As P2RX7 promotes MAPK activation and inflammatory mediator production, we examined the involvement MAPK-induced CREB activation in P2RX7 action. Our data reveal that stimulation of multiple monocytic cell lines with P2RX7 agonists induces rapid CREB phosphorylation. In addition, we observed a lack of nucleotide-induced CREB phosphorylation in RAW 264.7 cells expressing nonfunctional P2RX7 and a gain of nucleotide-induced CREB phosphorylation in human embryonic kidney-293 cells that heterologously express human P2RX7. Furthermore, our results indicate that P2RX7 agonist-induced CREB phosphorylation is partly mediated via Ca(2+) fluxes and the MEK/ERK system. Mechanistic analyses revealed that macrophage stimulation with a P2RX7 agonist induces CREB/CREB-binding protein complex formation, which is necessary for CREB transcriptional activation. Also, we demonstrate that P2RX7 activation induces a known CREB-dependent gene (c-fos) and that dominant-negative CREB constructs attenuate this response. These studies support the idea that P2RX7 stimulation can directly regulate protein expression that is not dependent on costimulation with other immune modulators such as LPS.
Collapse
Affiliation(s)
- Monica L Gavala
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI 53706, USA
| | | | | |
Collapse
|
31
|
Rössler OG, Henß I, Thiel G. Transcriptional response to muscarinic acetylcholine receptor stimulation: Regulation of Egr-1 biosynthesis by ERK, Elk-1, MKP-1, and calcineurin in carbachol-stimulated human neuroblastoma cells. Arch Biochem Biophys 2008; 470:93-102. [DOI: 10.1016/j.abb.2007.11.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Revised: 11/13/2007] [Accepted: 11/14/2007] [Indexed: 01/14/2023]
|