1
|
Kunzelmann K, Centeio R, Ousingsawat J, Talbi K, Seidler U, Schreiber R. SLC26A9 in airways and intestine: secretion or absorption? Channels (Austin) 2023; 17:2186434. [PMID: 36866602 PMCID: PMC9988340 DOI: 10.1080/19336950.2023.2186434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023] Open
Abstract
SLC26A9 is one out of 11 proteins that belong to the SLC26A family of anion transporters. Apart from expression in the gastrointestinal tract, SLC26A9 is also found in the respiratory system, in male tissues and in the skin. SLC26A9 has gained attention because of its modifier role in the gastrointestinal manifestation of cystic fibrosis (CF). SLC26A9 appears to have an impact on the extent of intestinal obstruction caused by meconium ileus. SLC26A9 supports duodenal bicarbonate secretion, but was assumed to provide a basal Cl- secretory pathway in airways. However, recent results show that basal airway Cl- secretion is due to cystic fibrosis conductance regulator (CFTR), while SLC26A9 may rather secrete HCO3-, thereby maintaining proper airway surface liquid (ASL) pH. Moreover, SLC26A9 does not secrete but probably supports reabsorption of fluid particularly in the alveolar space, which explains early death by neonatal distress in Slc26a9-knockout animals. While the novel SLC26A9 inhibitor S9-A13 helped to unmask the role of SLC26A9 in the airways, it also provided evidence for an additional role in acid secretion by gastric parietal cells. Here we discuss recent data on the function of SLC26A9 in airways and gut, and how S9-A13 may be useful in unraveling the physiological role of SLC26A9.
Collapse
Affiliation(s)
- Karl Kunzelmann
- Institut für Physiologie, Universität, Universitätsstraße 31, Regensburg, Germany
- CONTACT Karl Kunzelmann
| | - Raquel Centeio
- Institut für Physiologie, Universität, Universitätsstraße 31, Regensburg, Germany
| | - Jiraporn Ousingsawat
- Institut für Physiologie, Universität, Universitätsstraße 31, Regensburg, Germany
| | - Khaoula Talbi
- Institut für Physiologie, Universität, Universitätsstraße 31, Regensburg, Germany
| | - Ursula Seidler
- Department of Gastroenterology, Hannover Medical School, Hannover, Germany
| | - Rainer Schreiber
- Institut für Physiologie, Universität, Universitätsstraße 31, Regensburg, Germany
| |
Collapse
|
2
|
Kunzelmann K, Ousingsawat J, Kraus A, Park JH, Marquardt T, Schreiber R, Buchholz B. Pathogenic Relationships in Cystic Fibrosis and Renal Diseases: CFTR, SLC26A9 and Anoctamins. Int J Mol Sci 2023; 24:13278. [PMID: 37686084 PMCID: PMC10487509 DOI: 10.3390/ijms241713278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/31/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
The Cl--transporting proteins CFTR, SLC26A9, and anoctamin (ANO1; ANO6) appear to have more in common than initially suspected, as they all participate in the pathogenic process and clinical outcomes of airway and renal diseases. In the present review, we will therefore concentrate on recent findings concerning electrolyte transport in the airways and kidneys, and the role of CFTR, SLC26A9, and the anoctamins ANO1 and ANO6. Special emphasis will be placed on cystic fibrosis and asthma, as well as renal alkalosis and polycystic kidney disease. In essence, we will summarize recent evidence indicating that CFTR is the only relevant secretory Cl- channel in airways under basal (nonstimulated) conditions and after stimulation by secretagogues. Information is provided on the expressions of ANO1 and ANO6, which are important for the correct expression and function of CFTR. In addition, there is evidence that the Cl- transporter SLC26A9 expressed in the airways may have a reabsorptive rather than a Cl--secretory function. In the renal collecting ducts, bicarbonate secretion occurs through a synergistic action of CFTR and the Cl-/HCO3- transporter SLC26A4 (pendrin), which is probably supported by ANO1. Finally, in autosomal dominant polycystic kidney disease (ADPKD), the secretory function of CFTR in renal cyst formation may have been overestimated, whereas ANO1 and ANO6 have now been shown to be crucial in ADPKD and therefore represent new pharmacological targets for the treatment of polycystic kidney disease.
Collapse
Affiliation(s)
- Karl Kunzelmann
- Physiological Institute, University of Regensburg, University Street 31, 93053 Regensburg, Germany; (J.O.); (R.S.)
| | - Jiraporn Ousingsawat
- Physiological Institute, University of Regensburg, University Street 31, 93053 Regensburg, Germany; (J.O.); (R.S.)
| | - Andre Kraus
- Department of Nephrology and Hypertension, Friedrich Alexander University Erlangen Nuremberg, 91054 Erlangen, Germany; (A.K.); (B.B.)
| | - Julien H. Park
- Department of Pediatrics, University Hospital Münster, 48149 Münster, Germany; (J.H.P.); (T.M.)
| | - Thorsten Marquardt
- Department of Pediatrics, University Hospital Münster, 48149 Münster, Germany; (J.H.P.); (T.M.)
| | - Rainer Schreiber
- Physiological Institute, University of Regensburg, University Street 31, 93053 Regensburg, Germany; (J.O.); (R.S.)
| | - Björn Buchholz
- Department of Nephrology and Hypertension, Friedrich Alexander University Erlangen Nuremberg, 91054 Erlangen, Germany; (A.K.); (B.B.)
| |
Collapse
|
3
|
Jo S, Centeio R, Park J, Ousingsawat J, Jeon DK, Talbi K, Schreiber R, Ryu K, Kahlenberg K, Somoza V, Delpiano L, Gray MA, Amaral MD, Railean V, Beekman JM, Rodenburg LW, Namkung W, Kunzelmann K. The SLC26A9 inhibitor S9-A13 provides no evidence for a role of SLC26A9 in airway chloride secretion but suggests a contribution to regulation of ASL pH and gastric proton secretion. FASEB J 2022; 36:e22534. [PMID: 36183361 DOI: 10.1096/fj.202200313rr] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 08/11/2022] [Accepted: 08/24/2022] [Indexed: 11/11/2022]
Abstract
The solute carrier 26 family member A9 (SLC26A9) is an epithelial anion transporter that is assumed to contribute to airway chloride secretion and surface hydration. Whether SLC26A9 or CFTR is responsible for airway Cl- transport under basal conditions is still unclear, due to the lack of a specific inhibitor for SLC26A9. In the present study, we report a novel potent and specific inhibitor for SLC26A9, identified by screening of a drug-like molecule library and subsequent chemical modifications. The most potent compound S9-A13 inhibited SLC26A9 with an IC50 of 90.9 ± 13.4 nM. S9-A13 did not inhibit other members of the SLC26 family and had no effects on Cl- channels such as CFTR, TMEM16A, or VRAC. S9-A13 inhibited SLC26A9 Cl- currents in cells that lack expression of CFTR. It also inhibited proton secretion by HGT-1 human gastric cells. In contrast, S9-A13 had minimal effects on ion transport in human airway epithelia and mouse trachea, despite clear expression of SLC26A9 in the apical membrane of ciliated cells. In both tissues, basal and stimulated Cl- secretion was due to CFTR, while acidification of airway surface liquid by S9-A13 suggests a role of SLC26A9 for airway bicarbonate secretion.
Collapse
Affiliation(s)
- Sungwoo Jo
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, South Korea
| | - Raquel Centeio
- Physiological Institute, University of Regensburg, Regensburg, Germany
| | - Jinhong Park
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, South Korea
| | | | - Dong-Kyu Jeon
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, South Korea
| | - Khaoula Talbi
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
| | - Rainer Schreiber
- Physiological Institute, University of Regensburg, Regensburg, Germany
| | - Kunhi Ryu
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, South Korea
| | - Kristin Kahlenberg
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
| | - Veronika Somoza
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
| | - Livia Delpiano
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Michael A Gray
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Margarida D Amaral
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Lisbon, Portugal
| | - Violeta Railean
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Lisbon, Portugal
| | - Jeffrey M Beekman
- Regenerative Medicine Utrecht, University Medical Center, Utrecht University, Utrecht, Netherlands
| | - Lisa W Rodenburg
- Regenerative Medicine Utrecht, University Medical Center, Utrecht University, Utrecht, Netherlands
| | - Wan Namkung
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, South Korea
| | - Karl Kunzelmann
- Physiological Institute, University of Regensburg, Regensburg, Germany
| |
Collapse
|
4
|
Madácsy T, Varga Á, Papp N, Tél B, Pallagi P, Szabó V, Kiss A, Fanczal J, Rakonczay Z, Tiszlavicz L, Rázga Z, Hohwieler M, Kleger A, Gray M, Hegyi P, Maléth J. Impaired regulation of PMCA activity by defective CFTR expression promotes epithelial cell damage in alcoholic pancreatitis and hepatitis. Cell Mol Life Sci 2022; 79:265. [PMID: 35484438 PMCID: PMC11073305 DOI: 10.1007/s00018-022-04287-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/09/2022] [Accepted: 04/04/2022] [Indexed: 11/28/2022]
Abstract
Alcoholic pancreatitis and hepatitis are frequent, potentially lethal diseases with limited treatment options. Our previous study reported that the expression of CFTR Cl- channel is impaired by ethanol in pancreatic ductal cells leading to more severe alcohol-induced pancreatitis. In addition to determining epithelial ion secretion, CFTR has multiple interactions with other proteins, which may influence intracellular Ca2+ signaling. Thus, we aimed to investigate the impact of ethanol-mediated CFTR damage on intracellular Ca2+ homeostasis in pancreatic ductal epithelial cells and cholangiocytes. Human and mouse pancreas and liver samples and organoids were used to study ion secretion, intracellular signaling, protein expression and interaction. The effect of PMCA4 inhibition was analyzed in a mouse model of alcohol-induced pancreatitis. The decreased CFTR expression impaired PMCA function and resulted in sustained intracellular Ca2+ elevation in ethanol-treated and mouse and human pancreatic organoids. Liver samples derived from alcoholic hepatitis patients and ethanol-treated mouse liver organoids showed decreased CFTR expression and function, and impaired PMCA4 activity. PMCA4 co-localizes and physically interacts with CFTR on the apical membrane of polarized epithelial cells, where CFTR-dependent calmodulin recruitment determines PMCA4 activity. The sustained intracellular Ca2+ elevation in the absence of CFTR inhibited mitochondrial function and was accompanied with increased apoptosis in pancreatic epithelial cells and PMCA4 inhibition increased the severity of alcohol-induced AP in mice. Our results suggest that improving Ca2+ extrusion in epithelial cells may be a potential novel therapeutic approach to protect the exocrine pancreatic function in alcoholic pancreatitis and prevent the development of cholestasis in alcoholic hepatitis.
Collapse
Affiliation(s)
- Tamara Madácsy
- Department of Medicine, University of Szeged, Szeged, 6720, Hungary
- HAS-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, University of Szeged, Szeged, 6720, Hungary
| | - Árpád Varga
- Department of Medicine, University of Szeged, Szeged, 6720, Hungary
- HAS-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, University of Szeged, Szeged, 6720, Hungary
| | - Noémi Papp
- Department of Medicine, University of Szeged, Szeged, 6720, Hungary
- HAS-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, University of Szeged, Szeged, 6720, Hungary
| | - Bálint Tél
- Department of Medicine, University of Szeged, Szeged, 6720, Hungary
- HAS-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, University of Szeged, Szeged, 6720, Hungary
- First Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Petra Pallagi
- Department of Medicine, University of Szeged, Szeged, 6720, Hungary
- HAS-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, University of Szeged, Szeged, 6720, Hungary
| | - Viktória Szabó
- Department of Medicine, University of Szeged, Szeged, 6720, Hungary
- HAS-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, University of Szeged, Szeged, 6720, Hungary
| | - Aletta Kiss
- Department of Medicine, University of Szeged, Szeged, 6720, Hungary
- HAS-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, University of Szeged, Szeged, 6720, Hungary
| | - Júlia Fanczal
- Department of Medicine, University of Szeged, Szeged, 6720, Hungary
- HAS-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, University of Szeged, Szeged, 6720, Hungary
| | - Zoltan Rakonczay
- Department of Pathophysiology, University of Szeged, Szeged, 6720, Hungary
| | | | - Zsolt Rázga
- Department of Pathology, University of Szeged, Szeged, Hungary
| | - Meike Hohwieler
- Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany
| | - Alexander Kleger
- Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany
| | - Mike Gray
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, England
| | - Péter Hegyi
- Institute for Translational Medicine, University of Pécs, Pécs, Hungary
- Centre for Translational Medicine and Division for Pancreatic Disorders, Semmelweis University, Budapest, Hungary
| | - József Maléth
- Department of Medicine, University of Szeged, Szeged, 6720, Hungary.
- HAS-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, University of Szeged, Szeged, 6720, Hungary.
- HCEMM-USZ Molecular Gastroenterology Research Group, University of Szeged, Szeged, 6720, Hungary.
| |
Collapse
|
5
|
Ousingsawat J, Centeio R, Schreiber R, Kunzelmann K. Expression of SLC26A9 in Airways and Its Potential Role in Asthma. Int J Mol Sci 2022; 23:ijms23062998. [PMID: 35328418 PMCID: PMC8950296 DOI: 10.3390/ijms23062998] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/05/2022] [Accepted: 03/07/2022] [Indexed: 02/05/2023] Open
Abstract
SLC26A9 is an epithelial anion transporter with a poorly defined function in airways. It is assumed to contribute to airway chloride secretion and airway surface hydration. However, immunohistochemistry showing precise localization of SLC26A9 in airways is missing. Some studies report localization near tight junctions, which is difficult to reconcile with a chloride secretory function of SLC26A9. We therefore performed immunocytochemistry of SLC26A9 in sections of human and porcine lungs. Obvious apical localization of SLC26A9 was detected in human and porcine superficial airway epithelia, whereas submucosal glands did not express SLC26A9. The anion transporter was located exclusively in ciliated epithelial cells. Highly differentiated BCi-NS1 human airway epithelial cells grown on permeable supports also expressed SLC26A9 in the apical membrane of ciliated epithelial cells. BCi-NS1 cells expressed the major Cl− transporting proteins CFTR, TMEM16A and SLC26A9 in about equal proportions and produced short-circuit currents activated by increases in intracellular cAMP or Ca2+. Both CFTR and SLC26A9 contribute to basal chloride currents in non-stimulated BCi-NS1 airway epithelia, with CFTR being the dominating Cl− conductance. In wtCFTR-expressing CFBE human airway epithelial cells, SLC26A9 was partially located in the plasma membrane, whereas CFBE cells expressing F508del-CFTR showed exclusive cytosolic localization of SLC26A9. Membrane localization of SLC26A9 and basal chloride currents were augmented by interleukin 13 in wild-type CFTR-expressing cells, but not in cells expressing the most common disease-causing mutant F508del-CFTR. The data suggest an upregulation of SLC26A9-dependent chloride secretion in asthma, but not in the presence of F508del-CFTR.
Collapse
Affiliation(s)
| | | | | | - Karl Kunzelmann
- Correspondence: ; Tel.: +49-(0)941-943-4302; Fax: +49-(0)941-943-4315
| |
Collapse
|
6
|
Fűr G, Bálint ER, Orján EM, Balla Z, Kormányos ES, Czira B, Szűcs A, Kovács DP, Pallagi P, Maléth J, Venglovecz V, Hegyi P, Kiss L, Rakonczay Z. Mislocalization of CFTR expression in acute pancreatitis and the beneficial effect of VX-661 + VX-770 treatment on disease severity. J Physiol 2021; 599:4955-4971. [PMID: 34587656 DOI: 10.1113/jp281765] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 09/24/2021] [Indexed: 01/15/2023] Open
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR) has an essential role in maintaining pancreatic ductal function. Impaired CFTR function can trigger acute pancreatitis (AP) and exacerbate disease severity. We aimed to investigate the localization and expression of CFTR during AP, and determined the effects of a CFTR corrector (VX-661) and potentiator (VX-770) on disease severity. AP was induced in FVB/n mice by 6-10 hourly intraperitoneal injections of 50 μg/kg cerulein. Some mice were pre-treated with five to six daily injections of 2 mg/kg VX-661 + VX-770. Control animals were administered physiological saline instead of cerulein and dimethyl sulfoxide instead of VX compounds. AP severity was determined by measuring laboratory and histological parameters; CFTR and CK19 expression was measured. Activity of ion transporters was followed by intracellular pH or fluid secretion measurement of isolated pancreatic intra-/interlobular ducts. Cerulein-induced AP severity was greatest between 12 and 24 h. CFTR mRNA expression was significantly increased 24 h after AP induction. Immunohistochemistry demonstrated disturbed staining morphology of CFTR and CK19 proteins in AP. Mislocalization of CFTR protein was observed from 6 h, while expression increased at 24 h compared to control. Ductal HCO3 - transport activity was significantly increased 6 h after AP induction. AP mice pre-treatment with VX-661 + VX-770 significantly reduced the extent of tissue damage by about 20-30%, but other parameters were unchanged. Interestingly, VX-661 + VX-770 in vitro administration significantly increased the fluid secretion of ducts derived from AP animals. This study described the course of the CFTR expression and mislocalization in cerulein-induced AP. Our results suggest that the beneficial effects of CFTR correctors and potentiators should be further investigated in AP. KEY POINTS: Cystic fibrosis transmembrane conductance regulator (CFTR) is an important ion channel in epithelial cells. Its malfunction has several serious consequences, like developing or aggravating acute pancreatitis (AP). Here, the localization and expression of CFTR during cerulein-induced AP in mice were investigated and the effects of CFTR corrector (VX-661) and a potentiator (VX-770) on disease severity were determined. CFTR mRNA expression was significantly increased and mislocalization of CFTR protein was observed in AP compared to the control group. Interestingly, pre-treatment of AP mice with VX-661 + VX-770 significantly reduced the extent of pancreatic tissue damage by 20-30%. In vitro administration of VX-661 + VX-770 significantly increased the fluid secretion of ducts derived from AP animals. Based on these results, the utilization of CFTR correctors and potentiators should be further investigated in AP.
Collapse
Affiliation(s)
- Gabriella Fűr
- Department of Pathophysiology, University of Szeged, Szeged, Hungary
| | - Emese Réka Bálint
- Department of Pathophysiology, University of Szeged, Szeged, Hungary
| | - Erik Márk Orján
- Department of Pathophysiology, University of Szeged, Szeged, Hungary
| | - Zsolt Balla
- Department of Pathophysiology, University of Szeged, Szeged, Hungary
| | | | - Beáta Czira
- Department of Pathophysiology, University of Szeged, Szeged, Hungary
| | - Attila Szűcs
- Department of Pathophysiology, University of Szeged, Szeged, Hungary
| | | | - Petra Pallagi
- First Department of Medicine, University of Szeged, Szeged, Hungary.,Momentum Epithelial Cell Signalling and Secretion Research Group, Hungarian Academy of Sciences-University of Szeged, Szeged, Hungary
| | - József Maléth
- First Department of Medicine, University of Szeged, Szeged, Hungary.,Momentum Epithelial Cell Signalling and Secretion Research Group, Hungarian Academy of Sciences-University of Szeged, Szeged, Hungary
| | - Viktória Venglovecz
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Péter Hegyi
- Institute for Translational Medicine and First Department of Medicine, University of Pécs, Pécs, Hungary.,Momentum Translational Gastroenterology Research Group, Hungarian Academy of Sciences-University of Szeged, Szeged, Hungary.,Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Lóránd Kiss
- Department of Pathophysiology, University of Szeged, Szeged, Hungary
| | - Zoltán Rakonczay
- Department of Pathophysiology, University of Szeged, Szeged, Hungary
| |
Collapse
|
7
|
Czumbel LM, Farkasdi S, Gede N, Mikó A, Csupor D, Lukács A, Gaál V, Kiss S, Hegyi P, Varga G. Hyaluronic Acid Is an Effective Dermal Filler for Lip Augmentation: A Meta-Analysis. Front Surg 2021; 8:681028. [PMID: 34422892 PMCID: PMC8377277 DOI: 10.3389/fsurg.2021.681028] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 07/09/2021] [Indexed: 12/19/2022] Open
Abstract
Introduction: The lips and the mouth play an indispensable role in vocalization, mastication and face aesthetics. Various noxious factors may alter and destruct the original structure, and appearance of the lips and the anatomical area surrounding the mouth. The application of hyaluronic acid (HA) may serve as a safe method for lip regeneration. Although a number of studies exist for HA effectiveness and safety, its beneficial effect is not well-established. Aim: The present meta-analysis and systematic review was performed to investigate the effectiveness of HA on lip augmentation. We also investigated the types and nature of adverse effects (AEs) of HA application. Methods: We reported our meta-analysis in accordance with the PRISMA Statement. PROSPERO protocol registration: CRD42018102899. We performed the systematic literature search in CENTRAL, Embase, and MEDLINE. Randomized controlled trials, cohort studies, case series and case reports were included. The untransformed proportion (random-effects, DerSimonian-Laird method) of responder rate to HA injection was calculated. For treatment related AEs descriptive statistics were used. Results: The systematic literature search yielded 32 eligible records for descriptive statistics and 10 records for quantitative synthesis. The results indicated that the overall estimate of responders (percentage of subjects with increased lip fullness by one point or higher) was 91% (ES = 0.91, 95% CI:0.85-0.96) 2 months after injection. The rate of responders was 74% (ES = 0.74, 95% CI:0.66-0.82) and 46% (ES = 0.46, 95% CI:0.28-0.65) after 6 and 12 months, respectively. We included 1,496 participants for estimating the event rates of AEs. The most frequent treatment-related AEs were tenderness (88.8%), injection site swelling (74.3%) and bruising (39.5%). Rare AEs included foreign body granulomas (0.6%), herpes labialis (0.6%) and angioedema (0.3%). Conclusion: Our meta-analysis revealed that lip augmentation with injectable HA is an efficient method for increasing lip fullness for at least up to 6 months after augmentation. Moreover, we found that most AEs of HA treatment were mild or moderate, but a small number of serious adverse effects were also found. In conclusion, further well-designed RCTs are still needed to make the presently available evidence stronger.
Collapse
Affiliation(s)
- László Márk Czumbel
- Department of Oral Biology, Faculty of Dentistry, Semmelweis University, Budapest, Hungary
| | - Sándor Farkasdi
- Department of Oral Biology, Faculty of Dentistry, Semmelweis University, Budapest, Hungary
| | - Noémi Gede
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Alexandra Mikó
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Dezső Csupor
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
- Department of Pharmacognosy, Faculty of Pharmacy, University of Szeged, Szeged, Hungary
| | - Anita Lukács
- Department of Public Health, Faculty of Medicine, University of Szeged, Szeged, Hungary
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Valéria Gaál
- Department of Ophthalmology, Medical School, University of Pécs, Pécs, Hungary
| | - Szabolcs Kiss
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
- Doctoral School of Clinical Medicine, University of Szeged, Szeged, Hungary
| | - Péter Hegyi
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Gábor Varga
- Department of Oral Biology, Faculty of Dentistry, Semmelweis University, Budapest, Hungary
| |
Collapse
|
8
|
Cao L, Yuan Z, Liu M, Stock C. (Patho-)Physiology of Na +/H + Exchangers (NHEs) in the Digestive System. Front Physiol 2020; 10:1566. [PMID: 32009977 PMCID: PMC6974801 DOI: 10.3389/fphys.2019.01566] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 12/12/2019] [Indexed: 02/06/2023] Open
Abstract
Na+/H+ exchangers (NHEs) are expressed in virtually all human tissues and organs. Two major tasks of those NHE isoforms that are located in plasma membranes are cell volume control by Na+-uptake and cellular pH regulation by H+-extrusion. Several NHEs, particularly NHE 1–4 and 8, are involved in the pathogenesis of diseases of the digestive system such as inflammatory bowel disease (ulcerative colitis, Crohn’s disease) and gastric and colorectal tumorigenesis. In the present review, we describe the physiological purposes, possible malfunctions and pathophysiological effects of the different NHE isoforms along the alimentary canal from esophagus to colon, including pancreas, liver and gallbladder. Particular attention is paid to the functions of NHEs in injury repair and to the role of NHE1 in Barrett’s esophagus. The impact of NHEs on gut microbiota and intestinal mucosal integrity is also dealt with. As the hitherto existing findings are not always consistent, sometimes even controversial, they are compared and critically discussed.
Collapse
Affiliation(s)
- Li Cao
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhenglin Yuan
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mei Liu
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Christian Stock
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hanover, Germany
| |
Collapse
|
9
|
Racz R, Nagy A, Rakonczay Z, Dunavari EK, Gerber G, Varga G. Defense Mechanisms Against Acid Exposure by Dental Enamel Formation, Saliva and Pancreatic Juice Production. Curr Pharm Des 2019; 24:2012-2022. [PMID: 29769002 PMCID: PMC6225347 DOI: 10.2174/1381612824666180515125654] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 04/30/2018] [Accepted: 05/08/2018] [Indexed: 12/16/2022]
Abstract
The pancreas, the salivary glands and the dental enamel producing ameloblasts have marked developmental, structural and functional similarities. One of the most striking similarities is their bicarbonate-rich secretory product, serving acid neutralization. An important difference between them is that while pancreatic juice and saliva are delivered into a lumen where they can be collected and analyzed, ameloblasts produce locally precipitating hydroxyapatite which cannot be easily studied. Interestingly, the ion and protein secretion by the pancreas, the salivary glands, and maturation ameloblasts are all two-step processes, of course with significant differences too. As they all have to defend against acid exposure by producing extremely large quantities of bicarbonate, the failure of this function leads to deteriorating consequences. The aim of the present review is to describe and characterize the defense mechanisms of the pancreas, the salivary glands and enamel-producing ameloblasts against acid exposure and to compare their functional capabilities to do this by producing bicarbonate.
Collapse
Affiliation(s)
- Robert Racz
- Department of Oral Biology, Semmelweis University, Budapest, Hungary
| | - Akos Nagy
- Department of Dentistry, Oral and Maxillofacial Surgery, University of Pecs, Pecs, Hungary
| | - Zoltan Rakonczay
- Department of Pathophysiology, University of Szeged, Szeged, Hungary
| | - Erika Katalin Dunavari
- Department of Dentistry, Oral and Maxillofacial Surgery, University of Pecs, Pecs, Hungary
| | - Gabor Gerber
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Gabor Varga
- Department of Oral Biology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
10
|
Saint-Criq V, Gray MA. Role of CFTR in epithelial physiology. Cell Mol Life Sci 2016; 74:93-115. [PMID: 27714410 PMCID: PMC5209439 DOI: 10.1007/s00018-016-2391-y] [Citation(s) in RCA: 263] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 09/28/2016] [Indexed: 12/20/2022]
Abstract
Salt and fluid absorption and secretion are two processes that are fundamental to epithelial function and whole body fluid homeostasis, and as such are tightly regulated in epithelial tissues. The CFTR anion channel plays a major role in regulating both secretion and absorption in a diverse range of epithelial tissues, including the airways, the GI and reproductive tracts, sweat and salivary glands. It is not surprising then that defects in CFTR function are linked to disease, including life-threatening secretory diarrhoeas, such as cholera, as well as the inherited disease, cystic fibrosis (CF), one of the most common life-limiting genetic diseases in Caucasian populations. More recently, CFTR dysfunction has also been implicated in the pathogenesis of acute pancreatitis, chronic obstructive pulmonary disease (COPD), and the hyper-responsiveness in asthma, underscoring its fundamental role in whole body health and disease. CFTR regulates many mechanisms in epithelial physiology, such as maintaining epithelial surface hydration and regulating luminal pH. Indeed, recent studies have identified luminal pH as an important arbiter of epithelial barrier function and innate defence, particularly in the airways and GI tract. In this chapter, we will illustrate the different operational roles of CFTR in epithelial function by describing its characteristics in three different tissues: the airways, the pancreas, and the sweat gland.
Collapse
Affiliation(s)
- Vinciane Saint-Criq
- Epithelial Research Group, Institute for Cell and Molecular Biosciences, University Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH UK
| | - Michael A. Gray
- Epithelial Research Group, Institute for Cell and Molecular Biosciences, University Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH UK
| |
Collapse
|
11
|
Abstract
The human exocrine pancreas consists of 2 main cell types: acinar and ductal cells. These exocrine cells interact closely to contribute to the secretion of pancreatic juice. The most important ion in terms of the pancreatic ductal secretion is HCO3. In fact, duct cells produce an alkaline fluid that may contain up to 140 mM NaHCO3, which is essential for normal digestion. This article provides an overview of the basics of pancreatic ductal physiology and pathophysiology. In the first part of the article, we discuss the ductal electrolyte and fluid transporters and their regulation. The central role of cystic fibrosis transmembrane conductance regulator (CFTR) is highlighted, which is much more than just a Cl channel. We also review the role of pancreatic ducts in severe debilitating diseases such as cystic fibrosis (caused by various genetic defects of cftr), pancreatitis, and diabetes mellitus. Stimulation of ductal secretion in cystic fibrosis and pancreatitis may have beneficial effects in their treatment.
Collapse
|
12
|
Laurencé C, Rivard M, Martens T, Morin C, Buisson D, Bourcier S, Sablier M, Oturan MA. Anticipating the fate and impact of organic environmental contaminants: a new approach applied to the pharmaceutical furosemide. CHEMOSPHERE 2014; 113:193-199. [PMID: 25065810 DOI: 10.1016/j.chemosphere.2014.05.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 05/09/2014] [Accepted: 05/14/2014] [Indexed: 06/03/2023]
Abstract
The presence of trace levels of organic contaminants in the environment is currently an environmental concern. When these contaminants are subjected to environmental transformations, environmental transformation products (ETPs) are obtained, whose structures often remain unknown. The absence of information concerning these new compounds makes them unavailable and consequently makes their environmental detection as well as their (eco)toxicological study impossible. This report describes a multidisciplinary approach that seeks to both anticipate the fate and evaluate the impact of organic environmental contaminants. Our approach consists of three steps. First, isolated and fully characterized transformation products (TPs) of the parent molecule are obtained. In the second step, the parent molecule is subjected to environmentally relevant transformations to identify plausible ETPs. The detection of previously characterized TPs allows the concomitant identification of plausible ETPs. The third step is devoted to the toxicological evaluation of the identified plausible ETPs. Such an approach has recently been applied to furosemide and has allowed the identification of its main TPs. This report now seeks to identify and evaluate toxicologically plausible ETPs of this drug, which is also known as an environmental contaminant.
Collapse
Affiliation(s)
- Céline Laurencé
- Université Paris-Est, Institut de Chimie et des Matériaux de Paris-Est, UMR CNRS UPEC 7182, 94320 Thiais, France
| | - Michael Rivard
- Université Paris-Est, Institut de Chimie et des Matériaux de Paris-Est, UMR CNRS UPEC 7182, 94320 Thiais, France
| | - Thierry Martens
- Université Paris-Est, Institut de Chimie et des Matériaux de Paris-Est, UMR CNRS UPEC 7182, 94320 Thiais, France.
| | - Christophe Morin
- Université Paris-Est, Laboratoire Croissance Réparation et Régénération Tissulaires, EAC CNRS 7149 - UPEC, 94010 Créteil cedex, France
| | - Didier Buisson
- Muséum National d'Histoire Naturelle, Unité Molécules de Communication et Adaptation des Microorganismes, UMR CNRS MNHM 7245, 75005 Paris, France
| | - Sophie Bourcier
- Ecole Polytechnique, Laboratoire des Mécanismes Réactionnels, UMR CNRS Ecole Polytechnique 7651, 91128 Palaiseau cedex, France
| | - Michel Sablier
- Ecole Polytechnique, Laboratoire des Mécanismes Réactionnels, UMR CNRS Ecole Polytechnique 7651, 91128 Palaiseau cedex, France; Muséum National d'Histoire Naturelle, Centre de Recherche sur la Conservation des Collections, USR CNRS MNHN 3224, 75005 Paris, France
| | - Mehmet A Oturan
- Université Paris-Est, Laboratoire Géomatériaux et Environnement, EA 4508, UPEMLV, 77454 Marne-la-Vallée, France.
| |
Collapse
|
13
|
The role of pancreatic ductal secretion in protection against acute pancreatitis in mice*. Crit Care Med 2014; 42:e177-88. [PMID: 24368347 DOI: 10.1097/ccm.0000000000000101] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
OBJECTIVES A common potentially fatal disease of the pancreas is acute pancreatitis, for which there is no treatment. Most studies of this disorder focus on the damage to acinar cells since they are assumed to be the primary target of multiple stressors affecting the pancreas. However, increasing evidence suggests that the ducts may also have a crucial role in induction of the disease. To test this hypothesis, we sought to determine the specific role of the duct in the induction of acute pancreatitis using well-established disease models and mice with deletion of the Na/H exchanger regulatory factor-1 that have selectively impaired ductal function. DESIGN Randomized animal study. SETTING Animal research laboratory. SUBJECTS Wild-type and Na/H exchanger regulatory factor-1 knockout mice. INTERVENTIONS Acute necrotizing pancreatitis was induced by i.p. administration of cerulein or by intraductal administration of sodium taurocholate. The pancreatic expression of Na/H exchanger regulatory factor-1 and cystic fibrosis transmembrane conductance regulator (a key player in the control of ductal secretion) was analyzed by immunohistochemistry. In vivo pancreatic ductal secretion was studied in anesthetized mice. Functions of pancreatic acinar and ductal cells as well as inflammatory cells were analyzed in vitro. MEASUREMENTS AND MAIN RESULTS Deletion of Na/H exchanger regulatory factor-1 resulted in gross mislocalization of cystic fibrosis transmembrane conductance regulator, causing marked reduction in pancreatic ductal fluid and bicarbonate secretion. Importantly, deletion of Na/H exchanger regulatory factor-1 had no deleterious effect on functions of acinar and inflammatory cells. Deletion of Na/H exchanger regulatory factor-1, which specifically impaired ductal function, increased the severity of acute pancreatitis in the two mouse models tested. CONCLUSIONS Our findings provide the first direct evidence for the crucial role of ductal secretion in protecting the pancreas from acute pancreatitis and strongly suggest that improved ductal function should be an important modality in prevention and treatment of the disease.
Collapse
|
14
|
Functional interaction of the cystic fibrosis transmembrane conductance regulator with members of the SLC26 family of anion transporters (SLC26A8 and SLC26A9): physiological and pathophysiological relevance. Int J Biochem Cell Biol 2014; 52:58-67. [PMID: 24530837 DOI: 10.1016/j.biocel.2014.02.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 01/29/2014] [Accepted: 02/01/2014] [Indexed: 12/21/2022]
Abstract
The solute carrier 26 (SLC26) proteins are transmembrane proteins located at the plasma membrane of the cells and transporting a variety of monovalent and divalent anions, including chloride, bicarbonate, sulfate and oxalate. In humans, 11 members have been identified (SLC26A1 to SLC26A11) and although part of them display a very restricted tissue expression pattern, altogether they are widely expressed in the epithelial cells of the body where they contribute to the composition and the pH regulation of the secreted fluids. Importantly, mutations in SLC26A2, A3, A4, and A5 have been associated with distinct human genetic recessive disorders (i.e. diastrophic dysplasia, congenital chloride diarrhea, Pendred syndrome and deafness, respectively), demonstrating their essential and non-redundant functions in many tissues. During the last decade, physical and functional interactions of SLC26 members with the cystic fibrosis transmembrane conductance regulator (CFTR) have been highly documented, leading to the model of a crosstalk based on the binding of the SLC26 STAS domain to the CFTR regulatory domain. In this review, we will focus on the functional interaction of SLC26A8 and SLC26A9 with the CFTR channel. In particular we will highlight the newly published studies indicating that mutations in SLC26A8 and SLC26A9 proteins are associated with a deregulation of the CFTR anion transport activity in the pathophysiological context of the sperm and the pulmonary cells. These studies confirm the physiological relevance of SLC26 and CFTR cross-regulation, opening new gates for the treatment of cystic fibrosis.
Collapse
|
15
|
Alper SL, Sharma AK. The SLC26 gene family of anion transporters and channels. Mol Aspects Med 2013; 34:494-515. [PMID: 23506885 DOI: 10.1016/j.mam.2012.07.009] [Citation(s) in RCA: 262] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 06/21/2012] [Indexed: 02/08/2023]
Abstract
The phylogenetically ancient SLC26 gene family encodes multifunctional anion exchangers and anion channels transporting a broad range of substrates, including Cl(-), HCO3(-), sulfate, oxalate, I(-), and formate. SLC26 polypeptides are characterized by N-terminal cytoplasmic domains, 10-14 hydrophobic transmembrane spans, and C-terminal cytoplasmic STAS domains, and appear to be homo-oligomeric. SLC26-related SulP proteins of marine bacteria likely transport HCO3(-) as part of oceanic carbon fixation. SulP genes present in antibiotic operons may provide sulfate for antibiotic biosynthetic pathways. SLC26-related Sultr proteins transport sulfate in unicellular eukaryotes and in plants. Mutations in three human SLC26 genes are associated with congenital or early onset Mendelian diseases: chondrodysplasias for SLC26A2, chloride diarrhea for SLC26A3, and deafness with enlargement of the vestibular aqueduct for SLC26A4. Additional disease phenotypes evident only in mouse knockout models include oxalate urolithiasis for Slc26a6 and Slc26a1, non-syndromic deafness for Slc26a5, gastric hypochlorhydria for Slc26a7 and Slc26a9, distal renal tubular acidosis for Slc26a7, and male infertility for Slc26a8. STAS domains are required for cell surface expression of SLC26 proteins, and contribute to regulation of the cystic fibrosis transmembrane regulator in complex, cell- and tissue-specific ways. The protein interactomes of SLC26 polypeptides are under active investigation.
Collapse
Affiliation(s)
- Seth L Alper
- Renal Division and Division of Molecular and Vascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA.
| | | |
Collapse
|
16
|
Judák L, Hegyi P, Rakonczay Z, Maléth J, Gray MA, Venglovecz V. Ethanol and its non-oxidative metabolites profoundly inhibit CFTR function in pancreatic epithelial cells which is prevented by ATP supplementation. Pflugers Arch 2013; 466:549-62. [PMID: 23948742 DOI: 10.1007/s00424-013-1333-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 07/26/2013] [Accepted: 07/30/2013] [Indexed: 02/06/2023]
Abstract
Excessive alcohol consumption is a major cause of acute pancreatitis, but the mechanism involved is not well understood. Recent investigations suggest that pancreatic ductal epithelial cells (PDECs) help defend the pancreas from noxious agents such as alcohol. Because the cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel plays a major role in PDEC physiology and mutated CFTR is often associated with pancreatitis, we tested the hypothesis that ethanol affects CFTR to impair ductal function. Electrophysiological studies on native PDECs showed that ethanol (10 and 100 mM) increased basal, but reversibly blocked, forskolin-stimulated CFTR currents. The inhibitory effect of ethanol was mimicked by its non-oxidative metabolites, palmitoleic acid ethyl ester (POAEE) and palmitoleic acid (POA), but not by the oxidative metabolite, acetaldehyde. Ethanol, POAEE and POA markedly reduced intracellular ATP (ATPi) which was linked to CFTR inhibition since the inhibitory effects were almost completely abolished if ATPi depletion was prevented. We propose that ethanol causes functional damage of CFTR through an ATPi-dependent mechanism, which compromises ductal fluid secretion and likely contributes to the pathogenesis of acute pancreatitis. We suggest that the maintenance of ATPi may represent a therapeutic option in the treatment of the disease.
Collapse
Affiliation(s)
- L Judák
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | | | | | | | | | | |
Collapse
|
17
|
Bakouh N, Bienvenu T, Thomas A, Ehrenfeld J, Liote H, Roussel D, Duquesnoy P, Farman N, Viel M, Cherif-Zahar B, Amselem S, Taam RA, Edelman A, Planelles G, Sermet-Gaudelus I. Characterization of SLC26A9 in patients with CF-like lung disease. Hum Mutat 2013; 34:1404-14. [PMID: 24272871 DOI: 10.1002/humu.22382] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2012] [Accepted: 07/10/2013] [Indexed: 01/07/2023]
Abstract
Diffuse bronchiectasis is a common problem in respiratory clinics. We hypothesized that mutations in the solute carrier 26A9 (SLC26A9) gene, encoding for a chloride (Cl(-)) transporter mainly expressed in lungs, may lead to defects in mucociliary clearance. We describe two missense variants in the SLC26A9 gene in heterozygote patients presenting with diffuse idiopathic bronchiectasis : p.Arg575Trp, identified in a patient also heterozygote for p.Phe508del in the CFTR gene; and p.Val486Ile. Expression of both mutants in Xenopus laevis oocytes abolished SLC26A9-mediated Cl(-) conductance without decreasing protein membrane expression. Coexpression of CFTR with SLC26A9-p.Val486Ile resulted in a significant increase in the Cl(-) current induced by PKA stimulation, similar to that obtained in oocytes expressing CFTR and SLC26A9-WT. In contrast, coexpression of CFTR with SLC26A9-p.Arg575Trp inhibited SLC26A9-enhanced CFTR activation upon PKA. Further structure-function analyses led us to propose a site encompassing Arg575 in the SLC26A9-STAS domain for CFTR-SLC26A9 interaction. We hypothesize that SLC26A9-p.Arg575Trp prevented SLC26A9-mediated functional activation of CFTR by altering SLC26A9-CFTR interaction. Although we cannot confirm that these mutations by themselves are deleterious, we propose that they trigger the pathogenic role of a single CFTR mutation and provide insight into a novel mechanism of Cl(-) transport alteration across the respiratory mucosa, based on functional inhibition of CFTR.
Collapse
Affiliation(s)
- Naziha Bakouh
- INSERM U 845, Paris, France; Faculté de Médecine, Université René Descartes, Paris V, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Chen AP, Chang MH, Romero MF. Functional analysis of nonsynonymous single nucleotide polymorphisms in human SLC26A9. Hum Mutat 2012; 33:1275-84. [PMID: 22544634 PMCID: PMC3399991 DOI: 10.1002/humu.22107] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 04/16/2012] [Indexed: 01/13/2023]
Abstract
Slc26 anion transporters play crucial roles in transepithelial Cl(-) absorption and HCO(3)(-) secretion; Slc26 protein mutations lead to several diseases. Slc26a9 functions as a Cl(-) channel and electrogenic Cl(-)--HCO(3)(-) exchanger, and can interact with cystic fibrosis transmembrane conductance regulator. Slc26a9(-/-) mice have reduced gastric acid secretion, yet no human disease is currently associated with SLC26A9 coding mutations. Therefore, we tested the function of nonsynonymous, coding, single nucleotide polymorphisms (cSNPs) of SLC26A9. Presently, eight cSNPs are NCBI documented: Y70N, T127N, I384T, R575W, P606L, V622L, V744M, and H748R. Using two-electrode voltage-clamp and anion selective electrodes, we measured the biophysical consequences of these cSNPs. Y70N (cytoplasmic N-terminus) displays higher channel activity and enhanced Cl(-)--HCO(3)(-) exchange. T127N (transmembrane) results in smaller halide currents but not for SCN(-). V622L (STAS domain) and V744M (STAS adjacent) decreased plasma membrane expression, which partially accounts for decreased whole cell currents. Nevertheless, V622L transport is reduced to ∼50%. SLC26A9 polymorphisms lead to several function modifications (increased activity, decreased activity, altered protein expression), which could lead to a spectrum of pathophysiologies. Thus, knowing an individual's SLC26A9 genetics becomes important for understanding disease potentially caused by SLC26A9 mutations or modifying diseases, for example, cystic fibrosis. Our results also provide a framework to understand SLC26A9 transport modalities and structure-function relationships.
Collapse
Affiliation(s)
- An-Ping Chen
- Physiology & Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN 55905 USA
| | - Min-Hwang Chang
- Physiology & Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN 55905 USA
| | - Michael F. Romero
- Physiology & Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN 55905 USA
- Nephrology & Hypertension, Mayo Clinic College of Medicine, Rochester, MN 55905 USA
- O’Brien Urology Research Center, Mayo Clinic College of Medicine, Rochester, MN 55905 USA
| |
Collapse
|
19
|
Garnett JP, Hickman E, Burrows R, Hegyi P, Tiszlavicz L, Cuthbert AW, Fong P, Gray MA. Novel role for pendrin in orchestrating bicarbonate secretion in cystic fibrosis transmembrane conductance regulator (CFTR)-expressing airway serous cells. J Biol Chem 2011; 286:41069-82. [PMID: 21914796 DOI: 10.1074/jbc.m111.266734] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In most HCO(3)(-)-secreting epithelial tissues, SLC26 Cl(-)/HCO(3)(-) transporters work in concert with the cystic fibrosis transmembrane conductance regulator (CFTR) to regulate the magnitude and composition of the secreted fluid, a process that is vital for normal tissue function. By contrast, CFTR is regarded as the only exit pathway for HCO(3)(-) in the airways. Here we show that Cl(-)/HCO(3)(-) anion exchange makes a major contribution to transcellular HCO(3)(-) transport in airway serous cells. Real-time measurement of intracellular pH from polarized cultures of human Calu-3 cells demonstrated cAMP/PKA-activated Cl(-)-dependent HCO(3)(-) transport across the luminal membrane via CFTR-dependent coupled Cl(-)/HCO(3)(-) anion exchange. The pharmacological and functional profile of the luminal anion exchanger was consistent with SLC26A4 (pendrin), which was shown to be expressed by quantitative RT-PCR, Western blot, and immunofluorescence. Pendrin-mediated anion exchange activity was confirmed by shRNA pendrin knockdown (KD), which markedly reduced cAMP-activated Cl(-)/HCO(3)(-) exchange. To establish the relative roles of CFTR and pendrin in net HCO(3)(-) secretion, transepithelial liquid secretion rate and liquid pH were measured in wild type, pendrin KD, and CFTR KD cells. cAMP/PKA increased the rate and pH of the secreted fluid. Inhibiting CFTR reduced the rate of liquid secretion but not the pH, whereas decreasing pendrin activity lowered pH with little effect on volume. These results establish that CFTR predominately controls the rate of liquid secretion, whereas pendrin regulates the composition of the secreted fluid and identifies a critical role for this anion exchanger in transcellular HCO(3)(-) secretion in airway serous cells.
Collapse
Affiliation(s)
- James P Garnett
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Stewart AK, Shmukler BE, Vandorpe DH, Reimold F, Heneghan JF, Nakakuki M, Akhavein A, Ko S, Ishiguro H, Alper SL. SLC26 anion exchangers of guinea pig pancreatic duct: molecular cloning and functional characterization. Am J Physiol Cell Physiol 2011; 301:C289-303. [PMID: 21593449 PMCID: PMC3154555 DOI: 10.1152/ajpcell.00089.2011] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Accepted: 05/17/2011] [Indexed: 01/02/2023]
Abstract
The secretin-stimulated human pancreatic duct secretes HCO(3)(-)-rich fluid essential for normal digestion. Optimal stimulation of pancreatic HCO(3)(-) secretion likely requires coupled activities of the cystic fibrosis transmembrane regulator (CFTR) anion channel and apical SLC26 Cl(-)/HCO(3)(-) exchangers. However, whereas stimulated human and guinea pig pancreatic ducts secrete ∼140 mM HCO(3)(-) or more, mouse and rat ducts secrete ∼40-70 mM HCO(3)(-). Moreover, the axial distribution and physiological roles of SLC26 anion exchangers in pancreatic duct secretory processes remain controversial and may vary among mammalian species. Thus the property of high HCO(3)(-) secretion shared by human and guinea pig pancreatic ducts prompted us to clone from guinea pig pancreatic duct cDNAs encoding Slc26a3, Slc26a6, and Slc26a11 polypeptides. We then functionally characterized these anion transporters in Xenopus oocytes and human embryonic kidney (HEK) 293 cells. In Xenopus oocytes, gpSlc26a3 mediated only Cl(-)/Cl(-) exchange and electroneutral Cl(-)/HCO(3)(-) exchange. gpSlc26a6 in Xenopus oocytes mediated Cl(-)/Cl(-) exchange and bidirectional exchange of Cl(-) for oxalate and sulfate, but Cl(-)/HCO(3)(-) exchange was detected only in HEK 293 cells. gpSlc26a11 in Xenopus oocytes exhibited pH-dependent Cl(-), oxalate, and sulfate transport but no detectable Cl(-)/HCO(3)(-) exchange. The three gpSlc26 anion transporters exhibited distinct pharmacological profiles of (36)Cl(-) influx, including partial sensitivity to CFTR inhibitors Inh-172 and GlyH101, but only Slc26a11 was inhibited by PPQ-102. This first molecular and functional assessment of recombinant SLC26 anion transporters from guinea pig pancreatic duct enhances our understanding of pancreatic HCO(3)(-) secretion in species that share a high HCO(3)(-) secretory output.
Collapse
Affiliation(s)
- Andrew K Stewart
- Renal Division and Vascular Biology Center, Beth Israel Deaconess Medical Center, Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Avella M, Loriol C, Boulukos K, Borgese F, Ehrenfeld J. SLC26A9 stimulates CFTR expression and function in human bronchial cell lines. J Cell Physiol 2010; 226:212-23. [PMID: 20658517 DOI: 10.1002/jcp.22328] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We investigated the possible functional- and physical protein-interactions between two airway Cl(-) channels, SLC26A9 and CFTR. Bronchial CFBE41o- cell lines expressing CFTR(WT) or CFTR(ΔF508) were transduced with SLC26A9. Immunoblots identified a migrating band corresponding to SLC26A9 present in whole-cell lysates as on apical membrane of cells grown on polarized filters. CFTR levels were increased by the presence of SLC26A9 in both CFTR(WT) and CFTR(ΔF508) cell lines. In CFBE41o- cells and CFBE41o-/CFTR(WT) cells transduced with SLC26A9, currents associated to the protein expression were not detected. However, the forskolin (FK)-stimulated currents were enhanced in SLC26A9-transduced cells compared to control cells. Therefore, the presence of SLC26A9 resulted in an increase in CFTR activity (same % of CFTR((inh)-172) or GlyH-101 inhibition in both groups). In CFBE41o-/CFTR(ΔF508) cells transduced with SLC26A9 (at 27°C), a current associated to the protein expression was also lacking. FK-stimulated currents and level of CFTR((inh)-172) inhibition were not different in both groups. The presence of SLC26A9 in Xenopus oocytes expressing CFTR also enhanced the FK-stimulated currents as compared to oocytes expressing CFTR alone. This stimulation was mostly linked to CFTR. An enhancement of FK-stimulated currents was not found in oocytes co-expressing SLC26A9 and CFTR(ΔF508). In conclusion, in both protein expression systems used, SLC26A9 stimulates CFTR activity but not that of CFTR(ΔF508). Our co-immunoprecipitation studies demonstrate a physical interaction between both anion channels. We propose as an alternative hypothesis (not exclusive) to the known SLC26A9-STAS domain/CFTR interaction, that SLC26A9 favors the biogenesis and/or stabilization of CFTR, leading to stimulated currents.
Collapse
Affiliation(s)
- Martine Avella
- Laboratoire de Biologie et Physiopathologie des Systèmes Intégrés, Université de Nice-Sophia Antipolis, Nice, France
| | | | | | | | | |
Collapse
|
22
|
Singh AK, Riederer B, Chen M, Xiao F, Krabbenhöft A, Engelhardt R, Nylander O, Soleimani M, Seidler U. The switch of intestinal Slc26 exchangers from anion absorptive to HCOFormula secretory mode is dependent on CFTR anion channel function. Am J Physiol Cell Physiol 2010; 298:C1057-65. [PMID: 20164375 DOI: 10.1152/ajpcell.00454.2009] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
CFTR has been recognized to function as both an anion channel and a key regulator of Slc26 anion transporters in heterologous expression systems. Whether this regulatory relationship between CFTR and Slc26 transporters is seen in native intestine, and whether this effect is coupled to CFTR transport function or other features of this protein, has not been studied. The duodena of anesthetized CFTR-, NHE3-, Slc26a6-, and Scl26a3-deficient mice and wild-type (WT) littermates were perfused, and duodenal bicarbonate (HCO(3)(-)) secretion (DBS) and fluid absorptive or secretory rates were measured. The selective NHE3 inhibitor S1611 or genetic ablation of NHE3 significantly reduced fluid absorptive rates and increased DBS. Slc26a6 (PAT1) or Slc26a3 (DRA) ablation reduced the S1611-induced DBS increase and reduced fluid absorptive rates, suggesting that the effect of S1611 or NHE3 ablation on HCO(3)(-) secretion may be an unmasking of Slc26a6- and Slc26a3-mediated Cl(-)/HCO(3)(-) exchange activity. In the absence of CFTR expression or after application of the CFTR(inh)-172, fluid absorptive rates were similar to those of WT, but S1611 induced virtually no increase in DBS, demonstrating that CFTR transport activity, and not just its presence, is required for Slc26-mediated duodenal HCO(3)(-) secretion. A functionally active CFTR is an absolute requirement for Slc26-mediated duodenal HCO(3)(-) secretion, but not for Slc26-mediated fluid absorption, in which these transporters operate in conjunction with the Na(+)/H(+) exchanger NHE3. This suggests that Slc26a6 and Slc26a3 need proton recycling via NHE3 to operate in the Cl(-) absorptive mode and Cl(-) exit via CFTR to operate in the HCO(3)(-) secretory mode.
Collapse
Affiliation(s)
- Anurag Kumar Singh
- Dept. of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
CFTR expression but not Cl- transport is involved in the stimulatory effect of bile acids on apical Cl-/HCO3- exchange activity in human pancreatic duct cells. Pancreas 2009; 38:921-9. [PMID: 19752774 DOI: 10.1097/mpa.0b013e3181b65d34] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVES Low doses of chenodeoxycholate (CDC) stimulate apical anion exchange and HCO3(-) secretion in guinea pig pancreatic duct cells (Gut. 2008;57:1102-1112). We examined the effects of CDC on intracellular pH (pHi), intracellular Ca(2+) concentration ([Ca(2+)]i), and apical Cl(-)/HCO3(-) exchange activity in human pancreatic duct cells and determined whether any effects were dependent on cystic fibrosis transmembrane conductance regulator (CFTR) expression and Cl(-) channel activity. METHODS Polarized CFPAC-1 cells (expressing F508del CFTR) were transduced with Sendai virus constructs containing complementary DNAs for either wild-type CFTR or beta-galactosidase. Microfluorimetry was used to record pHi and [Ca(2+)]i and apical Cl(-)/HCO3(-) exchange activity. Patch clamp experiments were performed on isolated guinea pig duct cells. RESULTS Chenodeoxycholate induced a dose-dependent intracellular acidification and a marked increase in [Ca(2+)]i in CFPAC-1 cells. CFTR expression slightly reduced the rate of acidification but did not affect the [Ca(2+)]i changes. Luminal administration of 0.1 mmol/L of CDC significantly elevated apical Cl(-)/HCO3(-) exchange activity but only in cells that expressed CFTR. However, CDC did not activate CFTR Cl(-) conductance. CONCLUSIONS Bile salts modulate pHi, [Ca(2+)]i, and apical anion exchange activity in human pancreatic duct cells. The stimulatory effect of CDC on anion exchangers requires CFTR expression but not CFTR channel activity.
Collapse
|
24
|
Abstract
OBJECTIVES The human pancreatic duct cell line, HPAF, has been shown previously to secrete Cl(-) in response to Ca(2+)-mobilizing stimuli. Our aim was to assess the capacity of HPAF cells to transport and secrete HCO3(-). METHODS HPAF cells were grown as confluent monolayers on permeable supports. Short-circuit current was measured by voltage clamp. Intracellular pH (pHi) was measured by microfluorometry in cells loaded with 2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein (BCECF). RESULTS In HCO3(-)-free solutions, ATP-evoked changes in short-circuit current were inhibited by bumetanide, and the recovery of pHi from acid loading was abolished by 5-(N-ethyl-N-isopropyl)-amiloride (EIPA). In the presence of HCO3(-), ATP-evoked secretion was no longer inhibited by bumetanide, and there was a strong EIPA-insensitive recovery from acid loading, which was inhibited by 4,4'-diisothiocyanatodihydrostilbene-2,2'-disulfonate (H2DIDS). ATP, but not forskolin, stimulated HCO3(-) efflux from the cells. CONCLUSIONS In the absence of HCO3(-), ATP-evoked Cl(-) secretion is driven by a basolateral Na(+)-K(+)-2Cl(-) cotransporter, and pH(i) is regulated by apical and basolateral Na(+)/H(+) exchangers. In the presence of HCO3(-), ATP-evoked secretion is sustained in the absence of Na(+)-K(+)-2Cl(-) cotransporter activity and is probably driven by basolateral Na(+)-HCO3(-) cotransport.
Collapse
|
25
|
Abstract
PURPOSE OF REVIEW The pancreatic duct epithelium is remarkable for its capacity to secrete HCO(3)(-) ions at concentrations as high as 140 mmol/l. The properties of the key transporters involved in this process and the central role played by cystic fibrosis transmembrane conductance regulator (CFTR) are the main focus of this review. RECENT FINDINGS The Cl(-)/HCO(3)(-) exchanger at the apical membrane of pancreatic duct cells is now known to be SLC26A6. The 1: 2 stoichiometry and electrogenicity of this exchanger enable it to contribute to the secretion of HCO(3)(-) at high concentrations. The apical CFTR channels also appear to have sufficient HCO(3)(-) permeability to contribute directly to HCO(3)(-) secretion. There is a strong possibility that the Ca(2+)-activated Cl(-) channels at the apical membrane are members of the bestrophin family which, like CFTR, are also permeable to HCO(3)(-). More has been learned about the complex interactions between CFTR and other transporters within macromolecular complexes coordinated at the apical membrane by scaffolding proteins. Further details are also emerging of the protective paracrine roles of nucleotides, nucleosides, bile acids and trypsin in the regulation of ductal secretion. SUMMARY Most of the key transporters involved in Cl(-) and HCO(3)(-) secretion have now been identified and characterized. Current research focuses on the molecular interactions between these transporters and the ways in which they are regulated by extracellular signals.
Collapse
|
26
|
Banales JM, Gradilone SA. Primers on molecular pathways - ion channels: key regulators of pancreatic physiology. Pancreatology 2009; 9:556-9. [PMID: 19590254 DOI: 10.1159/000221382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Ion transport across the cellular plasma membrane is important in almost every physiological process. This phenomenon is driven by the coordinated action of carriers, pumps and channels, which move ions in and out the cells and between different organelles. Ion channels are transmembrane proteins that provide a continuous aqueous pore through which ions can selectively move. The interest in these molecules has increased due to the recognition of diverse pathologies related with mutations in genes encoding these transmembrane proteins, now known as channelopathies. Ion channels play a variety of functions in the pancreas. Here, we briefly describe ion transport characteristics as well as their role in pancreas physiology and pathophysiology.
Collapse
Affiliation(s)
- Jesús M Banales
- Laboratory of Molecular Genetics, Division of Gene Therapy and Hepatology, School of Medicine and CIMA of the University of Navarra, and Ciberehd, Pamplona, Spain
| | | |
Collapse
|
27
|
Stewart AK, Yamamoto A, Nakakuki M, Kondo T, Alper SL, Ishiguro H. Functional coupling of apical Cl-/HCO3- exchange with CFTR in stimulated HCO3- secretion by guinea pig interlobular pancreatic duct. Am J Physiol Gastrointest Liver Physiol 2009; 296:G1307-17. [PMID: 19342507 PMCID: PMC2697944 DOI: 10.1152/ajpgi.90697.2008] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Pancreatic ductal epithelium produces a HCO(3)(-)-rich fluid. HCO(3)(-) transport across ductal apical membranes has been proposed to be mediated by both SLC26-mediated Cl(-)/HCO(3)(-) exchange and CFTR-mediated HCO(3)(-) conductance, with proportional contributions determined in part by axial changes in gene expression and luminal anion composition. In this study we investigated the characteristics of apical Cl(-)/HCO(3)(-) exchange and its functional interaction with Cftr activity in isolated interlobular ducts of guinea pig pancreas. BCECF-loaded epithelial cells of luminally microperfused ducts were alkalinized by acetate prepulse or by luminal Cl(-) removal in the presence of HCO(3)(-)-CO(2). Intracellular pH recovery upon luminal Cl(-) restoration (nominal Cl(-)/HCO(3)(-) exchange) in cAMP-stimulated ducts was largely inhibited by luminal dihydro-DIDS (H(2)DIDS), accelerated by luminal CFTR inhibitor inh-172 (CFTRinh-172), and was insensitive to elevated bath K(+) concentration. Luminal introduction of CFTRinh-172 into sealed duct lumens containing BCECF-dextran in HCO(3)(-)-free, Cl(-)-rich solution enhanced cAMP-stimulated HCO(3)(-) secretion, as calculated from changes in luminal pH and volume. Luminal Cl(-) removal produced, after a transient small depolarization, sustained cell hyperpolarization of approximately 15 mV consistent with electrogenic Cl(-)/HCO(3)(-) exchange. The hyperpolarization was inhibited by H(2)DIDS and potentiated by CFTRinh-172. Interlobular ducts expressed mRNAs encoding CFTR, Slc26a6, and Slc26a3, as detected by RT-PCR. Thus Cl(-)-dependent apical HCO(3)(-) secretion in pancreatic duct is mediated predominantly by an Slc26a6-like Cl(-)/HCO(3)(-) exchanger and is accelerated by inhibition of CFTR. This study demonstrates functional coupling between Cftr and Slc26a6-like Cl(-)/HCO(3)(-) exchange activity in apical membrane of guinea pig pancreatic interlobular duct.
Collapse
Affiliation(s)
- A. K. Stewart
- Renal Division and Molecular and Vascular Medicine Unit, Beth Israel Deaconess Medical Center, and Department of Medicine, Harvard Medical School, Boston, Massachusetts; and Human Nutrition, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
| | - A. Yamamoto
- Renal Division and Molecular and Vascular Medicine Unit, Beth Israel Deaconess Medical Center, and Department of Medicine, Harvard Medical School, Boston, Massachusetts; and Human Nutrition, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
| | - M. Nakakuki
- Renal Division and Molecular and Vascular Medicine Unit, Beth Israel Deaconess Medical Center, and Department of Medicine, Harvard Medical School, Boston, Massachusetts; and Human Nutrition, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
| | - T. Kondo
- Renal Division and Molecular and Vascular Medicine Unit, Beth Israel Deaconess Medical Center, and Department of Medicine, Harvard Medical School, Boston, Massachusetts; and Human Nutrition, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
| | - S. L. Alper
- Renal Division and Molecular and Vascular Medicine Unit, Beth Israel Deaconess Medical Center, and Department of Medicine, Harvard Medical School, Boston, Massachusetts; and Human Nutrition, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
| | - H. Ishiguro
- Renal Division and Molecular and Vascular Medicine Unit, Beth Israel Deaconess Medical Center, and Department of Medicine, Harvard Medical School, Boston, Massachusetts; and Human Nutrition, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
| |
Collapse
|
28
|
|
29
|
Sonawane ND, Verkman AS. Thiazolidinone CFTR inhibitors with improved water solubility identified by structure-activity analysis. Bioorg Med Chem 2008; 16:8187-95. [PMID: 18691893 DOI: 10.1016/j.bmc.2008.07.044] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Revised: 07/14/2008] [Accepted: 07/16/2008] [Indexed: 01/29/2023]
Abstract
The thiazolidinone 3-[(3-trifluoromethyl)phenyl]-5-[(4-carboxyphenyl)methylene]-2-thioxo-4-thiazolidinone (CFTR(inh)-172) inhibits cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel conductance with submicromolar affinity and blocks cholera toxin-induced intestinal fluid secretion. Fifty-eight CFTR(inh)-172 analogs were synthesized to identify CFTR inhibitors with improved water solubility, exploring modifications in its two phenyl rings, thiazolidinone core, and core-phenyl connectors. Greatest CFTR inhibition potency was found for 3-CF(3) and polar group-substituted-phenyl rings, and a thiazolidinone core. Two compounds with approximately 1muM CFTR inhibition potency and solubility >180 microM (>10-fold more than CFTR(inh)-172) were identified: Tetrazolo-172, containing 4-tetrazolophenyl in place of 4-carboxyphenyl, and Oxo-172, containing thiazolidinedione in place of the thiazolidinone core. These water soluble thiazolidinone analogs had low cellular toxicity. The improved water solubility of Tetrazolo- and Oxo-172 make them potential lead candidates for therapy of secretory diarrheas and polycystic kidney disease.
Collapse
Affiliation(s)
- N D Sonawane
- Departments of Medicine and Physiology, Cardiovascular Research Institute, University of California, 1246 Health Sciences East Tower, San Francisco, CA 94143-0521, USA.
| | | |
Collapse
|