1
|
Roy SK, Srivastava S, McCance C, Shrivastava A, Morvant J, Shankar S, Srivastava RK. Clinical significance of PNO1 as a novel biomarker and therapeutic target of hepatocellular carcinoma. J Cell Mol Med 2024; 28:e18295. [PMID: 38722284 PMCID: PMC11081011 DOI: 10.1111/jcmm.18295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/10/2024] [Accepted: 03/25/2024] [Indexed: 05/12/2024] Open
Abstract
The RNA-binding protein PNO1 plays an essential role in ribosome biogenesis. Recent studies have shown that it is involved in tumorigenesis; however, its role in hepatocellular carcinoma (HCC) is not well understood. The purpose of this study was to examine whether PNO1 can be used as a biomarker of HCC and also examine the therapeutic potential of PNO1 knockout for the treatment of HCC. PNO1 expression was upregulated in HCC and associated with poor prognosis. PNO1 expression was positively associated with tumour stage, lymph node metastasis and poor survival. PNO1 expression was significantly higher in HCC compared to that in fibrolamellar carcinoma or normal tissues. Furthermore, HCC tissues with mutant Tp53 expressed higher PNO1 than those with wild-type Tp53. PNO1 knockout suppressed cell viability, colony formation and EMT of HCC cells. Since activation of Notch signalling pathway promotes HCC, we measured the effects of PNO1 knockout on the components of Notch pathway and its targets. PNO1 knockout suppressed Notch signalling by modulating the expression of Notch ligands and their receptors, and downstream targets. PNO1 knockout also inhibited genes involved in surface adhesion, cell cycle, inflammation and chemotaxis. PNO1 knockout also inhibited colony and spheroid formation, cell migration and invasion, and markers of stem cells, pluripotency and EMT in CSCs. Overall, our data suggest that PNO1 can be used as a diagnostic and prognostic biomarker of HCC, and knockout of PNO1 by CRISPR/Cas9 can be beneficial for the management of HCC by targeting CSCs.
Collapse
Affiliation(s)
- Sanjit K. Roy
- Stanley S. Scott Cancer Center, School of MedicineLouisiana State University HealthNew OrleansLouisianaUSA
| | | | - Caroline McCance
- Department of Cellular and Molecular BiologyTulane UniversityNew OrleansLouisianaUSA
| | | | - Jason Morvant
- Department of SurgeryOchsner Health SystemGretnaLouisianaUSA
| | - Sharmila Shankar
- Southeast Louisiana Veterans Health Care SystemNew OrleansLouisianaUSA
- John W. Deming Department of MedicineTulane University School of MedicineNew OrleansLouisianaUSA
| | - Rakesh K. Srivastava
- Stanley S. Scott Cancer Center, School of MedicineLouisiana State University HealthNew OrleansLouisianaUSA
- Southeast Louisiana Veterans Health Care SystemNew OrleansLouisianaUSA
- Department of GeneticsLouisiana State University Health Sciences Center – New OrleansNew OrleansLouisianaUSA
- GLAXDoverDelawareUSA
| |
Collapse
|
2
|
Khan MM, Serajuddin M, Bharadwaj M. Potential plasma microRNAs signature miR-190b-5p, miR-215-5p and miR-527 as non-invasive biomarkers for prostate cancer. Biomarkers 2023; 28:227-237. [PMID: 36644827 DOI: 10.1080/1354750x.2022.2163694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
BackgroundProstate cancer (PCa) is the most prevalent (20%) pathological cancer among males globally. MicroRNAs (miRNAs) are short (19-22 nucleotide), conserved, noncoding molecules that regulate post-transcriptional processes either by repressing or degrading mRNA or by translation inhibition binding to complementary sites on mRNA. The goal of this study was to find out whether differentially expressed microRNA (DEM) could be used as a potential marker in the prognosis and diagnosis of PCa.MethodologyThe miRNAs profiling was done both from plasma and tissue samples of the same PCa patient (n = 3) by real-time quantitative PCR (qRT-PCR) and compared with BPH (benign prostatic hyperplasia) patients (n = 3) as controls and further validation of selected miRNAs.ResultsWe found 55 significant overexpressed DEMs, 44 significant underexpressed DEMs in plasma and 6 significant overexpressed DEMs, 27 significant underexpressed DEMs in tissue compared between PCa and BPH. Furthermore, there were eight miRNAs namely miR-190b, miR-215, miR-300, miR-329, miR-504, miR-525-3p, miR-527, miR-548a-3p found to be significantly differentially expressed in plasma and tissue samples via profiling, however only three showed concordant expression. After validation, miR-190b-5p were shown to be significantly downexpressed with fold changes of 0.4177 (p value - 0.0072) and 0.7264 (p value - 0.0143) in plasma and tissue samples, respectively. The expression of miR-215-5p was shown to be significantly overexpressed with fold change of 1.820 (p - 0.0016) and 1.476 (p - 0.0407) in plasma and tissue samples, respectively. Furthermore, miR-527 was shown to be significantly downexpressed with fold changes of 0.6018 (p - 0.0095) and 0.6917 (p - 0.0155) in plasma and tissue samples, respectively.ConclusionAccording to our findings, plasma miR-190b-5p, miR-215-5p, miR-527 levels alteration is consistently linked with PCa tissue. For establishing significant miRNAs as biomarkers, additional research of a larger population is needed.
Collapse
Affiliation(s)
- Mohd Mabood Khan
- Division of Molecular Genetics & Biochemistry, National Institute of Cancer Prevention & Research (ICMR-NICPR), Noida, India.,Department of Zoology, University of Lucknow, Lucknow, India
| | | | - Mausumi Bharadwaj
- Division of Molecular Genetics & Biochemistry, National Institute of Cancer Prevention & Research (ICMR-NICPR), Noida, India
| |
Collapse
|
3
|
Taheri F, Ebrahimi SO, Heidari R, Pour SN, Reiisi S. Mechanism and function of miR-140 in human cancers: A review and in silico study. Pathol Res Pract 2023; 241:154265. [PMID: 36509008 DOI: 10.1016/j.prp.2022.154265] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/27/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022]
Abstract
MicroRNA-140 (miR-140) acts as a tumor suppressor and plays a vital role in cell biological functions such as cell proliferation, apoptosis, and DNA repair. The expression of this miRNA has been shown to be considerably decreased in cancer tissues and cell lines compared with normal adjacent tissues. Consequently, aberrant expression of some miR-140 target genes can lead to the initiation and progression of various human cancers, such as breast cancer, gastrointestinal cancers, lung cancer, and prostate cancer. The dysregulation of the miR-140 network also affects cell proliferation, invasion, metastasis, and apoptosis of cancer cells by affecting various signaling pathways. Besides, up-regulation of miR-140 could enhance the efficacy of chemotherapeutic agents in different cancer. We aimed to cover most aspects of miR-140 function in cancer development and address its importance in different stages of cancer progression.
Collapse
Affiliation(s)
- Forough Taheri
- Department of Genetics, Sharekord Branch, Islamic Azad University, Sharekord, Iran
| | - Seyed Omar Ebrahimi
- Department of Genetics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
| | - Razieh Heidari
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Somaye Nezamabadi Pour
- Department of Obstetrics and Gynecology, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - Somayeh Reiisi
- Department of Genetics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran.
| |
Collapse
|
4
|
Arabzadeh A, Mortezazadeh T, Aryafar T, Gharepapagh E, Majdaeen M, Farhood B. Therapeutic potentials of resveratrol in combination with radiotherapy and chemotherapy during glioblastoma treatment: a mechanistic review. Cancer Cell Int 2021; 21:391. [PMID: 34289841 PMCID: PMC8296583 DOI: 10.1186/s12935-021-02099-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/15/2021] [Indexed: 02/06/2023] Open
Abstract
Glioblastoma, WHO grade IV astrocytoma, is the most aggressive type of brain tumors. These cancerous cells have a rapid growth rate, tendency to penetrate vital brain structures, molecular heterogeneity, etc. and this cancer is associated with a poor prognosis and low survival rate. Due to the resistance of glioblastoma cells to conventional therapeutic modalities (such as radiation therapy and chemotherapy) as well as the adverse effects of these modalities, the researchers have attempted to discover an appropriate alternative or adjuvant treatment for glioblastoma. Resveratrol, as an herbal and natural polyphenolic compound, has anti-tumoral property and has shown to be effective in GBM treatment. Resveratrol exerts its anti-tumoral effect through various mechanisms such as regulation of cell cycle progression and cell proliferation, autophagy, oxidant system, apoptosis pathways, and so on. Resveratrol in combination with radiation therapy and chemotherapy has also been used. In the present study, we summarized the current findings on therapeutic potentials of resveratrol in glioblastoma radiotherapy and chemotherapy.
Collapse
Affiliation(s)
- AmirAhmad Arabzadeh
- Department of Surgery, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Tohid Mortezazadeh
- Department of Medical Physics, School of Medicine, Tabriz University of Medical Science, Tabriz, Iran
| | - Tayebeh Aryafar
- Department of Radiation Sciences, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Esmaeil Gharepapagh
- Medical Radiation Sciences Research Team , Tabriz University of Medical Science, Tabriz, Iran
| | - Mehrsa Majdaeen
- Department of Radiotherapy and Oncology, Razi Hospital, Guilan University of Medical Sciences, Rasht, Iran.
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
5
|
Chowdhury S, Ghosh S. Cancer Stem Cells. Stem Cells 2021. [DOI: 10.1007/978-981-16-1638-9_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Circulating miR-215-5p and miR-642a-5p as potential biomarker for diagnosis of osteosarcoma in Mexican population. Hum Cell 2018; 31:292-299. [PMID: 29907935 DOI: 10.1007/s13577-018-0214-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 06/07/2018] [Indexed: 10/28/2022]
Abstract
Osteosarcoma is the most common malignant bone neoplasia affecting individuals in the second decade of life. The survival rate has not been improved during the last 25 years, in part because of the lack of specific markers. The microRNAs have been identified as important regulators of gene expression, experimental evidence suggests these molecules as key players in cancer development and progression. To identify miRNAs differentially expressed in serum from patients with osteosarcoma compared to healthy donors in Mexican population. Fifteen osteosarcoma patients and fifteen age and sex matched healthy individuals were recruited. Two pools of total RNA extracted from serum per study group were prepared and the miRNA expression profiles were analyzed through TaqMan Low Density Arrays. Validation was carried out through RT-qPCR using individual TaqMan assays for those miRNAs differentially expressed. Fifteen miRNAs were differentially expressed in osteosarcoma patients compared to healthy controls. Overexpression of miR-215-5p and miR-642a-5p was confirmed by validation through RT-qPCR. The expression analysis of miRNAs from serum in osteosarcoma patients revealed differential expression of miR-215-5p and miR-642a-5p. Both microRNAs are potential markers for osteosarcoma diagnosis.
Collapse
|
7
|
Pascussi JM. [Mechanisms of resistance of cancer stem cells to chemotherapy]. Bull Cancer 2017; 104:1080-1084. [PMID: 29173972 DOI: 10.1016/j.bulcan.2017.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 10/19/2017] [Indexed: 10/18/2022]
Affiliation(s)
- Jean-Marc Pascussi
- Université de Montpellier, institut de génomique fonctionnelle, CNRS UMR 5203, Inserm U1191, 141, rue de la cardonille, 34094 Montpellier cedex 05, France.
| |
Collapse
|
8
|
Cioffi M, Trabulo SM, Vallespinos M, Raj D, Kheir TB, Lin ML, Begum J, Baker AM, Amgheib A, Saif J, Perez M, Soriano J, Desco M, Gomez-Gaviro MV, Cusso L, Megias D, Aicher A, Heeschen C. The miR-25-93-106b cluster regulates tumor metastasis and immune evasion via modulation of CXCL12 and PD-L1. Oncotarget 2017; 8:21609-21625. [PMID: 28423491 PMCID: PMC5400610 DOI: 10.18632/oncotarget.15450] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 01/10/2017] [Indexed: 12/14/2022] Open
Abstract
The stromal microenvironment controls response to injury and inflammation, and is also an important determinant of cancer cell behavior. However, our understanding of its modulation by miRNA (miR) and their respective targets is still sparse. Here, we identified the miR-25-93-106b cluster and two new target genes as critical drivers for metastasis and immune evasion of cancer cells. Using miR-25-93-106b knockout mice or antagomiRs, we demonstrated regulation of the production of the chemoattractant CXCL12 controlling bone marrow metastasis. Moreover, we identified the immune checkpoint PD-L1 (CD274) as a novel miR-93/106b target playing a central role in diminishing tumor immunity. Eventually, upregulation of miR-93 and miR-106b via miR-mimics or treatment with an epigenetic reader domain (BET) inhibitor resulted in diminished expression of CXCL12 and PD-L1. These data suggest a potential new therapeutic rationale for use of BET inhibitors for dual targeting of cancers with strong immunosuppressive and metastatic phenotypes.
Collapse
Affiliation(s)
- Michele Cioffi
- Stem Cells & Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Sara M Trabulo
- Stem Cells & Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.,Stem Cells in Cancer & Ageing, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Mireia Vallespinos
- Stem Cells & Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Deepak Raj
- Stem Cells in Cancer & Ageing, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Tony Bou Kheir
- Stem Cells in Cancer & Ageing, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Meng-Lay Lin
- Stem Cells in Cancer & Ageing, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Julfa Begum
- Stem Cells in Cancer & Ageing, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Ann-Marie Baker
- Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Ala Amgheib
- Stem Cells in Cancer & Ageing, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Jaimy Saif
- School of Clinical Sciences, University of Bristol, Bristol, UK
| | - Manuel Perez
- Confocal Microscopy Unit, Centro Nacional de Investigaciones Oncológicas, Spain
| | - Joaquim Soriano
- Confocal Microscopy Unit, Centro Nacional de Investigaciones Oncológicas, Spain
| | - Manuel Desco
- Departamento de Ingenieria Biomedica e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Leganés, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| | - Maria Victoria Gomez-Gaviro
- Departamento de Ingenieria Biomedica e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Leganés, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| | - Lorena Cusso
- Departamento de Ingenieria Biomedica e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Leganés, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| | - Diego Megias
- Confocal Microscopy Unit, Centro Nacional de Investigaciones Oncológicas, Spain
| | - Alexandra Aicher
- Stem Cells & Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.,Stem Cells in Cancer & Ageing, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Christopher Heeschen
- Stem Cells & Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.,Stem Cells in Cancer & Ageing, Barts Cancer Institute, Queen Mary University of London, London, UK
| |
Collapse
|
9
|
Tanaka T, Terai Y, Kogata Y, Ashihara K, Maeda K, Fujiwara S, Yoo S, Tanaka Y, Tsunetoh S, Sasaki H, Kanemura M, Tanabe A, Ohmichi M. CD24 expression as a marker for predicting clinical outcome and invasive activity in uterine cervical cancer. Oncol Rep 2015; 34:2282-8. [PMID: 26351781 PMCID: PMC4583540 DOI: 10.3892/or.2015.4257] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 07/08/2015] [Indexed: 01/06/2023] Open
Abstract
CD24, a small heavily glycosylated mucin-like glycosylphosphatidylinositol-anchored cell surface protein, plays an important role in the carcinogenesis of various human malignancies. However, its function in cervical cancer remains unclear. The aim of the present study was to evaluate the expression of CD24 clinicopathologically and to analyze its functional behavior biologically in cervical cancer. A total of 117 uterine cervical cancer tumors were immunohistochemically analyzed using a CD24 monoclonal antibody on paraffin blocks. We also examined whether CD24 enhanced the invasive activity or the Akt, ERK, NF-κB and MMP activity in a uterine cervical cancer cell line (CaSki) by a western blot analysis. The patients with enhanced CD24 expression had a higher rate of advanced clinical stage (50 vs. 16.5%, p<0.01), lymph node metastasis (34.6 vs. 14.3%) and lymphovascular involvement (65.4 vs. 20.4%, p=0.01), and a poor overall and disease-free survival (5-year survival rate: 62 vs. 86%, p=0.03). CD24 overexpression in CaSki cells resulted in activation of Cell Signaling proteins, including Akt, ERK, NF-κB and MMP-9. An invasion assay showed that CD24 overexpression in CaSki cells led to increased invasion ability. The CD24 overexpression also increased mRNA expression of Slug but not Snail. Moreover, the CD24 overexpression also decreased expression of E-cadherin and increased N-cadherin protein levels. Increased expression of CD24 may be associated with tumor progression and prognosis in patients with uterine cervical cancer. CD24 expression may therefore be used not only as a prognostic marker in uterine cervical cancer, but also as a target for the development of new therapeutic approaches.
Collapse
Affiliation(s)
- Tomohito Tanaka
- Department of Obstetrics and Gynecology, Osaka Medical College, Takatsuki, Osaka 569-8686, Japan
| | - Yoshito Terai
- Department of Obstetrics and Gynecology, Osaka Medical College, Takatsuki, Osaka 569-8686, Japan
| | - Yuhei Kogata
- Department of Obstetrics and Gynecology, Osaka Medical College, Takatsuki, Osaka 569-8686, Japan
| | - Keisuke Ashihara
- Department of Obstetrics and Gynecology, Osaka Medical College, Takatsuki, Osaka 569-8686, Japan
| | - Kazuya Maeda
- Department of Obstetrics and Gynecology, Osaka Medical College, Takatsuki, Osaka 569-8686, Japan
| | - Satoe Fujiwara
- Department of Obstetrics and Gynecology, Osaka Medical College, Takatsuki, Osaka 569-8686, Japan
| | - Saha Yoo
- Department of Obstetrics and Gynecology, Osaka Medical College, Takatsuki, Osaka 569-8686, Japan
| | - Yoshimichi Tanaka
- Department of Obstetrics and Gynecology, Osaka Medical College, Takatsuki, Osaka 569-8686, Japan
| | - Satoshi Tsunetoh
- Department of Obstetrics and Gynecology, Osaka Medical College, Takatsuki, Osaka 569-8686, Japan
| | - Hiroshi Sasaki
- Department of Obstetrics and Gynecology, Osaka Medical College, Takatsuki, Osaka 569-8686, Japan
| | - Masanori Kanemura
- Department of Obstetrics and Gynecology, Osaka Medical College, Takatsuki, Osaka 569-8686, Japan
| | - Akiko Tanabe
- Department of Obstetrics and Gynecology, Osaka Medical College, Takatsuki, Osaka 569-8686, Japan
| | - Masahide Ohmichi
- Department of Obstetrics and Gynecology, Osaka Medical College, Takatsuki, Osaka 569-8686, Japan
| |
Collapse
|
10
|
Abstract
Predicting the response of colorectal cancer (CRC) tumors to novel chemotherapeutic agents is significantly complicated by their underlying genetic and epigenetic diversity. Large-scale clinical trials involving thousands of patients are often necessary in order to accurately determine efficacy during drug development. Recent advances in genetic sequencing has allowed us to improve the prediction of drug response through genetic stratification of patients into smaller populations, yet the complexity of the cancer genome still often confounds accuracy of drug response prediction. Ultimately, we may need to replicate patient's own tumor in a dish in order to test drug responses so that the optimal treatment can be identified. We recently developed highly efficient and tractable organoid culture system for intestinal stem cells, in which single stem cells form 3D structures recapitulating original tissue architecture. This technology has also been applied to colorectal tumors and enables us to monitor the growth and response of the patient's own tumors. In this review, we provide an overview focusing on CRC organoid culture and its perspective for clinical applications.
Collapse
Affiliation(s)
- Yuki Ohta
- Department of Gastroenterology, Keio University School of Medicine , Tokyo , Japan
| | - Toshiro Sato
- Department of Gastroenterology, Keio University School of Medicine , Tokyo , Japan
| |
Collapse
|
11
|
Abstract
Personalized medicine comprises the genetic information together with the phenotypic and environmental factors to yield healthcare tailored to an individual and removes the limitations of the "one-size-fits-all" therapy approach. This provides the opportunity to translate therapies from bench to clinic, to diagnose and predict disease, and to improve patient-tailored treatments based on the unique signatures of a patient's disease and further to identify novel treatment schedules. Nowadays, tiny noncoding RNAs, called microRNAs, have captured the spotlight in molecular biology with highlights like their involvement in DNA translational control, their impression on mRNA and protein expression levels, and their ability to reprogram molecular signaling pathways in cancer. Realizing their pivotal roles in drug resistance, they emerged as diagnostic targets orchestrating drug response in individualized therapy examples. It is not premature to think that researchers could have the US Food and Drug Administration (FDA)-approved kit-based assays for miRNA analysis in the near future. We think that miRNAs are ready for prime time.
Collapse
|
12
|
Shtilbans V. Role of stromal-epithelial interaction in the formation and development of cancer cells. CANCER MICROENVIRONMENT 2013; 6:193-202. [PMID: 23430817 DOI: 10.1007/s12307-013-0131-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 02/06/2013] [Indexed: 12/31/2022]
Abstract
Identification of gene expression mechanisms began with works on embryonic induction. The same mechanism of cell-cell interactions also contributes to the process of oncogenesis. Damage to epithelial cells' genetic apparatus turns them into precancerous stem cells that are not yet capable of tumor growth. They can be transformed into cancer stem cells and undergo further progression as a result of epigenetic effects of apocrine secretion by surrounding activated stromal cells (mostly myofibroblasts). These factors may activate the damaged genetic information. On the contrary, the level of malignancy can be decreased by adding culture medium from non-activated stromal cells. One must not exclude the possibility that in a number of cases genetically altered bone marrow may migrate to damaged or inflamed tissues and become there a source of stromal cells, as well as of parenchymal stem cells in a damaged organ, where they may give rise to changed epithelial (precancerous) stem cells or to activated stromal cells, thus leading to malignant tumor growth. Cancer treatment should also affect activated stromal cells. It may prevent emergence and progression of cancerous stem cells.
Collapse
Affiliation(s)
- Viktor Shtilbans
- Division of Immunohistochemistry, Specialty Testing Group, Integrated Oncology, LabCorp, 521 West 57 Str, 6th Fl., New York, NY, 10029, USA,
| |
Collapse
|
13
|
Lo WY, Wang HJ, Chiu CW, Chen SF. miR-27b-regulated TCTP as a novel plasma biomarker for oral cancer: from quantitative proteomics to post-transcriptional study. J Proteomics 2012; 77:154-66. [PMID: 22902387 DOI: 10.1016/j.jprot.2012.07.039] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 07/20/2012] [Accepted: 07/23/2012] [Indexed: 01/12/2023]
Abstract
We combined an iTRAQ-based quantitative proteomic analysis and the miRNA determination to profile potentially novel biomarker from oral cancer. There are 757 and 674 unique proteins identified from proteomic analysis, and 13 proteins displayed consistent underexpression (<0.67 fold) in normal tissues in comparison with the corresponding tumor tissues. After preliminary screening, EGFR, OAT, TPT1, ITGA6, G3BP1 and CB39L were the six genes validated in the 37 oral cancer patients (T1, n=10; T2, n=10; T3, n=10 and T4, n=7). The TPT1, ITGA6 and CAB39L genes were displayed the higher transcriptions level in the tumor tissues and the TPT1, ITGA6 and CAB39L proteins were also shown overexpression in the tumor tissues from the same patients. The miR-19a, 19b, 27a, 27b, 186, 203 and 377 transcripts were predicted and the miR-27b level was shown to significantly reduce in the tumor tissues and the plasma of OSCC patients. In the in vitro study, the overexpression of miR-27b only significantly decreased TCTP protein and gene levels in both HSC-3 and Cal-27 cell lines. Our results demonstrate that human miR-27b regulates the expression of the TCTP tumor protein, and circulating miR-27b may be useful as a biomarker for oral cancer research.
Collapse
Affiliation(s)
- Wan-Yu Lo
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan
| | | | | | | |
Collapse
|
14
|
Quint K, Tonigold M, Di Fazio P, Montalbano R, Lingelbach S, Rückert F, Alinger B, Ocker M, Neureiter D. Pancreatic cancer cells surviving gemcitabine treatment express markers of stem cell differentiation and epithelial-mesenchymal transition. Int J Oncol 2012; 41:2093-102. [PMID: 23026911 DOI: 10.3892/ijo.2012.1648] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 09/03/2012] [Indexed: 02/07/2023] Open
Abstract
Objective response rates to standard chemotherapeutic regimens remain low in pancreatic cancer. Subpopulations of cells have been identified in various solid tumors which express stem cell-associated markers and are associated with increased resistance against radiochemotherapy. We investigated the expression of stem cell genes and markers of epithelial-mesenchymal transition in pancreatic cancer cells that survived high concentrations of gemcitabine treatment. Capan-1 and Panc-1 cells were continuously incubated with 1 and 10 µM gemcitabine. Surviving cells were collected after 1, 3 and 6 days. Expression of PDX-1, SHH, CD24, CD44, CD133, EpCAM, CBX7, OCT4, SNAIL, SLUG, TWIST, Ki-67, E-cadherin, β-catenin and vimentin were quantified by qPCR or immunocytochemistry. Migration was assessed by wound‑healing assay. SHH was knocked down using RNA interference. Five primary pancreatic cancer cell lines were used to validate the qPCR results. All investigated genes were upregulated after 6 days of gemcitabine incubation. Highest relative expression levels were observed for OCT4 (13.4-fold), CD24 (47.3-fold) and EpCAM (15.9-fold) in Capan-1 and PDX-1 (13.3‑fold), SHH (24.1-fold), CD44 (17.4-fold), CD133 (20.2-fold) and SLUG (15.2-fold) in Panc-1 cells. Distinct upregulation patterns were observed in the primary cells. Migration was increased in Panc-1 cells and changes in the expression of E-cadherin and β-catenin were typical of epithelial-mesenchymal transition in both cell lines. SHH knockdown reduced IC(50) from 30.1 to 27.6 nM in Capan-1 while it strongly inhibited proli-feration in Panc-1 cells. Cells surviving high-dose gemcitabine treatment express increased levels of stem cell genes, show characteristics associated with epithelial-mesenchymal transition and retain their proliferative capacity.
Collapse
Affiliation(s)
- Karl Quint
- Institute for Surgical Research, Philipps University of Marburg, D-35043 Marburg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Tang J, Cai H, Lin L, Xie P, Zhong W, Tang M. Increased expression of CD24 is associated with tumor progression and prognosis in patients suffering osteosarcoma. Clin Transl Oncol 2012; 15:541-7. [PMID: 23143956 DOI: 10.1007/s12094-012-0961-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 10/10/2012] [Indexed: 01/06/2023]
Abstract
OBJECTIVE As a small heavily glycosylated mucin-like glycosyl-phosphatidylinositol-anchored cell surface protein, CD24 plays an important role in carcinogenesis of various human malignancies. However, its involvement in osteosarcoma is still unclear. The aim of this study was to investigate the expression pattern and the clinical significance of CD24 in human osteosarcoma. METHODS CD24 mRNA and protein expression levels were, respectively, detected by RT-PCR and Western blot assays using 30 pairs of osteosarcoma and noncancerous bone tissues. Then, immunohistochemistry was performed to analyze the association of CD24 expression in 166 osteosarcoma tissues with clinicopathological factors or survival of patients. RESULTS CD24 expression at mRNA and protein levels were both significantly higher in osteosarcoma tissues than those in corresponding noncancerous bone tissues (both P < 0.001). In addition, CD24 protein was positively expressed in 129 of 166 (77.7 %) osteosarcoma specimens with a cytoplasmic and membraneous staining, and also increased in the osteosarcoma specimens with advanced clinical stage (P = 0.01) and positive distant metastasis (P = 0.005). The univariate and multivariate analyses showed that osteosarcoma patients with high CD24 expression had poorer overall and disease-free survival, and high CD24 expression was an independent prognostic factor for both overall and disease-free survival. CONCLUSION The aforementioned findings offer convincing evidence for the first time that the increased expression of CD24 is correlated with tumor aggressiveness and tumor metastasis of osteosarcoma, and this molecule is an independent prognostic marker for osteosarcoma patients.
Collapse
Affiliation(s)
- J Tang
- Orthopedics Department, Xuhui Central Hospital, No. 966, Middle Huaihai Road, Shanghai, 200031, China
| | | | | | | | | | | |
Collapse
|
16
|
Oonishi K, Cui X, Hirakawa H, Fujimori A, Kamijo T, Yamada S, Yokosuka O, Kamada T. Different effects of carbon ion beams and X-rays on clonogenic survival and DNA repair in human pancreatic cancer stem-like cells. Radiother Oncol 2012; 105:258-65. [DOI: 10.1016/j.radonc.2012.08.009] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Revised: 08/15/2012] [Accepted: 08/16/2012] [Indexed: 11/28/2022]
|
17
|
Yang YP, Chang YL, Huang PI, Chiou GY, Tseng LM, Chiou SH, Chen MH, Chen MT, Shih YH, Chang CH, Hsu CC, Ma HI, Wang CT, Tsai LL, Yu CC, Chang CJ. Resveratrol suppresses tumorigenicity and enhances radiosensitivity in primary glioblastoma tumor initiating cells by inhibiting the STAT3 axis. J Cell Physiol 2012; 227:976-93. [PMID: 21503893 DOI: 10.1002/jcp.22806] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Glioblastoma multiforme (GBM) is the most common and aggressive primary brain tumor. Patients diagnosed with GBM have a poor prognosis, and it has been reported that tumor malignancy and GBM recurrence are promoted by STAT3 signaling. As resveratrol (RV), a polyphenol in grapes, is reported to be a potent and non-toxic cancer-preventive compound, the aim of this study was to investigate the therapeutic effect and molecular mechanisms of RV on GBM-derived radioresistant tumor initiating cells (TIC). Firstly, our results showed that primary GBM-CD133(+) TIC presented high tumorigenic and radiochemoresistant properties as well as increased protein levels of phosphorylated STAT3. We consistently observed that treatment with shRNA-STAT3 (sh-STAT3) or AG490, a STAT3 inhibitor, significantly inhibited the cancer stem-like cell properties and radioresistance of GBM-CD133(+) in vitro and in vivo. Furthermore, treatment of GBM-CD133(+) with 100 µM RV induced apoptosis and enhanced radiosensitivity by suppressing STAT3 signaling. Microarray results suggested that RV or AG490 inhibited the stemness gene signatures of GBM-CD133(+) and facilitated the differentiation of GBM-CD133(+) into GBM-CD133(-) or astrocytoma cells. Finally, xenotransplant experiments indicated that RV or sh-STAT3 therapy could significantly improve the survival rate and synergistically enhance the radiosensitivity of radiation-treated GBM-TIC. In summary, RV can reduce in vivo tumorigenicity and enhance the sensitivity of GBM-TIC to radiotherapies through the STAT3 pathway.
Collapse
Affiliation(s)
- Yi-Ping Yang
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Giovannetti E, Erozenci A, Smit J, Danesi R, Peters GJ. Molecular mechanisms underlying the role of microRNAs (miRNAs) in anticancer drug resistance and implications for clinical practice. Crit Rev Oncol Hematol 2012; 81:103-22. [PMID: 21546262 DOI: 10.1016/j.critrevonc.2011.03.010] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2011] [Revised: 03/11/2011] [Accepted: 03/31/2011] [Indexed: 12/31/2022] Open
|
19
|
Ker CG, Kuo KK, Chang WT, Chen JS, Lee KT, Yang SF, Wu CC, Chai CY. Clinical significance of hepatic cancer stem cells. FORMOSAN JOURNAL OF SURGERY 2011. [DOI: 10.1016/j.fjs.2011.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
20
|
Induction of metastatic cancer stem cells from the NK/LAK-resistant floating, but not adherent, subset of the UP-LN1 carcinoma cell line by IFN-γ. J Transl Med 2011; 91:1502-13. [PMID: 21691263 DOI: 10.1038/labinvest.2011.91] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
As an advanced status of cancer stem cells (CSCs), metastatic CSCs (mCSCs) have been proposed to be the essential seeds that initiate tumor metastasis. However, the biology of mCSCs is poorly understood. In this study, we used a lymph node (LN) metastatic CEA-producing carcinoma cell line, UP-LN1, characterized by the persistent appearance of adherent (A) and floating (F) cells in culture, to determine the distribution of CSCs and mechanisms for the induction of mCSCs. F and A cells displayed distinct phenotypes, CD44(high)/CD24(low) and CD44(low)/CD24(high), respectively. The CSC-rich nature of F cells was typified by stronger expression of multiple drug resistance genes and a 7.8-fold higher frequency of tumor-initiating cells in NOD/SCID mice when compared with A cells. F cells showed a greater depression in HLA class I expression and an extreme resistance to NK/LAK-mediated cytolysis. Moreover, the NK/LAK-resistant F cells were highly susceptible to IFN-γ-mediated induction of surface CXCR4, with concomitant downregulation of cytoplasmic CXCL12 expression, whereas these two parameters remained essentially unchanged in NK/LAK-sensitive A cells. Following the induction of surface CXCR4, enhanced migratory/invasive potential of F cells was demonstrated by in vitro assays. Confocal immunofluorescence microscopy showed the two distinct phenotypes of F and A cells could be correspondingly identified in monodispersed and compact tumor cell areas within the patient's LN tumor lesion. In response to IFN-γ or activated NK/LAK cells, the CXCR4(+) mCSCs could be only induced from the CSCs, which were harbored in the highly tumorigenic CD44(high)/CD24(low) F subset. Our results revealed the complexity and heterogeneity of the CSC of this cell line/tumor and the differential immunomodulatory roles of F and A cells. A better understanding of the interactions among different classes of CSCs and their niches may assist us in eradicating the CSCs/mCSCs through targeted immunotherapy, chemotherapy, or both.
Collapse
|
21
|
Mancini R, Giarnieri E, De Vitis C, Malanga D, Roscilli G, Noto A, Marra E, Laudanna C, Zoppoli P, De Luca P, Affuso A, Ruco L, Di Napoli A, Mesiti G, Aurisicchio L, Ricci A, Mariotta S, Pisani L, Andreetti C, Viglietto G, Rendina EA, Giovagnoli MR, Ciliberto G. Spheres derived from lung adenocarcinoma pleural effusions: molecular characterization and tumor engraftment. PLoS One 2011; 6:e21320. [PMID: 21789168 PMCID: PMC3138755 DOI: 10.1371/journal.pone.0021320] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Accepted: 05/30/2011] [Indexed: 11/19/2022] Open
Abstract
Malignant pleural effusions (MPEs) could represent an excellent source to culture a wide variety of cancer cells from different donors. In this study, we set up culture conditions for cancer cells deriving from MPEs of several patients affected by the most frequent form of lung cancer, namely the subset of non small cell lung cancers (NSCLC) classified as Lung Adenocarcinomas (AdenoCa) which account for approximately 40% of lung cancer cases. AdenoCa malignant pleural effusions gave rise to in vitro cultures both in adherent and/or in spheroid conditions in almost all cases analyzed. We characterized in greater detail two samples which showed the most efficient propagation in vitro. In these samples we also compared gene profiles of spheroid vs adherent cultures and identified a set of differentially expressed genes. Finally we achieved efficient tumor engraftment in recipient NOD/SCID mice, also upon inoculation of small number of cells, thus suggesting indirectly the presence of tumor initiating cells.
Collapse
MESH Headings
- Adenocarcinoma/genetics
- Adenocarcinoma/pathology
- Adenocarcinoma of Lung
- Aged
- Aged, 80 and over
- Aldehyde Dehydrogenase/metabolism
- Animals
- Biomarkers, Tumor/metabolism
- Cell Adhesion
- Cell Separation
- Computational Biology
- Female
- Gene Expression Regulation, Neoplastic
- Genes, Neoplasm/genetics
- Humans
- Immunohistochemistry
- Immunophenotyping
- Lung Neoplasms/genetics
- Lung Neoplasms/pathology
- Male
- Mice
- Mice, SCID
- Middle Aged
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Pleural Effusion, Malignant/genetics
- Pleural Effusion, Malignant/pathology
- Reverse Transcriptase Polymerase Chain Reaction
- Spheroids, Cellular/metabolism
- Spheroids, Cellular/pathology
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Rita Mancini
- Department of Clinical and Molecular Medicine, University of Rome La Sapienza S Andrea Hospital, Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Trastuzumab (herceptin) targets gastric cancer stem cells characterized by CD90 phenotype. Oncogene 2011; 31:671-82. [PMID: 21743497 DOI: 10.1038/onc.2011.282] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Identification and characterization of cancer stem cells (CSCs) in gastric cancer are difficult owing to the lack of specific markers and consensus methods. In this study, we show that cells with the CD90 surface marker in gastric tumors could be enriched under non-adherent, serum-free and sphere-forming conditions. These CD90(+) cells possess a higher ability to initiate tumor in vivo and could re-establish the cellular hierarchy of tumors from single-cell implantation, demonstrating their self-renewal properties. Interestingly, higher proportion of CD90(+) cells correlates with higher in vivo tumorigenicity of gastric primary tumor models. In addition, it was found that ERBB2 was overexpressed in about 25% of the gastric primary tumor models, which correlates with the higher level of CD90 expression in these tumors. Trastuzumab (humanized anti-ERBB2 antibody) treatment of high-tumorigenic gastric primary tumor models could reduce the CD90(+) population in tumor mass and suppress tumor growth when combined with traditional chemotherapy. Moreover, tumorigenicity of tumor cells could also be suppressed when trastuzumab treatment starts at the same time as cell implantation. Therefore, we have identified a CSC population in gastric primary tumors characterized by their CD90 phenotype. The finding that trastuzumab targets the CSC population in gastric tumors suggests that ERBB2 signaling has a role in maintaining CSC populations, thus contributing to carcinogenesis and tumor invasion. In conclusion, the results from this study provide new insights into the gastric tumorigenic process and offer potential implications for the development of anticancer drugs as well as therapeutic treatment of gastric cancers.
Collapse
|
23
|
Detection of Minor Subpopulations of Colorectal Adenocarcinoma Cells Expressing Cancer Stem Cell Markers. Bull Exp Biol Med 2011; 151:234-8. [DOI: 10.1007/s10517-011-1297-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
24
|
Using ABCG2-molecule-expressing side population cells to identify cancer stem-like cells in a human ovarian cell line. Cell Biol Int 2011; 35:227-34. [PMID: 21108606 DOI: 10.1042/cbi20100347] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
CSCs (cancer stem cells) are a small subset of cells within a tumour that possesses the characteristics of stem cells and are considered to be responsible for resistance to chemoradiation. Identification of CSCs through stem cell characteristics might have relevant clinical implications. In this study, SP (side population ) cells were sorted from a human ovarian cancer cell line by FACS to determine whether cancer stem cell-like SP cells were present. A very small fraction of SP cells (2.6%) was detected in A2780 cells. SP cells possessed the following characteristics: highly proliferative activity, marked ability for self-renewal in soft agar and culture medium, high expression of ABCG2, drug resistance to vinblastine in vitro, and strong tumourigenic potential in Balb/c nude mice. It is concluded that there exists in the A2780 cell line a small number of SP cells with high expression of ABCG2. The cells have the characteristics of cancer stem-like cells, and identification and cloning of such human SP cells can help in improving therapeutic approaches to ovarian cancer in patients.
Collapse
|
25
|
Gracz AD, Magness ST. Sry-box (Sox) transcription factors in gastrointestinal physiology and disease. Am J Physiol Gastrointest Liver Physiol 2011; 300:G503-15. [PMID: 21292996 PMCID: PMC3302185 DOI: 10.1152/ajpgi.00489.2010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The genetic mechanisms underlying tissue maintenance of the gastrointestinal tract are critical for the proper function of the digestive system under normal physiological stress. The identification of transcription factors and related signal transduction pathways that regulate stem cell maintenance and lineage allocation is attractive from a clinical standpoint in that it may provide targets for novel cell- or drug-based therapies. Sox [sex-determining region Y (Sry) box-containing] factors are a family of transcription factors that are emerging as potent regulators of stem cell maintenance and cell fate decisions in multiple organ systems and might provide valuable insight toward the understanding of these processes in endodermally derived tissues of the gastrointestinal tract. In this review, we focus on the known genetic functions of Sox factors and their roles in epithelial tissues of the esophagus, stomach, intestine, colon, pancreas, and liver. Additionally, we discuss pathological conditions in the gastrointestinal tract that are associated with a dysregulation of Sox factors. Further study of Sox factors and their role in gastrointestinal physiology and pathophysiology may lead to advances that facilitate control of tissue maintenance and development of advanced clinical therapies.
Collapse
Affiliation(s)
- A. D. Gracz
- 1Department of Medicine, Division of Gastroenterology and Hepatology, and ,2Department of Cell and Molecular Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - S. T. Magness
- 1Department of Medicine, Division of Gastroenterology and Hepatology, and
| |
Collapse
|
26
|
Cui X, Oonishi K, Tsujii H, Yasuda T, Matsumoto Y, Furusawa Y, Akashi M, Kamada T, Okayasu R. Effects of carbon ion beam on putative colon cancer stem cells and its comparison with X-rays. Cancer Res 2011; 71:3676-87. [PMID: 21454414 DOI: 10.1158/0008-5472.can-10-2926] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although carbon ion therapy facilities are expensive, the biological effects of carbon ion beam treatment may be better against cancer (and cancer stem cells) than the effects of a photon beam. To investigate whether a carbon ion beam may have a biological advantage over X-rays by targeting cancer stem-like cells, human colon cancer cells were used in vitro and in vivo. The in vitro relative biological effectiveness (RBE) values of a carbon ion beam relative to X-rays at the D10 values were from 1.63 to 1.74. Cancer stem-like CD133(+), CD44(+)/ESA(+) cells had a greater ability for colony and spheroid formation, as well as in vivo tumorigenicity compared with the CD133(-), CD44(-)/ESA(-) cells. FACS (fluorescence-activated cell sorting) data showed that cancer stem-like cells were more highly enriched after irradiation with X-rays than carbon ion at doses that produced the same level of biological efficacy. A colony assay for cancer stem-like cells showed that RBE values calculated by the D10 levels were from 2.05 to 2.28 for the carbon ion beam relative to X-rays. The in vivo xenotransplant assay showed an RBE of 3.05 to 3.25, calculated from the slope of the dose-response curve for tumor growth suppression. Carbon ion irradiation with 15 Gy induced more severe xenograft tumor cell cavitation and fibrosis without significant enhancement of cells with putative cancer stem cell markers, CD133, ESA, and CD44, compared with 30 Gy X-rays, and marker positive cells were significantly decreased following 30 Gy carbon ion irradiation. Taken together, carbon ion beam therapy may have an advantage over photon beam therapy by improved targeting of putative colon cancer stem-like cells.
Collapse
Affiliation(s)
- Xing Cui
- Heavy-Ion Radiobiology Research Group, Research Center for Radiation Emergency Medicine, National Institute of Radiological Sciences (NIRS), Chiba, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Zöller M, Jung T. The Colorectal Cancer Initiating Cell: Markers and Their Role in Liver Metastasis. ACTA ACUST UNITED AC 2011. [DOI: 10.1007/978-94-007-0292-9_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
28
|
Hagiwara S, Kudo M, Ueshima K, Chung H, Yamaguchi M, Takita M, Haji S, Kimura M, Arao T, Nishio K, Park AM, Munakata H. The cancer stem cell marker CD133 is a predictor of the effectiveness of S1+ pegylated interferon α-2b therapy against advanced hepatocellular carcinoma. J Gastroenterol 2011; 46:212-21. [PMID: 20683621 DOI: 10.1007/s00535-010-0294-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Accepted: 07/08/2010] [Indexed: 02/04/2023]
Abstract
BACKGROUND Combination therapy with the oral fluoropyrimidine anticancer drug S1 and interferon is reportedly effective for the treatment of advanced hepatocellular carcinoma (HCC), but selection criteria for this therapy have not been clarified. In this study, we attempted to identify factors predicting the effectiveness of this combination therapy. METHODS Pathological specimens of HCC were collected before treatment from 31 patients with advanced HCC who underwent S1+ pegylated-interferon (PEG-IFN) α-2b therapy between January 2007 and January 2009. In these pathological specimens, the expression levels of CD133, thymidylate synthase (TS), dihydropyrimidine dehydrogenase (DPD), and interferon-receptor 2 (IFNR2) proteins were determined by Western blot assay. The presence or absence of p53 gene mutations was determined by direct sequencing. The relationships between these protein expression levels and the response rate (RR), progression-free survival (PFS), and overall survival (OS) were evaluated. RESULTS The CD133 protein expression level was significantly lower in the responder group than in the nonresponder group. Comparing the PFS and OS between high- and low-level CD133 expression groups (n = 13 and 18, respectively) revealed that both parameters were significantly prolonged in the latter group. The expression levels of TS, DPD, and IFNR2 protein and the presence of p53 gene mutations did not correlate with the RR. CONCLUSIONS CD133 was identified as a predictor of the therapeutic effect of S1+ PEG-IFN α-2b therapy against advanced HCC.
Collapse
Affiliation(s)
- Satoru Hagiwara
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Kinki University School of Medicine, 377-2 Ohno-Higashi, Ōsakasayama, Osaka 589-8511, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Oliveira LR, Oliveira-Costa JP, Araujo IM, Soave DF, Zanetti JS, Soares FA, Zucoloto S, Ribeiro-Silva A. Cancer stem cell immunophenotypes in oral squamous cell carcinoma. J Oral Pathol Med 2010; 40:135-42. [DOI: 10.1111/j.1600-0714.2010.00967.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
30
|
Gespach C. Stem cells and colon cancer: the questionable cancer stem cell hypothesis. ACTA ACUST UNITED AC 2010; 34:653-61. [PMID: 21051167 DOI: 10.1016/j.gcb.2010.08.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Accepted: 08/27/2010] [Indexed: 12/22/2022]
Abstract
The fine-tuning between cell proliferation and differentiation of self-renewing stem cells and pluripotent progenitors in gastric glands and colon epithelial crypts is coordinated by the mechanisms that regulate colon epithelial cell migration and guidance along the crypt axis. This leads to the acquisition of specialized cellular functions and the exfoliation of desquamated senescent and apoptotic epithelial cells at the apical mucosa interface with the gut lumen. Self-renewing stem cells and pluripotent progenitors are involved in the clonal and polyclonal growth of digestive tumors. Several lines of evidence support the existence of a subpopulation of cancer cells with stem cell-like (SCL) phenotypes in solid tumors of breast and digestive system. Consistently, epithelial cancer cell lines in long-term culture are phenotypically and functionally heterogeneous. It is suggested that only a small proportion of transformed cells are clonogenic in vivo and ex vivo to form colonies and to initiate tumor growth in immunodeficient mice. A discrete subpopulation of tumor -initiating SCL cancer cells are highly competent to survive, propagate and spread through the invasive and metastatic cascade. A better understanding of the mechanisms driving the plasticity and pluripotency of stem cells, their derived progenitors and SCL colon cancer initiating cells during tumor progression will open new avenues for the early detection and treatment of local and distant tumors of the digestive tract.
Collapse
Affiliation(s)
- C Gespach
- Inserm U938, centre de recherche Saint-Antoine, hôpital Saint-Antoine, bâtiment Kourisky, 75571 Paris cedex 12, France.
| |
Collapse
|
31
|
Bobryshev YV, Freeman AK, Botelho NK, Tran D, Levert-Mignon AJM, Lord RVN. Expression of the putative stem cell marker Musashi-1 in Barrett's esophagus and esophageal adenocarcinoma. Dis Esophagus 2010; 23:580-9. [PMID: 20459440 DOI: 10.1111/j.1442-2050.2010.01061.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The cancer stem cell theory states that cancers contain tumor-forming cells that have the ability to self-renew as well as give rise to cells that differentiate. Cancer stem cells have been identified in several solid tumors, but stem cells in normal human esophagus or in Barrett's esophagus or adenocarcinoma have not been reported. Musashi-1 is expressed by the crypt base columnar cells identified as intestinal stem cells. In other diseases of the gastrointestinal tract, local inflammation of the tunica mucosa may be an initiating factor of alteration of focal tissue 'niches,' where dormant stem cells locate. The present study investigated whether Musashi-1 is expressed in the esophagus and its relation to immune inflammation of the mucosa in Barrett's esophagus and esophageal adenocarcinoma. A total of 41 esophageal tissue specimens from 41 patients were studied. Of these, 15 were esophageal adenocarcinoma, 17 were Barrett's esophagus (10 intestinal metaplasia and 7 dysplasia), and 9 were normal squamous esophagus tissue specimens from patients without esophageal pathology. Immunohistochemistry was performed using antibodies to Musashi-1 and to a set of cell type-specific markers. A multiplexed tandem polymerase chain reaction method was used to measure the relative mRNA expression levels of Musashi-1 and the specific dendritic cell marker dendritic cell-specific intercellular molecule-3 (ICAM-3)-grabbing nonintegrin. Immunohistochemistry demonstrated the presence of small numbers of Musashi-1+ cells scattered in the connective tissue stroma and within the epithelium in cardiac-type glands in biopsies from patients without Barrett's esophagus. Musashi-1 expression was present in Barrett's intestinal metaplasia and in dysplastic Barrett's in which the majority of epithelial cells in individual glands expressed this antigen. Expression of Musashi-1 was highest in esophageal adenocarcinoma, where it was most intense in glands that displayed features of early stages of adenocarcinoma formation. In contrast, Musashi-1 staining level was weaker in glands that displayed features of advanced adenocarcinoma. Double immunostaining with proliferating cell nuclear antigen showed low proliferation in the vast majority of Musashi-1+ cells. Musashi-1 mRNA expression levels were significantly higher in esophageal adenocarcinoma than in normal esophagus or Barrett's esophagus tissues. Dendritic cell-specific intercellular molecule-3 (ICAM-3)-grabbing nonintegrin (DC-SIGN) mRNA expression levels were significantly increased in both Barrett's tissues and adenocarcinoma tissues. Expression of the putative stem cell marker Musashi-1 is absent in normal squamous epithelium, weak in esophageal cardiac-type glands and Barrett's esophagus, and markedly increased in adenocarcinoma, especially in glands displaying features of early cancer development. Musashi-1 expressing cells may be significant in the etiology of Barrett's esophagus and adenocarcinoma, and perhaps even a cell of origin for this disease. We speculate that immune inflammation occurring in Barrett's esophagus alters the mucosal microenvironment in a manner which is favorable to the activation of dormant stem cells.
Collapse
Affiliation(s)
- Y V Bobryshev
- St. Vincent's Centre for Applied Medical Research and Department of Surgery, St. Vincent's Hospital, University of New South Wales, 438 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia
| | | | | | | | | | | |
Collapse
|
32
|
Xie C, Xie SB, Xie DY, Peng L, Zhang SQ, Xie JQ, Gao ZL. Bone Marrow Mesenchymal Stem Cell Has Poor Proliferation but Non-Tumorigenicity in Cancer Environment. Lab Med 2010. [DOI: 10.1309/lm819ooeukogeogb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
33
|
Fu N, Yang XF, Wu Q, Liu ZX, Hu Y, Peng F. Treatment of different types of cirrhosis by autologous bone marrow stem cell transplantation via the hepatic artery: an analysis of 12 cases. Shijie Huaren Xiaohua Zazhi 2010; 18:2274-2278. [DOI: 10.11569/wcjd.v18.i21.2274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To evaluate the efficacy and feasibility of autologous bone marrow stem cell transplantation via the hepatic artery in the treatment of different types and degrees of cirrhosis.
METHODS: Twelve patients with different types and degrees of decompensated cirrhosis, including 8 with hepatitis B-associated cirrhosis, 2 with alcoholic cirrhosis, and 2 with cryptogenic cirrhosis, were investigated retrospectively. Of all the patients, 4 had Child-Pugh grade B cirrhosis and 8 had grade C disease. At 2, 4 and 8 weeks after transplantation, the changes in symptoms (acratia, anorexia and abdominal distension), liver function and coagulation function were observed to analyze the efficacy and feasibility of autologous bone marrow stem cell transplantation via the hepatic artery in the treatment of cirrhosis.
RESULTS: Successful transplantation was achieved in all the 12 patients without obvious complications. The levels of plasma ALT and AST decreased after transplantation. TBIL decreased from 47.68 μmol/L ± 19.8 μmol/L at pretreatment to 36.45 μmol/L ± 20.78 μmol/L at 4 wk post-transplantation. Albumin increased from 18.79 g/L ± 7.02 g/L at pretreatment to 25.67 g/L ± 5.33 g/L at 2 wk. Although PT and PTA showed obvious improvement at 2 wk (P < 0.05), no significant improvement was noted at 4 and 8 wk (both P > 0.05). The total effective rate was 83.33% and 83.33% at 2 and 4 wk, respectively, but decreased to 66.67% at 8 wk. The improvement of TBIL and ALB in patients with alcoholic and cryptogenic cirrhosis at 2 and 4 wk was better than that in patients with hepatitis B-associated cirrhosis. The effective rate in patients with Child-Pugh B disease at 8 wk was significantly higher than that in patients with Child-Pugh C disease (100% vs 50%, P < 0.05).
CONCLUSION: Autologous bone marrow stem cell transplantation via the hepatic artery can improve hepatic cirrhosis, especially in patients with alcoholic or cryptogenic cirrhosis and those with a mild degree of cirrhosis.
Collapse
|
34
|
Yamashita T, Honda M, Nio K, Nakamoto Y, Yamashita T, Takamura H, Tani T, Zen Y, Kaneko S. Oncostatin m renders epithelial cell adhesion molecule-positive liver cancer stem cells sensitive to 5-Fluorouracil by inducing hepatocytic differentiation. Cancer Res 2010; 70:4687-97. [PMID: 20484035 DOI: 10.1158/0008-5472.can-09-4210] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recent evidence suggests that a certain type of hepatocellular carcinoma (HCC) is hierarchically organized by a subset of cells with stem cell features (cancer stem cells; CSC). Although normal stem cells and CSCs are considered to share similar self-renewal programs, it remains unclear whether differentiation programs are also maintained in CSCs and effectively used for tumor eradication. In this study, we investigated the effect of oncostatin M (OSM), an interleukin 6-related cytokine known to induce the differentiation of hepatoblasts into hepatocytes, on liver CSCs. OSM receptor expression was detected in the majority of epithelial cell adhesion molecule-positive (EpCAM(+)) HCC with stem/progenitor cell features. OSM treatment resulted in the induction of hepatocytic differentiation of EpCAM(+) HCC cells by inducing signal transducer and activator of transcription 3 activation, as determined by a decrease in stemness-related gene expression, a decrease in EpCAM, alpha-fetoprotein and cytokeratin 19 protein expressions, and an increase in albumin protein expression. OSM-treated EpCAM(+) HCC cells showed enhanced cell proliferation with expansion of the EpCAM-negative non-CSC population. Noticeably, combination of OSM treatment with the chemotherapeutic agent 5-fluorouracil (5-FU), which eradicates EpCAM-negative non-CSCs, dramatically increased the number of apoptotic cells in vitro and suppressed tumor growth in vivo compared with either saline control, OSM, or 5-FU treatment alone. Taken together, our data suggest that OSM could be effectively used for the differentiation and active cell division of dormant EpCAM(+) liver CSCs, and the combination of OSM and conventional chemotherapy with 5-FU efficiently eliminates HCC by targeting both CSCs and non-CSCs.
Collapse
Affiliation(s)
- Taro Yamashita
- Center for Liver Diseases, Kanazawa University Hospital, Kanazawa, Ishikawa, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Song B, Wang Y, Titmus MA, Botchkina G, Formentini A, Kornmann M, Ju J. Molecular mechanism of chemoresistance by miR-215 in osteosarcoma and colon cancer cells. Mol Cancer 2010; 9:96. [PMID: 20433742 PMCID: PMC2881118 DOI: 10.1186/1476-4598-9-96] [Citation(s) in RCA: 210] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Accepted: 04/30/2010] [Indexed: 02/06/2023] Open
Abstract
Background Translational control mediated by non-coding microRNAs (miRNAs) plays a key role in the mechanism of cellular resistance to anti-cancer drug treatment. Dihydrofolate reductase (DHFR) and thymidylate synthase (TYMS, TS) are two of the most important targets for antifolate- and fluoropyrimidine-based chemotherapies in the past 50 years. In this study, we investigated the roles of miR-215 in the chemoresistance to DHFR inhibitor methotrexate (MTX) and TS inhibitor Tomudex (TDX). Results The protein levels of both DHFR and TS were suppressed by miR-215 without the alteration of the target mRNA transcript levels. Interestingly, despite the down-regulation of DHFR and TS proteins, ectopic expression of miR-215 resulted in a decreased sensitivity to MTX and TDX. Paradoxically, gene-specific small-interfering RNAs (siRNAs) against DHFR or TS had the opposite effect, increasing sensitivity to MTX and TDX. Further studies revealed that over-expression of miR-215 inhibited cell proliferation and triggered cell cycle arrest at G2 phase, and that this effect was accompanied by a p53-dependent up-regulation of p21. The inhibitory effect on cell proliferation was more pronounced in cell lines containing wild-type p53, but was not seen in cells transfected with siRNAs against DHFR or TS. Moreover, denticleless protein homolog (DTL), a cell cycle-regulated nuclear and centrosome protein, was confirmed to be one of the critical targets of miR-215, and knock-down of DTL by siRNA resulted in enhanced G2-arrest, p53 and p21 induction, and reduced cell proliferation. Additionally, cells subjected to siRNA against DTL exhibited increased chemoresistance to MTX and TDX. Endogenous miR-215 was elevated about 3-fold in CD133+HI/CD44+HI colon cancer stem cells that exhibit slow proliferating rate and chemoresistance compared to control bulk CD133+/CD44+ colon cancer cells. Conclusions Taken together, our results indicate that miR-215, through the suppression of DTL expression, induces a decreased cell proliferation by causing G2-arrest, thereby leading to an increase in chemoresistance to MTX and TDX. The findings of this study suggest that miR-215 may play a significant role in the mechanism of tumor chemoresistance and it may have a unique potential as a novel biomarker candidate.
Collapse
Affiliation(s)
- Bo Song
- Translational Research Laboratory, Department of Pathology, School of Medicine, Stony Brook University, Stony Brook, New York 11794, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Honoki K. Do stem-like cells play a role in drug resistance of sarcomas? Expert Rev Anticancer Ther 2010; 10:261-70. [PMID: 20132001 DOI: 10.1586/era.09.184] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Stem cells are defined by their unique characteristics, which include their abilities to self-renew and differentiate. Normal somatic stem cells have been isolated from various tissues such as bone marrow, adipose tissue, mammary glands and the nervous system. They are considered naturally resistant to chemotherapeutic agents because they express high levels of membrane transporter molecules, detoxifying enzymes and DNA repair proteins. Several recent studies have identified the presence of side populations in various cancer tissues, the so-called 'cancer stem cells', which are defined as the counterparts of stem cells in tumor tissues. These cancer stem cells possess stem-like properties, such as self-renewal and differentiation abilities, as well as playing a role in tumor initiation. Most sarcomas, which are thought to originate from mesenchymal stem cells, are highly malignant and approximately 30-40% of them show local and/or distant relapse (metastasis), even in the case of relatively chemosensitive tumors such as osteosarcomas and Ewing sarcomas. Several studies have suggested the presence of stem-like cell populations in sarcomas, based on their tumorigenicity and drug resistance. This review explores the issues of drug resistance of cancer stem cells in sarcomas and the possibilities of targeting cancer stem cells for the future treatment of sarcomas.
Collapse
Affiliation(s)
- Kanya Honoki
- Department of Orthopedic Surgery, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan.
| |
Collapse
|
37
|
Ishimoto T, Oshima H, Oshima M, Kai K, Torii R, Masuko T, Baba H, Saya H, Nagano O. CD44+ slow-cycling tumor cell expansion is triggered by cooperative actions of Wnt and prostaglandin E2 in gastric tumorigenesis. Cancer Sci 2010; 101:673-8. [PMID: 20028388 PMCID: PMC11159848 DOI: 10.1111/j.1349-7006.2009.01430.x] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Similar to normal tissue stem cells, cancer stem cells (CSCs) are thought to be quiescent or slow-cycling and, thereby, insensitive to chemo- and radiotherapies. CD44, a cell surface component that interacts with the extracellular matrix, has been found to be highly expressed in CSCs of several solid tumors. However, the relevancy between CD44(+) cells and slow-cycling cells and the underlying mechanisms for the emergence of CD44(+) CSCs during tumorigenesis have not been elucidated. Here we show that a gastric gland residing at the squamo-columnar junction (SCJ) in normal mouse stomach contains CD44(+) stem cell-like slow-cycling cells and that this characteristic CD44(+) gland was expanded by prostaglandin E2 (PGE(2)) and Wnt signaling in K19-Wnt1/C2mE mouse, a genetic mouse model for gastric tumorigenesis. The analysis of three transgenic mouse lines, K19-Wnt1, K19-C2mE and K19-Wnt1/C2mE, revealed that the expansion of CD44(+) SCJ cells is triggered by PGE(2)-mediated signaling and is prominently enhanced by the addition of Wnt activation. Furthermore, each expanded CD44(+) gland in gastric tumor of K19-Wnt1/C2mE mouse contains a few BrdU label-retaining quiescent or slow-cycling cells, suggesting that the CD44(+) SCJ cells in normal mouse are candidates for the cell-of-origin of gastric CSCs. These observations suggest that PGE(2)-mediated inflammatory signaling and Wnt signaling cooperatively trigger the expansion of CD44(+) slow-cycling stem-like cells in SCJ, leading to development of lethal gastric tumors in mice.
Collapse
Affiliation(s)
- Takatsugu Ishimoto
- Division of Gene Regulation, Institute for Advanced Medical Research, School of Medicine, Keio University, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Expansion of a cell population expressing stem cell markers in parathyroid glands from patients with hyperparathyroidism. Ann Surg 2010; 251:107-13. [PMID: 20009751 DOI: 10.1097/sla.0b013e3181b5da28] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
OBJECTIVE We sought to examine abnormal parathyroid glands for the presence of stem cells. SUMMARY BACKGROUND DATA Cancer stem cells have been identified in cancers from a variety of tissues as a CD44/CD24 cell population. We hypothesize that stem cells (SC) may also be involved in the pathogenesis of benign clonal expansion characteristic of hyperparathyroidism (HPT). METHODS Under institutional review board approval, parathyroid tissue was obtained from 20 patients with HPT and analyzed by fluorescence-activated cell sorting (FACS) for the CD44/CD24 cell population. Immunohistochemistry (IHC) with CD44 antibody was correlated with FACS results. RESULTS Parathyroid tissue was obtained for FACS analysis from 25 enlarged parathyroid glands from 20 patients, 17 with primary HPT, and 3 with secondary HPT. The average percent of SC defined as CD44/CD24 population was 10.93% for enlarged parathyroid glands. IHC using CD44 antibody was performed on 27 abnormal parathyroid glands and 7 normal parathyroid gland biopsies from the same patients. Although IHC was not as sensitive as FACS, comparison of IHC and FACS results for 24 abnormal glands gave a correlation coefficient of 0.52, which was statistically significant (P = 0.01, Spearman rank). By IHC, 13 of 27 abnormal glands stained 1+ to 3+ (average, 0.93) compared with no CD44 staining in normal glands, which was statistically different (mean IHC of 0 vs. 0.93, P = 0.03, Wilcoxon). CONCLUSIONS These novel findings demonstrate expansion of a resident cell population that expresses SC markers in abnormal parathyroid glands from patients with HPT. Our results suggest that clonal expansion of a resident SC population occurs in the pathogenesis not only of cancer, but also in benign parathyroid tumors occurring in HPT.
Collapse
|
39
|
Zhao R, Quaroni L, Casson AG. Fourier transform infrared (FTIR) spectromicroscopic characterization of stem-like cell populations in human esophageal normal and adenocarcinoma cell lines. Analyst 2010; 135:53-61. [DOI: 10.1039/b914311d] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
40
|
Yu X, Zhang Y, Chen C, Yao Q, Li M. Targeted drug delivery in pancreatic cancer. Biochim Biophys Acta Rev Cancer 2009; 1805:97-104. [PMID: 19853645 DOI: 10.1016/j.bbcan.2009.10.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Revised: 10/07/2009] [Accepted: 10/11/2009] [Indexed: 12/16/2022]
Abstract
Effective drug delivery in pancreatic cancer treatment remains a major challenge. Because of the high resistance to chemo and radiation therapy, the overall survival rate for pancreatic cancer is extremely low. Recent advances in drug delivery systems hold great promise for improving cancer therapy. Using liposomes, nanoparticles, and carbon nanotubes to deliver cancer drugs and other therapeutic agents such as siRNA, suicide gene, oncolytic virus, small molecule inhibitor, and antibody has been a success in recent preclinical trials. However, how to improve the specificity and stability of the delivered drug using ligand or antibody directed delivery represent a major problem. Therefore, developing novel, specific, tumor-targeted drug delivery systems is urgently needed for this terrible disease. This review summarizes the current progress on targeted drug delivery in pancreatic cancer and provides important information on potential therapeutic targets for pancreatic cancer treatment.
Collapse
Affiliation(s)
- Xianjun Yu
- Michael E. DeBakey Department of Surgery, Molecular Surgeon Research Center, Elkins Pancreas Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
41
|
Abstract
In this study, high-throughput microRNA (miRNA) expression analysis revealed that the expression of miR-140 was associated with chemosensitivity in osteosarcoma tumor xenografts. Tumor cells ectopically transfected with miR-140 were more resistant to methotrexate and 5-fluorouracil (5-FU). Overexpression of miR-140 inhibited cell proliferation in both osteosarcoma U-2 OS (wt-p53) and colon cancer HCT 116 (wt-p53) cell lines, but less so in osteosarcoma MG63 (mut-p53) and colon cancer HCT 116 (null-p53) cell lines. miR-140 induced p53 and p21 expression accompanied with G(1) and G(2) phase arrest only in cell lines containing wild type of p53. Histone deacetylase 4 (HDAC4) was confirmed to be one of the important targets of miR-140. The expression of endogenous miR-140 was significantly elevated in CD133(+hi)CD44(+hi) colon cancer stem-like cells that exhibit slow proliferating rate and chemoresistance. Blocking endogenous miR-140 by locked nucleic acid-modified anti-miR partially sensitized resistant colon cancer stem-like cells to 5-FU treatment. Taken together, our findings indicate that miR-140 is involved in the chemoresistance by reduced cell proliferation through G(1) and G(2) phase arrest mediated in part through the suppression of HDAC4. miR-140 may be a candidate target to develop novel therapeutic strategy to overcome drug resistance.
Collapse
|
42
|
Li CY, Li BX, Liang Y, Peng RQ, Ding Y, Xu DZ, Zhang X, Pan ZZ, Wan DS, Zeng YX, Zhu XF, Zhang XS. Higher percentage of CD133+ cells is associated with poor prognosis in colon carcinoma patients with stage IIIB. J Transl Med 2009; 7:56. [PMID: 19583834 PMCID: PMC2715381 DOI: 10.1186/1479-5876-7-56] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2008] [Accepted: 07/07/2009] [Indexed: 12/13/2022] Open
Abstract
Background Cancer stem cell model suggested that tumor progression is driven by the overpopulation of cancer stem cells and eradicating or inhibiting the symmetric division of cancer stem cells would become the most important therapeutic strategy. However, clinical evidence for this hypothesis is still scarce. To evaluate the overpopulation hypothesis of cancer stem cells the association of percentage of CD133+ tumor cells with clinicopathological parameters in colon cancer was investigated since CD133 is a putative cancer stem cell marker shared by multiple solid tumors. Patients and methods Tumor tissues matched with adjacent normal tissues were collected from 104 stage IIIB colon cancer patients who were subject to radical resection between January, 1999 to July, 2003 in this center. The CD133 expression was examined with immunohistochemical staining. The correlation of the percentage of CD133+ cell with clinicopathological parameters and patients' 5-year survival was analyzed. Results The CD133+ cells were infrequent and heterogeneous distribution in the cancer tissue. Staining of CD133 was localized not only on the glandular-luminal surface of cancer cells but also on the invasive budding and the poorly differentiated tumors with ductal structures. Both univariate and multivariate survival analysis revealed that the percentage of CD133+ cancer cells and the invasive depth of tumor were independently prognostic. The patients with a lower percentage of CD133+ cancer cells (less than 5%) were strongly associated with a higher 5-year survival rate than those with a higher percentage of CD133+ cancer cells (greater than or equal to 55%). Additionally, no correlation was obtained between the percentage of CD133+ cancer cells and the other clinicopathological parameters including gender, age, site of primary mass, pathologic types, grades, and invasive depth. Conclusion The fact that a higher percentage CD133+ cells were strongly associated with a poorer prognosis in patients with locally advanced colon cancer implicated that CD133+ cancer cells contribute to the tumor progression, and the overpopulation hypothesis of cancer stem cell seems reasonable.
Collapse
Affiliation(s)
- Chun-Yan Li
- Biotherapy Center,The First Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Young SZ, Bordey A. GABA's control of stem and cancer cell proliferation in adult neural and peripheral niches. Physiology (Bethesda) 2009; 24:171-85. [PMID: 19509127 PMCID: PMC2931807 DOI: 10.1152/physiol.00002.2009] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Aside from traditional neurotransmission and regulation of secretion, gamma-amino butyric acid (GABA) through GABA(A) receptors negatively regulates proliferation of pluripotent and neural stem cells in embryonic and adult tissue. There has also been evidence that GABAergic signaling and its control over proliferation is not only limited to the nervous system, but is widespread through peripheral organs containing adult stem cells. GABA has emerged as a tumor signaling molecule in the periphery that controls the proliferation of tumor cells and perhaps tumor stem cells. Here, we will discuss GABA's presence as a near-universal signal that may be altered in tumor cells resulting in modified mitotic activity.
Collapse
Affiliation(s)
- Stephanie Z Young
- Department of Neurosurgery, Yale University, New Haven, Connecticut, USA
| | | |
Collapse
|
44
|
Di Fiore R, Santulli A, Ferrante RD, Giuliano M, De Blasio A, Messina C, Pirozzi G, Tirino V, Tesoriere G, Vento R. Identification and expansion of human osteosarcoma-cancer-stem cells by long-term 3-aminobenzamide treatment. J Cell Physiol 2009; 219:301-13. [PMID: 19160414 DOI: 10.1002/jcp.21667] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A novel cancer stem-like cell line (3AB-OS), expressing a number of pluripotent stem cell markers, was irreversibly selected from human osteosarcoma MG-63 cells by long-term treatment (100 days) with 3-aminobenzamide (3AB). 3AB-OS cells are a heterogeneous and stable cell population composed by three types of fibroblastoid cells, spindle-shaped, polygonal-shaped, and rounded-shaped. With respect to MG-63 cells, 3AB-OS cells are extremely smaller, possess a much greater capacity to form spheres, a stronger self-renewal ability and much higher levels of cell cycle markers which account for G1-S/G2-M phases progression. Differently from MG-63 cells, 3AB-OS cells can be reseeded unlimitedly without losing their proliferative potential. They show an ATP-binding cassette transporter ABCG2-dependent phenotype with high drug efflux capacity, and a strong positivity for CD133, marker for pluripotent stem cells, which are almost unmeasurable in MG-63 cells. 3AB-OS cells are much less committed to osteogenic and adipogenic differentiation than MG-63 cells and highly express genes required for maintaining stem cell state (Oct3/4, hTERT, nucleostemin, Nanog) and for inhibiting apoptosis (HIF-1alpha, FLIP-L, Bcl-2, XIAP, IAPs, and survivin). 3AB-OS may be a novel tumor cell line useful for investigating the mechanisms by which stem cells enrichment may be induced in a tumor cell line. The identification of a subpopulation of cancer stem cells that drives tumorigenesis and chemoresistance in osteosarcoma may lead to prognosis and optimal therapy determination. Expression patterns of stem cell markers, especially CD133 and ABCG2, may indicate the undifferentiated state of osteosarcoma tumors, and may correlate with unfavorable prognosis in the clinical setting.
Collapse
Affiliation(s)
- Riccardo Di Fiore
- Dipartimento di Scienze Biochimiche, Università degli Studi di Palermo, Policlinico, Palermo, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Baumhoer D, Riener MO, Zlobec I, Tornillo L, Vogetseder A, Kristiansen G, Dietmaier W, Hartmann A, Wuensch PH, Sessa F, Ruemmele P, Terracciano LM. Expression of CD24, P-cadherin and S100A4 in tumors of the ampulla of Vater. Mod Pathol 2009; 22:306-13. [PMID: 19043399 DOI: 10.1038/modpathol.2008.192] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Carcinomas of the Vaterian system are rare and presumably arise from preexisting adenomas (adenoma-carcinoma-sequence). Usually, biopsies are obtained to confirm and specify endoscopic findings, but differentiating reactive atypia from dysplasia or dysplasia from invasive carcinoma can sometimes be difficult or even impossible on morphological criteria alone. In case of invasive carcinoma, furthermore, the precise classification of carcinoma subtypes needs to be established since the distinct subtypes differ significantly in terms of clinical outcome. The cell adhesion proteins CD24, P-cadherin and S100A4 were shown to be expressed in several carcinomas and in dysplastic epithelium but only rarely in normal mucosa. We therefore investigated their expression in 177 carcinoma, 114 adenoma and 152 normal mucosa specimens of the ampulla of Vater. Although the expression of the cell adhesion proteins did not differ between the carcinoma subtypes, marked differences between normal mucosa, adenoma and carcinoma samples were observed. All marker proteins were expressed in less than 7% of normal mucosa samples (S100A4 in only 1% of cases) and showed an increasing expression from adenoma to invasive carcinoma. Our findings suggest that P-cadherin and S100A4 are helpful in discriminating normal mucosa or reactive atypia from neoplastic lesions. CD24 and S100A4, furthermore, can assist in the differential diagnosis of dysplasia vs invasive carcinoma.
Collapse
Affiliation(s)
- Daniel Baumhoer
- Institute of Pathology, University of Basel, Basel, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Akgül O, Tez M, Koç M. The unbearable lightness of understanding clinical influence of lymph node micrometastasis. Langenbecks Arch Surg 2008; 394:195-6; author reply 197. [PMID: 18855005 DOI: 10.1007/s00423-008-0424-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2008] [Accepted: 08/11/2008] [Indexed: 11/27/2022]
|