1
|
Li H, Wu J, Zhang N, Zheng Q. Transglutaminase 2-mediated histone monoaminylation and its role in cancer. Biosci Rep 2024; 44:BSR20240493. [PMID: 39115570 PMCID: PMC11345673 DOI: 10.1042/bsr20240493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 08/10/2024] Open
Abstract
Transglutaminase 2 (TGM2) has been known as a well-characterized factor regulating the progression of multiple types of cancer, due to its multifunctional activities and the ubiquitous signaling pathways it is involved in. As a member of the transglutaminase family, TGM2 catalyzes protein post-translational modifications (PTMs), including monoaminylation, amide hydrolysis, cross-linking, etc., through the transamidation of variant glutamine-containing protein substrates. Recent discoveries revealed histone as an important category of TGM2 substrates, thus identifying histone monoaminylation as an emerging epigenetic mark, which is highly enriched in cancer cells and possesses significant regulatory functions of gene transcription. In this review, we will summarize recent advances in TGM2-mediated histone monoaminylation as well as its role in cancer and discuss the key research methodologies to better understand this unique epigenetic mark, thereby shedding light on the therapeutic potential of TGM2 as a druggable target in cancer treatment.
Collapse
Affiliation(s)
- Huapeng Li
- Molecular, Cellular, and Developmental Biology Graduate Program, The Ohio State University, Columbus, OH 43210, U.S.A
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH 43210, U.S.A
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, U.S.A
| | - Jinghua Wu
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH 43210, U.S.A
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, U.S.A
| | - Nan Zhang
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH 43210, U.S.A
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, U.S.A
| | - Qingfei Zheng
- Molecular, Cellular, and Developmental Biology Graduate Program, The Ohio State University, Columbus, OH 43210, U.S.A
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH 43210, U.S.A
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, U.S.A
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, OH 43210, U.S.A
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, IN, U.S.A
| |
Collapse
|
2
|
Zou Y, Mei X, Wang X, Zhang X, Wang X, Xiang W, Lu N. Fibrin-konjac glucomannan-black phosphorus hydrogel scaffolds loaded with nasal ectodermal mesenchymal stem cells accelerated alveolar bone regeneration. BMC Oral Health 2024; 24:878. [PMID: 39095803 PMCID: PMC11297757 DOI: 10.1186/s12903-024-04649-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Effective treatments for the alveolar bone defect remain a major concern in dental therapy. The objectives of this study were to develop a fibrin and konjac glucomannan (KGM) composite hydrogel as scaffolds for the osteogenesis of nasal mucosa-derived ectodermal mesenchymal stem cells (EMSCs) for the regeneration of alveolar bone defect, and to investigate the osteogenesis-accelerating effects of black phosphorus nanoparticles (BPNs) embedded in the hydrogels. METHODS Primary EMSCs were isolated from rat nasal mucosa and used for the alveolar bone recovery. Fibrin and KGM were prepared in different ratios for osteomimetic hydrogel scaffolds, and the optimal ratio was determined by mechanical properties and biocompatibility analysis. Then, the optimal hydrogels were integrated with BPNs to obtain BPNs/fibrin-KGM hydrogels, and the effects on osteogenic EMSCs in vitro were evaluated. To explore the osteogenesis-enhancing effects of hydrogels in vivo, the BPNs/fibrin-KGM scaffolds combined with EMSCs were implanted to a rat model of alveolar bone defect. Micro-computed tomography (CT), histological examination, real-time quantitative polymerase chain reaction (RT-qPCR) and western blot were conducted to evaluate the bone morphology and expression of osteogenesis-related genes of the bone regeneration. RESULTS The addition of KGM improved the mechanical properties and biodegradation characteristics of the fibrin hydrogels. In vitro, the BPNs-containing compound hydrogel was proved to be biocompatible and capable of enhancing the osteogenesis of EMSCs by upregulating the mineralization and the activity of alkaline phosphatase. In vivo, the micro-CT analysis and histological evaluation demonstrated that rats implanted EMSCs-BPNs/fibrin-KGM hydrogels exhibited the best bone reconstruction. And compared to the model group, the expression of osteogenesis genes including osteopontin (Opn, p < 0.0001), osteocalcin (Ocn, p < 0.0001), type collagen (Col , p < 0.0001), bone morphogenetic protein-2 (Bmp2, p < 0.0001), Smad1 (p = 0.0006), and runt-related transcription factor 2 (Runx2, p < 0.0001) were all significantly upregulated. CONCLUSIONS EMSCs/BPNs-containing fibrin-KGM hydrogels accelerated the recovery of the alveolar bone defect in rats by effectively up-regulating the expression of osteogenesis-related genes, promoting the formation and mineralisation of bone matrix.
Collapse
Affiliation(s)
- Yin Zou
- Department of Stomatology, Affiliated Children's Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu Province, People's Republic of China
| | - Xue Mei
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, People's Republic of China
| | - Xinhe Wang
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, People's Republic of China
| | - Xuan Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, People's Republic of China
| | - Xun Wang
- Jiangnan University Medical Center, Wuxi, Jiangsu Province, People's Republic of China
| | - Wen Xiang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu Province, People's Republic of China
| | - Naiyan Lu
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, People's Republic of China.
| |
Collapse
|
3
|
Yang H, Cao Z, Wang Y, Wang J, Gao J, Han B, Yu F, Qin Y, Guo Y. Treadmill exercise influences the microRNA profiles in the bone tissues of mice. Exp Ther Med 2021; 22:1035. [PMID: 34373721 PMCID: PMC8343800 DOI: 10.3892/etm.2021.10467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 05/28/2021] [Indexed: 12/12/2022] Open
Abstract
As an important regulator involved in cell activity, microRNAs (miRNAs) are important in the process of exercise influencing bone metabolism. The present study aimed to detect and select differentially expressed miRNAs in the bone tissues of mice trained on a treadmill, predict the target genes of these differentially expressed miRNAs and lay a foundation for exploring the effect of treadmill training on bone metabolism through miRNAs. In this experiment, after the mice were trained on a treadmill for 8 weeks, the mechanical properties of mouse femur bone were assessed, and the alkaline phosphatase (ALP) activity and osteocalcin (OCN) protein levels of the bone were assayed. miRNA microarray and reverse transcription-quantitative (RT-q)PCR were performed to select and validate differentially expressed miRNAs in the bone, and the target genes of these miRNAs were predicted with bioinformatics methods. In addition, the differentially expressed miRNAs in the bone tissues were compared with those in mechanically strained osteocytes in vitro. Treadmill training improved the mechanical properties of the femur bones of mice, and elevated the ALP activity and OCN protein level in the bone. In addition, 122 differentially expressed miRNAs were detected in the bone, of which nine were validated via RT-qPCR. Among the target genes of these differentially expressed miRNAs, certain candidates were involved in bone metabolism. A total of eight miRNAs were differentially expressed in both bone tissue and osteocytes, exhibiting the same expression trends, and various target genes of these eight miRNAs were also involved in bone metabolism. Treadmill training resulted in altered miRNA expression profiles in the bones of mice (mainly in osteocytes) and the differentially expressed miRNAs may serve important roles in regulating bone metabolism and osteogenic differentiation.
Collapse
Affiliation(s)
- Huan Yang
- Department of Biomedical Engineering, College of Biotechnology, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Zhen Cao
- Department of Biomedical Engineering, College of Biotechnology, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Yang Wang
- Department of Biomedical Engineering, College of Biotechnology, Guilin Medical University, Guilin, Guangxi 541004, P.R. China.,Department of Biomedical Engineering, Bioengineering College of Chongqing University, Chongqing 400044, P.R. China
| | - Jiahui Wang
- Department of Biomedical Engineering, College of Biotechnology, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Jintao Gao
- Department of Biomedical Engineering, College of Biotechnology, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Biao Han
- Department of Biomedical Engineering, College of Biotechnology, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Fangmei Yu
- Department of Biomedical Engineering, College of Biotechnology, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Yixiong Qin
- Department of Biomedical Engineering, College of Biotechnology, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Yong Guo
- Department of Biomedical Engineering, College of Biotechnology, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| |
Collapse
|
4
|
Adamczyk M. Transglutaminase 2 in cartilage homoeostasis: novel links with inflammatory osteoarthritis. Amino Acids 2017; 49:625-633. [PMID: 27510997 PMCID: PMC5332500 DOI: 10.1007/s00726-016-2305-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 07/28/2016] [Indexed: 12/26/2022]
Abstract
Transglutaminase 2 (TG2) is highly expressed during chondrocyte maturation and contributes to the formation of a mineralised scaffold by introducing crosslinks between extracellular matrix (ECM) proteins. In healthy cartilage, TG2 stabilises integrity of ECM and likely influences cartilage stiffness and mechanistic properties. At the same time, the abnormal accumulation of TG2 in the ECM promotes chondrocyte hypertrophy and cartilage calcification, which might be an important aspect of osteoarthritis (OA) initiation. Although excessive joint loading and injuries are one of the main causes leading to OA development, it is now being recognised that the presence of inflammatory mediators accelerates OA progression. Inflammatory signalling is known to stimulate the extracellular TG2 activity in cartilage and promote TG2-catalysed crosslinking of molecules that promote chondrocyte osteoarthritic differentiation. It is, however, unclear whether TG2 activity aims to resolve or aggravate damages within the arthritic joint. Better understanding of the complex signalling pathways linking inflammation with TG2 activities is needed to identify the role of TG2 in OA and to define possible avenues for therapeutic interventions.
Collapse
Affiliation(s)
- M Adamczyk
- Matrix Biology and Tissue Repair Research Unit, Oral and Biomedical Sciences, College of Biomedical and Life Sciences, School of Dentistry, Cardiff University, Heath Park, Cardiff, CF14 4XY, UK.
- Academic Unit of Bone Biology, Department of Oncology and Metabolism, Mellanby Centre For Bone Research, Medical School, The University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK.
| |
Collapse
|
5
|
Lin CHS, Chen J, Zhang Z, Johnson GVW, Cooper AJL, Feola J, Bank A, Shein J, Ruotsalainen HJ, Pihlajaniemi TA, Goligorsky MS. Endostatin and transglutaminase 2 are involved in fibrosis of the aging kidney. Kidney Int 2016; 89:1281-92. [PMID: 27165830 DOI: 10.1016/j.kint.2016.01.030] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 01/25/2016] [Accepted: 01/28/2016] [Indexed: 12/21/2022]
Abstract
Endostatin (EST), an antiangiogenic factor, is enriched in aging kidneys. EST is also an interactive partner of transglutaminase 2 (TG2), an enzyme that cross-links extracellular matrix proteins. Here we tested whether EST and TG2 play a role in the fibrosis of aging. In wild-type mice, aging kidneys exhibited a 2- to 4-fold increase in TG2 paralleled by increased cross-linked extracellular matrix proteins and fibrosis. Mice transgenic to express EST showed renal fibrosis at a young age. One-month delivery of EST via minipumps to young mice showed increased renal fibrosis that became more robust when superimposed on folic acid-induced nephropathy. Upregulated TG2 and impaired renal function were apparent with EST delivery combined with folic acid-induced nephropathy. Subcapsular injection of TG2 and/or EST into kidneys of young mice not only induced interstitial fibrosis, but also increased the proportion of senescent cells. Thus, kidney fibrosis in aging may represent a natural outcome of upregulated EST and TG2, but more likely it appears to be a result of cumulative stresses occurring on the background of synergistically acting geronic (aging) proteins, EST and TG2.
Collapse
Affiliation(s)
- Chi Hua Sarah Lin
- Department of Medicine, Renal Research Institute, New York Medical College, Valhalla, New York, USA; Department of Pharmacology, Renal Research Institute, New York Medical College, Valhalla, New York, USA; Department of Physiology, Renal Research Institute, New York Medical College, Valhalla, New York, USA
| | - Jun Chen
- Department of Medicine, Renal Research Institute, New York Medical College, Valhalla, New York, USA; Department of Pharmacology, Renal Research Institute, New York Medical College, Valhalla, New York, USA; Department of Physiology, Renal Research Institute, New York Medical College, Valhalla, New York, USA
| | - Zhongtao Zhang
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York, USA
| | - Gail V W Johnson
- Department of Anesthesiology, University of Rochester, Rochester, New York, USA
| | - Arthur J L Cooper
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York, USA
| | - Julianne Feola
- Department of Anesthesiology, University of Rochester, Rochester, New York, USA
| | - Alexander Bank
- Department of Medicine, Renal Research Institute, New York Medical College, Valhalla, New York, USA; Department of Pharmacology, Renal Research Institute, New York Medical College, Valhalla, New York, USA; Department of Physiology, Renal Research Institute, New York Medical College, Valhalla, New York, USA
| | - Jonathan Shein
- Department of Medicine, Renal Research Institute, New York Medical College, Valhalla, New York, USA; Department of Pharmacology, Renal Research Institute, New York Medical College, Valhalla, New York, USA; Department of Physiology, Renal Research Institute, New York Medical College, Valhalla, New York, USA
| | - Heli J Ruotsalainen
- Oulu Center for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Taina A Pihlajaniemi
- Oulu Center for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Michael S Goligorsky
- Department of Medicine, Renal Research Institute, New York Medical College, Valhalla, New York, USA; Department of Pharmacology, Renal Research Institute, New York Medical College, Valhalla, New York, USA; Department of Physiology, Renal Research Institute, New York Medical College, Valhalla, New York, USA.
| |
Collapse
|
6
|
Multiple essential MT1-MMP functions in tooth root formation, dentinogenesis, and tooth eruption. Matrix Biol 2016; 52-54:266-283. [PMID: 26780723 DOI: 10.1016/j.matbio.2016.01.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 01/07/2016] [Accepted: 01/07/2016] [Indexed: 11/23/2022]
Abstract
Membrane-type matrix metalloproteinase 1 (MT1-MMP) is a transmembrane zinc-endopeptidase that breaks down extracellular matrix components, including several collagens, during tissue development and physiological remodeling. MT1-MMP-deficient mice (MT1-MMP(-/-)) feature severe defects in connective tissues, such as impaired growth, osteopenia, fibrosis, and conspicuous loss of molar tooth eruption and root formation. In order to define the functions of MT1-MMP during root formation and tooth eruption, we analyzed the development of teeth and surrounding tissues in the absence of MT1-MMP. In situ hybridization showed that MT1-MMP was widely expressed in cells associated with teeth and surrounding connective tissues during development. Multiple defects in dentoalveolar tissues were associated with loss of MT1-MMP. Root formation was inhibited by defective structure and function of Hertwig's epithelial root sheath (HERS). However, no defect was found in creation of the eruption pathway, suggesting that tooth eruption was hampered by lack of alveolar bone modeling/remodeling coincident with reduced periodontal ligament (PDL) formation and integration with the alveolar bone. Additionally, we identified a significant defect in dentin formation and mineralization associated with the loss of MT1-MMP. To segregate these multiple defects and trace their cellular origin, conditional ablation of MT1-MMP was performed in epithelia and mesenchyme. Mice featuring selective loss of MT1-MMP activity in the epithelium were indistinguishable from wild type mice, and importantly, featured a normal HERS structure and molar eruption. In contrast, selective knock-out of MT1-MMP in Osterix-expressing mesenchymal cells, including osteoblasts and odontoblasts, recapitulated major defects from the global knock-out including altered HERS structure, short roots, defective dentin formation and mineralization, and reduced alveolar bone formation, although molars were able to erupt. These data indicate that MT1-MMP activity in the dental mesenchyme, and not in epithelial-derived HERS, is essential for proper tooth root formation and eruption. In summary, our studies point to an indispensable role for MT1-MMP-mediated matrix remodeling in tooth eruption through effects on bone formation, soft tissue remodeling and organization of the follicle/PDL region.
Collapse
|
7
|
Eckert RL, Kaartinen MT, Nurminskaya M, Belkin AM, Colak G, Johnson GVW, Mehta K. Transglutaminase regulation of cell function. Physiol Rev 2014; 94:383-417. [PMID: 24692352 DOI: 10.1152/physrev.00019.2013] [Citation(s) in RCA: 312] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Transglutaminases (TGs) are multifunctional proteins having enzymatic and scaffolding functions that participate in regulation of cell fate in a wide range of cellular systems and are implicated to have roles in development of disease. This review highlights the mechanism of action of these proteins with respect to their structure, impact on cell differentiation and survival, role in cancer development and progression, and function in signal transduction. We also discuss the mechanisms whereby TG level is controlled and how TGs control downstream targets. The studies described herein begin to clarify the physiological roles of TGs in both normal biology and disease states.
Collapse
|
8
|
Fraij BM. Induction and translocation of tissue transglutaminase isoforms increased phosphorylation in retinoic acid treated erythroleukemia cells. Protein J 2014; 32:426-34. [PMID: 23817628 DOI: 10.1007/s10930-013-9499-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Tissue transglutaminase (TGC, TG2, 80 kDa) is inactive in cross-linking reactions and is converted in vitro and in vivo to the TG (55 kDa) active isoform (Fraij in J Cell Biochem 112:2469-2489, 2011). Two isoforms of human TGC were cloned from human erythroleukemia (HEL) cells induced with retinoic acid (RA) and termed TGH, 63 kDa (Fraij et al. in J Biol Chem 267:22616-22673, 1992) and TGH2, 37 kDa. The purified TGC isoforms exhibited GTPase activity and TGH and TGH2 showed higher activities than the native TGC protein. In all normal cells examined, TGC was found in membrane fractions several fold higher than the supernatant fractions; however, in the natural tumor cell line HEL the TGC cellular distribution was reversed. Although TGC is the major enzyme in normal human erythrocytes, its expression level was significantly decreased in HEL cells. RA treatment induced a sevenfold increase in the level of TGC protein in HEL cells and was accompanied by its translocation to cell membranes. When isolated membrane and supernatant fractions from normal human foreskin (CF3), normal human embryonic lung (WI-38), and HEL cells treated with or without RA were incubated with [(32)P]-ATP at 37 °C for 1 h, more radio-labeled proteins were detected in the membrane fractions than the cytosolic fractions. More labeled protein bands were detected in RA treated HEL cells in comparison to control HEL cell extracts. Radio labeled proteins coimmunoprecipitated with the TGC isoforms in RA treated HEL membrane fractions thereby confirming that the radio-labeled material consists of endogenous proteins associated with TGC isoforms. Protein phosphorylation is related to the induction and translocation of the isoforms in RA treated cells. These results show that the TGC isoforms complexes with proteins in vivo and that the phosphorylation of these proteins is catalyzed directly by TGC kinase activity or indirectly by the TGC phosphorylation of other protein kinases.
Collapse
Affiliation(s)
- Bassam M Fraij
- Biology and Chemistry Department, Benedict College, Columbia, SC 29204, USA.
| |
Collapse
|
9
|
Nurminskaya MV, Belkin AM. Cellular functions of tissue transglutaminase. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 294:1-97. [PMID: 22364871 PMCID: PMC3746560 DOI: 10.1016/b978-0-12-394305-7.00001-x] [Citation(s) in RCA: 190] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Transglutaminase 2 (TG2 or tissue transglutaminase) is a highly complex multifunctional protein that acts as transglutaminase, GTPase/ATPase, protein disulfide isomerase, and protein kinase. Moreover, TG2 has many well-documented nonenzymatic functions that are based on its noncovalent interactions with multiple cellular proteins. A vast array of biochemical activities of TG2 accounts for its involvement in a variety of cellular processes, including adhesion, migration, growth, survival, apoptosis, differentiation, and extracellular matrix organization. In turn, the impact of TG2 on these processes implicates this protein in various physiological responses and pathological states, contributing to wound healing, inflammation, autoimmunity, neurodegeneration, vascular remodeling, tumor growth and metastasis, and tissue fibrosis. TG2 is ubiquitously expressed and is particularly abundant in endothelial cells, fibroblasts, osteoblasts, monocytes/macrophages, and smooth muscle cells. The protein is localized in multiple cellular compartments, including the nucleus, cytosol, mitochondria, endolysosomes, plasma membrane, and cell surface and extracellular matrix, where Ca(2+), nucleotides, nitric oxide, reactive oxygen species, membrane lipids, and distinct protein-protein interactions in the local microenvironment jointly regulate its activities. In this review, we discuss the complex biochemical activities and molecular interactions of TG2 in the context of diverse subcellular compartments and evaluate its wide ranging and cell type-specific biological functions and their regulation.
Collapse
Affiliation(s)
- Maria V Nurminskaya
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | |
Collapse
|
10
|
Morrison C, Mancini S, Cipollone J, Kappelhoff R, Roskelley C, Overall C. Microarray and proteomic analysis of breast cancer cell and osteoblast co-cultures: role of osteoblast matrix metalloproteinase (MMP)-13 in bone metastasis. J Biol Chem 2011; 286:34271-85. [PMID: 21784845 PMCID: PMC3190775 DOI: 10.1074/jbc.m111.222513] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Revised: 07/20/2011] [Indexed: 12/20/2022] Open
Abstract
Dynamic reciprocal interactions between a tumor and its microenvironment impact both the establishment and progression of metastases. These interactions are mediated, in part, through proteolytic sculpting of the microenvironment, particularly by the matrix metalloproteinases, with both tumors and stroma contributing to the proteolytic milieu. Because bone is one of the predominant sites of breast cancer metastases, we used a co-culture system in which a subpopulation of the highly invasive human breast cancer cell line MDA-MB-231, with increased propensity to metastasize to bone, was overlaid onto a monolayer of differentiated osteoblast MC3T3-E1 cells in a mineralized osteoid matrix. CLIP-CHIP® microarrays identified changes in the complete protease and inhibitor expression profile of the breast cancer and osteoblast cells that were induced upon co-culture. A large increase in osteoblast-derived MMP-13 mRNA and protein was observed. Affymetrix analysis and validation showed induction of MMP-13 was initiated by soluble factors produced by the breast tumor cells, including oncostatin M and the acute response apolipoprotein SAA3. Significant changes in the osteoblast secretomes upon addition of MMP-13 were identified by degradomics from which six novel MMP-13 substrates with the potential to functionally impact breast cancer metastasis to bone were identified and validated. These included inactivation of the chemokines CCL2 and CCL7, activation of platelet-derived growth factor-C, and cleavage of SAA3, osteoprotegerin, CutA, and antithrombin III. Hence, the influence of breast cancer metastases on the bone microenvironment that is executed via the induction of osteoblast MMP-13 with the potential to enhance metastases growth by generating a microenvironmental amplifying feedback loop is revealed.
Collapse
Affiliation(s)
- Charlotte Morrison
- From the Centre for Blood Research and
- Departments of Oral Biological and Medical Sciences
| | - Stephanie Mancini
- Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Jane Cipollone
- Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Reinhild Kappelhoff
- From the Centre for Blood Research and
- Departments of Oral Biological and Medical Sciences
| | - Calvin Roskelley
- Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Christopher Overall
- From the Centre for Blood Research and
- Departments of Oral Biological and Medical Sciences
- Biochemistry and Molecular Biology, and
| |
Collapse
|
11
|
Gorski JP. Biomineralization of bone: a fresh view of the roles of non-collagenous proteins. Front Biosci (Landmark Ed) 2011; 16:2598-621. [PMID: 21622198 DOI: 10.2741/3875] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The impact of genetics has dramatically affected our understanding of the functions of non-collagenous proteins. Specifically, mutations and knockouts have defined their cellular spectrum of actions. However, the biochemical mechanisms mediated by non-collagenous proteins in biomineralization remain elusive. It is likely that this understanding will require more focused functional testing at the protein, cell, and tissue level. Although initially viewed as rather redundant and static acidic calcium binding proteins, it is now clear that non-collagenous proteins in mineralizing tissues represent diverse entities capable of forming multiple protein-protein interactions which act in positive and negative ways to regulate the process of bone mineralization. Several new examples from the author's laboratory are provided which illustrate this theme including an apparent activating effect of hydroxyapatite crystals on metalloproteinases. This review emphasizes the view that secreted non-collagenous proteins in mineralizing bone actively participate in the mineralization process and ultimately control where and how much mineral crystal is deposited, as well as determining the quality and biomechanical properties of the mineralized matrix produced.
Collapse
Affiliation(s)
- Jeffrey Paul Gorski
- Center of Excellence in the Study of Musculoskeletal and Dental Tissues and Dept. of Oral Biology, Sch. Of Dentistry, Univ. of Missouri-Kansas City, Kansas City, MO 64108, USA.
| |
Collapse
|
12
|
Abstract
Arterial calcifications as found with various imaging techniques, like plain X-ray, computed tomography or ultrasound are associated with increased cardiovascular risk. The prevalence of arterial calcification increases with age and is stimulated by several common cardiovascular risk factors. In this review, the clinical importance of arterial calcification and the currently known proteins involved are discussed. Arterial calcification is the result of a complex interplay between stimulating (bone morphogenetic protein type 2 [BMP-2], RANKL) and inhibitory (matrix Gla protein, BMP-7, osteoprotegerin, fetuin-A, osteopontin) proteins. Vascular calcification is especially prevalent and related to adverse outcome in patients with renal insufficiency and diabetes mellitus. We address the special circumstances and mechanisms in these patient groups. Treatment and prevention of arterial calcification is possible by the use of specific drugs. However, it remains to be proven that reduction of vascular calcification in itself leads to a reduced cardiovascular risk.
Collapse
Affiliation(s)
- Roger J M W Rennenberg
- Department of Internal Medicine, Maastricht University Medical Centre (MUMC+) and Cardiovascular Research Institute Maastricht (CARIM), Maastricht, The Netherlands.
| | | | | | | |
Collapse
|
13
|
Al-Jallad HF, Myneni VD, Piercy-Kotb SA, Chabot N, Mulani A, Keillor JW, Kaartinen MT. Plasma membrane factor XIIIA transglutaminase activity regulates osteoblast matrix secretion and deposition by affecting microtubule dynamics. PLoS One 2011; 6:e15893. [PMID: 21283799 PMCID: PMC3024320 DOI: 10.1371/journal.pone.0015893] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Accepted: 11/30/2010] [Indexed: 11/19/2022] Open
Abstract
Transglutaminase activity, arising potentially from transglutaminase 2 (TG2) and
Factor XIIIA (FXIIIA), has been linked to osteoblast differentiation where it is
required for type I collagen and fibronectin matrix deposition. In this study we
have used an irreversible TG-inhibitor to ‘block –and-track’
enzyme(s) targeted during osteoblast differentiation. We show that the
irreversible TG-inhibitor is highly potent in inhibiting osteoblast
differentiation and mineralization and reduces secretion of both fibronectin and
type I collagen and their release from the cell surface. Tracking of the dansyl
probe by Western blotting and immunofluorescence microscopy demonstrated that
the inhibitor targets plasma membrane-associated FXIIIA. TG2 appears not to
contribute to crosslinking activity on the osteoblast surface. Inhibition of
FXIIIA with NC9 resulted in defective secretory vesicle delivery to the plasma
membrane which was attributable to a disorganized microtubule network and
decreased microtubule association with the plasma membrane. NC9 inhibition of
FXIIIA resulted in destabilization of microtubules as assessed by cellular
Glu-tubulin levels. Furthermore, NC9 blocked modification of Glu-tubulin into
150 kDa high-molecular weight Glu-tubulin form which was specifically localized
to the plasma membrane. FXIIIA enzyme and its crosslinking activity were
colocalized with plasma membrane-associated tubulin, and thus, it appears that
FXIIIA crosslinking activity is directed towards stabilizing the interaction of
microtubules with the plasma membrane. Our work provides the first mechanistic
cues as to how transglutaminase activity could affect protein secretion and
matrix deposition in osteoblasts and suggests a novel function for plasma
membrane FXIIIA in microtubule dynamics.
Collapse
Affiliation(s)
- Hadil F. Al-Jallad
- Division of Biomedical Sciences, Faculty of Dentistry, McGill University,
Montreal, Quebec, Canada
| | - Vamsee D. Myneni
- Division of Biomedical Sciences, Faculty of Dentistry, McGill University,
Montreal, Quebec, Canada
| | - Sarah A. Piercy-Kotb
- Division of Biomedical Sciences, Faculty of Dentistry, McGill University,
Montreal, Quebec, Canada
- Division of Experimental Medicine, Department of Medicine, Faculty of
Medicine, McGill University, Montreal, Quebec, Canada
| | - Nicolas Chabot
- Department of Chemistry, Faculty of Arts and Science, Université
de Montréal, Montreal, Quebec, Canada
| | - Amina Mulani
- Department of Chemistry, Faculty of Arts and Science, Université
de Montréal, Montreal, Quebec, Canada
| | - Jeffrey W. Keillor
- Department of Chemistry, Faculty of Arts and Science, Université
de Montréal, Montreal, Quebec, Canada
| | - Mari T. Kaartinen
- Division of Biomedical Sciences, Faculty of Dentistry, McGill University,
Montreal, Quebec, Canada
- Division of Experimental Medicine, Department of Medicine, Faculty of
Medicine, McGill University, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
14
|
Forsprecher J, Wang Z, Goldberg HA, Kaartinen MT. Transglutaminase-mediated oligomerization promotes osteoblast adhesive properties of osteopontin and bone sialoprotein. Cell Adh Migr 2011; 5:65-72. [PMID: 20864802 DOI: 10.4161/cam.5.1.13369] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Tissue transglutaminase (TG2) is a widely distributed, protein-crosslinking enzyme having a prominent role in cell adhesion as a β1 integrin co-receptor for fibronectin. In bone and teeth, its substrates include the matricellular proteins osteopontin (OPN) and bone sialoprotein (BSP). The aim of this study was to examine effects of TG2-mediated crosslinking and oligomerization of OPN and BSP on osteoblast cell adhesion. We show that surfaces coated with oligomerized OPN and BSP promote MC3T3-E1/C4 osteoblastic cell adhesion significantly better than surfaces coated with the monomeric form of the proteins. Both OPN and BSP oligomer-adherent cells showed more cytoplasmic extensions than those cells grown on the monomer-coated surfaces indicative of increased cell connectivity. Our study suggests a role for TG2 in promoting the cell adhesion function of two matricellular substrate proteins prominent in bone, tooth cementum and certain tumors.
Collapse
Affiliation(s)
- Jennifer Forsprecher
- Division of Biomedical Sciences, Faculty of Dentistry, McGill University, Montreal, QC, CA
| | | | | | | |
Collapse
|