1
|
Ishiyama S, Hayatsu M, Toriumi T, Tsuda H, Watanabe K, Kasai H, Kishigami S, Mochizuki K, Mikami Y. Assessing the combined impact of fatty liver-induced TGF-β1 and LPS-activated macrophages in fibrosis through a novel 3D serial section methodology. Sci Rep 2024; 14:11404. [PMID: 38762616 PMCID: PMC11102459 DOI: 10.1038/s41598-024-60845-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/28/2024] [Indexed: 05/20/2024] Open
Abstract
Non-alcoholic steatohepatitis (NASH), caused by fat buildup, can lead to liver inflammation and damage. Elucidation of the spatial distribution of fibrotic tissue in the fatty liver in NASH can be immensely useful to understand its pathogenesis. Thus, we developed a novel serial section-3D (SS3D) technique that combines high-resolution image acquisition with 3D construction software, which enabled highly detailed analysis of the mouse liver and extraction and quantification of stained tissues. Moreover, we studied the underexplored mechanism of fibrosis progression in the fatty liver in NASH by subjecting the mice to a high-fat diet (HFD), followed by lipopolysaccharide (LPS) administration. The HFD/LPS (+) group showed extensive fibrosis compared with control; additionally, the area of these fibrotic regions in the HFD/LPS (+) group was almost double that of control using our SS3D technique. LPS administration led to an increase in Tnfα and Il1β mRNA expression and the number of macrophages in the liver. On the other hand, transforming growth factor-β1 (Tgfβ1) mRNA increased in HFD group compared to that of control group without LPS-administration. In addition, COL1A1 levels increased in hepatic stellate cell (HSC)-like XL-2 cells when treated with recombinant TGF-β1, which attenuated with recombinant latency-associated protein (rLAP). This attenuation was rescued with LPS-activated macrophages. Therefore, we demonstrated that fatty liver produced "latent-form" of TGF-β1, which activated by macrophages via inflammatory cytokines such as TNFα and IL1β, resulting in activation of HSCs leading to the production of COL1A1. Moreover, we established the effectiveness of our SS3D technique in creating 3D images of fibrotic tissue, which can be used to study other diseases as well.
Collapse
Affiliation(s)
- Shiori Ishiyama
- Department of Integrated Applied Life Science, Integrated Graduate School of Medicine, Engineering, and Agricultural Sciences, University of Yamanashi, Yamanashi, Japan
| | - Manabu Hayatsu
- Division of Microscopic Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Taku Toriumi
- Department of Anatomy, The Nippon Dental University School of Life Dentistry at Niigata, Niigata, Japan
| | - Hiromasa Tsuda
- Department of Biochemistry, Nihon University School of Dentistry, Tokyo, Japan
| | - Keisuke Watanabe
- Division of Gross Anatomy and Morphogenesis, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Hirotake Kasai
- Department of Microbiology, Faculty of Medicine, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Yamanashi, Japan
| | - Satoshi Kishigami
- Department of Integrated Applied Life Science, Integrated Graduate School of Medicine, Engineering, and Agricultural Sciences, University of Yamanashi, Yamanashi, Japan
- Center for Advanced Assisted Reproductive Technologies, University of Yamanashi, Yamanashi, Japan
| | - Kazuki Mochizuki
- Department of Integrated Applied Life Science, Integrated Graduate School of Medicine, Engineering, and Agricultural Sciences, University of Yamanashi, Yamanashi, Japan.
| | - Yoshikazu Mikami
- Division of Microscopic Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan.
| |
Collapse
|
2
|
Cipolla C, Sodero G, Cammisa I, Turriziani Colonna A, Giuliano S, Amar ID, Ram Biton R, Scambia G, Villa P. The impact of glucocorticoids on bone health and growth: endocrine and non-endocrine effects in children and young patients. Minerva Pediatr (Torino) 2023; 75:896-904. [PMID: 36315414 DOI: 10.23736/s2724-5276.22.07074-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Glucocorticoids have numerous applications in short and/or long-term therapy both in pediatric and young adults, based on their significant anti-inflammatory and immunosuppressive effects. Different routes of administration can be provided including topical, inhalatory and oral. Topical treatments are the first choice for many dermatologic conditions. The inhalatory form is widely used in asthma management while systemic pathologies often require oral administration. The risks for adverse effects are related to the dose and duration of therapy as well as the specific agent used. Therefore, long-term treatment has a negative impact on different metabolic systems and can lead to hypertension, dyslipidemia and insulin resistance. In particular, many studies emphasize the direct and indirect effects of glucocorticoids on bone health. Glucocorticoids are the most common iatrogenic cause of osteoporosis and can alter bone development in young adults. These side effects are due to an early and transient increase in bone resorption and a decrease in bone formation. Glucocorticoid-induced changes can act on the bone multicellular unit, bone cells and intracellular signaling pathways. Chronic use can also modify bone mass though indirect endocrine and non-endocrine effects by reducing the anabolic function of sex steroids and GH/IGF-1 axis, interfere with calcium metabolism, as well as muscle atrophy and central fat accumulation. The aim of our review was to revise the available evidence on the impact of glucocorticoid treatment on bone health related to endocrine and non-endocrine effects in Young patients.
Collapse
Affiliation(s)
- Clelia Cipolla
- Department of Woman, Child and Public Health, IRCCS A. Gemelli University Polyclinic Foundation, Rome, Italy
| | - Giorgio Sodero
- Department of Woman and Child Health and Public Health, Child Health Area, Sacred Heart Catholic University, Rome, Italy -
| | - Ignazio Cammisa
- Department of Woman and Child Health and Public Health, Child Health Area, Sacred Heart Catholic University, Rome, Italy
| | - Arianna Turriziani Colonna
- Department of Woman and Child Health and Public Health, Child Health Area, Sacred Heart Catholic University, Rome, Italy
| | - Sara Giuliano
- Department of Woman, Child and Public Health, IRCCS A. Gemelli University Polyclinic Foundation, Rome, Italy
| | - Inbal D Amar
- Department of Woman, Child and Public Health, IRCCS A. Gemelli University Polyclinic Foundation, Rome, Italy
| | - Ronny Ram Biton
- Department of Woman, Child and Public Health, IRCCS A. Gemelli University Polyclinic Foundation, Rome, Italy
| | - Giovanni Scambia
- Department of Woman, Child and Public Health, IRCCS A. Gemelli University Polyclinic Foundation, Rome, Italy
- Sacred Heart Catholic University, Rome, Italy
| | - Paola Villa
- Department of Woman, Child and Public Health, IRCCS A. Gemelli University Polyclinic Foundation, Rome, Italy
- Sacred Heart Catholic University, Rome, Italy
| |
Collapse
|
3
|
Chen M, Fu W, Xu H, Liu CJ. Pathogenic mechanisms of glucocorticoid-induced osteoporosis. Cytokine Growth Factor Rev 2023; 70:54-66. [PMID: 36906448 PMCID: PMC10518688 DOI: 10.1016/j.cytogfr.2023.03.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/21/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023]
Abstract
Glucocorticoid (GC) is one of the most prescribed medicines to treat various inflammatory and autoimmune diseases. However, high doses and long-term use of GCs lead to multiple adverse effects, particularly glucocorticoid-induced osteoporosis (GIO). Excessive GCs exert detrimental effects on bone cells, including osteoblasts, osteoclasts, and osteocytes, leading to impaired bone formation and resorption. The actions of exogenous GCs are considered to be strongly cell-type and dose dependent. GC excess inhibits the proliferation and differentiation of osteoblasts and enhances the apoptosis of osteoblasts and osteocytes, eventually contributing to reduced bone formation. Effects of GC excess on osteoclasts mainly include enhanced osteoclastogenesis, increased lifespan and number of mature osteoclasts, and diminished osteoclast apoptosis, which result in increased bone resorption. Furthermore, GCs have an impact on the secretion of bone cells, subsequently disturbing the process of osteoblastogenesis and osteoclastogenesis. This review provides timely update and summary of recent discoveries in the field of GIO, with a particular focus on the effects of exogenous GCs on bone cells and the crosstalk among them under GC excess.
Collapse
Affiliation(s)
- Meng Chen
- Department of Orthopaedic Surgery, New York University Grossman School of Medicine, New York, NY, USA; School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Wenyu Fu
- Department of Orthopaedic Surgery, New York University Grossman School of Medicine, New York, NY, USA
| | - Huiyun Xu
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.
| | - Chuan-Ju Liu
- Department of Orthopaedic Surgery, New York University Grossman School of Medicine, New York, NY, USA; Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
4
|
Ohshima H, Mishima K. Oral biosciences: The annual review 2022. J Oral Biosci 2023; 65:1-12. [PMID: 36740188 DOI: 10.1016/j.job.2023.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 01/25/2023] [Indexed: 02/05/2023]
Abstract
BACKGROUND The Journal of Oral Biosciences is devoted to advancing and disseminating fundamental knowledge concerning every aspect of oral biosciences. HIGHLIGHT This review features review articles in the fields of "Bone Cell Biology," "Tooth Development & Regeneration," "Tooth Bleaching," "Adipokines," "Milk Thistle," "Epithelial-Mesenchymal Transition," "Periodontitis," "Diagnosis," "Salivary Glands," "Tooth Root," "Exosome," "New Perspectives of Tooth Identification," "Dental Pulp," and "Saliva" in addition to the review articles by the winner of the "Lion Dental Research Award" ("Plastic changes in nociceptive pathways contributing to persistent orofacial pain") presented by the Japanese Association for Oral Biology. CONCLUSION The review articles in the Journal of Oral Biosciences have inspired its readers to broaden their knowledge about various aspects of oral biosciences. The current editorial review introduces these exciting review articles.
Collapse
Affiliation(s)
- Hayato Ohshima
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan.
| | - Kenji Mishima
- Division of Pathology, Department of Oral Diagnostic Sciences, Showa University School of Dentistry, 1-5-8, Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| |
Collapse
|
5
|
Arcos D, Portolés MT. Mesoporous Bioactive Nanoparticles for Bone Tissue Applications. Int J Mol Sci 2023; 24:3249. [PMID: 36834659 PMCID: PMC9964985 DOI: 10.3390/ijms24043249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/03/2023] [Accepted: 02/04/2023] [Indexed: 02/10/2023] Open
Abstract
Research in nanomaterials with applications in bone regeneration therapies has experienced a very significant advance with the development of bioactive mesoporous nanoparticles (MBNPs). These nanomaterials consist of small spherical particles that exhibit chemical properties and porous structures that stimulate bone tissue regeneration, since they have a composition similar to that of conventional sol-gel bioactive glasses and high specific surface area and porosity values. The rational design of mesoporosity and their ability to incorporate drugs make MBNPs an excellent tool for the treatment of bone defects, as well as the pathologies that cause them, such as osteoporosis, bone cancer, and infection, among others. Moreover, the small size of MBNPs allows them to penetrate inside the cells, provoking specific cellular responses that conventional bone grafts cannot perform. In this review, different aspects of MBNPs are comprehensively collected and discussed, including synthesis strategies, behavior as drug delivery systems, incorporation of therapeutic ions, formation of composites, specific cellular response and, finally, in vivo studies that have been performed to date.
Collapse
Affiliation(s)
- Daniel Arcos
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, ISCIII, 28040 Madrid, Spain
| | - María Teresa Portolés
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, ISCIII, 28040 Madrid, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| |
Collapse
|
6
|
Luo J, Yang L, Chueng STD, Conley B, Rathnam C, Lee KB. Advanced Drug Delivery Modulation via Hybrid Nanofibers Enhances Stem Cell Differentiation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:34488-34501. [PMID: 35862271 PMCID: PMC9357201 DOI: 10.1021/acsami.2c10288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Seamlessly integrating soluble factors onto biomedical scaffolds with a precisely manufactured topography for efficient cell control remains elusive since many scaffold fabrication techniques degrade payloads. Surface adsorption of payloads onto synthesized nanoscaffolds retains bioactivity by removing exposure to harsh processing conditions at the expense of inefficient drug loading and uncontrolled release. Herein, we present a nanomaterial composite scaffold paradigm to improve physicochemical surface adsorption pharmacokinetics. As a proof of concept, we integrated graphene oxide (GO) and manganese dioxide (MnO2) nanosheets onto nanofibers to increase loading capacity and tune drug release. Non-degradable GO enhances payload retention, while biodegradable MnO2 enables cell-responsive drug release. To demonstrate the utility of this hybrid nanomaterial scaffold paradigm for tissue engineering, we adsorbed payloads ranging from small molecules to proteins onto the scaffold to induce myogenesis and osteogenesis for multiple stem cell lines. Scaffolds with adsorbed payloads enabled more efficient differentiation than media supplementation using equivalent quantities of differentiation factors. We attribute this increased efficacy to a reverse uptake mechanism whereby payloads are localized around seeded cells, increasing delivery efficiency for guiding differentiation. Additionally, we demonstrate spatial control over cells since differentiation factors are delivered locally through the scaffold. When co-culturing scaffolds with and without adsorbed payloads, only cells seeded on payload-adsorbed scaffolds underwent differentiation. With this modular technology being capable of enhancing multiple differentiation fates for specific cell lines, this technology provides a promising alternative for current tissue engineering scaffolds.
Collapse
Affiliation(s)
- Jeffrey Luo
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Letao Yang
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Sy-Tsong Dean Chueng
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Brian Conley
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Christopher Rathnam
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Ki-Bum Lee
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
7
|
Biological characteristics of dental pulp stem cells and their potential use in regenerative medicine. J Oral Biosci 2022; 64:26-36. [PMID: 35031479 DOI: 10.1016/j.job.2022.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/30/2021] [Accepted: 01/06/2022] [Indexed: 11/20/2022]
Abstract
BACKGROUND Regenerative medicine has emerged as a multidisciplinary field with the promising potential of renewing tissues and organs. The main types of adult stem cells used in clinical trials are hematopoietic and mesenchymal stem cells (MSCs). Stem cells are defined as self-renewing clonogenic progenitor cells that can generate one or more types of specialized cells. HIGHLIGHT MSCs form adipose, cartilage, and bone tissue. Their protective and regenerative effects, such as mitogenic, anti-apoptotic, anti-inflammatory, and angiogenic effects, are mediated through paracrine and endocrine mechanisms. Dental pulp is a valuable source of stem cells because the collection of dental pulp for stem cell isolation is non-invasive, in contrast to conventional sources, such as bone marrow and adipose tissue. Teeth are an excellent source of dental pulp stem cells (DPSCs) for therapeutic procedures and they can be easily obtained after tooth extraction or the shedding of deciduous teeth. Thus, there is increased interest in optimizing and establishing standard procedures for obtaining DPSCs; preserving well-defined DPSC cultures for specific applications; and increasing the efficiency, reproducibility, and safety of the clinical use of DPSCs. CONCLUSION This review comprehensively describes the biological characteristics and origins of DPSCs, their identification and harvesting, key aspects related to their characterization, their multilineage differentiation potential, current clinical applications, and their potential use in regenerative medicine for future dental and medical applications.
Collapse
|
8
|
Velentza L, Zaman F, Sävendahl L. Bone health in glucocorticoid-treated childhood acute lymphoblastic leukemia. Crit Rev Oncol Hematol 2021; 168:103492. [PMID: 34655742 DOI: 10.1016/j.critrevonc.2021.103492] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 08/05/2021] [Accepted: 09/08/2021] [Indexed: 12/30/2022] Open
Abstract
Glucocorticoids (GCs) are widely used in the treatment of childhood acute lymphoblastic leukemia (ALL), but their long-term use is also associated with bone-related morbidities. Among others, growth deficit, decreased bone mineral density (BMD) and increased fracture rate are well-documented and severely impact quality of life. Unfortunately, no efficient treatment for the management of bone health impairment in patients and survivors is currently available. The overall goal of this review is to discuss the existing data on how GCs impair bone health in pediatric ALL and attempts made to minimize these side effects.
Collapse
Affiliation(s)
- Lilly Velentza
- Division of Pediatric Endocrinology, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.
| | - Farasat Zaman
- Division of Pediatric Endocrinology, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Lars Sävendahl
- Division of Pediatric Endocrinology, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden; Pediatric Endocrinology Unit, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
9
|
Liu H, Hu L, Yu G, Yang H, Cao Y, Wang S, Fan Z. LncRNA, PLXDC2-OT promoted the osteogenesis potentials of MSCs by inhibiting the deacetylation function of RBM6/SIRT7 complex and OSX specific isoform. Stem Cells 2021; 39:1049-1066. [PMID: 33684230 DOI: 10.1002/stem.3362] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 02/10/2021] [Indexed: 11/10/2022]
Abstract
Bone regeneration and remodeling are complex physiological processes that are regulated by key transcription factors. Understanding the regulatory mechanism of key transcription factors on the osteogenic differentiation of mesenchymal stem cells (MSCs) is a key issue for successful bone regeneration and remodeling. In the present study, we investigated the regulatory mechanism of the histone deacetylase Sirtuin 7 (SIRT7) on the key transcription factor OSX and osteogenesis of MSCs. In this study, we found that SIRT7 knockdown increased ALP activity and in vitro mineralization and promoted the expression of the osteogenic differentiation markers DSPP, DMP1, BSP, OCN, and the key transcription factor OSX in MSCs. In addition, SIRT7 could associate with RNA binding motif protein 6 (RBM6) to form a protein complex. Moreover, RBM6 inhibited ALP activity, the expression of DSPP, DMP1, BSP, OCN, and OSX in MSCs, and the osteogenesis of MSCs in vivo. Then, the SIRT7/RBM6 protein complex was shown to downregulate the level of H3K18Ac in the OSX promoter by recruiting SIRT7 to the OSX promoter and inhibiting the expression of OSX isoforms 1 and 2. Furthermore, lncRNA PLXDC2-OT could associate with the SIRT7/RBM6 protein complex to diminish its binding and deacetylation function in the OSX promoter and its inhibitory function on OSX isoforms 1 and 2 and to promote the osteogenic potential of MSCs.
Collapse
Affiliation(s)
- Huina Liu
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, People's Republic of China
| | - Lei Hu
- Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, People's Republic of China
| | - Guoxia Yu
- Department of Stomatology, Beijing Children's Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Haoqing Yang
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, People's Republic of China
| | - Yangyang Cao
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, People's Republic of China
| | - Songlin Wang
- Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, People's Republic of China
- Department of Biochemistry and Molecular Biology, Capital Medical University School of Basic Medical Sciences, Beijing, People's Republic of China
| | - Zhipeng Fan
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, People's Republic of China
| |
Collapse
|
10
|
Collagen type I promotes osteogenic differentiation of amniotic membrane-derived mesenchymal stromal cells in basal and induction media. Biosci Rep 2021; 40:227060. [PMID: 33245097 PMCID: PMC7736623 DOI: 10.1042/bsr20201325] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 11/09/2020] [Accepted: 11/19/2020] [Indexed: 12/14/2022] Open
Abstract
Collagen has been widely shown to promote osteogenesis of bone marrow mesenchymal stromal cells (BM-MSCs). Due to the invasive procedure of obtaining BM-MSCs, MSCs from other tissues have emerged as a promising alternative for regenerative therapy. MSCs originated from different sources, exhibiting different differentiation potentials. Therefore, the applicability of collagen type I (COL), combining with amniotic membrane (AM)-MSCs was examined through proliferation and differentiation assays together with the expression of surface markers and genes associated with stemness and differentiation under basal or induction conditions. No increase in cell growth was observed because AM-MSCs might be directed toward spontaneous osteogenesis. This was evidenced by the calcium deposition and elevated expression of osteogenic genes when AM-MSCs were cultured in collagen plate with basal media. Under the osteogenic condition, reciprocal expression of OCN and CEBPA suggested a shift toward adipogenesis. Surprisingly, adipogenic genes were not elevated upon adipogenic induction, although oil droplets deposition was observed. In conclusion, our findings demonstrated that collagen causes spontaneous osteogenesis in AM-MSCs. However, the presence of exogenous inductors could shift the direction of adipo-osteogenic gene regulatory network modulated by collagen.
Collapse
|
11
|
Benya PD, Kavanaugh A, Zakarian M, Söderlind P, Jashashvili T, Zhang N, Waldorff EI, Ryaby JT, Billi F. Pulsed electromagnetic field (PEMF) transiently stimulates the rate of mineralization in a 3-dimensional ring culture model of osteogenesis. PLoS One 2021; 16:e0244223. [PMID: 33539401 PMCID: PMC7861434 DOI: 10.1371/journal.pone.0244223] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 12/04/2020] [Indexed: 11/25/2022] Open
Abstract
Pulsed Electromagnetic Field (PEMF) has shown efficacy in bone repair and yet the optimum characteristics of this modality and its molecular mechanism remain unclear. To determine the effects of timing of PEMF treatment, we present a novel three-dimensional culture model of osteogenesis that demonstrates strong de novo generation of collagen and mineral matrix and exhibits stimulation by PEMF in multiple stages over 62 days of culture. Mouse postnatal day 2 calvarial pre-osteoblasts were cast within and around Teflon rings by polymerization of fibrinogen and cultured suspended without contact with tissue culture plastic. Ring constructs were exposed to PEMF for 4h/day for the entire culture (Daily), or just during Day1-Day10, Day11-Day 27, or Day28-Day63 and cultured without PEMF for the preceding or remaining days, and compared to no-PEMF controls. PEMF was conducted as HF Physio, 40.85 kHz frequency with a 67 ms burst period and an amplitude of 1.19 mT. Osteogenesis was kinetically monitored by repeated fluorescence measurements of continuously present Alizarin Red S (ARS) and periodically confirmed by micro-CT. PEMF treatment induced early-onset and statistically significant transient stimulation (~4-fold) of the mineralization rate when PEMF was applied Daily, or during D1-D10 and D11-D27. Stimulation was apparent but not significant between D28-D63 by ARS but was significant at D63 by micro-CT. PEMF also shifted the micro-CT density profiles to higher densities in each PEMF treatment group. Ring culture generated tissue with a mineral:matrix ratio of 2.0 by thermogravimetric analysis (80% of the calvaria control), and the deposited crystal structure was 50% hydroxyapatite by X-ray diffraction (63% of the calvaria and femur controls), independent of PEMF. These results were consistent with backscatter, secondary electron, and elemental analysis by scanning electron microscopy. Thus, in a defined, strong osteogenic environment, PEMF applied at different times was capable of further stimulation of osteogenesis with the potential to enhance bone repair.
Collapse
Affiliation(s)
- Paul D. Benya
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Aaron Kavanaugh
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Martin Zakarian
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Philip Söderlind
- Department of Architecture and Urban Design, University of California Los Angeles, Los Angeles, California, United States of America
| | - Tea Jashashvili
- Department of Radiology, Molecular Imaging Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Nianli Zhang
- Orthofix Medical Inc., Lewisville, Texas, United States of America
| | - Erik I. Waldorff
- Orthofix Medical Inc., Lewisville, Texas, United States of America
| | - James T. Ryaby
- Orthofix Medical Inc., Lewisville, Texas, United States of America
| | - Fabrizio Billi
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
12
|
Yamada S, Yassin MA, Schwarz T, Hansmann J, Mustafa K. Induction of osteogenic differentiation of bone marrow stromal cells on 3D polyester-based scaffolds solely by subphysiological fluidic stimulation in a laminar flow bioreactor. J Tissue Eng 2021; 12:20417314211019375. [PMID: 34262684 PMCID: PMC8243246 DOI: 10.1177/20417314211019375] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/04/2021] [Indexed: 01/09/2023] Open
Abstract
The fatal determination of bone marrow mesenchymal stem/stromal cells (BMSC) is closely associated with mechano-environmental factors in addition to biochemical clues. The aim of this study was to induce osteogenesis in the absence of chemical stimuli using a custom-designed laminar flow bioreactor. BMSC were seeded onto synthetic microporous scaffolds and subjected to the subphysiological level of fluid flow for up to 21 days. During the perfusion, cell proliferation was significantly inhibited. There were also morphological changes, with F-actin polymerisation and upregulation of ROCK1. Notably, in BMSC subjected to flow, mRNA expression of osteogenic markers was significantly upregulated and RUNX2 was localised in the nuclei. Further, under perfusion, there was greater deposition of collagen type 1 and calcium onto the scaffolds. The results confirm that an appropriate level of fluid stimuli preconditions BMSC towards the osteoblastic lineage on 3D scaffolds in the absence of chemical stimulation, which highlights the utility of flow bioreactors in bone tissue engineering.
Collapse
Affiliation(s)
- Shuntaro Yamada
- Department of Clinical Dentistry,
Faculty of Medicine – Tissue engineering group, University of Bergen, Bergen,
Norway
| | - Mohammed Ahmed Yassin
- Department of Clinical Dentistry,
Faculty of Medicine – Tissue engineering group, University of Bergen, Bergen,
Norway
| | - Thomas Schwarz
- Fraunhofer Institute for Silicate
Research ISC, Translational Center Regenerative Therapies, Wurzburg, Bayern,
Germany
| | - Jan Hansmann
- Fraunhofer Institute for Silicate
Research ISC, Translational Center Regenerative Therapies, Wurzburg, Bayern,
Germany
- Chair of Tissue Engineering and
Regenerative Medicine, University Hospital Würzburg, Germany
- Department Electrical Engineering,
University of Applied Sciences Würzburg-Schweinfurt, Germany
| | - Kamal Mustafa
- Department of Clinical Dentistry,
Faculty of Medicine – Tissue engineering group, University of Bergen, Bergen,
Norway
| |
Collapse
|
13
|
Omagari D, Hayatsu M, Yamamoto K, Kobayashi M, Tsukano N, Nameta M, Mikami Y. Gap junction with MLO-A5 osteoblast-like cell line induces ALP and BSP transcription of 3T3-L1 pre-adipocyte like cell line via Hspb1 while retaining adipogenic differentiation ability. Bone 2020; 141:115596. [PMID: 32814124 DOI: 10.1016/j.bone.2020.115596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 08/09/2020] [Accepted: 08/10/2020] [Indexed: 12/09/2022]
Abstract
In bone tissues, gap junctions form direct links between the cytoplasm of an osteocyte and another adjacent osteocyte or osteoblast, which underlie both bone formation and bone resorption. We have previously demonstrated that alkaline phosphatase (ALP) and bone sialoprotein (BSP), which are osteoblast markers, were induced in mesenchymal stem cells (MSCs) co-cultured with osteoblast-like cell line. However, the molecular mechanism of this process has not been fully addressed. Furthermore, few advances have been made toward elucidating the communication networks that link the status of committed cells such as (pre-) adipocytes that differentiated from MSCs as well as osteoblasts. Therefore, the objective of the present study was to investigate the mechanism underlying the communication network between pre-adipocytes and osteoblasts. We evaluated the effect of co-culture with osteoblast on the cell status of pre-adipocytes using murine osteoblast-like cell line, MLO-A5, and pre-adipocyte-like cell line, 3T3-L1, respectively. The results presented here demonstrated that osteoblasts and pre-adipocytes communicate via gap junctions, and the ensuing drastic increase in ALP and BSP transcription in co-cultured pre-adipocytes was induced, at least partly, via heat shock protein family B member 1 (Hspb1). In addition, terminal differentiation into adipocytes was suppressed in pre-adipocytes during co-culture with osteoblast without loss of adipogenic differentiation ability. Interestingly, after co-culture with osteoblasts, isolated co-cultured pre-adipocytes were able to differentiate to adipocytes as well as original pre-adipocytes. These results suggest that gap junctional communication with osteoblasts suppressed adipogenic differentiation of pre-adipocytes without loss of adipogenic differentiation ability.
Collapse
Affiliation(s)
- Daisuke Omagari
- Department of Pathology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan
| | - Manabu Hayatsu
- Division of Microscopic Anatomy, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata-shi, Niigata 951-8122, Japan
| | - Kiyofumi Yamamoto
- Department of Pharmacology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan
| | - Masayuki Kobayashi
- Department of Pharmacology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan
| | - Naruchika Tsukano
- Division of Microscopic Anatomy, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata-shi, Niigata 951-8122, Japan
| | - Masaaki Nameta
- Electron Microscope Core Facility, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata-shi, Niigata 951-8122, Japan
| | - Yoshikazu Mikami
- Division of Microscopic Anatomy, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata-shi, Niigata 951-8122, Japan.
| |
Collapse
|
14
|
Childs PG, Reid S, Salmeron-Sanchez M, Dalby MJ. Hurdles to uptake of mesenchymal stem cells and their progenitors in therapeutic products. Biochem J 2020; 477:3349-3366. [PMID: 32941644 PMCID: PMC7505558 DOI: 10.1042/bcj20190382] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/15/2020] [Accepted: 08/24/2020] [Indexed: 12/11/2022]
Abstract
Twenty-five years have passed since the first clinical trial utilising mesenchymal stomal/stem cells (MSCs) in 1995. In this time academic research has grown our understanding of MSC biochemistry and our ability to manipulate these cells in vitro using chemical, biomaterial, and mechanical methods. Research has been emboldened by the promise that MSCs can treat illness and repair damaged tissues through their capacity for immunomodulation and differentiation. Since 1995, 31 therapeutic products containing MSCs and/or progenitors have reached the market with the level of in vitro manipulation varying significantly. In this review, we summarise existing therapeutic products containing MSCs or mesenchymal progenitor cells and examine the challenges faced when developing new therapeutic products. Successful progression to clinical trial, and ultimately market, requires a thorough understanding of these hurdles at the earliest stages of in vitro pre-clinical development. It is beneficial to understand the health economic benefit for a new product and the reimbursement potential within various healthcare systems. Pre-clinical studies should be selected to demonstrate efficacy and safety for the specific clinical indication in humans, to avoid duplication of effort and minimise animal usage. Early consideration should also be given to manufacturing: how cell manipulation methods will integrate into highly controlled workflows and how they will be scaled up to produce clinically relevant quantities of cells. Finally, we summarise the main regulatory pathways for these clinical products, which can help shape early therapeutic design and testing.
Collapse
Affiliation(s)
- Peter G. Childs
- Centre for the Cellular Microenvironment, Division of Biomedical Engineering, School of Engineering, College of Science and Engineering, University of Glasgow, Glasgow G12 8QQ, U.K
- Centre for the Cellular Microenvironment, SUPA Department of Biomedical Engineering, University of Strathclyde, Glasgow G1 1QE, U.K
| | - Stuart Reid
- Centre for the Cellular Microenvironment, SUPA Department of Biomedical Engineering, University of Strathclyde, Glasgow G1 1QE, U.K
| | - Manuel Salmeron-Sanchez
- Centre for the Cellular Microenvironment, Division of Biomedical Engineering, School of Engineering, College of Science and Engineering, University of Glasgow, Glasgow G12 8QQ, U.K
| | - Matthew J. Dalby
- Centre for the Cellular Microenvironment, Institute for Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, U.K
| |
Collapse
|
15
|
McColloch A, Rabiei M, Rabbani P, Bowling A, Cho M. Correlation between Nuclear Morphology and Adipogenic Differentiation: Application of a Combined Experimental and Computational Modeling Approach. Sci Rep 2019; 9:16381. [PMID: 31705037 PMCID: PMC6842088 DOI: 10.1038/s41598-019-52926-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 10/22/2019] [Indexed: 12/18/2022] Open
Abstract
Stem cells undergo drastic morphological alterations during differentiation. While extensive studies have been performed to examine the cytoskeletal remodeling, there is a growing interest to determine the morphological, structural and functional changes of the nucleus. The current study is therefore aimed at quantifying the extent of remodeling of the nuclear morphology of human mesenchymal stem cells during biochemically-induced adipogenic differentiation. Results show the size of nuclei decreased exponentially over time as the lipid accumulation is up-regulated. Increases in the lipid accumulation appear to lag the nuclear reorganization, suggesting the nuclear deformation is a prerequisite to adipocyte maturation. Furthermore, the lamin A/C expression was increased and redistributed to the nuclear periphery along with a subsequent increase in the nuclear aspect ratio. To further assess the role of the nucleus, a nuclear morphology with a high aspect ratio was achieved using microcontact-printed substrate. The cells with an elongated nuclear shape did not efficiently undergo adipogenesis, suggesting the cellular and nuclear processes associated with stem cell differentiation at the early stage of adipogenesis cause a change in the nuclear morphology and cannot be abrogated by the morphological cues. In addition, a novel computational biomechanical model was generated to simulate the nuclear shape change during differentiation and predict the forces acting upon the nucleus. This effort led to the development of computational scaling approach to simulate the experimentally observed adipogenic differentiation processes over 15 days in less than 1.5 hours.
Collapse
Affiliation(s)
- Andrew McColloch
- University of Texas at Arlington, Department of Biomedical Engineering, Arlington, 76010, USA
| | - Manoochehr Rabiei
- University of Texas at Arlington, Department of Mechanical and Aerospace Engineering, Arlington, TX, 76010, USA
| | - Parisa Rabbani
- University of Texas at Arlington, Department of Biomedical Engineering, Arlington, 76010, USA
| | - Alan Bowling
- University of Texas at Arlington, Department of Mechanical and Aerospace Engineering, Arlington, TX, 76010, USA
| | - Michael Cho
- University of Texas at Arlington, Department of Biomedical Engineering, Arlington, 76010, USA.
| |
Collapse
|
16
|
Zhou S, Chen S, Jiang Q, Pei M. Determinants of stem cell lineage differentiation toward chondrogenesis versus adipogenesis. Cell Mol Life Sci 2019; 76:1653-1680. [PMID: 30689010 PMCID: PMC6456412 DOI: 10.1007/s00018-019-03017-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 12/10/2018] [Accepted: 01/15/2019] [Indexed: 12/12/2022]
Abstract
Adult stem cells, also termed as somatic stem cells, are undifferentiated cells, detected among differentiated cells in a tissue or an organ. Adult stem cells can differentiate toward lineage specific cell types of the tissue or organ in which they reside. They also have the ability to differentiate into mature cells of mesenchymal tissues, such as cartilage, fat and bone. Despite the fact that the balance has been comprehensively scrutinized between adipogenesis and osteogenesis and between chondrogenesis and osteogenesis, few reviews discuss the relationship between chondrogenesis and adipogenesis. In this review, the developmental and transcriptional crosstalk of chondrogenic and adipogenic lineages are briefly explored, followed by elucidation of signaling pathways and external factors guiding lineage determination between chondrogenic and adipogenic differentiation. An in-depth understanding of overlap and discrepancy between these two mesenchymal tissues in lineage differentiation would benefit regeneration of high-quality cartilage tissues and adipose tissues for clinical applications.
Collapse
Affiliation(s)
- Sheng Zhou
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, 64 Medical Center Drive, PO Box 9196, Morgantown, WV, 26506-9196, USA
- Department of Sports Medicine and Adult Reconstructive Surgery, School of Medicine, Drum Tower Hospital, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, People's Republic of China
| | - Song Chen
- Department of Orthopaedics, Chengdu Military General Hospital, Chengdu, 610083, Sichuan, People's Republic of China
| | - Qing Jiang
- Department of Sports Medicine and Adult Reconstructive Surgery, School of Medicine, Drum Tower Hospital, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, People's Republic of China
| | - Ming Pei
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, 64 Medical Center Drive, PO Box 9196, Morgantown, WV, 26506-9196, USA.
- Robert C. Byrd Health Sciences Center, WVU Cancer Institute, West Virginia University, Morgantown, WV, 26506, USA.
| |
Collapse
|
17
|
Wang L, Heckmann BL, Yang X, Long H. Osteoblast autophagy in glucocorticoid-induced osteoporosis. J Cell Physiol 2018; 234:3207-3215. [PMID: 30417506 DOI: 10.1002/jcp.27335] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 08/10/2018] [Indexed: 02/05/2023]
Abstract
Administration of glucocorticoids is an effective strategy for treating many inflammatory and autoimmune diseases. However, glucocorticoid treatment can have adverse effects on bone, leading to glucocorticoid-induced osteoporosis (GIO), the most common form of secondary osteoporosis. Although the pathogenesis of GIO has been studied for decades, over the past ten years the autophagy machinery has been implicated as a novel mechanism. Autophagy in osteoblasts, osteocytes, and osteoclasts plays a critical role in the maintenance of bone homeostasis. Herein, we specifically discuss how osteoblast autophagy responds to glucocorticoids and its role in the development of GIO.
Collapse
Affiliation(s)
- Lufei Wang
- Oral and Craniofacial Biomedicine Program, School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Bradlee L Heckmann
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Xianrui Yang
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts
| | - Hu Long
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
18
|
Hasturk O, Ermis M, Demirci U, Hasirci N, Hasirci V. Square prism micropillars improve osteogenicity of poly(methyl methacrylate) surfaces. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2018; 29:53. [PMID: 29721618 DOI: 10.1007/s10856-018-6059-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 04/13/2018] [Indexed: 06/08/2023]
Abstract
Osteogenicity and osteointegration of materials is one of the key elements of the success of bone implants. Poly(methyl methacrylate) (PMMA) is the basic compound of bone cement and has been widely investigated for other orthopedic applications, but its poor osteointegration and the subsequent loosening of implant material limits its widespread use as bone implants. Micropillar features on substrate surfaces were recently reported to modulate cell behavior through alteration of cell morphology and promotion of osteogenesis. Utilization of this pillar-decorated topography may be an effective approach to enhance osteogenicity of polymeric surfaces. The aim of this study was to investigate the effect of cell morphology on the micropillar features on attachment, proliferation, and osteogenic activity of human osteoblast-like cells. A series of solvent cast PMMA films decorated with 8 µm high square prism micropillars with pillar width and interpillar distances of 4, 8 and 16 µm were prepared from photolithographic templates, and primary human osteoblast-like cells (hOB) isolated from bone fragments were cultured on them. Micropillars increased cell attachment and early proliferation rate compared to unpatterned surfaces, and triggered distinct morphological changes in cell body and nucleus. Surfaces with pillar dimensions and gap width of 4 µm presented the best osteogenic activity. Expression of osteogenic marker genes was upregulated by micropillars, and cells formed bone nodule-like aggregates rich in bone matrix proteins and calcium phosphate. These results indicated that micropillar features enhance osteogenic activity on PMMA films, possibly by triggering morphological changes that promote the osteogenic phenotype of the cells.
Collapse
Affiliation(s)
- O Hasturk
- Graduate Department of Biotechnology, Middle East Technical University (METU), Ankara, 06800, Turkey
- BIOMATEN, METU Center of Excellence in Biomaterials and Tissue Engineering, Ankara, 06800, Turkey
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - M Ermis
- BIOMATEN, METU Center of Excellence in Biomaterials and Tissue Engineering, Ankara, 06800, Turkey
- Graduate Department of Biomedical Engineering, METU, Ankara, 06800, Turkey
| | - U Demirci
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, 942304, USA
- Electrical Engineering Department (by courtesy), Stanford University, Stanford, CA, 94305, USA
| | - N Hasirci
- Graduate Department of Biotechnology, Middle East Technical University (METU), Ankara, 06800, Turkey
- BIOMATEN, METU Center of Excellence in Biomaterials and Tissue Engineering, Ankara, 06800, Turkey
- Graduate Department of Biomedical Engineering, METU, Ankara, 06800, Turkey
- Department of Chemistry, METU, Ankara, 06800, Turkey
| | - V Hasirci
- Graduate Department of Biotechnology, Middle East Technical University (METU), Ankara, 06800, Turkey.
- BIOMATEN, METU Center of Excellence in Biomaterials and Tissue Engineering, Ankara, 06800, Turkey.
- Graduate Department of Biomedical Engineering, METU, Ankara, 06800, Turkey.
- Department of Biological Sciences, METU, Ankara, 06800, Turkey.
| |
Collapse
|
19
|
Brown JE, Tozzi L, Schilling B, Kelmendi-Doko A, Truong AB, Rodriguez MJ, Gil ES, Sucsy R, Valentin JE, Philips BJ, Marra KG, Rubin JP, Kaplan DL. Biodegradable silk catheters for the delivery of therapeutics across anatomical repair sites. J Biomed Mater Res B Appl Biomater 2018; 107:501-510. [PMID: 29697188 DOI: 10.1002/jbm.b.34140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 02/28/2018] [Accepted: 03/14/2018] [Indexed: 12/20/2022]
Abstract
Biodegradable silk catheters for the delivery of therapeutics are designed with a focus on creating porous gradients that can direct the release of molecules away from the implantation site. Though suitable for a range of applications, these catheters are designed for drug delivery to transplanted adipose tissue in patients having undergone a fat grafting procedure. A common complication for fat grafts is the rapid reabsorption of large volume adipose transplants. In order to prolong volume retention, biodegradable catheters can be embedded into transplanted tissue to deliver nutrients, growth factors or therapeutics to improve adipocyte viability, proliferation, and ultimately extend volume retention. Two fabrication methods are developed: a silk gel-spinning technique, which uses a novel flash-freezing step to induce high porosity throughout the bulk of the tube, and a dip-coating process using silk protein solutions doped with a water soluble porogen. Increased porosity aids in the diffusion of drug through the silk tube in a controllable way. Additionally, we interface the porous tubes with ALZET osmotic pumps for implantation into a subcutaneous nude mouse model. The work described herein will discuss the processing parameters as well as the interfacing between pump and cargo therapeutic and the resulting release profiles. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2018. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 501-510, 2019.
Collapse
Affiliation(s)
- Joseph E Brown
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, 02155
| | - Lorenzo Tozzi
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, 02155
| | - Benjamin Schilling
- Department of Plastic Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213
| | - Arta Kelmendi-Doko
- Department of Plastic Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213
| | - April B Truong
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, 02155
| | - Maria J Rodriguez
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, 02155
| | - Eun Seok Gil
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, 02155
| | - Robert Sucsy
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, 02155
| | - Jolene E Valentin
- Department of Plastic Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213
| | - Brian J Philips
- Department of Plastic Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213
| | - Kacey G Marra
- Department of Plastic Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213
| | - J Peter Rubin
- Department of Plastic Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, 02155
| |
Collapse
|
20
|
Yang YJ, Zhu Z, Wang DT, Zhang XL, Liu YY, Lai WX, Mo YL, Li J, Liang YL, Hu ZQ, Yu YJ, Cui L. Tanshinol alleviates impaired bone formation by inhibiting adipogenesis via KLF15/PPARγ2 signaling in GIO rats. Acta Pharmacol Sin 2018; 39:633-641. [PMID: 29323335 PMCID: PMC5888681 DOI: 10.1038/aps.2017.134] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 09/18/2017] [Indexed: 12/22/2022] Open
Abstract
Glucocorticoid (GC)-induced osteoporosis (GIO) is characterized by impaired bone formation, which can be alleviated by tanshinol, an aqueous polyphenol isolated from Salvia miltiorrhiza Bunge. In this study we investigated the molecular mechanisms underlying GC-induced modulation of osteogenesis as well as the possibility of using tanshinol to interfere with GIO. Female SD rats aged 4 months were orally administered distilled water (Con), prednisone (GC, 5 mg·kg-1·d-1), GC plus tanshinol (Tan, 16 mg·kg-1·d-1) or GC plus resveratrol (Res, 5 mg·kg-1·d-1) for 14 weeks. After the rats were sacrificed, samples of bone tissues were collected. The changes in bone formation were assessed using Micro-CT, histomorphometry, and biomechanical assays. Expression of Kruppel-like factor 15 (KLF15), peroxisome proliferator-activated receptor γ 2 (PPARγ 2) and other signaling proteins in skeletal tissue was measured with Western blotting and quantitative RT-PCR. GC treatment markedly increased the expression of KLF15, PPARγ2, C/EBPα and aP2, which were related to adipogenesis, upregulated FoxO3a pathway proteins (FoxO3a and Gadd45a), and suppressed the canonical Wnt signaling (β-catenin and Axin2), which was required for osteogenesis. Thus, GC significantly decreased bone mass and bone quality. Co-treatment with Tan or Res effectively counteracted GC-impaired bone formation, suppressed GC-induced adipogenesis, and restored abnormal expression of the signaling molecules in GIO rats. We conclude that tanshinol counteracts GC-decreased bone formation by inhibiting marrow adiposity via the KLF15/PPARγ2/FoxO3a/Wnt pathway.
Collapse
Affiliation(s)
- Ya-jun Yang
- Department of Pharmacology, Guangdong Medical University, Zhanjiang 524023, China
| | - Zhu Zhu
- Sino-American Cancer Research Institute, Guangdong Medical University, Dongguan 523808, China
| | - Dong-tao Wang
- Department of Traditional Chinese Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen 518000, China
| | - Xin-le Zhang
- Department of Pharmacology, Guangdong Medical University, Zhanjiang 524023, China
| | - Yu-yu Liu
- Department of Pharmacology, Guangdong Medical University, Zhanjiang 524023, China
| | - Wen-xiu Lai
- Department of Pharmacology, Guangdong Medical University, Zhanjiang 524023, China
| | - Yu-lin Mo
- Department of Pharmacology, Guangdong Medical University, Zhanjiang 524023, China
| | - Jin Li
- Department of Pharmacology, Guangdong Medical University, Zhanjiang 524023, China
| | - Yan-long Liang
- Department of Pharmacology, Guangdong Medical University, Zhanjiang 524023, China
| | - Zhuo-qing Hu
- Department of Pharmacology, Guangdong Medical University, Zhanjiang 524023, China
| | - Yong-jie Yu
- Department of Pharmacology, Guangdong Medical University, Zhanjiang 524023, China
| | - Liao Cui
- Department of Pharmacology, Guangdong Medical University, Zhanjiang 524023, China
- Guangdong Key Laboratory for R&D of Natural Drugs, Guangdong Medical University, Zhanjiang 524023, China
| |
Collapse
|
21
|
Ran J, Zeng H, Pathak JL, Jiang P, Bai Y, Yan P, Sun G, Shen X, Tong H, Shi B. Constructing an Anisotropic Triple-Pass Tubular Framework within a Lyophilized Porous Gelatin Scaffold Using Dexamethasone-Loaded Functionalized Whatman Paper To Reinforce Its Mechanical Strength and Promote Osteogenesis. Biomacromolecules 2017; 18:3788-3801. [DOI: 10.1021/acs.biomac.7b00673] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Jiabing Ran
- Key
Laboratory of Analytical Chemistry for Biology and Medicine, Ministry
of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Hao Zeng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan 430079, P. R. China
| | - Janak Lal Pathak
- School
of Pharmaceutical Science and Technology, Health Sciences Platform, Tianjin University, A-304/Building 24, 92 Weijin Road, Nankai District, 300072 Tianjin, P. R. China
| | - Pei Jiang
- Key
Laboratory of Analytical Chemistry for Biology and Medicine, Ministry
of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Yi Bai
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan 430079, P. R. China
| | - Pan Yan
- Key
Laboratory of Analytical Chemistry for Biology and Medicine, Ministry
of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Guanglin Sun
- Key
Laboratory of Analytical Chemistry for Biology and Medicine, Ministry
of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Xinyu Shen
- Key
Laboratory of Analytical Chemistry for Biology and Medicine, Ministry
of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Hua Tong
- Key
Laboratory of Analytical Chemistry for Biology and Medicine, Ministry
of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Bin Shi
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan 430079, P. R. China
| |
Collapse
|
22
|
Kim SH, Kim JE, Kim SH, Jung Y. Substance P/dexamethasone-encapsulated PLGA scaffold fabricated using supercritical fluid process for calvarial bone regeneration. J Tissue Eng Regen Med 2017; 11:3469-3480. [PMID: 28568973 DOI: 10.1002/term.2260] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 04/20/2016] [Accepted: 07/03/2016] [Indexed: 12/31/2022]
Abstract
Poly(lactic-co-glycolic acid) (PLGA) scaffolds encapsulated with substance P (SP) and dexamethasone (Dex) by the supercritical CO2 foaming method were fabricated to treat calvarial bone. We compared the release profiles of SP and Dex according to the incorporation methods using encapsulation or dipping. Ninety percent of the SP or Dex molecules in the scaffolds prepared by the encapsulating method were released by day 14 or day 6, respectively. In vivo real-time assays for human mesenchymal stem cell (hMSC) tracking were performed to confirm the MSC recruitment abilities of the scaffolds. The results showed that the optical intensity of the SP-encapsulated group was 2.59 times higher than that of the phosphate-buffered saline group and 1.3 times higher than that of the SP-dipping group. Furthermore, we compared the angiogenesis activity of the scaffolds. In the SP-encapsulated group, 72.9 ± 2.6% of the vessels showed matured features by 1 week, and it increased to 82.0 ± 4.6% after 4 weeks. We implanted the scaffolds into rat calvarial defects. After 24 weeks, SP- and Dex-encapsulated scaffolds showed 67.1% and 26.2% higher bone formation than those of the Dex-encapsulated group and SP-encapsulated group, respectively, and they formed 36.1% more bone volume compared with the SP- and Dex-dipped scaffolds. Consequently, the results of this study suggest that SP- and Dex-encapsulated scaffolds made by the supercritical CO2 foaming method could be a good treatment modality to treat critical bone defects without cell transplantation by recruiting autologous stem cells and forming new bone tissues. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Su Hee Kim
- NBIT, KU-KIST Graduate School of Converging Science and Technology, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 136-701, Korea.,Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, P.O. Box 131, Cheongryang, Seoul, 130-650, Korea
| | - Ji Eun Kim
- NBIT, KU-KIST Graduate School of Converging Science and Technology, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 136-701, Korea.,Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, P.O. Box 131, Cheongryang, Seoul, 130-650, Korea
| | - Soo Hyun Kim
- NBIT, KU-KIST Graduate School of Converging Science and Technology, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 136-701, Korea.,Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, P.O. Box 131, Cheongryang, Seoul, 130-650, Korea.,Department of Biomedical Engineering, University of Science and Technology (UST), Seoul, 136-791, Korea
| | - Youngmee Jung
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, P.O. Box 131, Cheongryang, Seoul, 130-650, Korea.,Department of Biomedical Engineering, University of Science and Technology (UST), Seoul, 136-791, Korea
| |
Collapse
|
23
|
Role of RHEB in Regulating Differentiation Fate of Mesenchymal Stem Cells for Cartilage and Bone Regeneration. Int J Mol Sci 2017; 18:ijms18040880. [PMID: 28441755 PMCID: PMC5412461 DOI: 10.3390/ijms18040880] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 04/18/2017] [Accepted: 04/19/2017] [Indexed: 12/18/2022] Open
Abstract
Advances in mesenchymal stem cells (MSCs) and cell replacement therapies are promising approaches to treat cartilage and bone defects since substantial differentiation capacities of MSCs match the demands of tissue regeneration. Our understanding of the dynamic process requiring indispensable differentiation of MSCs remains limited. Herein, we describe the role of RHEB (Ras homolog enriched in brain) regulating gene signature for differentiation of human adipose derived mesenchymal stem cells (ASCs) into chondrogenic, osteogenic, and adipogenic lineages. RHEB-overexpression increases the proliferation of the ASCs. RHEB enhances the chondrogenic differentiation of ASCs in 3D culture via upregulation of SOX9 with concomitant increase in glycosaminoglycans (GAGs), and type II collagen (COL2). RHEB increases the osteogenesis via upregulation of runt related transcription factor 2 (RUNX2) with an increase in the calcium and phosphate contents. RHEB also increases the expression of osteogenic markers, osteonectin and osteopontin. RHEB knockdown ASCs were incapable of expressing sufficient SRY (Sex determining region Y)-box 9 (SOX9) and RUNX2, and therefore had decreased chondrogenic and osteogenic differentiation. RHEB-overexpression impaired ASCs differentiation into adipogenic lineage, through downregulation of CCAAT/enhancer binding protein beta (C/EBPβ). Conversely, RHEB knockdown abolished the negative regulation of adipogenesis. We demonstrate that RHEB is a novel regulator, with a critical role in ASCs lineage determination, and RHEB-modulated ASCs may be useful as a cell therapy for cartilage and bone defect treatments.
Collapse
|
24
|
Mikami Y, Tsuda H, Akiyama Y, Honda M, Shimizu N, Suzuki N, Komiyama K. Alkaline phosphatase determines polyphosphate-induced mineralization in a cell-type independent manner. J Bone Miner Metab 2016; 34:627-637. [PMID: 26475372 DOI: 10.1007/s00774-015-0719-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 09/28/2015] [Indexed: 12/28/2022]
Abstract
Polyphosphate [Poly(P)] has positive effects on osteoblast mineralization; however, the underlying mechanism remains unclear. In addition, it is unknown whether Poly(P) promotes mineralization in soft tissues. We investigated this by using various cells. Poly(P) concentrations of 1 and 0.5 mg/mL yielded high levels of mineralization in ROS17/2.8 osteoblast cells. Similarly, Poly(P) induced mineralization in cell types expressing alkaline phosphatase (ALP), namely, ATDC5 and MC3T3-E1, but not in CHO, C3H10T1/2, C2C12, and 3T3-L1 cells. Furthermore, forced expression of ALP caused Poly(P)-induced mineralization in CHO cells. These results suggest that ALP determines Poly(P)-induced mineralization in a cell-type independent manner.
Collapse
Affiliation(s)
- Yoshikazu Mikami
- Department of Pathology, Nihon University School of Dentistry, 1-8-13 Kanda Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Hiromasa Tsuda
- Department of Biochemistry, Nihon University School of Dentistry, 1-8-13 Kanda Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan.
| | - Yuko Akiyama
- Department of Orthodontics, Nihon University School of Dentistry, 1-8-13 Kanda Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Masaki Honda
- Department of Oral Anatomy, Aichi-Gakuin University School of Dentistry, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, Aichi, 464-8650, Japan
| | - Noriyoshi Shimizu
- Department of Orthodontics, Nihon University School of Dentistry, 1-8-13 Kanda Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Naoto Suzuki
- Department of Biochemistry, Nihon University School of Dentistry, 1-8-13 Kanda Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Kazuo Komiyama
- Department of Pathology, Nihon University School of Dentistry, 1-8-13 Kanda Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| |
Collapse
|
25
|
Osterix represses adipogenesis by negatively regulating PPARγ transcriptional activity. Sci Rep 2016; 6:35655. [PMID: 27752121 PMCID: PMC5067693 DOI: 10.1038/srep35655] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 10/03/2016] [Indexed: 12/23/2022] Open
Abstract
Osterix is a novel bone-related transcription factor involved in osteoblast differentiation, and bone maturation. Because a reciprocal relationship exists between adipocyte and osteoblast differentiation of bone marrow derived mesenchymal stem cells, we hypothesized that Osterix might have a role in adipogenesis. Ablation of Osterix enhanced adipogenesis in 3T3-L1 cells, whereas overexpression suppressed this process and inhibited the expression of adipogenic markers including CCAAT/enhancer-binding protein alpha (C/EBPα) and peroxisome proliferator-activated receptor gamma (PPARγ). Further studies indicated that Osterix significantly decreased PPARγ-induced transcriptional activity. Using co-immunoprecipitation and GST-pull down analysis, we found that Osterix directly interacts with PPARγ. The ligand-binding domain (LBD) of PPARγ was responsible for this interaction, which was followed by repression of PPARγ-induced transcriptional activity, even in the presence of rosiglitazone. Taken together, we identified the Osterix has an important regulatory role on PPARγ activity, which contributed to the mechanism of adipogenesis.
Collapse
|
26
|
Wang C, Liao H, Cao Z. Role of Osterix and MicroRNAs in Bone Formation and Tooth Development. Med Sci Monit 2016; 22:2934-42. [PMID: 27543160 PMCID: PMC4994932 DOI: 10.12659/msm.896742] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Osterix (Osx) is an osteoblast-specific transcription factor that is essential for bone formation. MicroRNAs (miRNAs) are ~22-nucleotide-long noncoding RNAs that play important regulatory roles in animals and plants by targeting mRNAs for cleavage or translational repression. They can also control osteoblast-mediated bone formation and osteoclast-related bone remodeling. The vital roles of Osx and miRNAs during bone formation have been well studied, but very few studies have discussed their co-functions and the relationships between them. In this review, we outline the significant functions of Osx and miRNAs on certain cell types during osteogenesis and illustrate their roles during tooth development. More importantly, we discuss the relationship between Osx and miRNAs, which we believe could lead to a new treatment for skeletal and periodontal diseases.
Collapse
Affiliation(s)
- Chuan Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST KLOS) and Key Laboratory for Oral Biomedical Engineering of Ministry of Education (KLOBME), School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China (mainland)
| | - Haiqing Liao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST KLOS) and Key Laboratory for Oral Biomedical Engineering of Ministry of Education (KLOBME), School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China (mainland)
| | - Zhengguo Cao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST KLOS) and Key Laboratory for Oral Biomedical Engineering of Ministry of Education (KLOBME), School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China (mainland)
| |
Collapse
|
27
|
Hartmann K, Koenen M, Schauer S, Wittig-Blaich S, Ahmad M, Baschant U, Tuckermann JP. Molecular Actions of Glucocorticoids in Cartilage and Bone During Health, Disease, and Steroid Therapy. Physiol Rev 2016; 96:409-47. [PMID: 26842265 DOI: 10.1152/physrev.00011.2015] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cartilage and bone are severely affected by glucocorticoids (GCs), steroid hormones that are frequently used to treat inflammatory diseases. Major complications associated with long-term steroid therapy include impairment of cartilaginous bone growth and GC-induced osteoporosis. Particularly in arthritis, GC application can increase joint and bone damage. Contrarily, endogenous GC release supports cartilage and bone integrity. In the last decade, substantial progress in the understanding of the molecular mechanisms of GC action has been gained through genome-wide binding studies of the GC receptor. These genomic approaches have revolutionized our understanding of gene regulation by ligand-induced transcription factors in general. Furthermore, specific inactivation of GC signaling and the GC receptor in bone and cartilage cells of rodent models has enabled the cell-specific effects of GCs in normal tissue homeostasis, inflammatory bone diseases, and GC-induced osteoporosis to be dissected. In this review, we summarize the current view of GC action in cartilage and bone. We further discuss future research directions in the context of new concepts for optimized steroid therapies with less detrimental effects on bone.
Collapse
Affiliation(s)
- Kerstin Hartmann
- Institute for Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany; and Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Technische Universität Dresden, Dresden, Germany
| | - Mascha Koenen
- Institute for Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany; and Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Technische Universität Dresden, Dresden, Germany
| | - Sebastian Schauer
- Institute for Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany; and Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Technische Universität Dresden, Dresden, Germany
| | - Stephanie Wittig-Blaich
- Institute for Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany; and Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Technische Universität Dresden, Dresden, Germany
| | - Mubashir Ahmad
- Institute for Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany; and Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Technische Universität Dresden, Dresden, Germany
| | - Ulrike Baschant
- Institute for Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany; and Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Technische Universität Dresden, Dresden, Germany
| | - Jan P Tuckermann
- Institute for Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany; and Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
28
|
Morimoto E, Li M, Khalid AB, Krum SA, Chimge NO, Frenkel B. Glucocorticoids Hijack Runx2 to Stimulate Wif1 for Suppression of Osteoblast Growth and Differentiation. J Cell Physiol 2016; 232:145-53. [PMID: 27061521 DOI: 10.1002/jcp.25399] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 04/04/2016] [Indexed: 12/22/2022]
Abstract
Inhibition of Runx2 is one of many mechanisms that suppress bone formation in glucocorticoid (GC)-induced osteoporosis (GIO). We profiled mRNA expression in ST2/Rx2(dox) cells after treatment with doxycycline (dox; to induce Runx2) and/or the synthetic GC dexamethasone (dex). As expected, dex typically antagonized Runx2-driven transcription. Select genes, however, were synergistic stimulated and this was confirmed by RT-qPCR. Among the genes synergistically stimulated by GCs and Runx2 was Wnt inhibitory Factor 1 (Wif1), and Wif1 protein was readily detectable in medium conditioned by cultures co-treated with dox and dex, but neither alone. Cooperation between Runx2 and GCs in stimulating Wif1 was also observed in primary preosteoblast cultures. GCs strongly inhibited dox-driven alkaline phosphatase (ALP) activity in control ST2/Rx2(dox) cells, but not in cells in which Wif1 was silenced. Unlike its anti-mitogenic activity in committed osteoblasts, induction of Runx2 transiently increased the percentage of cells in S-phase and accelerated proliferation in the ST2 mesenchymal pluripotent cell culture model. Furthermore, like the inhibition of Runx2-driven ALP activity, dex antagonized the transient mitogenic effect of Runx2 in ST2/Rx2(dox) cultures, and this inhibition eased upon Wif1 silencing. Plausibly, homeostatic feedback loops that rely on Runx2 activation to compensate for bone loss in GIO are thwarted, exacerbating disease progression through stimulation of Wif1. J. Cell. Physiol. 232: 145-153, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Eri Morimoto
- Departments of Biochemistry and Molecular Biology, Institute for Genetic Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Meng Li
- Bioinformatics Service Program, Norris Medical Library, University of Southern California, Los Angeles, California
| | - Aysha B Khalid
- Department of Orthopaedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Susan A Krum
- Department of Orthopaedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Nyam-Osor Chimge
- Department of Medicine, Institute for Genetic Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Baruch Frenkel
- Departments of Biochemistry and Molecular Biology, Institute for Genetic Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California. .,Department of Orthopedic Surgery, Institute for Genetic Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California.
| |
Collapse
|
29
|
Frenkel B, White W, Tuckermann J. Glucocorticoid-Induced Osteoporosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015. [PMID: 26215995 DOI: 10.1007/978-1-4939-2895-8_8] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Osteoporosis is among the most devastating side effects of glucocorticoid (GC) therapy for the management of inflammatory and auto-immune diseases. Evidence from both humans and mice indicate deleterious skeletal effects within weeks of pharmacological GC administration, both related and unrelated to a decrease in bone mineral density (BMD). Osteoclast numbers and bone resorption are also rapidly increased, and together with osteoblast inactivation and decreased bone formation, these changes lead the fastest loss in BMD during the initial disease phase. Bone resorption then decreases to sub-physiological levels, but persistent and severe inhibition of bone formation leads to further bone loss and progressively increased fracture risk, up to an order of magnitude higher than that observed in untreated individuals. Bone forming osteoblasts are thus considered the main culprits in GC-induced osteoporosis (GIO). Accordingly, we focus this review primarily on deleterious effects on osteoblasts: inhibition of cell replication and function and acceleration of apoptosis. Mediating these adverse effects, GCs target pivotal regulatory mechanisms that govern osteoblast growth, differentiation and survival. Specifically, GCs inhibit growth factor pathways, including Insulin Growth Factors, Growth Hormone, Hepatocyte Growth/Scatter Factor and IL6-type cytokines. They also inhibit downstream kinases, including PI3-kinase and the MAP kinase ERK, the latter attributable in part to direct transcriptional stimulation of MAP kinase phosphatase 1. Most importantly, however, GCs inhibit the Wnt signaling pathway, which plays a pivotal role in osteoblast replication, function and survival. They transcriptionally stimulate expression of Wnt inhibitors of both the Dkk and Sfrp families, and they induce reactive oxygen species (ROS), which result in loss of ß-catenin to ROS-activated FoxO transcription factors. Identification of dissociated GCs, which would suppress the immune system without causing osteoporosis, is proving more challenging than initially thought, and GIO is currently managed by co-treatment with bisphosphonates or PTH. These drugs, however, are not ideally suited for GIO. Future therapeutic approaches may aim at GC targets such as those mentioned above, or newly identified targets including the Notch pathway, the AP-1/Il11 axis and the osteoblast master regulator RUNX2.
Collapse
Affiliation(s)
- Baruch Frenkel
- Department of Orthopaedic Surgery, Keck School of Medicine, Institute for Genetic Medicine, University of Southern California, 2250 Alcazar Street, CSC-240, Los Angeles, CA, 90033, USA,
| | | | | |
Collapse
|
30
|
Mikami Y, Yamamoto K, Akiyama Y, Kobayashi M, Watanabe E, Watanabe N, Asano M, Shimizu N, Komiyama K. Osteogenic gene transcription is regulated via gap junction-mediated cell-cell communication. Stem Cells Dev 2015; 24:214-27. [PMID: 25137151 DOI: 10.1089/scd.2014.0060] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
An analytical study of cell-cell communications between murine osteoblast-like MLO-A5 cells and bone marrow mesenchymal stem cell (BMSC)-like C3H10T1/2 cells was performed. C3H10T1/2 cells expressing green fluorescent protein (10T-GFP cells) were generated to enable the isolation of the BMSC-like cells from co-cultures with MLO-A5 cells. The mRNA expression levels of several osteogenic transcription factors (Runx2, Osterix, Dlx5, and Msx2) did not differ between the co-cultured and mono-cultured 10T-GFP cells, but those of alkaline phosphatase (ALP) and bone sialoprotein (BSP) were 300- to 400-fold higher in the co-cultured cells. Patch clamp and biocytin transfer assays revealed gap junction-mediated communication between co-cultured 10T-GFP and MLO-A5 cells. The addition of a gap junction inhibitor suppressed the increases in the expression levels of the ALP and BSP mRNAs in co-cultured 10T-GFP cells. Furthermore, the histone acetylation levels were higher in co-cultured 10T-GFP cells than in mono-cultured 10T-GFP cells. These results suggest that osteoblasts and BMSCs associate via gap junctions, and that gap junction-mediated signaling induces histone acetylation that leads to elevated transcription of the genes encoding ALP and BSP in BMSCs.
Collapse
Affiliation(s)
- Yoshikazu Mikami
- 1 Department of Pathology, Nihon University School of Dentistry , Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Ghali O, Broux O, Falgayrac G, Haren N, van Leeuwen JPTM, Penel G, Hardouin P, Chauveau C. Dexamethasone in osteogenic medium strongly induces adipocyte differentiation of mouse bone marrow stromal cells and increases osteoblast differentiation. BMC Cell Biol 2015; 16:9. [PMID: 25887471 PMCID: PMC4359404 DOI: 10.1186/s12860-015-0056-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 02/19/2015] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Osteoblasts and adipocytes share a common mesenchymal stem cell origin. Therefore, it has been suggested that the accumulation of marrow adipocytes observed in bone loss is caused by a shift in the commitment of mesenchymal stem cells from the osteogenic pathway to the adipogenic pathway. Supporting this hypothesis the competition between adipogenic and osteogenic lineages was widely demonstrated on partially homogeneous cell populations. However, some data from mouse models showed the existence of an independent relationship between bone mineral content and bone marrow adiposity. Therefore, the combination of adipogenesis and osteogenesis in primary culture would be helpful to determine if this competition would be observed on a whole bone marrow stromal cell population in a culture medium allowing both lineages. In this aim, mouse bone marrow stromal cells were cultured in a standard osteogenic medium added with different concentrations of Dexamethasone, known to be an important regulator of mesenchymal progenitor cell differentiation. RESULTS Gene expression of osteoblast and adipocyte markers, biochemical and physical analyses demonstrated the presence of both cell types when Dexamethasone was used at 100 nM. Overall, our data showed that in this co-differentiation medium both differentiation lineages were enhanced compared to classical adipogenic or osteogenic culture medium. This suggests that in this model, adipocyte phenotype does not seem to increase at the expense of the osteoblast lineage. CONCLUSION This model appears to be a promising tool to study osteoblast and adipocyte differentiation capabilities and the interactions between these two processes.
Collapse
Affiliation(s)
- Olfa Ghali
- Lille2-ULCO, PMOI, F-62200, Boulogne-sur-Mer, France.
| | - Odile Broux
- Lille2-ULCO, PMOI, F-62200, Boulogne-sur-Mer, France.
| | | | | | | | | | | | - Christophe Chauveau
- Lille2-ULCO, PMOI, F-62200, Boulogne-sur-Mer, France. .,PMOI, ULCO, Boulevard Napoléon, BP 120, 62327, Boulogne-sur-mer, Cedex, France.
| |
Collapse
|
32
|
Noack C, Hempel U, Preissler C, Dieter P. Prostaglandin E2 impairs osteogenic and facilitates adipogenic differentiation of human bone marrow stromal cells. Prostaglandins Leukot Essent Fatty Acids 2015; 94:91-8. [PMID: 25512021 DOI: 10.1016/j.plefa.2014.11.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 11/20/2014] [Accepted: 11/21/2014] [Indexed: 12/16/2022]
Abstract
The synthetic glucocorticoid dexamethasone (dex) is a mandatory additive to induce osteogenic differentiation of bone marrow stromal cell (BMSC) in vitro; however it is also known to promote the pathogenesis of osteoporotic bone disease in vivo. In this study human (h)BMSC were cultured in osteogenic medium containing β-glycerophosphate and ascorbate (OM) and in OM containing dex (OM/D). It was seen that dex induced in human (h)BMSC both, osteogenic and adipogenic differentiation markers. Dex reveals its anti-inflammatory effect by reducing endogenous prostaglandin E2 (PGE2) formation and by suppressing the inducible enzymes cyclooxygenase 2 and microsomal PGE2 synthase 1. It was further seen that dex enhanced the expression of prostaglandin receptors, mainly EP2 and EP4 receptor subtypes. We thus hypothesized that dex enforces the susceptibility of hBMSC to respond to exogenous PGE2. Permanent exposure of hBMSC which were cultured in OM/D to PGE2, decreased osteogenic and increased adipogenic differentiation markers. The effects of PGE2 were preferentially mediated by receptor subtypes EP2 and EP4; EP1 was partially involved in pro-adipogenic effects, and EP3 was partially involved in anti-osteogenic effects. These results suggest that dex suppresses the formation of endogenous PGE2 but also enables hBMSC to respond to PGE2 due to the induction of PGE2 receptors EP2 and EP4. PGE2 then shifts in hBMSC the balance from osteogenic to adipogenic differentiation.
Collapse
Affiliation(s)
- Carolin Noack
- Institute of Physiological Chemistry, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Fiedlerstrasse 42, D-01307 Dresden, Germany.
| | - Ute Hempel
- Institute of Physiological Chemistry, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Fiedlerstrasse 42, D-01307 Dresden, Germany
| | - Carolin Preissler
- Institute of Physiological Chemistry, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Fiedlerstrasse 42, D-01307 Dresden, Germany
| | - Peter Dieter
- Institute of Physiological Chemistry, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Fiedlerstrasse 42, D-01307 Dresden, Germany
| |
Collapse
|
33
|
Yu Y, Al-Mansoori L, Opas M. Optimized osteogenic differentiation protocol from R1 mouse embryonic stem cells in vitro. Differentiation 2015; 89:1-10. [PMID: 25613029 DOI: 10.1016/j.diff.2014.12.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 11/11/2014] [Accepted: 12/17/2014] [Indexed: 11/26/2022]
Abstract
Embryonic stem cells (ESCs) are a unique model that allows the study of molecular pathways underlying commitment and differentiation. One such lineage is osteoblasts, which are responsible for forming bone tissue in the body. There are many osteogenic differentiation protocols in the literature utilizing different soluble factors. The goal of the present study was to increase the efficacy of our osteogenic differentiation protocol from R1 cells. We have studied the effects of the addition of the following factors: dexamethasone, retinoic acid, and peroxisome-proliferator-activated receptor-gamma inhibitor, which have been reported to enhance osteogenesis. We found that among the 6 different protocols that were tested, the addition of retinoic acid with later addition of dexamethasone gives the most enrichment of osteogenic lineage cells. Thus, our findings provide valuable guidelines for culture condition to differentiate mouse R1 ESCs to osteoblastic cells in vitro.
Collapse
Affiliation(s)
- Yanhong Yu
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, M5S 1A8 Canada
| | - Layla Al-Mansoori
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, M5S 1A8 Canada; Department of Chemistry & Earth Sciences, College of Arts and Science, University of Qatar, P.O. Box 2713, Doha, Qatar
| | - Michal Opas
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, M5S 1A8 Canada.
| |
Collapse
|
34
|
Osteocytes up-regulate the terminal differentiation of pre-osteoblasts via gap junctions. Biochem Biophys Res Commun 2015; 456:1-6. [DOI: 10.1016/j.bbrc.2014.10.128] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 10/26/2014] [Indexed: 11/21/2022]
|
35
|
Oliveira SM, Reis RL, Mano JF. Assembling Human Platelet Lysate into Multiscale 3D Scaffolds for Bone Tissue Engineering. ACS Biomater Sci Eng 2014; 1:2-6. [DOI: 10.1021/ab500006x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Sara M. Oliveira
- 3B’s
Research Group−Biomaterials, Biodegradables and Biomimetics,
Department of Polymer Engineering, University of Minho, AvePark Taipas, Guimarães 4806-909, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães 4806-909, Portugal
| | - Rui L. Reis
- 3B’s
Research Group−Biomaterials, Biodegradables and Biomimetics,
Department of Polymer Engineering, University of Minho, AvePark Taipas, Guimarães 4806-909, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães 4806-909, Portugal
| | - João F. Mano
- 3B’s
Research Group−Biomaterials, Biodegradables and Biomimetics,
Department of Polymer Engineering, University of Minho, AvePark Taipas, Guimarães 4806-909, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães 4806-909, Portugal
| |
Collapse
|
36
|
Song M, Zhao D, Wei S, Liu C, Liu Y, Wang B, Zhao W, Yang K, Yang Y, Wu H. The effect of electromagnetic fields on the proliferation and the osteogenic or adipogenic differentiation of mesenchymal stem cells modulated by dexamethasone. Bioelectromagnetics 2014; 35:479-90. [PMID: 25145543 DOI: 10.1002/bem.21867] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Accepted: 05/17/2014] [Indexed: 01/29/2023]
Affiliation(s)
- Mingyu Song
- Department of Orthopedics; Tongji Hospital; Tongji Medical College, Huazhong University of Science and Technology; Wuhan Hubei China
| | - Dongming Zhao
- Department of Orthopedics; Tongji Hospital; Tongji Medical College, Huazhong University of Science and Technology; Wuhan Hubei China
| | - Sheng Wei
- Department of Orthopedics; Tongji Hospital; Tongji Medical College, Huazhong University of Science and Technology; Wuhan Hubei China
| | - Chaoxu Liu
- Department of Orthopedics; Tongji Hospital; Tongji Medical College, Huazhong University of Science and Technology; Wuhan Hubei China
| | - Yang Liu
- Department of Orthopedics; Tongji Hospital; Tongji Medical College, Huazhong University of Science and Technology; Wuhan Hubei China
| | - Bo Wang
- Department of Orthopedics; Tongji Hospital; Tongji Medical College, Huazhong University of Science and Technology; Wuhan Hubei China
| | - Wenchun Zhao
- Navy University of Engineering; Wuhan Hubei China
| | - Kaixiang Yang
- Department of Orthopedics; Tongji Hospital; Tongji Medical College, Huazhong University of Science and Technology; Wuhan Hubei China
| | - Yong Yang
- Department of Orthopedics; Tongji Hospital; Tongji Medical College, Huazhong University of Science and Technology; Wuhan Hubei China
| | - Hua Wu
- Department of Orthopedics; Tongji Hospital; Tongji Medical College, Huazhong University of Science and Technology; Wuhan Hubei China
| |
Collapse
|
37
|
Huang IH, Hsiao CT, Wu JC, Shen RF, Liu CY, Wang YK, Chen YC, Huang CM, del Álamo JC, Chang ZF, Tang MJ, Khoo KH, Kuo JC. GEF-H1 controls focal adhesion signaling that regulates mesenchymal stem cell lineage commitment. J Cell Sci 2014; 127:4186-200. [PMID: 25107365 PMCID: PMC4179489 DOI: 10.1242/jcs.150227] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Focal adhesions (FAs) undergo maturation that culminates in size and composition changes that modulate adhesion, cytoskeleton remodeling and differentiation. Although it is well recognized that stimuli for osteogenesis of mesenchymal stem cells (MSCs) drive FA maturation, actin organization and stress fiber polarization, the extent to which FA-mediated signals regulated by the FA protein composition specifies MSC commitment remains largely unknown. Here, we demonstrate that, upon dexamethasone (osteogenic induction) treatment, guanine nucleotide exchange factor H1 (GEF-H1, also known as Rho guanine nucleotide exchange factor 2, encoded by ARHGEF2) is significantly enriched in FAs. Perturbation of GEF-H1 inhibits FA formation, anisotropic stress fiber orientation and MSC osteogenesis in an actomyosin-contractility-independent manner. To determine the role of GEF-H1 in MSC osteogenesis, we explore the GEF-H1-modulated FA proteome that reveals non-muscle myosin-II heavy chain-B (NMIIB, also known as myosin-10, encoded by MYH10) as a target of GEF-H1 in FAs. Inhibition of targeting NMIIB into FAs suppresses FA formation, stress fiber polarization, cell stiffness and osteogenic commitments in MSCs. Our data demonstrate a role for FA signaling in specifying MSC commitment.
Collapse
Affiliation(s)
- I-Husan Huang
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 11221, Taiwan
| | - Cheng-Te Hsiao
- Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Jui-Chung Wu
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 11221, Taiwan
| | - Rong-Fong Shen
- Proteomics and Analytical Biochemistry Unit, Research Resources Branch, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Ching-Yi Liu
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan 70101, Taiwan Department of Physiology, National Cheng Kung University, Tainan 70101, Taiwan
| | - Yang-Kao Wang
- Department of Cell Biology and Anatomy, National Cheng Kung University, Tainan 70101, Taiwan Center for Neurotrauma and Neuroregeneration, Taipei Medical University, Taipei 11031, Taiwan
| | - Yu-Chen Chen
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 11221, Taiwan
| | - Chi-Ming Huang
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 11221, Taiwan
| | - Juan C del Álamo
- Institute of Engineering in Medicine, University of California at San Diego, La Jolla, CA 92093, USA Department of Mechanical and Aerospace Engineering, University of California at San Diego, La Jolla, CA 92093, USA
| | - Zee-Fen Chang
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 11221, Taiwan
| | - Ming-Jer Tang
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan 70101, Taiwan Department of Physiology, National Cheng Kung University, Tainan 70101, Taiwan
| | - Kay-Hooi Khoo
- Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Jean-Cheng Kuo
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 11221, Taiwan
| |
Collapse
|
38
|
Gaharwar AK, Mihaila SM, Kulkarni AA, Patel A, Di Luca A, Reis RL, Gomes ME, van Blitterswijk C, Moroni L, Khademhosseini A. Amphiphilic beads as depots for sustained drug release integrated into fibrillar scaffolds. J Control Release 2014; 187:66-73. [PMID: 24794894 DOI: 10.1016/j.jconrel.2014.04.035] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 04/21/2014] [Indexed: 10/25/2022]
Abstract
Native extracellular matrix (ECM) is a complex fibrous structure loaded with bioactive cues that affects the surrounding cells. A promising strategy to mimicking native tissue architecture for tissue engineering applications is to engineer fibrous scaffolds using electrospinning. By loading appropriate bioactive cues within these fibrous scaffolds, various cellular functions such as cell adhesion, proliferation and differentiation can be regulated. Here, we report on the encapsulation and sustained release of a model hydrophobic drug (dexamethasone (Dex)) within beaded fibrillar scaffold of poly(ethylene oxide terephthalate)-poly(butylene terephthalate) (PEOT/PBT), a polyether-ester multiblock copolymer to direct differentiation of human mesenchymal stem cells (hMSCs). The amphiphilic beads act as depots for sustained drug release that is integrated into the fibrillar scaffolds. The entrapment of Dex within the beaded structure results in sustained release of the drug over the period of 28days. This is mainly attributed to the diffusion driven release of Dex from the amphiphilic electrospun scaffolds. In vitro results indicate that hMSCs cultured on Dex containing beaded fibrillar scaffolds exhibit an increase in osteogenic differentiation potential, as evidenced by increased alkaline phosphatase (ALP) activity, compared to the direct infusion of Dex in the culture medium. The formation of a mineralized matrix is also significantly enhanced due to the controlled Dex release from the fibrous scaffolds. This approach can be used to engineer scaffolds with appropriate chemical cues to direct tissue regeneration.
Collapse
Affiliation(s)
- Akhilesh K Gaharwar
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston 02115, USA; Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge 02139, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge 02139, USA; Department of Biomedical Engineering, Texas A&M University, College Station 77843, USA; Department of Materials Science & Engineering, Texas A&M University, College Station 77843, USA
| | - Silvia M Mihaila
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge 02139, USA; 3B's Research Group, Biomaterials, Biodegradables and Biomimetics, Dept. of Polymer Engineering, University of Minho, AvePark, Taipas, 4806-909 Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Ashish A Kulkarni
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge 02139, USA
| | - Alpesh Patel
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge 02139, USA
| | - Andrea Di Luca
- Tissue Regeneration Department, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, Netherlands
| | - Rui L Reis
- 3B's Research Group, Biomaterials, Biodegradables and Biomimetics, Dept. of Polymer Engineering, University of Minho, AvePark, Taipas, 4806-909 Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Manuela E Gomes
- 3B's Research Group, Biomaterials, Biodegradables and Biomimetics, Dept. of Polymer Engineering, University of Minho, AvePark, Taipas, 4806-909 Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Clemens van Blitterswijk
- Tissue Regeneration Department, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, Netherlands
| | - Lorenzo Moroni
- Tissue Regeneration Department, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, Netherlands.
| | - Ali Khademhosseini
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston 02115, USA; Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge 02139, USA; Department of Maxillofacial Biomedical Engineering and Institute of Oral Biology, School of Dentistry, Kyung Hee University, Seoul 130-701, Republic of Korea; Department of Physics, King Abdulaziz University, Jeddah 21569, Saudi Arabia.
| |
Collapse
|
39
|
Wiweger MI, de Andrea CE, Scheepstra KWF, Zhao Z, Hogendoorn PCW. Possible effects of EXT2 on mesenchymal differentiation--lessons from the zebrafish. Orphanet J Rare Dis 2014; 9:35. [PMID: 24628984 PMCID: PMC4004154 DOI: 10.1186/1750-1172-9-35] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 02/10/2014] [Indexed: 01/13/2023] Open
Abstract
Background Mutations in the EXT genes disrupt polymerisation of heparan sulphates (HS) and lead to the development of osteochondroma, an isolated/sporadic- or a multifocal/hereditary cartilaginous bone tumour. Zebrafish (Danio rerio) is a very powerful animal model which has shown to present the same cartilage phenotype that is commonly seen in mice model and patients with the rare hereditary syndrome, Multiple Osteochondroma (MO). Methods Zebrafish dackel (dak) mutant that carries a nonsense mutation in the ext2 gene was used in this study. A panel of molecular, morphological and biochemical analyses was used to assess at what step bone formation is affected and what mechanisms underlie changes in the bone formation in the ext2 mutant. Results During bone development in the ext2-/- zebrafish, chondrocytes fail to undergo terminal differentiation; and pre-osteoblasts do not differentiate toward osteoblasts. This inadequate osteogenesis coincides with increased deposition of lipids/fats along/in the vessels and premature adipocyte differentiation as shown by biochemical and molecular markers. Also, the ext2-null fish have a muscle phenotype, i.e. muscles are shorter and thicker. These changes coexist with misshapen bones. Normal expression of runx2 together with impaired expression of osterix and its master regulator - xbp1 suggest that unfolded protein responses might play a role in MO pathogenesis. Conclusions Heparan sulphates are required for terminal differentiation of the cartilaginous template and consecutive formation of a scaffold that is needed for further bone development. HS are also needed for mesenchymal cell differentiation. At least one copy of ext2 is needed to maintain the balance between bone and fat lineages, but homozygous loss of the ext2 function leads to an imbalance between cartilage, bone and fat lineages. Normal expression of runx2 and impaired expression of osterix in the ext2-/- fish indicate that HS are required by osteoblast precursors for their further differentiation towards osteoblastic lineage. Lower expression of xbp1, a master regulator of osterix, suggests that HS affect the ‘unfolded protein response’, a pathway that is known to control bone formation and lipid metabolism. Our observations in the ext2-null fish might explain the musculoskeletal defects that are often observed in MO patients.
Collapse
|
40
|
Guang LG, Boskey AL, Zhu W. Age-related CXC chemokine receptor-4-deficiency impairs osteogenic differentiation potency of mouse bone marrow mesenchymal stromal stem cells. Int J Biochem Cell Biol 2013; 45:1813-20. [DOI: 10.1016/j.biocel.2013.05.034] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 05/16/2013] [Accepted: 05/28/2013] [Indexed: 12/16/2022]
|
41
|
Rapamycin inhibits BMP-7-induced osteogenic and lipogenic marker expressions in fetal rat calvarial cells. J Cell Biochem 2013; 114:1760-71. [DOI: 10.1002/jcb.24519] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 02/07/2013] [Indexed: 01/06/2023]
|
42
|
ACTH promotes chondrogenic nodule formation and induces transient elevations in intracellular calcium in rat bone marrow cell cultures via MC2-R signaling. Cell Tissue Res 2013; 352:413-25. [PMID: 23358747 DOI: 10.1007/s00441-013-1561-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 01/10/2013] [Indexed: 12/24/2022]
Abstract
Adrenocorticotropic hormone (ACTH) is among several melanocortin peptide hormones that are derived from proopiomelanocortin (POMC). ACTH has been found to enhance osteogenesis and chondrogenesis. We show that, in the presence of dexamethasone, ACTH dose-dependently increases chondrogenic nodule formation in bone marrow stromal cells (BMSC) from the Wistar Kyoto (WKY) rat. The nodules consist in condensed cells highly expressing alkaline phosphatase, Sox9 and type II collagen transcripts and a proteoglycan-rich matrix. Immunoblot analysis of crude membrane fractions has shown that these cells express three melanocortin receptors (MC-R), namely MC2-R, MC3-R and MC5-R and the melanocortin 2-receptor accessory protein (MRAP). To determine which of these receptors mediate ACTH-induced effects, we have used MC-R-specific peptides and the known agonist profiles of the receptors. Neither α-MSH, a strong agonist of MC5-R, nor γ2-MSH, a strong agonist of MC3-R, duplicates ACTH effects in rat BMSC. In addition, calcium flux has been examined as a mechanism for ACTH action at the MC2-R. Consistent with MC2-R and MRAP expression patterns in the BMSC cultures, ACTH-induced transient increases in intracellular calcium are increased with dexamethasone treatment. Neither α-MSH nor γ2-MSH affects calcium flux. Dexamethasone increases MC2-R and MRAP expression and POMC peptide expression and cleavage increasing the production of the lipolytic β-lipotropic hormone product. Therefore, the effects of ACTH in rat BMSC enriched for mesenchymal progenitors are consistent with an MC2-R signaling mechanism, with dexamethasone being capable of regulating components of the melanocortin system in these cells.
Collapse
|
43
|
Hempel U, Möller S, Noack C, Hintze V, Scharnweber D, Schnabelrauch M, Dieter P. Sulfated hyaluronan/collagen I matrices enhance the osteogenic differentiation of human mesenchymal stromal cells in vitro even in the absence of dexamethasone. Acta Biomater 2012; 8:4064-72. [PMID: 22771456 DOI: 10.1016/j.actbio.2012.06.039] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 06/23/2012] [Accepted: 06/29/2012] [Indexed: 02/04/2023]
Abstract
Glycosaminoglycans (GAG) are multifunctional components of the extracellular matrix (ECM) involved in different steps of the regulation of cellular differentiation. In this study artificial extracellular matrices (aECM) consisting of collagen (Col) I and different GAG derivatives were used as a substrate for human mesenchymal stromal cells (hMSC) to study osteogenic differentiation in vitro. hMSC were cultured on aECM containing col and hyaluronan sulfates (HyaS) with increasing degrees of sulfation (DS(S)) and were compared with aECM containing col and the natural GAG hyaluronan or chondroitin 4-sulfate. hMSC were analyzed for osteogenic differentiation markers such as calcium phosphate deposition, tissue non-specific alkaline phosphatase (TNAP) and expression of runt-related transcription factor 2 (runx2), osteocalcin (ocn) and bone sialoprotein II (bspII). Compared with aECM containing Col and natural GAG all Col/HyaS-containing aECM induced an increase in calcium phosphate deposition, TNAP activity and tnap expression. These effects were also seen in the absence of dexamethasone (an established osteogenic supplement). The expression of runx2 and ocn was not altered and the expression of bspII was diminished on the col/HyaS-containing aECM. The impact of the Col/HyaS-containing aECM on hMSC differentiation was independent of the DS(S) of the HyaS derivatives, indicating the importance of the primary (C-6) hydroxyl group of N-acetylglucosamine. These results suggest that Col/HyaS-containing aECM are able to stimulate hMSC to undergo osteogenic differentiation even in the absence of dexamethasone, which makes these matrices an interesting tool for hMSC-based tissue engineering applications and biomaterial functionalizations to enhance bone formation.
Collapse
|
44
|
Evans JF, Ragolia L. Systemic and local ACTH produced during inflammatory states promotes osteochondrogenic mesenchymal cell differentiation contributing to the pathologic progression of calcified atherosclerosis. Med Hypotheses 2012; 79:823-6. [PMID: 23026706 DOI: 10.1016/j.mehy.2012.09.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 09/07/2012] [Indexed: 02/05/2023]
Abstract
There are many well-known roles for the proopiomelanocortin (POMC) derived peptides and their receptors, the melanocortin receptors (MC-R). The focus here is on the evolving role of the melanocortin system in inflammation. Chronic inflammatory states such as those occurring in diabetes and obesity are associated with both a hyperactive hypothalamic-pituitary-adrenal (HPA) axis as well as increased incidence of atherosclerosis. An inflammation-induced hyperactive HPA axis along with increased leukocyte infiltration can lead to significant exposure to melanocortin peptides, particularly ACTH, in an inflamed vasculature. Mesenchymal progenitor cells are present throughout the vasculature, express receptors for the melanocortin peptides, and respond to ACTH with increased osteochondrogenic differentiation. Coupled to the increased exposure to ACTH during HPA hyperactivity is increased glucocorticoid (GC) exposure. GCs also promote chondrogenic differentiation of mesenchymal progenitors and increase their expression of MC-R as well as their expression of POMC and its cleavage products. It is hypothesized that during inflammatory states systemically produced ACTH and glucocorticoid as well as ACTH produced locally by macrophage and other immune cells, can influence and potentiate mesenchymal progenitor cell differentiation along the osteochondrogenic lineages. In turn the increase in osteochondrogenic matrix contributes to the pathophysiological progression of the calcified atherosclerotic plaque. The roles of the melanocortin system in inflammation and its resolution have just begun to be explored. Investigations into the ACTH-induced matrix changes among mesenchymal cell populations are warranted. ACTH signaling through the MC-R represents a new therapeutic target for the prevention and treatment of calcified atherosclerosis.
Collapse
Affiliation(s)
- Jodi F Evans
- Biomedical Research Core, Winthrop University Hospital, Mineola, NY 11501, USA.
| | | |
Collapse
|
45
|
Xu L, Song C, Ni M, Meng F, Xie H, Li G. Cellular retinol-binding protein 1 (CRBP-1) regulates osteogenenesis and adipogenesis of mesenchymal stem cells through inhibiting RXRα-induced β-catenin degradation. Int J Biochem Cell Biol 2012; 44:612-9. [DOI: 10.1016/j.biocel.2011.12.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 12/12/2011] [Accepted: 12/22/2011] [Indexed: 10/14/2022]
|
46
|
Mostafa NZ, Fitzsimmons R, Major PW, Adesida A, Jomha N, Jiang H, Uludağ H. Osteogenic differentiation of human mesenchymal stem cells cultured with dexamethasone, vitamin D3, basic fibroblast growth factor, and bone morphogenetic protein-2. Connect Tissue Res 2011; 53:117-31. [PMID: 21966879 DOI: 10.3109/03008207.2011.611601] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE Human mesenchymal stem cells (hMSCs) are pursued for cell-based therapies of bone defects. Successful use of hMSCs will require them to be osteogenically differentiated before transplantation. This study was intended to determine the optimal combination(s) of supplements needed for inducing osteogenesis in hMSCs. METHODS The hMSCs were cultured with combinations of β-glycerophosphate, dexamethasone (Dex), vitamin D3 (Vit-D3), basic fibroblast growth factor (bFGF), and bone morphogenetic protein-2 (BMP-2) to assess cell growth and osteogenesis. Osteogenic responses of the supplements were evaluated by alkaline phosphatase (ALP) activity, mineralization, and gene expression of ALP, Runx2, bone sialoprotein, and osteonectin. Adipogenesis was characterized based on Oil Red O staining, gene expression of peroxisome proliferator-activated receptor γ2, and adipocyte protein-2. RESULTS Dex was found to be essential for mineralization of hMSCs. Cultures treated with Dex (100 nM), Vit-D3 (10/50 nM), and BMP-2 (500 ng/mL) demonstrated maximal calcification and up-regulation of ALP and bone sialoprotein expression. However, adipogenesis was up-regulated in parallel with osteogenesis in these cultures, as evident by the presence of lipid droplets and significant up-regulation of peroxisome proliferator-activated receptor γ2 and adipocyte protein-2 expression. An optimal condition was obtained at Dex (10 nM) and BMP-2 (500 ng/mL) for mineralization without increasing adipogenesis-related markers. The bFGF mitigated osteogenesis and enhanced adipogenesis. Vit-D3 appears essential for calcification only in the presence of bFGF. CONCLUSION Treatment of hMSCs with appropriate supplements at optimal doses results in robust osteogenic differentiation with minimal adipogenesis. These findings could be used in the cultivation of hMSCs for cell-based strategies for bone regeneration.
Collapse
Affiliation(s)
- Nesrine Z Mostafa
- Department of Dentistry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada
| | | | | | | | | | | | | |
Collapse
|
47
|
Synergistic effect of recombinant human bone morphogenic protein-7 and osteogenic differentiation medium on human bone-marrow-derived mesenchymal stem cells in vitro. INTERNATIONAL ORTHOPAEDICS 2011; 35:1889-95. [PMID: 21487672 DOI: 10.1007/s00264-011-1247-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2010] [Accepted: 03/05/2011] [Indexed: 02/04/2023]
Abstract
PURPOSE The purpose of this study was to investigate the effect of recombinant human bone morphogenetic protein-7 (rhBMP-7) with or without osteogenic differentiation medium (ODM) on osteogenic differentiation of primary human bone-marrow-derived mesenchymal stem cells (hBMSCs) in vitro. METHOD The hBMSCs were isolated from medullary reaming tissue. At 80% confluence, hBMSCs were treated with different concentrations of rhBMP-7 with and without ODM. Alkaline phosphatase (ALP) activity, calcium deposition and messenger RNA (mRNA) expression of osteocalcin (OC) and osteopontin (OPN) were examined. RESULTS ALP activity and calcium deposits in hBMSC culture were significantly increased by rhBMP-7 at 0.1 μg/ml (0.23 ± 0.07 IU and 28.9 ± 4.2 mg/dl) and 1.0 μg/ml (0.32 ± 0.03 IU and 38.7 ± 3.0 mg/dl), respectively, in the presence of ODM, showing a clearly dose-dependent osteoblastic differentiation. However, the same dose of 0.1 μg/ml rhBMP-7 without ODM and ODM alone induced low level of ALP and calcium deposits, indicating a synergistic effect of rhBMP-7 and ODM on committed osteogenic differentiation. Quantitative real-time reverse-transcriptase polymerase chain reaction (RT-PCR) analysis showed up-regulated OC and OPN mRNA levels, corroborating the synergistic effect of rhBMP-7 and ODM. CONCLUSION Our study showed that rhBMP-7 with ODM created a synergistic effect on up-regulation of osteogenic genes as well as osteogenic differentiation of primary hBMSCs in vitro. In the presence of ODM, the lowest concentration of rhBMP-7 needed to induce significant osteogenic differentiation of hBMSCs was 0.1 μg/ml.
Collapse
|