1
|
Fang Z, Tong X, Shi G, Chen W, Li Q. MicroRNA-31 regulates TNF-α and IL-17A co-induced-endothelial cell apoptosis by repressing E2F6. Biochem Biophys Res Commun 2023; 666:76-82. [PMID: 37178508 DOI: 10.1016/j.bbrc.2023.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023]
Abstract
Vascular endothelial cell (VEC) apoptosis is the fundamental cause of pulmonary arterial hypertension. MicroRNA-31 (MiR-31) is a novel target for hypertension treatment. However, the role and mechanism of miR-31 in the apoptosis of VECs remain unclear. The purpose of this study is to determine whether miR-31 plays an important role in VEC apoptosis as well as the detailed mechanisms involved. We found that pro-inflammatory cytokines IL-17A and TNF-α were highly expressed in serum and aorta, and the expression of miR-31 was significantly increased in aortic intimal tissue from Angiotensin II (AngII)- induced hypertensive mice (WT-AngII) compared with control mice (WT-NC). In vitro, co-stimulation of VECs with IL-17A and TNF-α resulted in increased expression of miR-31 and VEC apoptosis. MiR-31 inhibition strikingly decreased TNF-α and IL-17A co-induced VEC apoptosis. Mechanistically, in IL-17A and TNF-α co-stimulated VECs (co-induced VECs), we found that the activation of the NF-κB signal effectively increased the expression of miR-31. Dual-luciferase reporter gene assay revealed that miR-31 directly targeted and inhibited the expression of the E2F transcription factor 6 (E2F6). The expression of E2F6 was decreased in Co-induced VECs. MiR-31 inhibition significantly alleviated the decreased expression of E2F6 in co-induced VECs. Consistent with the co-stimulated effect of IL-17A and TNF-α on VECs, transfection of siRNA E2F6 induced cell apoptosis without the stimulation of the above cytokines. In conclusion, TNF-α and IL-17A generated in the aortic vascular tissue and serum from Ang II-induced hypertensive mice could trigger VECs apoptosis by the miR-31/E2F6 axis. To sum up, our study suggests that the key factor between cytokine co-stimulation effect and VEC apoptosis was miR-31/E2F6 axis, which was mainly regulated by NF-қB signaling pathway. This gives us a new sight to treat hypertension-associated VR.
Collapse
Affiliation(s)
- Zilong Fang
- Medical School, Kunming University of Science and Technology, Kunming, 650500, PR China; The Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Ruijin Hospital, Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
| | - Xinran Tong
- The Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Ruijin Hospital, Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
| | - Guangzheng Shi
- The Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Ruijin Hospital, Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
| | - Wendong Chen
- The Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Ruijin Hospital, Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
| | - Qun Li
- The Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Ruijin Hospital, Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China.
| |
Collapse
|
2
|
Alberto AVP, Ferreira NCDS, Bonavita AGC, Nihei OK, de Farias FP, Bisaggio RDC, de Albuquerque C, Savino W, Coutinho‐Silva R, Persechini PM, Alves LA. Physiologic roles of P2 receptors in leukocytes. J Leukoc Biol 2022; 112:983-1012. [PMID: 35837975 PMCID: PMC9796137 DOI: 10.1002/jlb.2ru0421-226rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/13/2022] [Indexed: 01/01/2023] Open
Abstract
Since their discovery in the 1970s, purinergic receptors have been shown to play key roles in a wide variety of biologic systems and cell types. In the immune system, purinergic receptors participate in innate immunity and in the modulation of the adaptive immune response. In particular, P2 receptors, which respond to extracellular nucleotides, are widely expressed on leukocytes, causing the release of cytokines and chemokines and the formation of inflammatory mediators, and inducing phagocytosis, degranulation, and cell death. The activity of these receptors is regulated by ectonucleotidases-expressed in these same cell types-which regulate the availability of nucleotides in the extracellular environment. In this article, we review the characteristics of the main purinergic receptor subtypes present in the immune system, focusing on the P2 family. In addition, we describe the physiologic roles of the P2 receptors already identified in leukocytes and how they can positively or negatively modulate the development of infectious diseases, inflammation, and pain.
Collapse
Affiliation(s)
- Anael Viana Pinto Alberto
- Laboratory of Cellular Communication, Oswaldo Cruz InstituteOswaldo Cruz FoundationRio de JaneiroRJBrazil
| | | | | | - Oscar Kenji Nihei
- Center of Education and LetterState University of the West of ParanáFoz do IguaçuPRBrazil
| | | | - Rodrigo da Cunha Bisaggio
- Laboratory of Cellular Communication, Oswaldo Cruz InstituteOswaldo Cruz FoundationRio de JaneiroRJBrazil,Federal Institute of Education, Science, and Technology of Rio de JaneiroRio de JaneiroRJBrazil
| | | | - Wilson Savino
- Laboratory on Thymus Research, Oswaldo Cruz InstituteOswaldo Cruz FoundationRio de JaneiroRJBrazil,Brazilian National Institute of Science and Technology on NeuroimmunomodulationRio de Janeiro Research Network on NeuroinflammationRio de JaneiroRJBrazil
| | - Robson Coutinho‐Silva
- Laboratory of Immunophysiology, Carlos Chagas Filho Biophysics InstituteFederal University of Rio de JaneiroRio de JaneiroRJBrazil
| | - Pedro Muanis Persechini
- Laboratory of Immunobiophysics, Carlos Chagas Filho Biophysics InstituteFederal University of Rio de JaneiroRio de JaneiroRJBrazil
| | - Luiz Anastacio Alves
- Laboratory of Cellular Communication, Oswaldo Cruz InstituteOswaldo Cruz FoundationRio de JaneiroRJBrazil
| |
Collapse
|
3
|
Bhat AH, Dar KB, Khan A, Alshahrani S, Alshehri SM, Ghoneim MM, Alam P, Shakeel F. Tricyclodecan-9-yl-Xanthogenate (D609): Mechanism of Action and Pharmacological Applications. Int J Mol Sci 2022; 23:3305. [PMID: 35328726 PMCID: PMC8954530 DOI: 10.3390/ijms23063305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 12/04/2022] Open
Abstract
Tricyclodecan-9-yl xanthogenate (D609) is a synthetic tricyclic compound possessing a xanthate group. This xanthogenate compound is known for its diverse pharmacological properties. Over the last three decades, many studies have reported the biological activities of D609, including antioxidant, antiapoptotic, anticholinergic, anti-tumor, anti-inflammatory, anti-viral, anti-proliferative, and neuroprotective activities. Its mechanism of action is extensively attributed to its ability to cause the competitive inhibition of phosphatidylcholine (PC)-specific phospholipase C (PC-PLC) and sphingomyelin synthase (SMS). The inhibition of PCPLC or SMS affects secondary messengers with a lipidic nature, i.e., 1,2-diacylglycerol (DAG) and ceramide. Various in vitro/in vivo studies suggest that PCPLC and SMS inhibition regulate the cell cycle, block cellular proliferation, and induce differentiation. D609 acts as a pro-inflammatory cytokine antagonist and diminishes Aβ-stimulated toxicity. PCPLC enzymatic activity essentially requires Zn2+, and D609 might act as a potential chelator of Zn2+, thereby blocking PCPLC enzymatic activity. D609 also demonstrates promising results in reducing atherosclerotic plaque formation, post-stroke cerebral infarction, and cancer progression. The present compilation provides a comprehensive mechanistic insight into D609, including its chemistry, mechanism of action, and regulation of various pharmacological activities.
Collapse
Affiliation(s)
- Aashiq Hussain Bhat
- Department of Clinical Biochemistry, University of Kashmir, Srinagar 190006, India; (A.H.B.); (K.B.D.)
| | - Khalid Bashir Dar
- Department of Clinical Biochemistry, University of Kashmir, Srinagar 190006, India; (A.H.B.); (K.B.D.)
| | - Andleeb Khan
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia;
| | - Saeed Alshahrani
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia;
| | - Sultan M. Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.M.A.); (F.S.)
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia;
| | - Prawez Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Faiyaz Shakeel
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.M.A.); (F.S.)
| |
Collapse
|
4
|
Guo J, Chen W, Bao B, Zhang D, Pan J, Zhang M. Protective effect of berberine against LPS-induced endothelial cell injury via the JNK signaling pathway and autophagic mechanisms. Bioengineered 2021; 12:1324-1337. [PMID: 33896366 PMCID: PMC8806223 DOI: 10.1080/21655979.2021.1915671] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/07/2021] [Indexed: 12/14/2022] Open
Abstract
The role of autophagic mechanisms in the protective effect of berberine (BBR) on lipopolysaccharide (LPS)-induced injury in the endothelial cells human umbilical vein endothelial cells (HUVECs) and human pulmonary microvascular endothelial cells (HPMECs) was investigated. Cell viability, proliferation, and apoptosis were detected by the CCK-8 assay, the EdU kit, and flow cytometry, respectively, and autophagy-related protein expression, the number of autophagic vacuoles, and LC3 double-fluorescence were examined using western blot analysis, transmission electron microscopy, and confocal microscopy, respectively. LPS resulted in a decrease in the cell viability and proliferation of HUVECs and HPMECs and an increase in the number of apoptotic cells, while BBR treatment resulted in an increase in cell viability and proliferation, as well as a decrease in cell apoptosis. Furthermore, BBR could inhibit LPS-induced autophagy, as demonstrated by its inhibitory effects on the LC3-II/LC3-I ratio and Beclin-1 levels and its promotive effect on p62 expression. Addition of the autophagy inducer rapamycin (RAPA) aggravated LPS-induced injury, while treatment with the autophagy blocker 3-methyladenine (3-MA) attenuated the injury. Further, the protective effect of BBR was inhibited by rapamycin. JNK inhibition by SP600125 inhibited LPS-induced autophagy, and BBR could not alter the LPS-induced autophagy in HUVECs and HPMECs that were pretreated with SP600125. The present data indicate that BBR attenuated LPS-induced cell apoptosis by blocking JNK-mediated autophagy in HUVECs and HPMECs. Therefore, the JNK-mediated autophagy pathway could be a potential target for the prevention and treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Junping Guo
- Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Clinical Medicine, Zhejiang University City College, School of Medicine, Hangzhou, China
| | - Wei Chen
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Beibei Bao
- Department of Clinical Medicine, Zhejiang University City College, School of Medicine, Hangzhou, China
| | - Dayong Zhang
- Department of Clinical Medicine, Zhejiang University City College, School of Medicine, Hangzhou, China
| | - Jianping Pan
- Department of Clinical Medicine, Zhejiang University City College, School of Medicine, Hangzhou, China
| | - Mao Zhang
- Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institue of Emergency Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
5
|
Bezrodny SL, Mardanly SG, Zatevalov AM, Tereshina EV, Mironov AY, Pomazanov VV. Assessment of the state of intestinal microbiocenosis based on bacterial endotoxin and plasmalogen in elderly persons with type 2 diabetes mellitus pathology. Klin Lab Diagn 2021; 66:565-570. [PMID: 34543536 DOI: 10.51620/0869-2084-2021-66-9-565-570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The concentration of bacterial plasmalogen 18a and endotoxin in the blood of elderly people 45-90 years old with the pathology of type 2 diabetes mellitus (DM 2) - the main group and without diabetes mellitus - the comparison group was investigated. The concentration of both plasmalogen 18a and endotoxin in the blood of individuals with DM 2 pathology is statistically significantly higher than in the blood of individuals without DM 2 pathology. To assess the state of microbiocenosis and predict type 2 diabetes mellitus, decisive rules have been determined in the form of threshold values of plasma concentrations 18a and endotoxin in the blood of elderly people with a suspected or established diagnosis of type 2 diabetes. Using ROC analysis, it was found that values above 20.66 μg / ml for plasmalogen 18a, and 0.48 nmol / ml for endotoxin, determine the presence of type 2 diabetes mellitus pathology in the 45-90 age group.
Collapse
Affiliation(s)
- S L Bezrodny
- CJSC «Ecolab»
- G.N. Gabrichevskii Moscow research institute of epidemiology and microbiology of Rospotrebnadzor
| | - S G Mardanly
- CJSC «Ecolab»
- The «State Humanitarian and Technological University»
- FGAOU VO «First MGMU named after I.M. Sechenov» Ministry of Health of Russia
| | - A M Zatevalov
- G.N. Gabrichevskii Moscow research institute of epidemiology and microbiology of Rospotrebnadzor
| | | | - A Yu Mironov
- G.N. Gabrichevskii Moscow research institute of epidemiology and microbiology of Rospotrebnadzor
- Federal research and clinical center of specialized medical care and medical technologies FMBA of Russia
| | | |
Collapse
|
6
|
Crichton A, Ignjatovic V, Babl FE, Oakley E, Greenham M, Hearps S, Delzoppo C, Beauchamp MH, Guerguerian AM, Boutis K, Hubara E, Hutchison J, Anderson V. Interleukin-8 Predicts Fatigue at 12 Months Post-Injury in Children with Traumatic Brain Injury. J Neurotrauma 2021; 38:1151-1163. [PMID: 31880977 DOI: 10.1089/neu.2018.6083] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Despite many children experiencing fatigue after childhood brain injury, little is known about the predictors of this complaint. To date, traditional indices of traumatic brain injury (TBI) severity have not predicted reliably persisting fatigue (up to three years post-injury). This study aimed to establish whether persisting fatigue is predicted by serum biomarker concentrations in child TBI. We examined whether acute serum biomarker expression would improve prediction models of 12-month fatigue based on injury severity. Blood samples were collected from 87 children (1-17 years at injury) sustaining mild to severe TBI (Glasgow Coma Scale [GCS] range 3-15; mean 12.43; classified as mild TBI [n = 50, 57%] vs. moderate/severe TBI [n = 37, 43%]), and presenting to the emergency departments (ED) and pediatric intensive care units (PICU) at one of three tertiary pediatric hospitals (Royal Children's Hospital (RCH); Hospital for Sick Children (HSC), Toronto; St Justine Children's Hospital (SJH), Montreal). Six serum biomarker concentrations were measured within 24 h of injury (interleukin-6, interleukin-8 [IL-8], soluble vascular cell adhesion molecule [SVCAM], S100 calcium binding protein B [S100B], neuron specific enolase [NSE], and soluble neural cell adhesion molecule [sNCAM]). Fatigue at 12 months post-injury was measured using the Pediatric Quality of Life Inventory Multidimensional Fatigue Scale (parent report), classified as present/absent using previously derived cut-points. At 12 months post-injury, 22% of participants experienced fatigue. A model including IL-8 was the best serum biomarker for estimating the probability of children experiencing fatigue at 12 months post-injury. The IL-8 also significantly improved predictive models of fatigue based on severity.
Collapse
Affiliation(s)
- Alison Crichton
- Murdoch Children's Research Institute, Melbourne, Australia.,Monash University Faculty of Medicine Nursing and Health Sciences, School of Clinical Sciences, The Department of Paediatrics, School of Clinical Sciences, Monash University, Melbourne, Australia
| | - Vera Ignjatovic
- Murdoch Children's Research Institute, Melbourne, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Franz E Babl
- Murdoch Children's Research Institute, Melbourne, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Australia.,Royal Children's Hospital, Melbourne, Australia
| | - Ed Oakley
- Murdoch Children's Research Institute, Melbourne, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Australia.,Royal Children's Hospital, Melbourne, Australia
| | - Mardee Greenham
- Murdoch Children's Research Institute, Melbourne, Australia.,School of Psychological Sciences, University of Melbourne, Melbourne, Australia
| | - Stephen Hearps
- Murdoch Children's Research Institute, Melbourne, Australia
| | - Carmel Delzoppo
- Murdoch Children's Research Institute, Melbourne, Australia.,Royal Children's Hospital, Melbourne, Australia
| | - Miriam H Beauchamp
- Department of Psychology, University of Montreal, Montreal, Canada.,Research Center, Ste-Justine Hospital, Montreal, Canada
| | - Anne-Marie Guerguerian
- Critical Care Medicine, The Hospital for Sick Children (SickKids), Toronto, Canada.,Neuroscience and Mental Health Research Program, The Hospital for Sick Children Research Institute, Toronto, Canada.,The Interdepartmental Division of Critical Care, University of Toronto, Toronto, Canada
| | - Kathy Boutis
- Paediatric Emergency Medicine, The Hospital for Sick Children (SickKids), Toronto, Canada.,Department of Paediatrics, University of Toronto, Toronto, Canada
| | - Evyatar Hubara
- Critical Care Medicine, The Hospital for Sick Children (SickKids), Toronto, Canada
| | - Jamie Hutchison
- Critical Care Medicine, The Hospital for Sick Children (SickKids), Toronto, Canada.,Neuroscience and Mental Health Research Program, The Hospital for Sick Children Research Institute, Toronto, Canada.,The Interdepartmental Division of Critical Care, University of Toronto, Toronto, Canada
| | - Vicki Anderson
- Murdoch Children's Research Institute, Melbourne, Australia.,School of Psychological Sciences, University of Melbourne, Melbourne, Australia.,Royal Children's Hospital, Melbourne, Australia
| |
Collapse
|
7
|
Prymas K, Świątkowska A, Traczyk G, Ziemlińska E, Dziewulska A, Ciesielska A, Kwiatkowska K. Sphingomyelin synthase activity affects TRIF-dependent signaling of Toll-like receptor 4 in cells stimulated with lipopolysaccharide. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158549. [DOI: 10.1016/j.bbalip.2019.158549] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 09/10/2019] [Accepted: 09/25/2019] [Indexed: 01/08/2023]
|
8
|
Low-concentration HCP1 inhibits apoptosis in vascular endothelial cells. Biochem Biophys Res Commun 2019; 511:92-98. [DOI: 10.1016/j.bbrc.2019.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 02/01/2019] [Indexed: 01/21/2023]
|
9
|
Zheng X, Hu X, Zhang W. The phenotype of vascular smooth muscle cells co-cultured with endothelial cells is modulated by PDGFR-β/IQGAP1 signaling in LPS-induced intravascular injury. Int J Med Sci 2019; 16:1149-1156. [PMID: 31523178 PMCID: PMC6743276 DOI: 10.7150/ijms.34749] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 07/09/2019] [Indexed: 12/22/2022] Open
Abstract
Background Sepsis, a leading cause of death in intensive care units, is generally associated with vascular dysfunction. However, its pathophysiological process has not been fully clarified, lacking in-depth knowledge of its pathophysiological process may hinder the improvement of diagnosis and therapy for sepsis. Hence, as the key parts of the vascular wall, the interaction between endothelial cells (ECs) and smooth muscle cells (SMCs) under septic situation need to be further studied. Methods ECs and SMCs were co-cultured using Transwell plates. Lipopolysaccharide (LPS) was used to induce sepsis. A scratch-wound assay was used to assess cell migration, and western blotting was used to assess the level of redifferentiation of SMCs as well as the expression of PDGFR-β and IQGAP1. Results Co-culture with ECs reduced the redifferentiation of SMCs induced by LPS (10 μg/ml), which was characterized by increased migration ability and decreased expression of contractile proteins (e.g., SM22 and α-SMA). The production of TNF-α could decrease the level of PDGFR-β in SMCs. Treatment of SMCs with the PDGFR-β inhibitor imatinib (5 μM) was able to counteract LPS-induced SMC redifferentiation and reduce IQGAP1 protein expression, especially when SMCs were co-cultured with ECs. Conclusion The phenotype of vascular SMCs co-cultured with ECs was modulated by IQGAP1 through the PDGFR-β pathway, which may lead to vascular remodeling and homeostasis in LPS-induced intravascular injury. This pathway could be a novel target for the treatment of vascular damage.
Collapse
Affiliation(s)
- Xia Zheng
- Department of Critical Care Medicine, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, 310003, P.R. China
| | - Xiaotong Hu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases; The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, P.R. China
| | - Wang Zhang
- Department of Critical Care Medicine, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, 310003, P.R. China
| |
Collapse
|
10
|
Anti-inflammatory effects of Chinese propolis in lipopolysaccharide-stimulated human umbilical vein endothelial cells by suppressing autophagy and MAPK/NF-κB signaling pathway. Inflammopharmacology 2018; 27:561-571. [PMID: 30251233 DOI: 10.1007/s10787-018-0533-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 09/11/2018] [Indexed: 01/14/2023]
Abstract
This study aimed to investigate the possible benefits of Chinese poplar propolis (CP) in inhibiting inflammation using vascular endothelial cells (VECs) cultured in a nutrient-rich condition exposed to lipopolysaccharide (LPS). Cell proliferation was detected by sulforhodamine B assay and EdU kit. The production of reactive oxygen species (ROS) and level of mitochondrial membrane potential were determined with fluorescent probe DCHF and JC-1, respectively. Protein expression was examined by immunofluorescence staining and western blotting. The results showed that CP (6.25, 12.5, and 25 μg/mL) significantly reduced LPS-induced cytotoxicity, and when challenged with CP substantially suppressed ROS overproduction and protected mitochondrial membrane potential. CP treatment significantly inhibited autophagy by inhibiting LC3B distribution and accumulation, and elevating the p62 level in an mTOR-independent manner but mainly by suppressing the translocation of p53 from the cytoplasm to the nucleus. Furthermore, CP treatment markedly reduced protein levels of TLR4 at 12 and 24 h and significantly suppressed nuclear translocation of NF-κB p65 from cytoplasm to nucleus. In addition, CP treatment significantly reduced the phosphorylation of JNK, ERK1/2, and p38 MAPK. Our findings demonstrated that CP protects VECs from LPS-induced oxidative stress and inflammation, which might be associated with depressing autophagy and MAPK/NF-κB signaling pathway. The results provided novel insights for the potential use of nutrient-rich propolis against inflammation.
Collapse
|
11
|
Boonen B, Alpizar YA, Meseguer VM, Talavera K. TRP Channels as Sensors of Bacterial Endotoxins. Toxins (Basel) 2018; 10:toxins10080326. [PMID: 30103489 PMCID: PMC6115757 DOI: 10.3390/toxins10080326] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 08/02/2018] [Accepted: 08/08/2018] [Indexed: 02/07/2023] Open
Abstract
The cellular and systemic effects induced by bacterial lipopolysaccharides (LPS) have been solely attributed to the activation of the Toll-like receptor 4 (TLR4) signalling cascade. However, recent studies have shown that LPS activates several members of the Transient Receptor Potential (TRP) family of cation channels. Indeed, LPS induces activation of the broadly-tuned chemosensor TRPA1 in sensory neurons in a TLR4-independent manner, and genetic ablation of this channel reduced mouse pain and inflammatory responses triggered by LPS and the gustatory-mediated avoidance to LPS in fruit flies. LPS was also shown to activate TRPV4 channels in airway epithelial cells, an effect leading to an immediate production of bactericidal nitric oxide and to an increase in ciliary beat frequency. In this review, we discuss the role of TRP channels as sensors of bacterial endotoxins, and therefore, as crucial players in the timely detection of invading gram-negative bacteria.
Collapse
Affiliation(s)
- Brett Boonen
- Laboratory for Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, VIB Center for Brain & Disease Research, O&N1 Herestraat 49 - box 802, 3000 Leuven, Belgium.
| | - Yeranddy A Alpizar
- Laboratory for Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, VIB Center for Brain & Disease Research, O&N1 Herestraat 49 - box 802, 3000 Leuven, Belgium.
| | - Victor M Meseguer
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, 03550 San Juan de Alicante, Spain.
| | - Karel Talavera
- Laboratory for Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, VIB Center for Brain & Disease Research, O&N1 Herestraat 49 - box 802, 3000 Leuven, Belgium.
| |
Collapse
|
12
|
Macrophages and Phospholipases at the Intersection between Inflammation and the Pathogenesis of HIV-1 Infection. Int J Mol Sci 2017; 18:ijms18071390. [PMID: 28661459 PMCID: PMC5535883 DOI: 10.3390/ijms18071390] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 06/22/2017] [Accepted: 06/26/2017] [Indexed: 12/12/2022] Open
Abstract
Persistent low grade immune activation and chronic inflammation are nowadays considered main driving forces of the progressive immunologic failure in effective antiretroviral therapy treated HIV-1 infected individuals. Among the factors contributing to this phenomenon, microbial translocation has emerged as a key driver of persistent immune activation. Indeed, the rapid depletion of gastrointestinal CD4+ T lymphocytes occurring during the early phases of infection leads to a deterioration of the gut epithelium followed by the translocation of microbial products into the systemic circulation and the subsequent activation of innate immunity. In this context, monocytes/macrophages are increasingly recognized as an important source of inflammation, linked to HIV-1 disease progression and to non-AIDS complications, such as cardiovascular disease and neurocognitive decline, which are currently main challenges in treated patients. Lipid signaling plays a central role in modulating monocyte/macrophage activation, immune functions and inflammatory responses. Phospholipase-mediated phospholipid hydrolysis leads to the production of lipid mediators or second messengers that affect signal transduction, thus regulating a variety of physiologic and pathophysiologic processes. In this review, we discuss the contribution of phospholipases to monocyte/macrophage activation in the context of HIV-1 infection, focusing on their involvement in virus-associated chronic inflammation and co-morbidities.
Collapse
|
13
|
Werhane ML, Evangelista ND, Clark AL, Sorg SF, Bangen KJ, Tran M, Schiehser DM, Delano-Wood L. Pathological vascular and inflammatory biomarkers of acute- and chronic-phase traumatic brain injury. Concussion 2017; 2:CNC30. [PMID: 30202571 PMCID: PMC6094091 DOI: 10.2217/cnc-2016-0022] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 12/19/2016] [Indexed: 12/24/2022] Open
Abstract
Given the demand for developing objective methods for characterizing traumatic brain injury (TBI), research dedicated to evaluating putative biomarkers has burgeoned over the past decade. Since it is critical to elucidate the underlying pathological processes that underlie the higher diverse outcomes that follow neurotrauma, considerable efforts have been aimed at identifying biomarkers of both the acute- and chronic-phase TBI. Such information is not only critical for helping to elucidate the pathological changes that lead to poor long-term outcomes following TBI but it may also assist in the identification of possible prevention and interventions for individuals who sustain head trauma. In the current review, we discuss the potential role of vascular dysfunction and chronic inflammation in both acute- and chronic-phase TBI, and we also highlight existing studies that have investigated inflammation biomarkers associated with poorer injury outcome.
Collapse
Affiliation(s)
- Madeleine L Werhane
- San Diego State University/University of California, San Diego (SDSU/UC San Diego) Joint Doctoral Program in Clinical Psychology, San Diego, CA 92120, USA
- VA San Diego Healthcare System, San Diego, CA 92161, USA
- Center of Excellence for Stress & Mental Health (CESAMH), VA San Diego Healthcare System, San Diego, CA 92161, USA
| | | | - Alexandra L Clark
- San Diego State University/University of California, San Diego (SDSU/UC San Diego) Joint Doctoral Program in Clinical Psychology, San Diego, CA 92120, USA
- VA San Diego Healthcare System, San Diego, CA 92161, USA
- Center of Excellence for Stress & Mental Health (CESAMH), VA San Diego Healthcare System, San Diego, CA 92161, USA
| | - Scott F Sorg
- VA San Diego Healthcare System, San Diego, CA 92161, USA
- Center of Excellence for Stress & Mental Health (CESAMH), VA San Diego Healthcare System, San Diego, CA 92161, USA
| | - Katherine J Bangen
- VA San Diego Healthcare System, San Diego, CA 92161, USA
- Center of Excellence for Stress & Mental Health (CESAMH), VA San Diego Healthcare System, San Diego, CA 92161, USA
| | - My Tran
- VA San Diego Healthcare System, San Diego, CA 92161, USA
- San Diego State University (SDSU), San Diego, CA 92182, USA
| | - Dawn M Schiehser
- VA San Diego Healthcare System, San Diego, CA 92161, USA
- Center of Excellence for Stress & Mental Health (CESAMH), VA San Diego Healthcare System, San Diego, CA 92161, USA
- Department of Psychiatry, University of California, San Diego (UCSD), La Jolla, CA 92093, USA
| | - Lisa Delano-Wood
- VA San Diego Healthcare System, San Diego, CA 92161, USA
- Center of Excellence for Stress & Mental Health (CESAMH), VA San Diego Healthcare System, San Diego, CA 92161, USA
- Department of Psychiatry, University of California, San Diego (UCSD), La Jolla, CA 92093, USA
| |
Collapse
|
14
|
Abstract
Vascular endothelial cell (VEC) apoptosis is involved in the development of atherosclerosis and other cardiovascular diseases. We previously found that ethyl 1-(2-hydroxy-3-aroxypropyl)-3-aryl-1H-pyrazole -5-carboxylate derivatives (3a-o) play important roles in cell fate control. In this study, among the 15 compounds, we further screened 2 compounds, 3d and 3k, that suppressed VEC apoptosis induced by deprivation of serum and fibroblast growth factor 2. To clarify which chiral enantiomers of 3d and 3k functioned, we synthesized 3d-S and its enantiomer 3d-R, 3k-S, and its enantiomer 3k-R. Then, we investigated the apoptosis-inhibiting activity of the chiral compounds in VECs. Four small molecules, 3d-S, 3d-R, 3k-S, 3k-R, significantly elevated VEC viability and inhibited apoptosis. Furthermore, these small molecules could obviously decrease the level of integrin β4 that plays a key role in the regulation of VEC apoptosis. 3k-S and 3k-R increased Bcl-2/Bax ratio and reduced reactive oxygen species levels dramatically. Therefore, we provide new VEC apoptosis inhibitors. These compounds may be potential agents in the prevention of vascular diseases associated with VEC apoptosis.
Collapse
|
15
|
Chong YJ, Musa NF, Ng CH, Shaari K, Israf DA, Tham CL. Barrier protective effects of 2,4,6-trihydroxy-3-geranyl acetophenone on lipopolysaccharides-stimulated inflammatory responses in human umbilical vein endothelial cells. JOURNAL OF ETHNOPHARMACOLOGY 2016; 192:248-255. [PMID: 27404229 DOI: 10.1016/j.jep.2016.07.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 06/06/2016] [Accepted: 07/09/2016] [Indexed: 06/06/2023]
Abstract
PHARMOCOLOGICAL RELEVANCE 2,4,6-trihydroxy-3-geranyl acetophenone (tHGA), is a phloroglucinol compound found naturally in Melicope ptelefolia. Melicope ptelefolia has been used traditionally for centuries as natural remedy for wound infections and inflammatory diseases. AIM OF THE STUDY Endothelial barrier dysfunction is a pathological hallmark of many diseases and can be caused by lipopolysaccharides (LPS) stimulation. Therefore, this study aims to investigate the possible barrier protective effects of tHGA upon LPS-stimulated inflammatory responses in human umbilical vein endothelial cells (HUVECs). MATERIALS AND METHODS HUVECs were pretreated with tHGA prior to LPS stimulation, where inflammatory parameters including permeability, monocyte adhesion and migration, and release of pro-inflammatory mediators were examined. Additionally, the effect of tHGA on F-actin rearrangement and adhesion protein expression of LPS-stimulated HUVECs was evaluated. RESULTS It was found that pretreatment with tHGA inhibited monocyte adhesion and transendothelial migration, reduced endothelial hyperpermeability and secretion of prostaglandin E2 (PGE2). Additionally, tHGA inhibited cytoskeletal rearrangement and adhesion protein expression on LPS-stimulated HUVECs. CONCLUSION As the regulation of endothelial barrier dysfunction can be one of the therapeutic strategies to improve the outcome of inflammation, tHGA may be able to preserve vascular barrier integrity of endothelial cells following LPS-stimulated dysfunction, thereby endorsing its potential usefulness in vascular inflammatory diseases.
Collapse
Affiliation(s)
- Yi Joong Chong
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43300, Malaysia
| | - Nazmi Firdaus Musa
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43300, Malaysia
| | - Chean Hui Ng
- Faculty of Science, Universiti Putra Malaysia, Serdang 43300, Malaysia
| | - Khozirah Shaari
- Faculty of Science, Universiti Putra Malaysia, Serdang 43300, Malaysia
| | - Daud Ahmad Israf
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43300, Malaysia
| | - Chau Ling Tham
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43300, Malaysia.
| |
Collapse
|
16
|
Stefanescu H, Suciu A, Romanciuc F, Crisan D, Procopet B, Radu C, Tantau M, Socaciu C, Grigorescu M. Lyso-phosphatidylcholine: A potential metabolomic biomarker for alcoholic liver disease? Hepatology 2016; 64:678-9. [PMID: 27123871 DOI: 10.1002/hep.28630] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 09/24/2015] [Accepted: 09/29/2015] [Indexed: 12/12/2022]
Affiliation(s)
- Horia Stefanescu
- Hepatology Unit, Regional Institute of Gastroenterology and Hepatology, Cluj-Napoca, Romania
| | - Alina Suciu
- 3rd Medical Clinic, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Florina Romanciuc
- RTD Center for Applied Biotechnology BIODIATECH, SC Proplanta, Cluj-Napoca, Romania
| | - Dana Crisan
- 5th Medical Clinic, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Bogdan Procopet
- Hepatology Unit, Regional Institute of Gastroenterology and Hepatology, Cluj-Napoca, Romania.,3rd Medical Clinic, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Corina Radu
- Hepatology Unit, Regional Institute of Gastroenterology and Hepatology, Cluj-Napoca, Romania.,3rd Medical Clinic, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Marcel Tantau
- 3rd Medical Clinic, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Carmen Socaciu
- RTD Center for Applied Biotechnology BIODIATECH, SC Proplanta, Cluj-Napoca, Romania
| | - Mircea Grigorescu
- 3rd Medical Clinic, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
17
|
Budding K, van de Graaf EA, Kardol-Hoefnagel T, Kwakkel-van Erp JM, Luijk BD, Oudijk EJD, van Kessel DA, Grutters JC, Hack CE, Otten HG. Soluble CD59 is a Novel Biomarker for the Prediction of Obstructive Chronic Lung Allograft Dysfunction After Lung Transplantation. Sci Rep 2016; 6:26274. [PMID: 27215188 PMCID: PMC4877647 DOI: 10.1038/srep26274] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 04/26/2016] [Indexed: 11/09/2022] Open
Abstract
CD59 is a complement regulatory protein that inhibits membrane attack complex formation. A soluble form of CD59 (sCD59) is present in various body fluids and is associated with cellular damage after acute myocardial infarction. Lung transplantation (LTx) is the final treatment for end-stage lung diseases, however overall survival is hampered by chronic lung allograft dysfunction development, which presents itself obstructively as the bronchiolitis obliterans syndrome (BOS). We hypothesized that, due to cellular damage and activation during chronic inflammation, sCD59 serum levels can be used as biomarker preceding BOS development. We analyzed sCD59 serum concentrations in 90 LTx patients, of whom 20 developed BOS. We observed that BOS patients exhibited higher sCD59 serum concentrations at the time of diagnosis compared to clinically matched non-BOS patients (p = 0.018). Furthermore, sCD59 titers were elevated at 6 months post-LTx (p = 0.0020), when patients had no BOS-related symptoms. Survival-analysis showed that LTx patients with sCD59 titers ≥400 pg/ml 6 months post-LTx have a significant (p < 0.0001) lower chance of BOS-free survival than patients with titers ≤400 pg/ml, 32% vs. 80% respectively, which was confirmed by multivariate analysis (hazard ratio 6.2, p < 0.0001). We propose that circulating sCD59 levels constitute a novel biomarker to identify patients at risk for BOS following LTx.
Collapse
Affiliation(s)
- Kevin Budding
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Eduard A van de Graaf
- Department of Respiratory Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Tineke Kardol-Hoefnagel
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Bart D Luijk
- Department of Respiratory Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Erik-Jan D Oudijk
- Center of Interstitial Lung Diseases, St Antonius Hospital, Nieuwegein, The Netherlands
| | - Diana A van Kessel
- Center of Interstitial Lung Diseases, St Antonius Hospital, Nieuwegein, The Netherlands
| | - Jan C Grutters
- Center of Interstitial Lung Diseases, St Antonius Hospital, Nieuwegein, The Netherlands
| | - C Erik Hack
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands.,Departments of Rheumatology and Dermatology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Henderikus G Otten
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
18
|
Li B, Li H, Wang Z, Wang Y, Gao A, Cui Y, Liu Y, Chen G. Evidence for the role of phosphatidylcholine-specific phospholipase in experimental subarachnoid hemorrhage in rats. Exp Neurol 2015; 272:145-51. [DOI: 10.1016/j.expneurol.2015.02.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 02/15/2015] [Accepted: 02/19/2015] [Indexed: 12/21/2022]
|
19
|
Liu Z, Morgan S, Ren J, Wang Q, Annis DS, Mosher DF, Zhang J, Sorenson CM, Sheibani N, Liu B. Thrombospondin-1 (TSP1) contributes to the development of vascular inflammation by regulating monocytic cell motility in mouse models of abdominal aortic aneurysm. Circ Res 2015; 117:129-41. [PMID: 25940549 DOI: 10.1161/circresaha.117.305262] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 05/04/2015] [Indexed: 01/12/2023]
Abstract
RATIONALE Histological examination of abdominal aortic aneurysm (AAA) tissues demonstrates extracellular matrix destruction and infiltration of inflammatory cells. Previous work with mouse models of AAA has shown that anti-inflammatory strategies can effectively attenuate aneurysm formation. Thrombospondin-1 is a matricellular protein involved in the maintenance of vascular structure and homeostasis through the regulation of biological functions, such as cell proliferation, apoptosis, and adhesion. Expression levels of thrombospondin-1 correlate with vascular disease conditions. OBJECTIVE To use thrombospondin-1-deficient (Thbs1(-/-)) mice to test the hypothesis that thrombospondin-1 contributes to pathogenesis of AAAs. METHODS AND RESULTS Mouse experimental AAA was induced through perivascular treatment with calcium phosphate, intraluminal perfusion with porcine elastase, or systemic administration of angiotensin II. Induction of AAA increased thrombospondin-1 expression in aortas of C57BL/6 or apoE-/- mice. Compared with Thbs1(+/+) mice, Thbs1(-/-) mice developed significantly smaller aortic expansion when subjected to AAA inductions, which was associated with diminished infiltration of macrophages. Thbs1(-/-) monocytic cells had reduced adhesion and migratory capacity in vitro compared with wild-type counterparts. Adoptive transfer of Thbs1(+/+) monocytic cells or bone marrow reconstitution rescued aneurysm development in Thbs1(-/-) mice. CONCLUSIONS Thrombospondin-1 expression plays a significant role in regulation of migration and adhesion of mononuclear cells, contributing to vascular inflammation during AAA development.
Collapse
Affiliation(s)
- Zhenjie Liu
- From the Departments of Surgery (Z.L., S.M., J.R., Q.W., B.L.), Pathology and Laboratory Medicine (B.L.), Biomolecular Chemistry and Medicine (D.S.A., D.F.M.), McArdle Laboratory for Cancer Research (J.Z.), Pediatrics (C.M.S.), and Ophthalmology and Visual Sciences (N.S.), University of Wisconsin School of Medicine and Public Health, Madison; and Department of Vascular Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China (Z.L.)
| | - Stephanie Morgan
- From the Departments of Surgery (Z.L., S.M., J.R., Q.W., B.L.), Pathology and Laboratory Medicine (B.L.), Biomolecular Chemistry and Medicine (D.S.A., D.F.M.), McArdle Laboratory for Cancer Research (J.Z.), Pediatrics (C.M.S.), and Ophthalmology and Visual Sciences (N.S.), University of Wisconsin School of Medicine and Public Health, Madison; and Department of Vascular Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China (Z.L.)
| | - Jun Ren
- From the Departments of Surgery (Z.L., S.M., J.R., Q.W., B.L.), Pathology and Laboratory Medicine (B.L.), Biomolecular Chemistry and Medicine (D.S.A., D.F.M.), McArdle Laboratory for Cancer Research (J.Z.), Pediatrics (C.M.S.), and Ophthalmology and Visual Sciences (N.S.), University of Wisconsin School of Medicine and Public Health, Madison; and Department of Vascular Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China (Z.L.)
| | - Qiwei Wang
- From the Departments of Surgery (Z.L., S.M., J.R., Q.W., B.L.), Pathology and Laboratory Medicine (B.L.), Biomolecular Chemistry and Medicine (D.S.A., D.F.M.), McArdle Laboratory for Cancer Research (J.Z.), Pediatrics (C.M.S.), and Ophthalmology and Visual Sciences (N.S.), University of Wisconsin School of Medicine and Public Health, Madison; and Department of Vascular Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China (Z.L.)
| | - Douglas S Annis
- From the Departments of Surgery (Z.L., S.M., J.R., Q.W., B.L.), Pathology and Laboratory Medicine (B.L.), Biomolecular Chemistry and Medicine (D.S.A., D.F.M.), McArdle Laboratory for Cancer Research (J.Z.), Pediatrics (C.M.S.), and Ophthalmology and Visual Sciences (N.S.), University of Wisconsin School of Medicine and Public Health, Madison; and Department of Vascular Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China (Z.L.)
| | - Deane F Mosher
- From the Departments of Surgery (Z.L., S.M., J.R., Q.W., B.L.), Pathology and Laboratory Medicine (B.L.), Biomolecular Chemistry and Medicine (D.S.A., D.F.M.), McArdle Laboratory for Cancer Research (J.Z.), Pediatrics (C.M.S.), and Ophthalmology and Visual Sciences (N.S.), University of Wisconsin School of Medicine and Public Health, Madison; and Department of Vascular Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China (Z.L.)
| | - Jing Zhang
- From the Departments of Surgery (Z.L., S.M., J.R., Q.W., B.L.), Pathology and Laboratory Medicine (B.L.), Biomolecular Chemistry and Medicine (D.S.A., D.F.M.), McArdle Laboratory for Cancer Research (J.Z.), Pediatrics (C.M.S.), and Ophthalmology and Visual Sciences (N.S.), University of Wisconsin School of Medicine and Public Health, Madison; and Department of Vascular Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China (Z.L.)
| | - Christine M Sorenson
- From the Departments of Surgery (Z.L., S.M., J.R., Q.W., B.L.), Pathology and Laboratory Medicine (B.L.), Biomolecular Chemistry and Medicine (D.S.A., D.F.M.), McArdle Laboratory for Cancer Research (J.Z.), Pediatrics (C.M.S.), and Ophthalmology and Visual Sciences (N.S.), University of Wisconsin School of Medicine and Public Health, Madison; and Department of Vascular Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China (Z.L.)
| | - Nader Sheibani
- From the Departments of Surgery (Z.L., S.M., J.R., Q.W., B.L.), Pathology and Laboratory Medicine (B.L.), Biomolecular Chemistry and Medicine (D.S.A., D.F.M.), McArdle Laboratory for Cancer Research (J.Z.), Pediatrics (C.M.S.), and Ophthalmology and Visual Sciences (N.S.), University of Wisconsin School of Medicine and Public Health, Madison; and Department of Vascular Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China (Z.L.)
| | - Bo Liu
- From the Departments of Surgery (Z.L., S.M., J.R., Q.W., B.L.), Pathology and Laboratory Medicine (B.L.), Biomolecular Chemistry and Medicine (D.S.A., D.F.M.), McArdle Laboratory for Cancer Research (J.Z.), Pediatrics (C.M.S.), and Ophthalmology and Visual Sciences (N.S.), University of Wisconsin School of Medicine and Public Health, Madison; and Department of Vascular Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China (Z.L.).
| |
Collapse
|
20
|
Propolis Reduces Phosphatidylcholine-Specific Phospholipase C Activity and Increases Annexin a7 Level in Oxidized-LDL-Stimulated Human Umbilical Vein Endothelial Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:465383. [PMID: 24864152 PMCID: PMC4016937 DOI: 10.1155/2014/465383] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 02/12/2014] [Indexed: 11/25/2022]
Abstract
To understand the mechanisms underlying the regulating dyslipidemia action of Chinese propolis and Brazilian green propolis, we investigated their effects on phosphatidylcholine-specific phospholipase C (PC-PLC) activity and annexin a7 (ANXA7) level which play crucial roles in the control of the progress of atherosclerosis. Furthermore, active oxygen species (ROS) levels, nuclear factor-KappaB p65 (NF-κB p65), and mitochondrial membrane potential (MMP) were also investigated in oxidized-LDL- (ox-LDL-) stimulated human umbilical vein endothelial cells (HUVECs). Our data indicated that the treatment of both types of propolis 12.5 μg/mL significantly increased cell viability and attenuated apoptosis rate, increased ANXA7 level, and decreased PC-PLC activity. Both types of propolis also inhibited ROS generation as well as the subsequent MMP collapse, and NF-κB p65 activation induced by ox-LDL in HUVECs. Our results also indicated that Chinese propolis and Brazilian green propolis had similar biological activities and prevented ox-LDL induced cellular dysfunction in HUVECs.
Collapse
|
21
|
Spadaro F, Cecchetti S, Purificato C, Sabbatucci M, Podo F, Ramoni C, Gessani S, Fantuzzi L. Nuclear phosphoinositide-specific phospholipase C β1 controls cytoplasmic CCL2 mRNA levels in HIV-1 gp120-stimulated primary human macrophages. PLoS One 2013; 8:e59705. [PMID: 23555755 PMCID: PMC3610878 DOI: 10.1371/journal.pone.0059705] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 02/17/2013] [Indexed: 01/21/2023] Open
Abstract
HIV-1 envelope glycoprotein gp120 induces, independently of infection, the release of CCL2 from macrophages. In turn, this chemokine acts as an autocrine factor enhancing viral replication. In this study, we show for the first time that phosphoinositide-specific phospholipase C (PI-PLC) is required for the production of CCL2 triggered by gp120 in macrophages. Using a combination of confocal laser-scanner microscopy, pharmacologic inhibition, western blotting and fluorescence-activated cell sorter analysis, we demonstrate that gp120 interaction with CCR5 leads to nuclear localization of the PI-PLC β1 isozyme mediated by mitogen-activated protein kinase ERK-1/2. Notably, phosphatidylcholine-specific phospholipase C (PC-PLC), previously reported to be required for NF-kB-mediated CCL2 production induced by gp120 in macrophages, drives both ERK1/2 activation and PI-PLC β1 nuclear localization induced by gp120. PI-PLC β1 activation through CCR5 is also triggered by the natural chemokine ligand CCL4, but independently of ERK1/2. Finally, PI-PLC inhibition neither blocks gp120-mediated NF-kB activation nor overall accumulation of CCL2 mRNA, whereas it decreases CCL2 transcript level in the cytoplasm. These results identify nuclear PI-PLC β1 as a new intermediate in the gp120-triggered PC-PLC-driven signal transduction pathway leading to CCL2 secretion in macrophages. The finding that a concerted gp120-mediated signaling involving both PC- and PI-specific PLCs is required for the expression of CCL2 in macrophages suggests that this signal transduction pathway may also be relevant for the modulation of viral replication in these cells. Thus, this study may contribute to identify novel targets for therapeutic intervention in HIV-1 infection.
Collapse
Affiliation(s)
- Francesca Spadaro
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Serena Cecchetti
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy
| | - Cristina Purificato
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Michela Sabbatucci
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Franca Podo
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy
| | - Carlo Ramoni
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy
| | - Sandra Gessani
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Laura Fantuzzi
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
- * E-mail:
| |
Collapse
|
22
|
Woodcock T, Morganti-Kossmann MC. The role of markers of inflammation in traumatic brain injury. Front Neurol 2013; 4:18. [PMID: 23459929 PMCID: PMC3586682 DOI: 10.3389/fneur.2013.00018] [Citation(s) in RCA: 506] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 02/10/2013] [Indexed: 12/18/2022] Open
Abstract
Within minutes of a traumatic impact, a robust inflammatory response is elicited in the injured brain. The complexity of this post-traumatic squeal involves a cellular component, comprising the activation of resident glial cells, microglia, and astrocytes, and the infiltration of blood leukocytes. The second component regards the secretion immune mediators, which can be divided into the following sub-groups: the archetypal pro-inflammatory cytokines (Interleukin-1, Tumor Necrosis Factor, Interleukin-6), the anti-inflammatory cytokines (IL-4, Interleukin-10, and TGF-beta), and the chemotactic cytokines or chemokines, which specifically drive the accumulation of parenchymal and peripheral immune cells in the injured brain region. Such mechanisms have been demonstrated in animal models, mostly in rodents, as well as in human brain. Whilst the humoral immune response is particularly pronounced in the acute phase following Traumatic brain injury (TBI), the activation of glial cells seems to be a rather prolonged effect lasting for several months. The complex interaction of cytokines and cell types installs a network of events, which subsequently intersect with adjacent pathological cascades including oxidative stress, excitotoxicity, or reparative events including angiogenesis, scarring, and neurogenesis. It is well accepted that neuroinflammation is responsible of beneficial and detrimental effects, contributing to secondary brain damage but also facilitating neurorepair. Although such mediators are clear markers of immune activation, to what extent cytokines can be defined as diagnostic factors reflecting brain injury or as predictors of long term outcome needs to be further substantiated. In clinical studies some groups reported a proportional cytokine production in either the cerebrospinal fluid or intraparenchymal tissue with initial brain damage, mortality, or poor outcome scores. However, the validity of cytokines as biomarkers is not broadly accepted. This review article will discuss the evidence from both clinical and laboratory studies exploring the validity of immune markers as a correlate to classification and outcome following TBI.
Collapse
Affiliation(s)
- Thomas Woodcock
- Australian School of Advanced Medicine, Macquarie University Sydney, NSW, Australia
| | | |
Collapse
|
23
|
Gandhirajan RK, Meng S, Chandramoorthy HC, Mallilankaraman K, Mancarella S, Gao H, Razmpour R, Yang XF, Houser SR, Chen J, Koch WJ, Wang H, Soboloff J, Gill DL, Madesh M. Blockade of NOX2 and STIM1 signaling limits lipopolysaccharide-induced vascular inflammation. J Clin Invest 2013; 123:887-902. [PMID: 23348743 DOI: 10.1172/jci65647] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 11/30/2012] [Indexed: 12/27/2022] Open
Abstract
During sepsis, acute lung injury (ALI) results from activation of innate immune cells and endothelial cells by endotoxins, leading to systemic inflammation through proinflammatory cytokine overproduction, oxidative stress, and intracellular Ca2+ overload. Despite considerable investigation, the underlying molecular mechanism(s) leading to LPS-induced ALI remain elusive. To determine whether stromal interaction molecule 1-dependent (STIM1-dependent) signaling drives endothelial dysfunction in response to LPS, we investigated oxidative and STIM1 signaling of EC-specific Stim1-knockout mice. Here we report that LPS-mediated Ca2+ oscillations are ablated in ECs deficient in Nox2, Stim1, and type II inositol triphosphate receptor (Itpr2). LPS-induced nuclear factor of activated T cells (NFAT) nuclear accumulation was abrogated by either antioxidant supplementation or Ca2+ chelation. Moreover, ECs lacking either Nox2 or Stim1 failed to trigger store-operated Ca2+ entry (SOCe) and NFAT nuclear accumulation. LPS-induced vascular permeability changes were reduced in EC-specific Stim1-/- mice, despite elevation of systemic cytokine levels. Additionally, inhibition of STIM1 signaling prevented receptor-interacting protein 3-dependent (RIP3-dependent) EC death. Remarkably, BTP2, a small-molecule calcium release-activated calcium (CRAC) channel blocker administered after insult, halted LPS-induced vascular leakage and pulmonary edema. These results indicate that ROS-driven Ca2+ signaling promotes vascular barrier dysfunction and that the SOCe machinery may provide crucial therapeutic targets to limit sepsis-induced ALI.
Collapse
|
24
|
Vazquez Rodriguez G, Gonzalez C, De Leon Rodriguez A. Novel Fusion Protein Derived from Vasostatin 30 and Vasoinhibin II-14.1 Potently Inhibits Coronary Endothelial Cell Proliferation. Mol Biotechnol 2013; 54:920-9. [DOI: 10.1007/s12033-012-9642-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
25
|
Tauseef M, Knezevic N, Chava KR, Smith M, Sukriti S, Gianaris N, Obukhov AG, Vogel SM, Schraufnagel DE, Dietrich A, Birnbaumer L, Malik AB, Mehta D. TLR4 activation of TRPC6-dependent calcium signaling mediates endotoxin-induced lung vascular permeability and inflammation. ACTA ACUST UNITED AC 2012; 209:1953-68. [PMID: 23045603 PMCID: PMC3478927 DOI: 10.1084/jem.20111355] [Citation(s) in RCA: 172] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Lung vascular endothelial barrier disruption and the accompanying inflammation are primary pathogenic features of acute lung injury (ALI); however, the basis for the development of both remains unclear. Studies have shown that activation of transient receptor potential canonical (TRPC) channels induces Ca(2+) entry, which is essential for increased endothelial permeability. Here, we addressed the role of Toll-like receptor 4 (TLR4) intersection with TRPC6-dependent Ca(2+) signaling in endothelial cells (ECs) in mediating lung vascular leakage and inflammation. We find that the endotoxin (lipopolysaccharide; LPS) induces Ca(2+) entry in ECs in a TLR4-dependent manner. Moreover, deletion of TRPC6 renders mice resistant to endotoxin-induced barrier dysfunction and inflammation, and protects against sepsis-induced lethality. TRPC6 induces Ca(2+) entry in ECs, which is secondary to the generation of diacylglycerol (DAG) induced by LPS. Ca(2+) entry mediated by TRPC6, in turn, activates the nonmuscle myosin light chain kinase (MYLK), which not only increases lung vascular permeability but also serves as a scaffold to promote the interaction of myeloid differentiation factor 88 and IL-1R-associated kinase 4, which are required for NF-κB activation and lung inflammation. Our findings suggest that TRPC6-dependent Ca(2+) entry into ECs, secondary to TLR4-induced DAG generation, participates in mediating both lung vascular barrier disruption and inflammation induced by endotoxin.
Collapse
Affiliation(s)
- Mohammad Tauseef
- Department of Pharmacology, 2 Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL 61605, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Umapathy NS, Gonzales J, Fulzele S, Kim KM, Lucas R, Verin AD. β-Nicotinamide adenine dinucleotide attenuates lipopolysaccharide-induced inflammatory effects in a murine model of acute lung injury. Exp Lung Res 2012; 38:223-32. [PMID: 22563684 DOI: 10.3109/01902148.2012.673049] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) occur in approximately 200,000 patients per year. Studies indicate that lung endothelium plays a significant role in ALI. The authors' recent in vitro studies demonstrate a novel mechanism of β-nicotinamide adenine dinucleotide (β-NAD)-induced protection against gram-positive (pneumolysin, PLY) and gram-negative (lipopolysaccharide, LPS) toxin-induced lung endothelial cell (EC) barrier dysfunction. The objective of the current study was to evaluate the protective effect of β-NAD against LPS-induced ALI in mice. C57BL/6J mice were randomly divided into 4 groups: vehicle, β-NAD, LPS, and LPS/β-NAD. After surgery, mice were allowed to recover for 24 hours. Evans blue dye-albumin (EBA) was given through the internal jugular vein 2 hours prior to the termination of the experiments. Upon sacrificing the animals, bronchoalveolar lavage fluid (BALF) was collected and the lungs were harvested. β-NAD treatment significantly attenuated the inflammatory response by means of reducing the accumulation of cells and protein in BALF, blunting the parenchymal neutrophil infiltration, and preventing capillary leak. In addition, the histological examination demonstrated decreased interstitial edema in the LPS/β-NAD specimens, as compared to the LPS-only specimens. The mRNA levels of the anti-inflammatory cytokines were up-regulated in the LPS group treated with β-NAD compared to the LPS-only-treated group. β-NAD treatment down-regulated the mRNA levels of the proinflammatory cytokines. These findings suggest that β-NAD could be investigated as a therapeutic option against bacterial toxin-induced lung inflammation and ALI in mice.
Collapse
Affiliation(s)
- Nagavedi Siddaramappa Umapathy
- Vascular Biology Center and Section of Pulmonary and Critical Care Medicine, Georgia Health Sciences University, Augusta, Georgia 30912, USA.
| | | | | | | | | | | |
Collapse
|
27
|
Morgan S, Yamanouchi D, Harberg C, Wang Q, Keller M, Si Y, Burlingham W, Seedial S, Lengfeld J, Liu B. Elevated protein kinase C-δ contributes to aneurysm pathogenesis through stimulation of apoptosis and inflammatory signaling. Arterioscler Thromb Vasc Biol 2012; 32:2493-502. [PMID: 22879584 DOI: 10.1161/atvbaha.112.255661] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Apoptosis of smooth muscle cells (SMCs) is a prominent pathological characteristic of abdominal aortic aneurysm (AAA). We have previously shown that SMC apoptosis stimulates proinflammatory signaling in a mouse model of AAA. Here, we test whether protein kinase C-δ (PKCδ), an apoptotic mediator, participates in the pathogenesis of AAA by regulating apoptosis and proinflammatory signals. METHODS AND RESULTS Mouse experimental AAA is induced by perivascular administration of CaCl(2). Mice deficient in PKCδ exhibit a profound reduction in aneurysmal expansion, SMC apoptosis, and transmural inflammation as compared with wild-type littermates. Delivery of PKCδ to the aortic wall of PKCδ(-/-) mice restores aneurysm, whereas overexpression of a dominant negative PKCδ mutant in the aorta of wild-type mice attenuates aneurysm. In vitro, PKCδ(-/-) aortic SMCs exhibit significantly impaired monocyte chemoattractant protein-1 production. Ectopic administration of recombinant monocyte chemoattractant protein-1 to the arterial wall of PKCδ(-/-) mice restores inflammatory response and aneurysm development. CONCLUSIONS PKCδ is an important signaling mediator for SMC apoptosis and inflammation in a mouse model of AAA. By stimulating monocyte chemoattractant protein-1 expression in aortic SMCs, upregulated PKCδ exacerbates the inflammatory process, in turn perpetuating elastin degradation and aneurysmal dilatation. Inhibition of PKCδ may serve as a potential therapeutic strategy for AAA.
Collapse
MESH Headings
- Animals
- Aortic Aneurysm, Abdominal/etiology
- Aortic Aneurysm, Abdominal/metabolism
- Aortic Aneurysm, Abdominal/pathology
- Apoptosis/physiology
- Calcium Chloride/adverse effects
- Cell Movement/physiology
- Cells, Cultured
- Chemokine CCL2/metabolism
- Elastin/metabolism
- In Vitro Techniques
- Inflammation/physiopathology
- Macrophages/pathology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Models, Animal
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Protein Kinase C-delta/deficiency
- Protein Kinase C-delta/genetics
- Protein Kinase C-delta/metabolism
- Signal Transduction/physiology
- Up-Regulation
Collapse
Affiliation(s)
- Stephanie Morgan
- Division of Vascular Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
de Toledo A, Nagata E, Yoshida Y, Oho T. Streptococcus oralis coaggregation receptor polysaccharides induce inflammatory responses in human aortic endothelial cells. Mol Oral Microbiol 2012; 27:295-307. [DOI: 10.1111/j.2041-1014.2012.00646.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
Li H, Zhang L, Yin D, Zhang Y, Miao J. Targeting phosphatidylcholine-specific phospholipase C for atherogenesis therapy. Trends Cardiovasc Med 2011; 20:172-6. [PMID: 21742273 DOI: 10.1016/j.tcm.2011.02.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Atherosclerosis, a dynamic and progressive vascular disease arising from the combination of endothelial dysfunction and inflammation, is becoming a major killer in the 21st century. Accumulating evidence implicates phosphatidylcholine-specific phospholipase C (PC-PLC) in endothelial dysfunction and several inflammation processes. In addition, in a recent study, we demonstrated that PC-PLC contributed to the progression of atherosclerosis. Considering the important roles of PC-PLC in vascular endothelial cell dysfunction and its proinflammatory properties, we propose that a pharmacological blockade of PC-PLC represents a rational approach to atherosclerosis therapy.
Collapse
Affiliation(s)
- HaiYing Li
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, Institute of Developmental Biology, School of Life Science, Shandong University, Jinan 250100, China
| | | | | | | | | |
Collapse
|
30
|
Adibhatla RM, Hatcher JF, Gusain A. Tricyclodecan-9-yl-xanthogenate (D609) mechanism of actions: a mini-review of literature. Neurochem Res 2011; 37:671-9. [PMID: 22101393 DOI: 10.1007/s11064-011-0659-z] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 10/14/2011] [Accepted: 11/10/2011] [Indexed: 12/21/2022]
Abstract
Tricyclodecan-9-yl-xanthogenate (D609) is known for its antiviral and antitumor properties. D609 actions are widely attributed to inhibiting phosphatidylcholine (PC)-specific phospholipase C (PC-PLC). D609 also inhibits sphingomyelin synthase (SMS). PC-PLC and/or SMS inhibition will affect lipid second messengers 1,2-diacylglycerol (DAG) and/or ceramide. Evidence indicates either PC-PLC and/or SMS inhibition affected the cell cycle and arrested proliferation, and stimulated differentiation in various in vitro and in vivo studies. Xanthogenate compounds are also potent antioxidants and D609 reduced Aß-induced toxicity, attributed to its antioxidant properties. Zn²⁺ is necessary for PC-PLC enzymatic activity; inhibition by D609 might be attributed to its Zn²⁺ chelation. D609 has also been proposed to inhibit acidic sphingomyelinase or down-regulate hypoxia inducible factor-1α; however these are down-stream events related to PC-PLC inhibition. Characterization of the mammalian PC-PLC is limited to inhibition of enzymatic activity (frequently measured using Amplex red assay with bacterial PC-PLC as a standard). The mammalian PC-PLC has not been cloned; sequenced and structural information is unavailable. D609 showed promise in cancer studies, reduced atherosclerotic plaques (inhibition of PC-PLC) and cerebral infarction after stroke (PC-PLC or SMS). D609 actions as an antagonist to pro-inflammatory cytokines have been attributed to PC-PLC. The purpose of this review is to comprehensively evaluate the literature and summarize the findings and relevance to cell cycle and CNS pathologies.
Collapse
Affiliation(s)
- Rao Muralikrishna Adibhatla
- Department of Neurological Surgery, Clinical Science Center, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, Madison, WI 53792-3232, USA.
| | | | | |
Collapse
|