1
|
Guo C, Jiao M, Cui Y, Li P, Yao J, Dong J, Liao L. Claudin-2 Mediates the Proximal Tubular Epithelial Cell-Fibroblast Crosstalk via Paracrine CTGF. Diabetes Metab Syndr Obes 2024; 17:55-73. [PMID: 38192494 PMCID: PMC10771729 DOI: 10.2147/dmso.s432173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 12/14/2023] [Indexed: 01/10/2024] Open
Abstract
Purpose Proximal tubular epithelial cell (PTEC) is vulnerable to injury in diabetic kidney disease (DKD) due to high energy expenditure. The injured PTECs-derived profibrotic factors are thought to be driving forces in tubulointerstitial fibrosis (TIF) as they activate surrounding fibroblasts. However, the mechanisms remain unclear. Methods The diabetes with uninephrectomy (DKD) rats were used to evaluated renal histological changes and the expression of Claudin-2 by immunofluorescence staining. Then, Claudin-2 expression in PTECs were modulated and subsequently determined the proliferation and activation of fibroblasts by building a transwell co-culture system in normal glucose (NG)or high glucose (HG) condition. Results Decreased expression of Claudin-2 in PTECs accompanied by tight junction disruption and increased interstitial fibrosis, were detected in DKD rats. In vitro, downregulated Claudin-2 in PTECs promoted proliferation and activation of fibroblasts, which coincided with elevated expression of profibrotic connective tissue growth factor (CTGF) in PTECs. Silenced CTGF inhibited the profibrotic of PTECs via Claudin-2 inhibition. Fibroblasts co-cultured with PTECs transitioned more to myofibroblasts and generated extracellular matrix (ECM) significantly in response to high glucose (HG) stimulation whereas overexpression of Claudin-2 in PTECs reversed the above results. Upregulating CTGF disrupted the beneficial anti-fibrosis effects obtained by overexpression of Claudin-2 in HG condition. Conclusion Our study suggested that Claudin-2 in PTECs, a key mediator of paracellular cation and water transport, promotes the activation and proliferation of surrounding fibroblasts significantly via CTGF in a paracrine manner.
Collapse
Affiliation(s)
- Congcong Guo
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, People’s Republic of China
- Shandong Key Laboratory of Rheumatic Disease and Translational medicine, Shandong Institute of Nephrology, Jinan, Shandong, People’s Republic of China
- Shandong Institute of Nephrology, the First Affiliated Hospital of Shandong First Medical University& Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, People’s Republic of China
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Mingwen Jiao
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, People’s Republic of China
| | - Yuying Cui
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, People’s Republic of China
- Shandong Key Laboratory of Rheumatic Disease and Translational medicine, Shandong Institute of Nephrology, Jinan, Shandong, People’s Republic of China
- Shandong Institute of Nephrology, the First Affiliated Hospital of Shandong First Medical University& Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, People’s Republic of China
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Pingjiang Li
- Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, People’s Republic of China
| | - Jinming Yao
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, People’s Republic of China
- Shandong Key Laboratory of Rheumatic Disease and Translational medicine, Shandong Institute of Nephrology, Jinan, Shandong, People’s Republic of China
- Shandong Institute of Nephrology, the First Affiliated Hospital of Shandong First Medical University& Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, People’s Republic of China
| | - Jianjun Dong
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Lin Liao
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, People’s Republic of China
- Shandong Key Laboratory of Rheumatic Disease and Translational medicine, Shandong Institute of Nephrology, Jinan, Shandong, People’s Republic of China
- Shandong Institute of Nephrology, the First Affiliated Hospital of Shandong First Medical University& Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, People’s Republic of China
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| |
Collapse
|
2
|
Ahmad R, Kumar B, Tamang RL, Talmon GA, Dhawan P, Singh AB. P62/SQSTM1 binds with claudin-2 to target for selective autophagy in stressed intestinal epithelium. Commun Biol 2023; 6:740. [PMID: 37460613 PMCID: PMC10352296 DOI: 10.1038/s42003-023-05116-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 07/07/2023] [Indexed: 07/20/2023] Open
Abstract
Impaired autophagy promotes Inflammatory Bowel Disease (IBD). Claudin-2 is upregulated in IBD however its role in the pathobiology remains uncertain due to its complex regulation, including by autophagy. Irrespective, claudin-2 expression protects mice from DSS colitis. This study was undertaken to examine if an interplay between autophagy and claudin-2 protects from colitis and associated epithelial injury. Crypt culture and intestinal epithelial cells (IECs) are subjected to stress, including starvation or DSS, the chemical that induces colitis in-vivo. Autophagy flux, cell survival, co-immunoprecipitation, proximity ligation assay, and gene mutational studies are performed. These studies reveal that under colitis/stress conditions, claudin-2 undergoes polyubiquitination and P62/SQSTM1-assisted degradation through autophagy. Inhibiting autophagy-mediated claudin-2 degradation promotes cell death and thus suggest that claudin-2 degradation promotes autophagy flux to promote cell survival. Overall, these data inform for the previously undescribed role for claudin-2 in facilitating IECs survival under stress conditions, which can be harnessed for therapeutic advantages.
Collapse
Affiliation(s)
- Rizwan Ahmad
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Balawant Kumar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Raju Lama Tamang
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Geoffrey A Talmon
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Punita Dhawan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
- VA Nebraska-Western Iowa Health Care System, Omaha, NE, USA
| | - Amar B Singh
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.
- VA Nebraska-Western Iowa Health Care System, Omaha, NE, USA.
| |
Collapse
|
3
|
Jiang M, Zhang J, Xu S, Li Y, Li W, Liang H, Yang F. Designing a multitarget In(III) compound to overcome the resistance of lung cancer cells to cisplatin. Dalton Trans 2023; 52:269-280. [PMID: 36519582 DOI: 10.1039/d2dt03374g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Designing novel anticancer non-platinum metal agents is fully challenging. Herein, a series of little-known indium (In) 2-acetylpyridine thiosemicarbazone compounds as potential anticancer agents were designed, synthesized, and characterized. The hydrogen atoms at the N-4 position with the alkyl of the In compounds significantly increased cellular uptake and cytotoxicity. In(III) compounds showed significantly higher cytotoxicity toward cisplatin-resistant cell lines than cisplatin. More importantly, C4 greatly inhibited A549DDP tumor growth in a vaccinated mouse model. C4 exerted cytotoxic effects via a multitarget mechanism. First, it activated p53 and blocked the cell cycle at the S phase, which then led to weak expression levels of cyclin and related kinases and upregulation of the expression levels of cyclin-dependent kinase inhibitors. C4 also depolarized the mitochondrial membrane potential and regulated the expression of the Bcl-2 family, which then released cyt-c and activated caspase-3/8/9 to execute apoptotic pathways. Then, it inhibited telomerase through the inhibition of the expression of the c-Myc regulator gene and expression of the human telomerase reverse transcriptase. Furthermore, C4 showed excellent antimetastatic activity.
Collapse
Affiliation(s)
- Ming Jiang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University Guilin, Guangxi, China.
| | - Juzheng Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University Guilin, Guangxi, China.
| | - Shihang Xu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University Guilin, Guangxi, China.
| | - Yanping Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University Guilin, Guangxi, China.
| | - Wenjuan Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University Guilin, Guangxi, China.
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University Guilin, Guangxi, China.
| | - Feng Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University Guilin, Guangxi, China.
| |
Collapse
|
4
|
Ganapathy AS, Saha K, Suchanec E, Singh V, Verma A, Yochum G, Koltun W, Nighot M, Ma T, Nighot P. AP2M1 mediates autophagy-induced CLDN2 (claudin 2) degradation through endocytosis and interaction with LC3 and reduces intestinal epithelial tight junction permeability. Autophagy 2022; 18:2086-2103. [PMID: 34964704 PMCID: PMC9466623 DOI: 10.1080/15548627.2021.2016233] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The intestinal epithelial tight junctions (TJs) provide barrier against paracellular permeation of lumenal antigens. Defects in TJ barrier such as increased levels of pore-forming TJ protein CLDN2 (claudin-2) is associated with inflammatory bowel disease. We have previously reported that starvation-induced macroautophagy/autophagy enhances the TJ barrier by degrading pore-forming CLDN2. In this study, we examined the molecular mechanism underlying autophagy-induced CLDN2 degradation. CLDN2 degradation was persistent in multiple modes of autophagy induction. Immunolocalization, membrane fractionation, and pharmacological inhibition studies showed increased clathrin-mediated CLDN2 endocytosis upon starvation. Inhibition of clathrin-mediated endocytosis negated autophagy-induced CLDN2 degradation and enhancement of the TJ barrier. The co-immunoprecipitation studies showed increased association of CLDN2 with clathrin and adaptor protein AP2 (AP2A1 and AP2M1 subunits) as well as LC3 and lysosomes upon starvation, signifying the role of clathrin-mediated endocytosis in autophagy-induced CLDN2 degradation. The expression and phosphorylation of AP2M1 was increased upon starvation. In-vitro, in-vivo (mouse colon), and ex-vivo (human colon) inhibition of AP2M1 activation prevented CLDN2 degradation. AP2M1 knockout prevented autophagy-induced CLDN2 degradation via reduced CLDN2-LC3 interaction. Site-directed mutagenesis revealed that AP2M1 binds to CLDN2 tyrosine motifs (YXXФ) (67-70 and 148-151). Increased baseline expression of CLDN2 and TJ permeability along with reduced CLDN2-AP2M1-LC3 interactions in ATG7 knockout cells validated the role of autophagy in modulation of CLDN2 levels. Acute deletion of Atg7 in mice increased CLDN2 levels and the susceptibility to experimental colitis. The autophagy-regulated molecular mechanisms linking CLDN2, AP2M1, and LC3 may provide therapeutic tools against intestinal inflammation.Abbreviations: Amil: amiloride; AP2: adaptor protein complex 2; AP2A1: adaptor related protein complex 2 subunit alpha 1; AP2M1: adaptor related protein complex 2 subunit mu 1; ATG7: autophagy related 7; CAL: calcitriol; Cas9: CRISPR-associated protein 9; Con: control; CPZ: chlorpromazine; DSS: dextran sodium sulfate; EBSS: Earle's balanced salt solution; IBD: inflammatory bowel disease; TER: trans-epithelial resistance; KD: knockdown; KO: knockout; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MβCD: Methyl-β-cyclodextrin; MET: metformin; MG132: carbobenzoxy-Leu-Leu-leucinal; MTOR: mechanistic target of rapamycin kinase; NT: non target; RAPA: rapamycin; RES: resveratrol; SMER: small-molecule enhancer 28; SQSTM1: sequestosome 1; ST: starvation; ULK1: unc-51 like autophagy activating kinase 1; WT: wild type.
Collapse
Affiliation(s)
| | - Kushal Saha
- Division of Gastroenterology and Hepatology, Department of Medicine, Pennsylvania State College of Medicine, Hershey, PA, USA
| | - Eric Suchanec
- Division of Gastroenterology and Hepatology, Department of Medicine, Pennsylvania State College of Medicine, Hershey, PA, USA
| | - Vikash Singh
- Division of Hematology and Oncology, Department of Pediatrics, Pennsylvania State College of Medicine, Hershey, Pa, USA
| | - Aayush Verma
- Division of Gastroenterology and Hepatology, Department of Medicine, Pennsylvania State College of Medicine, Hershey, PA, USA
| | - Gregory Yochum
- Division of Colon and Rectal Surgery, Department of Surgery, Pennsylvania State College of Medicine, Hershey, PA, USA
| | - Walter Koltun
- Division of Colon and Rectal Surgery, Department of Surgery, Pennsylvania State College of Medicine, Hershey, PA, USA
| | - Meghali Nighot
- Division of Gastroenterology and Hepatology, Department of Medicine, Pennsylvania State College of Medicine, Hershey, PA, USA
| | - Thomas Ma
- Division of Gastroenterology and Hepatology, Department of Medicine, Pennsylvania State College of Medicine, Hershey, PA, USA
| | - Prashant Nighot
- Division of Gastroenterology and Hepatology, Department of Medicine, Pennsylvania State College of Medicine, Hershey, PA, USA,CONTACT Prashant Nighot Department of Medicine, College of Medicine, Penn State University, Hershey, PA17033, USA
| |
Collapse
|
5
|
Factors Affecting Spontaneous Endocytosis and Survival of Probiotic Lactobacilli in Human Intestinal Epithelial Cells. Microorganisms 2022; 10:microorganisms10061142. [PMID: 35744660 PMCID: PMC9230732 DOI: 10.3390/microorganisms10061142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 11/29/2022] Open
Abstract
Mutualistic bacteria have different forms of interaction with the host. In contrast to the invasion of pathogenic bacteria, naturally occurring internalization of commensal bacteria has not been studied in depth. Three in vitro methods, gentamicin protection, flow cytometry and confocal laser scanning microscopy, have been implemented to accurately assess the internalization of two lactobacillus strains—Lacticaseibacillus paracasei BL23 and Lacticaseibacillus rhamnosus GG—in Caco-2 and T84 intestinal epithelial cells (IECs) under a variety of physiological conditions and with specific inhibitors. First and most interesting, internalization occurred at a variable rate that depends on the bacterial strain and IEC line, and the most efficient was BL23 internalization by T84 and, second, efficient internalization required active IEC proliferation, as it improved naturally at the early confluence stages and by stimulation with epidermal growth factor (EGF). IFN-γ is bound to innate immune responses and autolysis; this cytokine had a significant effect on internalization, as shown by flow cytometry, but increased internalization was not perceived in all conditions, possibly because it was also stimulating autolysis and, as a consequence, the viability of bacteria after uptake could be affected. Bacterial uptake required actin polymerization, as shown by cytochalasin D inhibition, and it was partially bound to clathrin and caveolin dependent endocytosis. It also showed partial inhibition by ML7 indicating the involvement of cholesterol lipid rafts and myosin light chain kinase (MLCK) activation, at least in the LGG uptake by Caco-2. Most interestingly, bacteria remained viable inside the IEC for as long as 72 h without damaging the epithelial cells, and paracellular transcytosis was observed. These results stressed the fact that internalization of commensal and mutualistic bacteria is a natural, nonpathogenic process that may be relevant in crosstalk processes between the intestinal populations and the host, and future studies could determine its connection to processes such as commensal tolerance, resilience of microbial populations or transorganic bacterial migration.
Collapse
|
6
|
Li E, Ajuwon KM. Mechanism of endocytic regulation of intestinal tight junction remodeling during nutrient starvation in jejunal IPEC-J2 cells. FASEB J 2021; 35:e21356. [PMID: 33484473 DOI: 10.1096/fj.202002098r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/08/2020] [Accepted: 12/24/2020] [Indexed: 12/24/2022]
Abstract
Intestinal epithelial cells are tightly bound by tight junction proteins (TJP) which are dynamic and sensitive to environmental stress. However, the role of the endocytic pathway in the regulation of TJP abundance and tight junction integrity during nutrient stress is poorly understood. Therefore, this study was conducted to investigate the regulation of TJP abundance during nutrient starvation and the role of the endocytic mechanism in this process. IPEC-J2 cells were subjected to nutrient starvation in Krebs-Ringer bicarbonate buffer (KRB) and abundance of TJP, an indication of tight junction remodeling, was characterized with RT-PCR, western blotting and immunofluorescence. Abundance of TJP was dynamically regulated by nutrient starvation. The protein levels of claudin-1, 3, and 4 were initially downregulated within the first 6 hours of starvation, and then, increased thereafter (P < .01). However, there was no change in occludin and ZO-1. Lysosome and proteasome inhibitors were used to determine the contribution of these protein degradation pathways to the TJP remodeling. Short-term starvation-induced degradation of claudin-1, 3, and 4 was found to be lysosome dependent. Specifically, the downregulation of claudin-3 and 4 was via a dynamin-dependent, but clathrin and caveolae independent, endocytic pathway and this downregulation was partly reversed by amino acids supplementation. Interestingly, the re-synthesis of TJP with prolonged starvation partly depended on proteasome function. Collectively, this study, for the first time, elucidated a major role for dynamin-dependent endocytosis of claudin-3 and 4 during nutrient stress in intestinal epithelial cells. Therefore, transient endocytosis inhibition may be a potential mechanism for preserving tight junction integrity and function in metabolic or pathological states such as inflammatory bowel disease that involves destruction of intestinal epithelial TJP.
Collapse
Affiliation(s)
- Enkai Li
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA
| | - Kolapo M Ajuwon
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
7
|
Nighot P, Ma T. Endocytosis of Intestinal Tight Junction Proteins: In Time and Space. Inflamm Bowel Dis 2020; 27:283-290. [PMID: 32497180 PMCID: PMC7813749 DOI: 10.1093/ibd/izaa141] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Indexed: 12/12/2022]
Abstract
Eukaryotic cells take up macromolecules and particles from the surrounding milieu and also internalize membrane proteins via a precise process of endocytosis. The role of endocytosis in diverse physiological processes such as cell adhesion, cell signaling, tissue remodeling, and healing is well recognized. The epithelial tight junctions (TJs), present at the apical lateral membrane, play a key role in cell adhesion and regulation of paracellular pathway. These vital functions of the TJ are achieved through the dynamic regulation of the presence of pore and barrier-forming proteins within the TJ complex on the plasma membrane. In response to various intracellular and extracellular clues, the TJ complexes are actively regulated by intracellular trafficking. The intracellular trafficking consists of endocytosis and recycling cargos to the plasma membrane or targeting them to the lysosomes for degradation. Increased intestinal TJ permeability is a pathological factor in inflammatory bowel disease (IBD), and the TJ permeability could be increased due to the altered endocytosis or recycling of TJ proteins. This review discusses the current information on endocytosis of intestinal epithelial TJ proteins. The knowledge of the endocytic regulation of the epithelial TJ barrier will provide further understanding of pathogenesis and potential targets for IBD and a wide variety of human disease conditions.
Collapse
Affiliation(s)
- Prashant Nighot
- Department of Medicine, College of Medicine, Penn State University, Hershey, PA, USA,Address correspondence to: Prashant Nighot, Department of Medicine, College of Medicine, Pennsylvania State University, 500 University Drive, Room C5814B, Hershey, PA, 17033, USA. E-mail:
| | - Thomas Ma
- Department of Medicine, College of Medicine, Penn State University, Hershey, PA, USA
| |
Collapse
|
8
|
Lynn KS, Peterson RJ, Koval M. Ruffles and spikes: Control of tight junction morphology and permeability by claudins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183339. [PMID: 32389670 DOI: 10.1016/j.bbamem.2020.183339] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/24/2020] [Accepted: 05/01/2020] [Indexed: 02/06/2023]
Abstract
Epithelial barrier function is regulated by a family of transmembrane proteins known as claudins. Functional tight junctions are formed when claudins interact with other transmembrane proteins, cytosolic scaffold proteins and the actin cytoskeleton. The predominant scaffold protein, zonula occludens-1 (ZO-1), directly binds to most claudin C-terminal domains, crosslinking them to the actin cytoskeleton. When imaged by immunofluorescence microscopy, tight junctions most frequently are linear structures that form between tricellular junctions. However, tight junctions also adapt non-linear architectures exhibiting either a ruffled or spiked morphology, which both are responses to changes in claudin engagement of actin filaments. Other terms for ruffled tight junctions include wavy, tortuous, undulating, serpentine or zig-zag junctions. Ruffling is under the control of hypoxia induced factor (HIF) and integrin-mediated signaling, as well as direct mechanical stimulation. Tight junction ruffling is specifically enhanced by claudin-2, antagonized by claudin-1 and requires claudin binding to ZO-1. Tight junction spikes are sites of active vesicle budding and fusion that appear as perpendicular projections oriented towards the nucleus. Spikes share molecular features with focal adherens junctions and tubulobulbar complexes found in Sertoli cells. Lung epithelial cells under stress form spikes due to an increase in claudin-5 expression that directly disrupts claudin-18/ZO-1 interactions. Together this suggests that claudins are not simply passive cargoes controlled by scaffold proteins. We propose a model where claudins specifically influence tight junction scaffold proteins to control interactions with the cytoskeleton as a mechanism that regulates tight junction assembly and function.
Collapse
Affiliation(s)
- K Sabrina Lynn
- Division of Pulmonary, Allergy Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Raven J Peterson
- Division of Pulmonary, Allergy Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Michael Koval
- Division of Pulmonary, Allergy Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
9
|
Claudin-2 binding peptides, VPDSM and DSMKF, down-regulate claudin-2 expression and anticancer resistance in human lung adenocarcinoma A549 cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118642. [DOI: 10.1016/j.bbamcr.2019.118642] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/25/2019] [Accepted: 12/27/2019] [Indexed: 11/30/2022]
|
10
|
Venugopal S, Anwer S, Szászi K. Claudin-2: Roles beyond Permeability Functions. Int J Mol Sci 2019; 20:ijms20225655. [PMID: 31726679 PMCID: PMC6888627 DOI: 10.3390/ijms20225655] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 11/08/2019] [Accepted: 11/09/2019] [Indexed: 12/12/2022] Open
Abstract
Claudin-2 is expressed in the tight junctions of leaky epithelia, where it forms cation-selective and water permeable paracellular channels. Its abundance is under fine control by a complex signaling network that affects both its synthesis and turnover in response to various environmental inputs. Claudin-2 expression is dysregulated in many pathologies including cancer, inflammation, and fibrosis. Claudin-2 has a key role in energy-efficient ion and water transport in the proximal tubules of the kidneys and in the gut. Importantly, strong evidence now also supports a role for this protein as a modulator of vital cellular events relevant to diseases. Signaling pathways that are overactivated in diseases can alter claudin-2 expression, and a good correlation exists between disease stage and claudin-2 abundance. Further, loss- and gain-of-function studies showed that primary changes in claudin-2 expression impact vital cellular processes such as proliferation, migration, and cell fate determination. These effects appear to be mediated by alterations in key signaling pathways. The specific mechanisms linking claudin-2 to these changes remain poorly understood, but adapters binding to the intracellular portion of claudin-2 may play a key role. Thus, dysregulation of claudin-2 may contribute to the generation, maintenance, and/or progression of diseases through both permeability-dependent and -independent mechanisms. The aim of this review is to provide an overview of the properties, regulation, and functions of claudin-2, with a special emphasis on its signal-modulating effects and possible role in diseases.
Collapse
|
11
|
Greco G, Amasheh S, Shen Z, Lu Z, Aschenbach JR. Effects of glucagon-like peptides 1 and 2 and epidermal growth factor on the epithelial barrier of the rumen of adult sheep. J Anim Physiol Anim Nutr (Berl) 2019; 103:1727-1738. [PMID: 31498510 DOI: 10.1111/jpn.13200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 08/10/2019] [Accepted: 08/12/2019] [Indexed: 11/29/2022]
Abstract
Epidermal growth factor (EGF) and glucagon-like peptides (GLP) modulate the tight junctions (TJ) of the intestinal epithelial barrier (EB) of monogastric animals. This work tried to elucidate whether GLP-1, GLP-2 and EGF can affect the EB of the rumen. Ovine ruminal epithelia were incubated in Ussing chambers for 7 hr with 25 or 250 nM of either GLP-1 or GLP-2 on the serosal side, with 2.5 nM of EGF on the serosal side or with 0.25 or 2.5 nM EGF on the mucosal side. No treatment affected tissue conductance. Short-circuit current (Isc ) was affected by time and treatment and their interactions. Only 250 nM of either GLP-1 or GLP-2 decreased Isc in certain periods compared with 25 nM GLP-1 or 0.25 nM mucosally applied EGF; however, not when compared to control epithelia. Fluorescein flux rates (Jfluor ) of ruminal epithelia were affected by treatment, time and time × treatment interaction. The time × treatment interaction was based on an increase in Jfluor between the first and last hour in epithelia incubated with 25 nM GLP-1 or GLP-2 and in epithelia incubated with EGF. After 7 hr incubation, claudin-7 mRNA expression was downregulated in all treatments. Claudin-1 mRNA was upregulated after incubation with 2.5 nM EGF on the serosal side, claudin-4 mRNA was downregulated by 2.5 nM EGF on the mucosal side, and occludin mRNA was increased after incubation with 250 nM GLP-2. The protein abundance of all tested TJ proteins was not influenced by treatment. We conclude that GLP-1, GLP-2, and EGF have no obvious acute effects on the EB of ruminal epithelia under simulated physiological conditions ex vivo. However, by decreasing the mRNA expression of claudin-7 and partly affecting other TJ proteins, they may modulate EB in the longer term or under certain conditions.
Collapse
Affiliation(s)
- Gabriele Greco
- Institute of Veterinary Physiology, Freie Universität Berlin, Berlin, Germany
| | - Salah Amasheh
- Institute of Veterinary Physiology, Freie Universität Berlin, Berlin, Germany
| | - Zanming Shen
- Laboratory of Animal Physiology and Biochemistry, Nanjing Agricultural University, Nanjing, China
| | - Zhongyan Lu
- Laboratory of Animal Physiology and Biochemistry, Nanjing Agricultural University, Nanjing, China
| | - Jörg R Aschenbach
- Institute of Veterinary Physiology, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
12
|
Rescue of tight junctional localization of a claudin-16 mutant D97S by antimalarial medicine primaquine in Madin-Darby canine kidney cells. Sci Rep 2019; 9:9647. [PMID: 31273276 PMCID: PMC6609605 DOI: 10.1038/s41598-019-46250-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 06/17/2019] [Indexed: 12/20/2022] Open
Abstract
Magnesium ion (Mg2+) is paracellularly reabsorbed through claudin-16 (CLDN16) in the thick ascending limb (TAL) of Henle's loop in the kidney. Genetic disorders of CLDN16 cause mislocalization of CLDN16, resulting in hypomagnesemia. There is no effective treatment for hypomagnesemia except for magnesium administration. Here, we searched for a novel drug to restore tight junctional localization of a CLDN16 mutant. A D97S mutant, which has a mutation in the first extracellular loop (ECL) of CLDN16, was mainly colocalized with endosome marker, whereas wild-type (WT) CLDN16 was colocalized with ZO-1, an adaptor protein of tight junctions. The protein stability of the D97S mutant was lower than that of WT. The expression level of the D97S mutant was increased by lactacystin, a proteasomal inhibitor. Endocytosis inhibitors increased the tight junctional localization of the D97S mutant. We found that primaquine, an antimalarial agent, increased the protein stability and cell surface localization of the D97S mutant, but the localization of other mutants, which have mutations in the cytosolic domain or second ECL, was not affected. Transepithelial Mg2+ flux was increased by primaquine in D97S mutant-expressing cells. The expression of chaperon proteins, proteasome activity, and lactate dehydrogenase release were decreased by primaquine, and the proportion of viable cells increased. In contrast, these effects were not observed in WT CLDN16-expressing cells. These results suggested that primaquine increases the tight junctional localization of the D97S mutant, resulting in a reduction in ER stress and cellular injury. Primaquine may become an effective treatment drug for selected patients with mutant CLDN16.
Collapse
|
13
|
Fang H, Wang Y, Xu L, Zhou S, Bai J, Wu Y, Qiao J, Jiang X, Zhu D, Ding Y. EGFR inhibitor gefitinib regulates barrier function in human epidermal keratinocytes via the modulation of the expression of claudins. Int J Mol Med 2019; 43:1522-1530. [PMID: 30628660 DOI: 10.3892/ijmm.2018.4046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 12/18/2018] [Indexed: 11/06/2022] Open
Abstract
Gefitinib, an epidermal growth factor receptor tyrosine kinase inhibitor, has been frequently used in targeted therapy for lung cancer. However, the widespread use of gefitinib in targeted therapy for patients with lung cancer is hampered by its common skin toxicities. The present study aimed to investigate the mechanisms underlying the skin toxicities of gefitinib. Normal human epidermal keratinocytes (NHEKs) treated with gefitinib were used for a series of in vitro assays, including MTT, reverse transcription‑quantitative polymerase chain reaction, western blot analysis, immunohistochemistry and transepithelial electrical resistance and paracellular permeability detection. In the present study, it was determined that the skin toxicities of gefitinib may be due to claudin (CLDN)1 and CLDN4 downregulation and CLDN2 upregulation in NHEKs. Additionally, Src and signal transducer and activator of transcription 3 pathways were involved in gefitinib‑induced barrier function disruption in NHEKs. In conclusion, the present study may provide novel insights for improving skin toxicity of gefitinib in patients with lung cancer.
Collapse
Affiliation(s)
- Hong Fang
- Department of Dermatology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Yina Wang
- Department of Dermatology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Lina Xu
- Department of Dermatology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Sha Zhou
- Department of Dermatology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Juan Bai
- Department of Dermatology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Yinhua Wu
- Department of Dermatology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Jianjun Qiao
- Department of Dermatology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Xiaoling Jiang
- Department of Dermatology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Dingxian Zhu
- Department of Dermatology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Yingguo Ding
- Department of Dermatology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| |
Collapse
|
14
|
Hinze C, Boucrot E. Endocytosis in proliferating, quiescent and terminally differentiated cells. J Cell Sci 2018; 131:131/23/jcs216804. [PMID: 30504135 DOI: 10.1242/jcs.216804] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Endocytosis mediates nutrient uptake, receptor internalization and the regulation of cell signaling. It is also hijacked by many bacteria, viruses and toxins to mediate their cellular entry. Several endocytic routes exist in parallel, fulfilling different functions. Most studies on endocytosis have used transformed cells in culture. However, as the majority of cells in an adult body have exited the cell cycle, our understanding is biased towards proliferating cells. Here, we review the evidence for the different pathways of endocytosis not only in dividing, but also in quiescent, senescent and terminally differentiated cells. During mitosis, residual endocytosis is dedicated to the internalization of caveolae and specific receptors. In non-dividing cells, clathrin-mediated endocytosis (CME) functions, but the activity of alternative processes, such as caveolae, macropinocytosis and clathrin-independent routes, vary widely depending on cell types and functions. Endocytosis supports the quiescent state by either upregulating cell cycle arrest pathways or downregulating mitogen-induced signaling, thereby inhibiting cell proliferation. Endocytosis in terminally differentiated cells, such as skeletal muscles, adipocytes, kidney podocytes and neurons, supports tissue-specific functions. Finally, uptake is downregulated in senescent cells, making them insensitive to proliferative stimuli by growth factors. Future studies should reveal the molecular basis for the differences in activities between the different cell states.
Collapse
Affiliation(s)
- Claudia Hinze
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6BT, UK
| | - Emmanuel Boucrot
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6BT, UK .,Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, London WC1E 7HX, UK
| |
Collapse
|
15
|
Amoozadeh Y, Anwer S, Dan Q, Venugopal S, Shi Y, Branchard E, Liedtke E, Ailenberg M, Rotstein OD, Kapus A, Szászi K. Cell confluence regulates claudin-2 expression: possible role for ZO-1 and Rac. Am J Physiol Cell Physiol 2018; 314:C366-C378. [DOI: 10.1152/ajpcell.00234.2017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Claudin-2 (Cldn-2) is a channel-forming tight junction (TJ) protein in the proximal tubules that mediates paracellular Na+ transport and has also emerged as a regulator of proliferation and migration. Expression of Cldn-2 is altered by numerous stimuli, but the underlying mechanisms remain incompletely understood. Here we show that Cldn-2 protein and mRNA expression were low in subconfluent tubular cells and increased during junction maturation. Cldn-1 or occludin did not exhibit similar confluence-dependence. Conversely, disruption of TJs by Ca2+ removal or silencing of zonula occludens-1 (ZO-1) or ZO-2 induced a large drop in Cldn-2 abundance. Immunofluorescent staining revealed a more uneven Cldn-2 staining in nascent, Cldn-1-positive TJs. Subconfluence and ZO-1 silencing augmented Cldn-2 degradation and reduced Cldn-2 promoter activity, suggesting that insertion into the TJs slows Cldn-2 turnover. Indeed, blocking endocytosis or lysosomal degradation increased Cldn-2 abundance. Cell confluence increased expression of the junctional adapters ZO-1 and -2, and the small GTPase Rac, and elevated Rac activity and p21-activated kinase (Pak) phosphorylation, suggesting that they might mediate confluence-dependent Cldn-2 regulation. Indeed, Rac silencing or Pak inhibition strongly reduced Cldn-2 protein abundance, which was likely the combined effect on turnover, as these interventions reduced Cldn-2 promoter activity and augmented Cldn-2 degradation. Taken together, our data suggest that TJ integrity and maturity, ZO-1 expression/TJ localization, and Rac/Pak control Cldn-2 degradation and synthesis. A feedback mechanism connecting Cldn-2 expression with junction remodeling, e.g., during wound healing, epithelial-mesenchymal transition, or tumor metastasis formation, may have important downstream effects on permeability, proliferation, and migration.
Collapse
Affiliation(s)
- Yasaman Amoozadeh
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital and Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Shaista Anwer
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital and Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Qinghong Dan
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital and Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Shruthi Venugopal
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital and Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Yixuan Shi
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital and Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Emily Branchard
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital and Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Elisabeth Liedtke
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital and Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Menachem Ailenberg
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital and Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Ori D. Rotstein
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital and Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - András Kapus
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital and Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Katalin Szászi
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital and Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
16
|
Zhang L, Wang Y, Zhang B, Zhang H, Zhou M, Wei M, Dong Q, Xu Y, Wang Z, Gao L, Qu Y, Shi B, Zhu J, Yin Y, Chen Y, Sun L, Zhang W, Xu S, Ying G, Wang C. Claudin-3 expression increases the malignant potential of lung adenocarcinoma cells: role of epidermal growth factor receptor activation. Oncotarget 2017; 8:23033-23047. [PMID: 28160565 PMCID: PMC5410283 DOI: 10.18632/oncotarget.14974] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 01/04/2017] [Indexed: 11/25/2022] Open
Abstract
Claudins are essential for the formation and maintenance of tight junctions (TJ). The altered expression of claudin proteins has been described in a variety of malignancies. However, the alteration of these proteins in lung adenocarcinoma (ADC) are poorly understood. Therefore, we report, based on the protein expression analysis of a total of 275 patient samples, that claudin-3 (CLDN3) expression is significantly increased in ADC tissues and is associated with cancer progression, correlating significantly with the poor survival of ADC patients (p=0.041&0.029). More importantly, forcing CLDN3 expression in ADC cells without endogenous CLDN3 expression resulted in significant increases in the cell proliferation, anchorage-dependent growth, migration and drug-resistance. In addition, epidermal growth factor (EGF) signaling pathway modulates the expression of claudins in a number of solid tumors. However, the mechanism of tight junction regulation by EGF in ADC remains unclear. To investigate this mechanisms, ADC cell lines were treated with EGF and its inhibitor. EGF unregulated CLDN3 expression via the MEK/ERK or PI3K/Akt signaling pathways and was required for the maintenance of baseline CLDN3 expression. Furthermore, downregulation of CLDN3 expression in ADC cell was found to prevent the EGF-induced increase in cell proliferation. In conclusion, our results demonstrate a novel role of CLDN3 overexpression in promoting the malignant potential of lung adenocarcinoma. This function is potentially regulated by the EGF-activated MEK/ERK and PI3K-Akt pathways.
Collapse
Affiliation(s)
- Lianmin Zhang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Yuan Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Bin Zhang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Hua Zhang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Meng Zhou
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Mei Wei
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Qiuping Dong
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Yue Xu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Zhaosong Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Liuwei Gao
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Yanjun Qu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Bowen Shi
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Jinfang Zhu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Yuesong Yin
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Yulong Chen
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Lu Sun
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Wei Zhang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Shilei Xu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Guoguang Ying
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Changli Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| |
Collapse
|
17
|
Marunaka K, Furukawa C, Fujii N, Kimura T, Furuta T, Matsunaga T, Endo S, Hasegawa H, Anzai N, Yamazaki Y, Yamaguchi M, Ikari A. The RING finger- and PDZ domain-containing protein PDZRN3 controls localization of the Mg 2+ regulator claudin-16 in renal tube epithelial cells. J Biol Chem 2017. [PMID: 28623232 DOI: 10.1074/jbc.m117.779405] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ion exchange in the renal tubules is fundamental to the maintenance of physiological ion levels. Claudin-16 (CLDN16) regulates the paracellular reabsorption of Mg2+ in the thick ascending limb of Henle's loop in the kidney, with dephosphorylation of CLDN16 increasing its intracellular distribution and decreasing paracellular Mg2+ permeability. CLDN16 is located in the tight junctions, but the mechanism regulating its localization is unclear. Using yeast two-hybrid systems, we found that CLDN16 binds to PDZRN3, a protein containing both RING-finger and PDZ domains. We also observed that the carboxyl terminus of the cytoplasmic CLDN16 region was required for PDZRN3 binding. PZDRN3 was mainly distributed in the cytosol of rat kidney cells and upon cell treatment with the protein kinase A inhibitor H-89, colocalized with CLDN16. H-89 also increased mono-ubiquitination and the association of CLDN16 with PDZRN3. Mono-ubiquitination levels of a K275A mutant were lower, and its association with PDZRN3 was reduced compared with wild-type (WT) CLDN16 and a K261A mutant, indicating that Lys-275 is the major ubiquitination site. An S217A mutant, a dephosphorylated form of CLDN16, localized to the cytosol along with PDZRN3 and the endosomal marker Rab7. PDZRN3 siRNA increased cell-surface localization of WT CLDN16 in H-89-treated cells or containing the S217A mutant and also suppressed CLDN16 endocytosis. Of note, H-89 decreased paracellular Mg2+ flux in WT CLDN16 cells, and PDZRN3 siRNA increased Mg2+ flux in the H-89-treated WT CLDN16 and S217A mutant cells. These results suggest that PDZRN3 mediates endocytosis of dephosphorylated CLDN16 and represents an important component of the CLDN16-trafficking machinery in the kidney.
Collapse
Affiliation(s)
- Kana Marunaka
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196
| | - Chisa Furukawa
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196
| | - Naoko Fujii
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196
| | - Toru Kimura
- Department of Pharmacology and Toxicology, Kyorin University School of Medicine, Tokyo 181-8611
| | - Takumi Furuta
- Institute for Chemical Research, Kyoto University, Kyoto 611-0011
| | - Toshiyuki Matsunaga
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196
| | - Satoshi Endo
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196
| | - Hajime Hasegawa
- Saitama Medical Center, Saitama Medical University, Saitama 350-8550
| | - Naohiko Anzai
- Department of Pharmacology, Chiba University Graduate School of Medicine, Chiba 321-0293
| | - Yasuhiro Yamazaki
- School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Masahiko Yamaguchi
- School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Akira Ikari
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196.
| |
Collapse
|
18
|
Furukawa C, Fujii N, Manabe A, Matsunaga T, Endo S, Hasegawa H, Ito Y, Yamaguchi M, Yamazaki Y, Ikari A. Up-Regulation of Transient Receptor Potential Melastatin 6 Channel Expression by Tumor Necrosis Factor-α in the Presence of Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitor. J Cell Physiol 2017; 232:2841-2850. [DOI: 10.1002/jcp.25709] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 12/01/2016] [Indexed: 01/22/2023]
Affiliation(s)
- Chisa Furukawa
- Laboratory of Biochemistry; Department of Biopharmaceutical Sciences; Gifu Pharmaceutical University; Gifu Japan
| | - Naoko Fujii
- Laboratory of Biochemistry; Department of Biopharmaceutical Sciences; Gifu Pharmaceutical University; Gifu Japan
| | - Aya Manabe
- Laboratory of Biochemistry; Department of Biopharmaceutical Sciences; Gifu Pharmaceutical University; Gifu Japan
| | - Toshiyuki Matsunaga
- Laboratory of Biochemistry; Department of Biopharmaceutical Sciences; Gifu Pharmaceutical University; Gifu Japan
| | - Satoshi Endo
- Laboratory of Biochemistry; Department of Biopharmaceutical Sciences; Gifu Pharmaceutical University; Gifu Japan
| | - Hajime Hasegawa
- Saitama Medical Center; Saitama Medical University; Saitama Japan
| | - Yoshinori Ito
- Department of Pharmacy; Gifu University Hospital; Gifu Japan
| | - Masahiko Yamaguchi
- School of Pharmaceutical Sciences; University of Shizuoka; Shizuoka Japan
| | - Yasuhiro Yamazaki
- School of Pharmaceutical Sciences; University of Shizuoka; Shizuoka Japan
| | - Akira Ikari
- Laboratory of Biochemistry; Department of Biopharmaceutical Sciences; Gifu Pharmaceutical University; Gifu Japan
| |
Collapse
|
19
|
Stamatovic SM, Johnson AM, Sladojevic N, Keep RF, Andjelkovic AV. Endocytosis of tight junction proteins and the regulation of degradation and recycling. Ann N Y Acad Sci 2017; 1397:54-65. [PMID: 28415156 DOI: 10.1111/nyas.13346] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 03/08/2017] [Accepted: 03/09/2017] [Indexed: 12/31/2022]
Abstract
Internalization of tight junction (TJ) proteins from the plasma membrane is a pivotal mechanism regulating TJ plasticity and function in both epithelial and endothelial barrier tissues. Once internalized, the TJ proteins enter complex vesicular machinery, where further trafficking is directly dependent on the initiating stimulus and downstream signaling pathways that regulate the sorting and destiny of TJ proteins, as well as on cell and barrier responses. The destiny of internalized TJ proteins is recycling to the plasma membrane or sorting to late endosomes and degradation. This review highlights recent advances in our knowledge of endocytosis and vesicular trafficking of TJ proteins in both epithelial and endothelial cells. A greater understanding of these processes may allow for the development of methods to modulate barrier permeability for drug delivery or prevent barrier dysfunction in disease states.
Collapse
Affiliation(s)
| | | | | | - Richard F Keep
- Neurosurgery.,Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan
| | | |
Collapse
|
20
|
Fujii N, Matsuo Y, Matsunaga T, Endo S, Sakai H, Yamaguchi M, Yamazaki Y, Sugatani J, Ikari A. Hypotonic Stress-induced Down-regulation of Claudin-1 and -2 Mediated by Dephosphorylation and Clathrin-dependent Endocytosis in Renal Tubular Epithelial Cells. J Biol Chem 2016; 291:24787-24799. [PMID: 27733684 DOI: 10.1074/jbc.m116.728196] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 09/27/2016] [Indexed: 12/31/2022] Open
Abstract
Hypotonic stress decreased claudin-1 and -2 expression levels in renal tubular epithelial HK-2 and Madin-Darby canine kidney cells. Here, we examined the regulatory mechanism involved in this decrease. The hypotonicity-induced decrease in claudin expression was inhibited by the following: SB202190, a p38 MAPK inhibitor, but not by U0126, a MEK inhibitor; Go6983, a protein kinase C inhibitor; or SP600125, a Jun N-terminal protein kinase inhibitor. Hypotonic stress increased transepithelial electrical resistance, which was inhibited by SB202190. The mRNA expression level of claudin-1 was decreased by hypotonic stress but that of claudin-2 was not. Hypotonic stress decreased the protein stability of claudin-1 and -2. The hypotonicity-induced decrease in claudin expression was inhibited by the following: chloroquine, a lysosome inhibitor; dynasore and monodansylcadaverine, clathrin-dependent endocytosis inhibitors; and siRNA against clathrin heavy chain. Claudin-1 and -2 were mainly distributed in the cytosol and tight junctions (TJs) in the chloroquine- and monodansylcadaverine-treated cells, respectively. Hypotonic stress decreased the phosphorylation levels of claudin-1 and -2, which were inhibited by the protein phosphatase inhibitors okadaic acid and cantharidin. Dephosphorylated mutants of claudin-1 and -2 were mainly distributed in the cytosol, which disappeared in response to hypotonic stress. In contrast, mimicking phosphorylation mutants were distributed in the TJs, which were not decreased by hypotonic stress. We suggest that hypotonic stress induces dephosphorylation, clathrin-dependent endocytosis, and degradation of claudin-1 and -2 in lysosomes, resulting in disruption of the TJ barrier in renal tubular epithelial cells.
Collapse
Affiliation(s)
- Naoko Fujii
- From the Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196
| | - Yukinobu Matsuo
- From the Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196
| | - Toshiyuki Matsunaga
- From the Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196
| | - Satoshi Endo
- From the Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196
| | - Hideki Sakai
- the Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, and
| | - Masahiko Yamaguchi
- the School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Yasuhiro Yamazaki
- the School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Junko Sugatani
- the School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Akira Ikari
- From the Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196,.
| |
Collapse
|
21
|
Nighot P, Ma T. Role of autophagy in the regulation of epithelial cell junctions. Tissue Barriers 2016; 4:e1171284. [PMID: 27583189 DOI: 10.1080/21688370.2016.1171284] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 03/21/2016] [Accepted: 03/22/2016] [Indexed: 01/07/2023] Open
Abstract
Autophagy is a cell survival mechanism by which bulk cytoplasmic material, including soluble macromolecules and organelles, is targeted for lysosomal degradation. The role of autophagy in diverse cellular processes such as metabolic stress, neurodegeneration, cancer, aging, immunity, and inflammatory diseases is being increasingly recognized. Epithelial cell junctions play an integral role in the cell homeostasis via physical binding, regulating paracellular pathways, integrating extracellular cues into intracellular signaling, and cell-cell communication. Recent data indicates that cell junction composition is very dynamic. The junctional protein complexes are actively regulated in response to various intra- and extra-cellular clues by intracellular trafficking and degradation pathways. This review discusses the recent and emerging information on how autophagy regulates various epithelial cell junctions. The knowledge of autophagy regulation of epithelial junctions will provide further rationale for targeting autophagy in a wide variety of human disease conditions.
Collapse
Affiliation(s)
- Prashant Nighot
- Department of Internal Medicine, University of New Mexico School of Medicine , Albuquerque, NM, USA
| | - Thomas Ma
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA; Veterans Affairs Medical Center, Albuquerque, NM, USA
| |
Collapse
|
22
|
Ikari A, Fujii N, Hahakabe S, Hayashi H, Yamaguchi M, Yamazaki Y, Endo S, Matsunaga T, Sugatani J. Hyperosmolarity-Induced Down-Regulation of Claudin-2 Mediated by Decrease in PKCβ-Dependent GATA-2 in MDCK Cells. J Cell Physiol 2015; 230:2776-87. [PMID: 25825272 DOI: 10.1002/jcp.25004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 03/25/2015] [Indexed: 01/20/2023]
Abstract
Hyperosmolarity decreases claudin-2 expression in renal tubular epithelial cells, but the molecular mechanism remains undefined. Here, we found that the hyperosmolarity-induced decrease in claudin-2 expression is inhibited by Go6983, a non-selective protein kinase C (PKC) inhibitor, and PKCβ specific inhibitor in Madin-Darby canine kidney II cells. Hyperosmolarity increased intracellular free Ca(2+) concentration and phosphorylated PKCβ level, which were inhibited by RN-1734, an antagonist of transient receptor potential vanilloid 4 channel. Phorbol 12-myristate 13-acetate, a PKC activator, decreased claudin-2 expression. These results indicate hyperosmolarity decreases claudin-2 expression mediated by the activation of RN-1734-sensitive channel and PKCβ. Hyperosmolarity decreased promoter activity of claudin-2, which was inhibited by Go6983 and PKCβ inhibitor similar to those in real-time PCR and Western blotting. The effect of hyperosmolarity on promoter activity was not observed in the construct of -469/-6, a deletion mutant. Claudin-2 has hyperosmolarity-sensitive region in its promoter, which includes GATA binding site. Hyperosmolarity decreased the nuclear level of GATA-2, which was inhibited by Go6983 and PKCβ inhibitor. Mutation of GATA binding site decreased the basal promoter activity and inhibited the effect of hyperosmolarity. In contrast, the hyperosmolarity-induced decrease in reporter activity and claudin-2 expression were rescued by over-expression of wild type GATA-2. Chromatin immunoprecipitation assay showed that GATA-2 bound to promoter region of claudin-2. These results suggest that hyperosmolarity decreases the expression level of claudin-2 via a decrease in PKCβ-dependent GATA-2 transcriptional activity in renal tubular epithelial cells.
Collapse
Affiliation(s)
- Akira Ikari
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, Japan
- School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Naoko Fujii
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, Japan
| | - Shinya Hahakabe
- School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Hisayoshi Hayashi
- School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
| | - Masahiko Yamaguchi
- School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Yasuhiro Yamazaki
- School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Satoshi Endo
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, Japan
| | - Toshiyuki Matsunaga
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, Japan
| | - Junko Sugatani
- School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| |
Collapse
|
23
|
Ikari A, Taga S, Watanabe R, Sato T, Shimobaba S, Sonoki H, Endo S, Matsunaga T, Sakai H, Yamaguchi M, Yamazaki Y, Sugatani J. Clathrin-dependent endocytosis of claudin-2 by DFYSP peptide causes lysosomal damage in lung adenocarcinoma A549 cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:2326-36. [PMID: 26163137 DOI: 10.1016/j.bbamem.2015.07.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 07/04/2015] [Accepted: 07/06/2015] [Indexed: 01/03/2023]
Abstract
Claudins are tight junctional proteins and comprise a family of over 20 members. Abnormal expression of claudins is reported to be involved in tumor progression. Claudin-2 is highly expressed in lung adenocarcinoma tissues and increases cell proliferation, whereas it is not expressed in normal tissues. Claudin-2-targeting molecules such as peptides and small molecules may be novel anti-cancer drugs. The short peptide with the sequence DFYSP, which mimics the second extracellular loop of claudin-2, decreased claudin-2 content in the cytoplasmic fraction of A549 cells. In contrast, it did not affect the content in the nuclear fraction. The decrease in claudin-2 content was inhibited by chloroquine (CQ), a lysosomal inhibitor, but not by MG-132, a proteasome inhibitor. In the presence of DFYSP peptide and CQ, claudin-2 was co-localized with LAMP-1, a lysosomal marker. The DFYSP peptide-induced decrease in claudin-2 content was inhibited by monodancylcadaverine (MDC), an inhibitor of clathrin-dependent endocytosis. DFYSP peptide increased lysosome content and cathepsin B release, and induced cellular injury, which were inhibited by MDC. Cellular injury induced by DFYSP peptide was inhibited by necrostatin-1, an inhibitor of necrotic cell death, but not by Z-VAD-FMK, an inhibitor of apoptotic cell death. Our data indicate that DFYSP peptide increases the accumulation of the peptide and claudin-2 into the lysosome, resulting in lysosomal damage. Claudin-2 may be a new target for lung cancer therapy.
Collapse
Affiliation(s)
- Akira Ikari
- The Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Japan.
| | - Saeko Taga
- The Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Japan
| | - Ryo Watanabe
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Japan
| | - Tomonari Sato
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Japan
| | - Shun Shimobaba
- The Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Japan
| | - Hiroyuki Sonoki
- The Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Japan
| | - Satoshi Endo
- The Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Japan
| | - Toshiyuki Matsunaga
- The Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Japan
| | - Hideki Sakai
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Japan
| | | | | | - Junko Sugatani
- School of Pharmaceutical Sciences, University of Shizuoka, Japan
| |
Collapse
|
24
|
Amoozadeh Y, Dan Q, Xiao J, Waheed F, Szászi K. Tumor necrosis factor-α induces a biphasic change in claudin-2 expression in tubular epithelial cells: role in barrier functions. Am J Physiol Cell Physiol 2015; 309:C38-50. [PMID: 25948735 DOI: 10.1152/ajpcell.00388.2014] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 05/02/2015] [Indexed: 01/04/2023]
Abstract
The inflammatory cytokine tumor necrosis factor-α (TNF-α) is a pathogenic factor in acute and chronic kidney disease. TNF-α is known to alter expression of epithelial tight junction (TJ) proteins; however, the underlying mechanisms and the impact of this effect on epithelial functions remain poorly defined. Here we describe a novel biphasic effect of TNF-α on TJ protein expression. In LLC-PK1 tubular cells, short-term (1-6 h) TNF-α treatment selectively elevated the expression of the channel-forming TJ protein claudin-2. In contrast, prolonged (>8 h) TNF-α treatment caused a marked downregulation in claudin-2 and an increase in claudin-1, -4, and -7. The early increase and the late decrease in claudin-2 expression involved distinct mechanisms. TNF-α slowed claudin-2 degradation through ERK, causing the early increase. This increase was also mediated by the EGF receptor and RhoA and Rho kinase. In contrast, prolonged TNF-α treatment reduced claudin-2 mRNA levels and promoter activity independent from these signaling pathways. Electric Cell-substrate Impedance Sensing measurements revealed that TNF-α also exerted a biphasic effect on transepithelial resistance (TER) with an initial decrease and a late increase. Thus there was a good temporal correlation between TNF-α-induced claudin-2 protein and TER changes. Indeed, silencing experiments showed that the late TER increase was at least in part caused by reduced claudin-2 expression. Surprisingly, however, claudin-2 silencing did not prevent the early TER drop. Taken together, the TNF-α-induced changes in claudin-2 levels might contribute to TER changes and could also play a role in newly described functions of claudin-2 such as proliferation regulation.
Collapse
Affiliation(s)
- Yasaman Amoozadeh
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital and Department of Surgery, University of Toronto, Ontario, Canada
| | - Qinghong Dan
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital and Department of Surgery, University of Toronto, Ontario, Canada
| | - Jenny Xiao
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital and Department of Surgery, University of Toronto, Ontario, Canada
| | - Faiza Waheed
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital and Department of Surgery, University of Toronto, Ontario, Canada
| | - Katalin Szászi
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital and Department of Surgery, University of Toronto, Ontario, Canada
| |
Collapse
|
25
|
Jang SK, Yu JM, Kim ST, Kim GH, Park DW, Lee DI, Joo SS. An Aβ42 uptake and degradation via Rg3 requires an activation of caveolin, clathrin and Aβ-degrading enzymes in microglia. Eur J Pharmacol 2015; 758:1-10. [PMID: 25848967 DOI: 10.1016/j.ejphar.2015.03.071] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 03/04/2015] [Accepted: 03/24/2015] [Indexed: 01/08/2023]
Abstract
We demonstrated previously that ginsenoside Rg3 enhances the expression of macrophage scavenger receptor class A (SRA) and amyloid β peptide 1-42 (Aβ42) uptake in BV2 cells. In this study, we investigated the biochemical and mechanistic roles of Rg3 in human microglia and animal models to identify the determinants that participate in restoring memory and learning in brains disrupted by the Aβ42 peptide. SRA was expressed highly in Rg3-treated rats, and learning and memory functions were maintained at a normal level after the infusion of Aβ42. SRA-transfected HMO6 human microglial cells (HMO6.hSRA) overexpressed SRA and took up a remarkable amount of Aβ42. Rg3-treated HMO6 cells showed highly enhanced SRA expression and dramatically promoted Aβ42 uptake. Moreover, high levels of clathrin and caveolin1 supported the roles of Rg3 in endocytic biogenesis by activating p38 and extracellular signal-regulated protein kinase signaling. Notably, both neprilysin (NEP) and insulin-degrading enzyme (IDE) were significantly expressed by Rg3, suggesting independent and compensatory hydrolytic activity for the Aβ peptide. In conclusion, Rg3 successfully triggered Aβ42 uptake via SRA and clathrin-/caveolae-mediated endocytic mechanisms and further contributed to accelerate the degradation of Aβ peptide via the increase of intracellular NEP and IDE, which may be a promising Alzheimer׳s disease therapy.
Collapse
Affiliation(s)
- Su Kil Jang
- College of Life Science, Gangneung-Wonju National University, 7 Jukheon-gil, Gangneung, Gangwon 210-702, Republic of Korea
| | - Jung Min Yu
- College of Life Science, Gangneung-Wonju National University, 7 Jukheon-gil, Gangneung, Gangwon 210-702, Republic of Korea
| | - Seung Tae Kim
- College of Life Science, Gangneung-Wonju National University, 7 Jukheon-gil, Gangneung, Gangwon 210-702, Republic of Korea
| | - Gwang Hoon Kim
- College of Life Science, Gangneung-Wonju National University, 7 Jukheon-gil, Gangneung, Gangwon 210-702, Republic of Korea
| | - Da Woon Park
- College of Life Science, Gangneung-Wonju National University, 7 Jukheon-gil, Gangneung, Gangwon 210-702, Republic of Korea
| | - Do Ik Lee
- College of Pharmacy, Chung-Ang University, 221 Heuksuk-dong, Dongjak-gu, Seoul 156-756, Republic of Korea
| | - Seong Soo Joo
- College of Life Science, Gangneung-Wonju National University, 7 Jukheon-gil, Gangneung, Gangwon 210-702, Republic of Korea.
| |
Collapse
|
26
|
Loma P, Guzman-Aranguez A, Perez de Lara MJ, Pintor J. Diadenosine tetraphosphate improves adrenergic anti-glaucomatous drug delivery and efficiency. Exp Eye Res 2015; 134:141-7. [PMID: 25701803 DOI: 10.1016/j.exer.2015.02.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 01/28/2015] [Accepted: 02/17/2015] [Indexed: 01/24/2023]
Abstract
The effect of the dinucleotide P(1), P(4)-Di (adenosine-5') tetraphosphate (Ap4A) in improving adrenergic anti-glaucomatous delivery by modifying the tight junction proteins of the corneal epithelium was evaluated. Stratified human corneal epithelial cells (HCLE) were treated with Ap4A (100 μM) for 5 min and TJ protein levels and barrier function were analysed by western blotting and transepithelial electrical resistance (TEER), respectively. Western blot experiments showed a significant reduction at 2 h (45% reduction of ZO-1 and 65% reduction of occludin protein levels) as compared to non-treated (control) cells. Two hours after Ap4A treatment, TEER values were significantly reduced (65% as compared to control levels (p < 0.001)), indicating an increase in corneal barrier permeability. Topical application of Ap4A in New Zealand white rabbits two hours before the instillation of the hypotensor compounds (the α2-adrenergic receptor agonist, brimonidine and the β-adrenergic receptor antagonist, timolol), improved the delivery of these compounds to the anterior chamber as well as their hypotensive action on the intraocular pressure. The results obtained showed that, when Ap4A was topically applied two hours before the adrenergic compounds, the concentration of brimonidine in the aqueous humour increased from 64.3 ± 5.3 nM to 240.6 ± 8.6 nM and from 58.9 ± 9.2 nM to 183.7 ± 6.8 nM in the case of timolol, which also produces a more profound effect on IOP. Therefore, Ap4A treatment results in a better entrance of adrenergic anti-glaucomatous compounds within the eye and consequently improved therapeutic efficiency by increasing corneal epithelial barrier permeability.
Collapse
Affiliation(s)
- Patricia Loma
- Department of Biochemistry and Molecular Biology IV, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Spain
| | - Ana Guzman-Aranguez
- Department of Biochemistry and Molecular Biology IV, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Spain
| | - Maria Jesus Perez de Lara
- Department of Biochemistry and Molecular Biology IV, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Spain
| | - Jesus Pintor
- Department of Biochemistry and Molecular Biology IV, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Spain.
| |
Collapse
|
27
|
Loma P, Guzman-Aranguez A, Pérez de Lara MJ, Pintor J. Diadenosine tetraphosphate induces tight junction disassembly thus increasing corneal epithelial permeability. Br J Pharmacol 2014; 172:1045-58. [PMID: 25297531 DOI: 10.1111/bph.12972] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 09/26/2014] [Accepted: 09/29/2014] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND AND PURPOSE Here, we have studied the effects of the dinucleotide P(1), P(4)-Di (adenosine-5') tetraphosphate (Ap4 A) on corneal barrier function conferred by the tight junction (TJ) proteins and its possible involvement in ocular drug delivery and therapeutic efficiency. EXPERIMENTAL APPROACH Experiments in vitro were performed using human corneal epithelial cells (HCLEs) treated with Ap4 A (100 μM) for 5 min. Western blot analysis and transepithelial electrical resistance (TEER) were performed to study the TJ protein levels and barrier function respectively. Intracellular pathways involved were determined using an ERK inhibitor and P2Y(2) receptor siRNAs. In in vivo assays with New Zealand rabbits, TJ integrity was examined by zonula occludens-1 (ZO-1) staining. The hypotensive compound 5-methoxycarbonylamino-N-acetyltryptamine (5-MCA-NAT) was used to assess improved delivery, measuring its levels by HPLC and measuring intraocular pressure using 5-MCA-NAT, P2Y receptor antagonists and P2Y2 siRNAs. KEY RESULTS Two hours after Ap4 A pretreatment, TJ protein levels in HCLE cells were reduced around 40% compared with control. TEER values were significantly reduced at 2 and 4 h (68 and 52% respectively). TJ reduction and ERK activation were blocked by the ERK inhibitor U012 and P2Y(2) siRNAs. In vivo, topical application of Ap4 A disrupted ZO-1 membrane distribution. 5-MCA-NAT levels in the aqueous humour were higher when Ap4 A was previously instilled and its hypotensive effect was also increased. This action was reversed by P2Y receptor antagonists and P2Y(2) siRNA. CONCLUSIONS AND IMPLICATIONS Ap4 A increased corneal epithelial barrier permeability. Its application could improve ocular drug delivery and consequently therapeutic efficiency.
Collapse
Affiliation(s)
- P Loma
- Department of Biochemistry and Molecular Biology IV, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Spain
| | | | | | | |
Collapse
|
28
|
García-Hernández V, Flores-Maldonado C, Rincon-Heredia R, Verdejo-Torres O, Bonilla-Delgado J, Meneses-Morales I, Gariglio P, Contreras RG. EGF Regulates Claudin-2 and -4 Expression Through Src and STAT3 in MDCK Cells. J Cell Physiol 2014; 230:105-15. [DOI: 10.1002/jcp.24687] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 05/22/2014] [Indexed: 12/20/2022]
Affiliation(s)
- Vicky García-Hernández
- Department of Physiology; Biophysics and Neurosciences; Center for Research and Advanced Studies (Cinvestav); México City México
| | - Catalina Flores-Maldonado
- Department of Physiology; Biophysics and Neurosciences; Center for Research and Advanced Studies (Cinvestav); México City México
| | - Ruth Rincon-Heredia
- Department of Physiology; Biophysics and Neurosciences; Center for Research and Advanced Studies (Cinvestav); México City México
- Department of Pharmacology; Center for Research and Advanced Studies (Cinvestav); México City México
| | - Odette Verdejo-Torres
- Department of Physiology; Biophysics and Neurosciences; Center for Research and Advanced Studies (Cinvestav); México City México
| | - José Bonilla-Delgado
- Laboratory of Genetics and Molecular Diagnosis; Research Unit; Hospital Juárez de México; México City México
| | - Ivan Meneses-Morales
- Breast Cancer investigation program; National Autonomous University of México (UNAM); México
- Department of Molecular Biology and Biotechnology; Biomedical Research Institute; National Autonomous University of México (UNAM); México
| | - Patricio Gariglio
- Department of Genetics and Molecular Biology; Center for Research and Advanced Studies (Cinvestav); México City México
| | - Rubén G. Contreras
- Department of Physiology; Biophysics and Neurosciences; Center for Research and Advanced Studies (Cinvestav); México City México
| |
Collapse
|
29
|
Ikari A, Tonegawa C, Sanada A, Kimura T, Sakai H, Hayashi H, Hasegawa H, Yamaguchi M, Yamazaki Y, Endo S, Matsunaga T, Sugatani J. Tight junctional localization of claudin-16 is regulated by syntaxin 8 in renal tubular epithelial cells. J Biol Chem 2014; 289:13112-23. [PMID: 24659781 DOI: 10.1074/jbc.m113.541193] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Claudin-16 (CLDN16) regulates the paracellular reabsorption of Mg(2+) in the thick ascending limb of Henle's loop. However, the mechanism regulating the tight junctional localization of CLDN16 remains unknown. In yeast two-hybrid systems, we found that CLDN16 bound to syntaxin 8 (STX8), a target soluble N-ethylmaleimide-sensitive factor attachment protein receptor. We have examined the effect of STX8 on the localization and function of CLDN16 using Madin-Darby canine kidney cells expressing FLAG-tagged CLDN16. A pulldown assay showed that the carboxyl cytoplasmic region of human CLDN16 bound to STX8. CLDN16 was localized in the thick ascending limb, whereas STX8 was widely distributed throughout the rat kidney. An association between CLDN16 and STX8 was observed in rat renal homogenates and Madin-Darby canine kidney cells. STX8 siRNA decreased the cell surface localization of CLDN16 and transepithelial electrical resistance and permeability to Mg(2+) but increased the co-localization of CLDN16 with early endosome and lysosome markers. Dephosphorylation of CLDN16 by protein kinase A inhibitors and S217A mutant, a dephosphorylated form, decreased the association with STX8 and the cell surface localization of CLDN16. Recycling assays indicated that STX8 siRNA decreased the trafficking of CLDN16 to the plasma membrane without affecting endocytosis. Dominant negative Rab11 and recycling inhibitor primaquine decreased the cell surface localization of CLDN16, which was similar to that in STX8 siRNA-transfected cells. These results suggest that STX8 mediates the recycling of CLDN16 and constitutes an important component of the CLDN16 trafficking machinery in the kidney.
Collapse
Affiliation(s)
- Akira Ikari
- From the Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Szaszi K, Amoozadeh Y. New Insights into Functions, Regulation, and Pathological Roles of Tight Junctions in Kidney Tubular Epithelium. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 308:205-71. [DOI: 10.1016/b978-0-12-800097-7.00006-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
31
|
de Souza WF, Barbosa LA, Liu L, de Araujo WM, de-Freitas-Junior JCM, Fortunato-Miranda N, Fontes CFL, Morgado-Díaz JA. Ouabain-induced alterations of the apical junctional complex involve α1 and β1 Na,K-ATPase downregulation and ERK1/2 activation independent of caveolae in colorectal cancer cells. J Membr Biol 2013; 247:23-33. [PMID: 24186357 DOI: 10.1007/s00232-013-9607-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 10/14/2013] [Indexed: 12/22/2022]
Abstract
Studies have reported that Na,K-ATPase interacts with E-cadherin to stabilize (AJs) and regulate the expression of claudins, the main proteins present in the tight junction (TJ) in epithelial cells containing caveolae. However, the role of this ATPase in the regulation of the AJ and TJ proteins in colorectal cancer cells as well as the molecular events underlying this event in a caveolae-independent system remain undefined. In the present study, we used ouabain, a classic drug known to inhibit Na,K-ATPase, and Caco-2 cells, which are a well-established human colorectal cancer model that does not exhibit caveolae. We demonstrated that ouabain treatment resulted in a reduction of the β1 Na,K-ATPase protein and cell redistribution of the AJ proteins E-cadherin and β-catenin, as well as the α1 Na,K-ATPase subunit. Furthermore, ouabain increased claudin-3 protein levels, impaired the TJ barrier function and increased cell viability and proliferation during the early stages of treatment. Additionally, the observed ouabain-induced events were dependent on the activation of ERK1/2 signaling; but in contrast to previous studies, this signaling cascade was caveolae-independent. In conclusion, our findings strongly suggest that α1 and β1 Na,K-ATPase downregulation and ERK1/2 activation induced by ouabain are interlinked events that play an important role during cell-cell adhesion loss, which is an important step during the tumor progression of colorectal carcinomas.
Collapse
Affiliation(s)
- Waldemir Fernandes de Souza
- Programa de Biologia Celular, Centro de Pesquisas, Instituto Nacional de Câncer, Rua André Cavalcanti, 37, 5° andar, Rio de Janeiro, RJ, 20231-050, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Hu YJ, Wang YD, Tan FQ, Yang WX. Regulation of paracellular permeability: factors and mechanisms. Mol Biol Rep 2013; 40:6123-42. [PMID: 24062072 DOI: 10.1007/s11033-013-2724-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Accepted: 09/14/2013] [Indexed: 12/20/2022]
Abstract
Epithelial permeability is composed of transcellular permeability and paracellular permeability. Paracellular permeability is controlled by tight junctions (TJs). Claudins and occludin are two major transmembrane proteins in TJs, which directly determine the paracellular permeability to different ions or large molecules. Intracellular signaling pathways including Rho/Rho-associated protein kinase, protein kinase Cs, and mitogen-activated protein kinase, modulate the TJ proteins to affect paracellular permeability in response for diverse stimuli. Cytokines, growth factors and hormones in organism can regulate the paracellular permeability via signaling pathway. The transcellular transporters such as Na-K-ATPase, Na(+)-coupled transporters and chloride channels, can interact with paracellular transport and regulate the TJs. In this review, we summarized the factors affecting paracellular permeability and new progressions of the related mechanism in recent studies, and pointed out further research areas.
Collapse
Affiliation(s)
- Yan-Jun Hu
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, People's Republic of China
| | | | | | | |
Collapse
|
33
|
de Souza WF, Fortunato-Miranda N, Robbs BK, de Araujo WM, de-Freitas-Junior JC, Bastos LG, Viola JPB, Morgado-Díaz JA. Claudin-3 overexpression increases the malignant potential of colorectal cancer cells: roles of ERK1/2 and PI3K-Akt as modulators of EGFR signaling. PLoS One 2013; 8:e74994. [PMID: 24069372 PMCID: PMC3777902 DOI: 10.1371/journal.pone.0074994] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 08/09/2013] [Indexed: 12/19/2022] Open
Abstract
The altered expressions of claudin proteins have been reported during the tumorigenesis of colorectal cancer. However, the molecular mechanisms that regulate these events in this cancer type are poorly understood. Here, we report that epidermal growth factor (EGF) increases the expression of claudin-3 in human colorectal adenocarcinoma HT-29 cells. This increase was related to increased cell migration and the formation of anchorage-dependent and anchorage-independent colonies. We further showed that the ERK1/2 and PI3K-Akt pathways were involved in the regulation of these effects because specific pharmacological inhibition blocked these events. Genetic manipulation of claudin-1 and claudin-3 in HT-29 cells showed that the overexpression of claudin-1 resulted in decreased cell migration; however, migration was not altered in cells that overexpressed claudin-3. Furthermore, the overexpression of claudin-3, but not that of claudin-1, increased the tight junction-related paracellular flux of macromolecules. Additionally, an increased formation of anchorage-dependent and anchorage-independent colonies were observed in cells that overexpressed claudin-3, while no such changes were observed when claudin-1 was overexpressed. Finally, claudin-3 silencing alone despite induce increase proliferation, and the formation of anchoragedependent and -independent colonies, it was able to prevent the EGF-induced increased malignant potential. In conclusion, our results show a novel role for claudin-3 overexpression in promoting the malignant potential of colorectal cancer cells, which is potentially regulated by the EGF-activated ERK1/2 and PI3K-Akt pathways.
Collapse
Affiliation(s)
- Waldemir F. de Souza
- Grupo de Biologia Estrutural, Programa de Biologia Celular, Centro de Pesquisas, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - Natalia Fortunato-Miranda
- Grupo de Biologia Estrutural, Programa de Biologia Celular, Centro de Pesquisas, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - Bruno K. Robbs
- Grupo de Regulação Gênica, Programa de Biologia Celular, Centro de Pesquisas, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - Wallace M. de Araujo
- Grupo de Biologia Estrutural, Programa de Biologia Celular, Centro de Pesquisas, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - Julio C. de-Freitas-Junior
- Grupo de Biologia Estrutural, Programa de Biologia Celular, Centro de Pesquisas, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - Lilian G. Bastos
- Grupo de Biologia Estrutural, Programa de Biologia Celular, Centro de Pesquisas, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - João P. B. Viola
- Grupo de Regulação Gênica, Programa de Biologia Celular, Centro de Pesquisas, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - José A. Morgado-Díaz
- Grupo de Biologia Estrutural, Programa de Biologia Celular, Centro de Pesquisas, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
34
|
Carattino MD, Prakasam HS, Ruiz WG, Clayton DR, McGuire M, Gallo LI, Apodaca G. Bladder filling and voiding affect umbrella cell tight junction organization and function. Am J Physiol Renal Physiol 2013; 305:F1158-68. [PMID: 23884145 DOI: 10.1152/ajprenal.00282.2013] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Epithelial cells are continuously exposed to mechanical forces including shear stress and stretch, although the effect these forces have on tight junction (TJ) organization and function are poorly understood. Umbrella cells form the outermost layer of the stratified uroepithelium and undergo large cell shape and surface area changes during the bladder cycle. Here we investigated the effects of bladder filling and voiding on the umbrella cell TJ. We found that bladder filling promoted a significant increase in the length of the TJ ring, which was quickly reversed within 5 min of voiding. Interestingly, when isolated uroepithelial tissue was mounted in Ussing chambers and exposed to physiological stretch, we observed a 10-fold drop in both transepithelial electrical resistance (TER) and the umbrella cell junctional resistance. The effects of stretch on TER were reversible and dependent on the applied force. Furthermore, the integrity of the umbrella cell TJ was maintained in the stretched uroepithelium, as suggested by the limited permeability of biotin, fluorescein, and ruthenium red. Finally, we found that depletion of extracellular Ca(2+) by EGTA completely disrupted the TER of unstretched, but not of stretched uroepithelium. Taken together, our studies indicate that the umbrella cell TJ undergoes major structural and functional reorganization during the bladder cycle. The impact of these changes on bladder function is discussed.
Collapse
|
35
|
Abstract
Tight junctions consist of many proteins, including transmembrane and associated cytoplasmic proteins, which act to provide a barrier regulating transport across epithelial and endothelial tissues. These junctions are dynamic structures that are able to maintain barrier function during tissue remodelling and rapidly alter it in response to extracellular signals. Individual components of tight junctions also show dynamic behaviour, including migration within the junction and exchange in and out of the junctions. In addition, it is becoming clear that some tight junction proteins undergo continuous endocytosis and recycling back to the plasma membrane. Regulation of endocytic trafficking of junctional proteins may provide a way of rapidly remodelling junctions and will be the focus of this chapter.
Collapse
|
36
|
Abstract
Treatment of epithelial and endothelial cells with proinflammatory cytokines can stimulate tight junction protein endocytosis, with associated loss of physiologic barrier function. In some instances, the endocytic scaffolding protein, caveolin-1, has been implicated in the cytokine-dependent retrieval of the tight junction proteins occludin and claudins. How caveolin-1 interacts with these proteins, however, remains undefined. Using co-immunoprecipitation assays, we found that caveolin-1 separately interacts with claudin-2 and occludin, but not with ZO-1, ZO-2, or claudin-4. Further, we found that the interactions of caveolin-1 with claudin-2 and occludin were not disrupted by cholesterol removal, suggesting that they were not dependent on co-localization to cholesterol-rich lipid rafts. Co-immunoprecipitation of caveolin-1 with chimeras between claudin-2 and -4 indicated that the C-terminal cytoplasmic domain of claudin-2 is required for association with caveolin-1; similar analysis showed that the ZO-1 binding region of occludin is not required for its interaction with caveolin-1. The finding that caveolin-1 interacts with claudin-2 and occludin, but not with claudin-4 or ZO-1, suggests a potential mechanism for selective retrieval of tight junction components.
Collapse
Affiliation(s)
- Christina M Van Itallie
- National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
37
|
Van Itallie CM, Tietgens AJ, LoGrande K, Aponte A, Gucek M, Anderson JM. Phosphorylation of claudin-2 on serine 208 promotes membrane retention and reduces trafficking to lysosomes. J Cell Sci 2012; 125:4902-12. [PMID: 22825868 DOI: 10.1242/jcs.111237] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Claudins are critical components of epithelial and endothelial tight junction seals, but their post-transcriptional regulation remains poorly understood. Several studies have implicated phosphorylation in control of claudin localisation and/or function, but these have focused on single sites or pathways with differing results, so that it has been difficult to draw general functional conclusions. In this study, we used mass spectrometry (MS) analysis of purified claudin-2 from MDCK II cells and found that the cytoplasmic tail is multiply phosphorylated on serines, a threonine and tyrosines. Phos-tag SDS PAGE revealed that one site, S208, is heavily constitutively phosphorylated in MDCK II cells and in mouse kidney; this site was targeted for further study. Mutational analysis revealed that the phosphomimetic mutant of claudin-2, S208E, was preferentially localised to the plasma membrane while claudin-2 S208A, which could not be phosphorylated at this site, both immunolocalized and co-fractionated with lysosomal markers. Mutations at sites that were previously reported to interfere with plasma membrane targeting of claudin-2 reduced phosphorylation at S208, suggesting that membrane localisation is required for phosphorylation; however phosphorylation at S208 did not affect binding to ZO-1 or ZO-2 Administration of forskolin or PGE2 resulted in dephosphorylation at S208 and transient small increases in transepithelial electrical resistance (TER). Together these data are consistent with phosphorylation at S208 playing a major role in the retention of claudin-2 at the plasma membrane.
Collapse
Affiliation(s)
- Christina M Van Itallie
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | |
Collapse
|
38
|
Yasuda T, Saegusa C, Kamakura S, Sumimoto H, Fukuda M. Rab27 effector Slp2-a transports the apical signaling molecule podocalyxin to the apical surface of MDCK II cells and regulates claudin-2 expression. Mol Biol Cell 2012; 23:3229-39. [PMID: 22767581 PMCID: PMC3418316 DOI: 10.1091/mbc.e12-02-0104] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Slp2-a is required for targeting of the signaling molecule podocalyxin to the apical membrane in MDCK II cells in a Rab27A-dependent manner. Apical membrane localization of podocalyxin is required for expression of the tight junction protein claudin-2 through modulation of intracellular signals, including MAPK signals. Most cells in tissues are polarized and usually have two distinct plasma membrane domains—an apical membrane and a basolateral membrane, which are the result of polarized trafficking of proteins and lipids. However, the mechanism underlying the cell polarization is not fully understood. In this study, we investigated the involvement of synaptotagmin-like protein 2-a (Slp2-a), an effector molecule for the small GTPase Rab27, in polarized trafficking by using Madin–Darby canine kidney II cells as a model of polarized cells. The results show that the level of Slp2-a expression in MDCK II cells increases greatly as the cells become polarized and that its expression is specifically localized at the apical membrane. The results also reveal that Slp2-a is required for targeting of the signaling molecule podocalyxin to the apical membrane in a Rab27A-dependent manner. In addition, ezrin, a downstream target of podocalyxin, and ERK1/2 are activated in Slp2-a–knockdown cells, and their activation results in a dramatic reduction in the amount of the tight junction protein claudin-2. Because both Slp2-a and claudin-2 are highly expressed in mouse renal proximal tubules, Slp2-a is likely to regulate claudin-2 expression through trafficking of podocalyxin to the apical surface in mouse renal tubule epithelial cells.
Collapse
Affiliation(s)
- Takao Yasuda
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai, Miyagi, Japan
| | | | | | | | | |
Collapse
|
39
|
Limonciel A, Wilmes A, Aschauer L, Radford R, Bloch KM, McMorrow T, Pfaller W, van Delft JH, Slattery C, Ryan MP, Lock EA, Jennings P. Oxidative stress induced by potassium bromate exposure results in altered tight junction protein expression in renal proximal tubule cells. Arch Toxicol 2012; 86:1741-51. [DOI: 10.1007/s00204-012-0897-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 06/18/2012] [Indexed: 12/11/2022]
|
40
|
Ogawa M, Kojima T, Someya M, Nomura K, Takasawa A, Murata M, Tanaka S, Saito T, Sawada N. Epidermal growth factor modulates claudins and tight junctional functions in ovarian cancer cell lines. Histochem Cell Biol 2012; 138:323-38. [DOI: 10.1007/s00418-012-0956-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2012] [Indexed: 12/14/2022]
|
41
|
Increase in claudin-2 expression by an EGFR/MEK/ERK/c-Fos pathway in lung adenocarcinoma A549 cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:1110-8. [PMID: 22546605 DOI: 10.1016/j.bbamcr.2012.04.005] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 04/12/2012] [Accepted: 04/16/2012] [Indexed: 11/23/2022]
Abstract
In human adenocarcinoma, claudin-2 expression is higher than that in normal lung tissue, but the regulatory mechanism of its expression has not been clarified. In human adenocarcinoma A549 cells, claudin-2 level time-dependently increased under the control conditions. In contrast, claudin-1 expression remained constant for 24h. The concentration of epidermal growth factor (EGF) in medium time-dependently increased, which was inhibited by matrix metalloproteinase (MMP) inhibitor II, an inhibitor of MMP-1, 3, 7, and 9. MMP inhibitor II decreased claudin-2 and phosphorylated ERK1/2 (p-ERK1/2) levels, which were recovered by EGF. Both claudin-2 and p-ERK1/2 levels were decreased by EGF neutralizing antibody, EGF receptor (EGFR) siRNA, AG1478, an inhibitor of EGFR, U0126, an inhibitor of MEK, and the exogenous expression of dominant negative-MEK. These results suggest that EGF is secreted from A549 cells by MMP and increases claudin-2 expression mediated via the activation of an EGFR/MEK/ERK pathway. The inhibition of the signaling pathway decreased phosphorylated c-Fos and nuclear c-Fos levels. The introduction of c-Fos siRNA decreased claudin-2 level without affecting claudin-1. The promoter activity of human claudin-2 was decreased by AG1478 and U0126. Furthermore, the activity was decreased by the deletion or mutation of the AP-1 binding site of claudin-2 promoter. Chromatin immunoprecipitation and avidin-biotin conjugated DNA assays showed that c-Fos binds to the AP-1 binding site. We suggest that a secreted EGF up-regulates the transcriptional activity of claudin-2 mediated by the activation of an EGFR/MEK/ERK/c-Fos pathway in A549 cells.
Collapse
|
42
|
Sarkar S, Kantara C, Singh P. Clathrin mediates endocytosis of progastrin and activates MAPKs: role of cell surface annexin A2. Am J Physiol Gastrointest Liver Physiol 2012; 302:G712-22. [PMID: 22241862 PMCID: PMC3330782 DOI: 10.1152/ajpgi.00406.2011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Cell-surface-associated annexin A2 (CS-ANXA2) is a nonconventional "receptor" for progastrin; expression levels of both are elevated in colon cancers, and downregulation of either reduces tumorigenic potential of cells. We recently reported internalization of progastrin in target cells. Here, mechanisms mediating internalization of progastrin were examined. Initially, we confirmed that cell-surface ANXA2 mediates binding and internalization of progastrin in intestinal cells. Progastrin, covalently linked to sepharose beads, failed to activate p38MAPK/ERKs, suggesting internalization of progastrin was required for eliciting biological effects; importantly annexin A2 expression and availability of CS-ANXA2 were required for internalization of progastrin. Clathrin expression and formation of clathrin-coated pits were critically required for endocytotic internalization of progastrin; in the absence of clathrin, progastrin failed to activate p38MAPK/ERKs. Downregulation of caveolin had no effect on binding or internalization of progastrin. We therefore demonstrate for the first time that progastrin binds CS-ANXA2 and is rapidly internalized via clathrin-mediated endocytotic pathway, resulting in activation of MAPKinases. Targeting clathrin-mediated endocytosis of progastrin may thus inhibit previously reported co-carcinogenic/tumorigenic effects of progastrin on intestinal cells.
Collapse
Affiliation(s)
- Shubhashish Sarkar
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas
| | - Carla Kantara
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas
| | - Pomila Singh
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
43
|
Dukes JD, Fish L, Richardson JD, Blaikley E, Burns S, Caunt CJ, Chalmers AD, Whitley P. Functional ESCRT machinery is required for constitutive recycling of claudin-1 and maintenance of polarity in vertebrate epithelial cells. Mol Biol Cell 2011; 22:3192-205. [PMID: 21757541 PMCID: PMC3164465 DOI: 10.1091/mbc.e11-04-0343] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Drosophila ESCRT mutants lose epithelial polarity and show increased proliferation, suggesting that ESCRT proteins act as tumor suppressors. In this study, we show for the first time to our knowledge that ESCRT proteins are required to maintain polarity in mammalian epithelial cells, supporting the idea that ESCRT proteins are tumor suppressors. Genetic screens in Drosophila have identified regulators of endocytic trafficking as neoplastic tumor suppressor genes. For example, Drosophila endosomal sorting complex required for transport (ESCRT) mutants lose epithelial polarity and show increased cell proliferation, suggesting that ESCRT proteins could function as tumor suppressors. In this study, we show for the for the first time to our knowledge that ESCRT proteins are required to maintain polarity in mammalian epithelial cells. Inhibition of ESCRT function caused the tight junction protein claudin-1 to accumulate in intracellular vesicles. In contrast E-cadherin and occludin localization was unaffected. We investigated the cause of this accumulation and show that claudin-1 is constitutively recycled in kidney, colon, and lung epithelial cells, identifying claudin-1 recycling as a newly described feature of diverse epithelial cell types. This recycling requires ESCRT function, explaining the accumulation of intracellular claudin-1 when ESCRT function is inhibited. We further demonstrate that small interfering RNA knockdown of the ESCRT protein Tsg101 causes epithelial monolayers to lose their polarized organization and interferes with the establishment of a normal epithelial permeability barrier. ESCRT knockdown also reduces the formation of correctly polarized three-dimensional cysts. Thus, in mammalian epithelial cells, ESCRT function is required for claudin-1 trafficking and for epithelial cell polarity, supporting the hypothesis that ESCRT proteins function as tumor suppressors.
Collapse
Affiliation(s)
- Joseph D Dukes
- Department of Biology and Biochemistry, Centre for Regenerative Medicine, University of Bath, Bath BA2 7AY, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|