1
|
Monteiro FL, Stepanauskaite L, Archer A, Williams C. Estrogen receptor beta expression and role in cancers. J Steroid Biochem Mol Biol 2024; 242:106526. [PMID: 38657699 DOI: 10.1016/j.jsbmb.2024.106526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/06/2024] [Accepted: 04/21/2024] [Indexed: 04/26/2024]
Abstract
Estrogen drives the growth of some cancers, such as breast cancer, via estrogen receptor alpha (ERα). Estrogen also activates ERβ, but whether ERβ is expressed and has a role in different cancers is debated. The use of nonspecific antibodies has contributed to the confusion, and this review delves into ERβ's controversial role in cancer and focuses on tumor expression that can be supported by non-antibody-dependent assays. We discuss its expression at the transcript level and focus on its potential role in lymphoma, granulosa cell tumors, testicular, and adrenal cancers, emphasizing recent findings and the complexities that necessitate further research.
Collapse
Affiliation(s)
- Fátima L Monteiro
- SciLifeLab, Department of Protein Science, KTH Royal Institute of Technology, Solna 171 21, Sweden; Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge 141 83, Sweden
| | - Lina Stepanauskaite
- SciLifeLab, Department of Protein Science, KTH Royal Institute of Technology, Solna 171 21, Sweden; Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge 141 83, Sweden
| | - Amena Archer
- SciLifeLab, Department of Protein Science, KTH Royal Institute of Technology, Solna 171 21, Sweden; Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge 141 83, Sweden
| | - Cecilia Williams
- SciLifeLab, Department of Protein Science, KTH Royal Institute of Technology, Solna 171 21, Sweden; Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge 141 83, Sweden.
| |
Collapse
|
2
|
Sinisi AA, Rossi V, Martino MD, Esposito F, Chieffi P. The role of endocrine gland derived vascular growth factor/ Prokineticin-1 in human prostate cells. GHM OPEN 2024; 4:37-41. [PMID: 40144745 PMCID: PMC11933967 DOI: 10.35772/ghmo.2023.01021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/07/2023] [Accepted: 12/26/2023] [Indexed: 03/28/2025]
Abstract
In steroidogenic tissues, a novel class of angiogenic molecules known as endocrine gland-derived vascular endothelial growth factors (EG-VEGF)/prokineticins are primarily produced. Here, we investigated how EG-VEGF/ PROK1, a member of PROKs family, and its receptor are able to affect cellular motility in both non-neoplastic and cancerous human prostate cells. Using Western blot and motility test studies, EPN cells, a non-transformed cell line and Cancer Epithelial Prostatic Cells (CEPC) were employed as cellular models in the current investigation. Western blot examination of EPN normal prostate cells treated with EG-VEGF/PROK1 revealed that ERK1/2 was rapidly phosphorylated within 5, 10, and 20 minutes, while CEPC had high and sustained ERK1/2 activity at the same periods. Then, compared to normal EPN prostate cells, CEPC treated with EG-VEGF/PROK1 for up to 72 hours demonstrated enhanced cell motility. Based on our findings, EG-VEGF/PROK1 may play a role in prostate cancer progression by controlling angiogenesis and the motility of metastatic cells in CEPC cells, likely as a consequence of ERK1/2 activation, as contrasted to EPN normal prostate cells.
Collapse
Affiliation(s)
- Antonio Agostino Sinisi
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Valentina Rossi
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Marco De Martino
- Institute of Endocrinology and Experimental Oncology (IEOS) "G. Salvatore", National Research Council (CNR), Naples, Italy
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Francesco Esposito
- Institute of Endocrinology and Experimental Oncology (IEOS) "G. Salvatore", National Research Council (CNR), Naples, Italy
| | - Paolo Chieffi
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
3
|
Yodkhunnatham N, Pandit K, Puri D, Yuen KL, Bagrodia A. MicroRNAs in Testicular Germ Cell Tumors: The Teratoma Challenge. Int J Mol Sci 2024; 25:2156. [PMID: 38396829 PMCID: PMC10889716 DOI: 10.3390/ijms25042156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/05/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Testicular germ cell tumors (TGCTs) are relatively common in young men, making accurate diagnosis and prognosis assessment essential. MicroRNAs (miRNAs), including microRNA-371a-3p (miR-371a-3p), have shown promise as biomarkers for TGCTs. This review discusses the recent advancements in the use of miRNA biomarkers in TGCTs, with a focus on the challenges surrounding the noninvasive detection of teratomas. Circulating miR-371a-3p, which is expressed in undifferentiated TGCTs but not in teratomas, is a promising biomarker for TGCTs. Its detection in serum, plasma, and, potentially, cystic fluid could be useful for TGCT diagnosis, surveillance, and monitoring of therapeutic response. Other miRNAs, such as miR-375-3p and miR-375-5p, have been investigated to differentiate between TGCT subtypes (teratoma, necrosis/fibrosis, and viable tumors), which can aid in treatment decisions. However, a reliable marker for teratoma has yet to be identified. The clinical applications of miRNA biomarkers could spare patients from unnecessary surgeries and allow for more personalized therapeutic approaches. Particularly in patients with residual masses larger than 1 cm following chemotherapy, it is critical to differentiate between viable tumors, teratomas, and necrosis/fibrosis. Teratomas, which mimic somatic tissues, present a challenge in differentiation and require a comprehensive diagnostic approach. The combination of miR-371 and miR-375 shows potential in enhancing diagnostic precision, aiding in distinguishing between teratomas, viable tumors, and necrosis. The implementation of miRNA biomarkers in TGCT care could improve patient outcomes, reduce overtreatment, and facilitate personalized therapeutic strategies. However, a reliable marker for teratoma is still lacking. Future research should focus on the clinical validation and standardization of these biomarkers to fully realize their potential.
Collapse
Affiliation(s)
- Nuphat Yodkhunnatham
- Department of Urology, University of California San Diego School of Medicine, La Jolla, CA 92093, USA; (N.Y.); (K.P.); (D.P.); (K.L.Y.)
| | - Kshitij Pandit
- Department of Urology, University of California San Diego School of Medicine, La Jolla, CA 92093, USA; (N.Y.); (K.P.); (D.P.); (K.L.Y.)
| | - Dhruv Puri
- Department of Urology, University of California San Diego School of Medicine, La Jolla, CA 92093, USA; (N.Y.); (K.P.); (D.P.); (K.L.Y.)
| | - Kit L. Yuen
- Department of Urology, University of California San Diego School of Medicine, La Jolla, CA 92093, USA; (N.Y.); (K.P.); (D.P.); (K.L.Y.)
| | - Aditya Bagrodia
- Department of Urology, University of California San Diego School of Medicine, La Jolla, CA 92093, USA; (N.Y.); (K.P.); (D.P.); (K.L.Y.)
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
4
|
Pagliuca F, Lucà S, De Sio M, Arcaniolo D, Facchini G, De Martino M, Esposito F, DE Vita F, Chieffi P, Franco R. Testicular/paratesticular mesothelial tumours: Uncommon histopathologic entities in a very complex anatomical site. Pathol Res Pract 2024; 253:155069. [PMID: 38181581 DOI: 10.1016/j.prp.2023.155069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 12/28/2023] [Indexed: 01/07/2024]
Abstract
Mesothelial tumours of the testicular/paratesticular region are uncommon, poorly characterised and difficult-to-diagnose lesions. They encompass entirely benign proliferations (adenomatoid tumour) and malignant, very aggressive tumours (mesothelioma) whose morphological features can be overlapping, highly variable and confounding. Moreover, testicular/paratesticular mesothelial tumours comprise relatively new entities with indolent behaviour (well-differentiated papillary mesothelial tumour) as well as tumours which cannot be correctly included in any of the aforementioned categories and whose classification is still controversial. The molecular profile of such tumours represents an open issue. In fact, despite the recent discoveries about the genomic landscape of mesothelial proliferations at other sites (pleura, peritoneum), testicular/paratesticular mesothelial tumours, and namely mesotheliomas, are too rare to be extensively studied on large case series and they could arguably hide relevant differences in their molecular background when compared to the more common pleural/peritoneal counterparts.The aim of this review is to provide a guide for the pathological assessment of testicular/paratesticular mesothelial tumours. Herein, we describe the most recent updates on this topic according to the latest (year 2022) World Health Organisation Classification of Urinary and Male Genital Tumours (5th edition) and current literature. The diagnostic criteria, the main differentials and the role of ancillary techniques in the diagnosis of mesothelial testicular/paratesticular tumours are discussed.
Collapse
Affiliation(s)
| | - Stefano Lucà
- Department of Mental and Physical Health and Preventive Medicine, University of Campania "L. Vanvitelli", 80138 Naples, Italy
| | - Marco De Sio
- Department of Woman, Child and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", 80131 Naples, Italy; Urology Unit, Azienda Policlinico Unversità 'L. Vanvitelli', 80131 Naples, Italy
| | - Davide Arcaniolo
- Department of Woman, Child and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", 80131 Naples, Italy; Urology Unit, Azienda Policlinico Unversità 'L. Vanvitelli', 80131 Naples, Italy
| | - Gaetano Facchini
- Oncology Unit, "S. Maria delle Grazie" Hospital, ASL NA2 NORD, 80078 Pozzuoli, Naples, Italy
| | - Marco De Martino
- Department of Precision Medicine, University of Campania "L. Vanvitelli", 80138 Naples, Italy; Institute of Endocrinology and Experimental Oncology of the CNR, 80131 Naples, Italy
| | - Francesco Esposito
- Institute of Endocrinology and Experimental Oncology of the CNR, 80131 Naples, Italy
| | - Ferdinando DE Vita
- Department of Precision Medicine, University of Campania "L. Vanvitelli", 80138 Naples, Italy
| | - Paolo Chieffi
- Department of Precision Medicine, University of Campania "L. Vanvitelli", 80138 Naples, Italy.
| | - Renato Franco
- Pathology Unit, Azienda Policlinico Unversità 'L. Vanvitelli, Italy; Department of Mental and Physical Health and Preventive Medicine, University of Campania "L. Vanvitelli", 80138 Naples, Italy
| |
Collapse
|
5
|
Wang L, Zhang J, Xia M, Liu C, Zu X, Zhong J. High Mobility Group A1 (HMGA1): Structure, Biological Function, and Therapeutic Potential. Int J Biol Sci 2022; 18:4414-4431. [PMID: 35864955 PMCID: PMC9295051 DOI: 10.7150/ijbs.72952] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/24/2022] [Indexed: 11/26/2022] Open
Abstract
High mobility group A1 (HMGA1) is a nonhistone chromatin structural protein characterized by no transcriptional activity. It mainly plays a regulatory role by modifying the structure of DNA. A large number of studies have confirmed that HMGA1 regulates genes related to tumours in the reproductive system, digestive system, urinary system and haematopoietic system. HMGA1 is rare in adult cells and increases in highly proliferative cells such as embryos. After being stimulated by external factors, it will produce effects through the Wnt/β-catenin, PI3K/Akt, Hippo and MEK/ERK pathways. In addition, HMGA1 also affects the ageing, apoptosis, autophagy and chemotherapy resistance of cancer cells, which are linked to tumorigenesis. In this review, we summarize the mechanisms of HMGA1 in cancer progression and discuss the potential clinical application of targeted HMGA1 therapy, indicating that targeted HMGA1 is of great significance in the diagnosis and treatment of malignancy.
Collapse
Affiliation(s)
- Lu Wang
- Institute of Clinical Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
| | - Ji Zhang
- Department of Clinical Laboratory, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen 518033, Guangdong, China
| | - Min Xia
- Institute of Clinical Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China.,Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
| | - Chang Liu
- Department of Endocrinology and Metabolism, The First People's Hospital of Chenzhou, First School of Clinical Medicine, University of Southern Medical, Guangzhou 510515, Guangdong, China
| | - Xuyu Zu
- Institute of Clinical Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China.,Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
| | - Jing Zhong
- Institute of Clinical Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China.,Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
| |
Collapse
|
6
|
Morra F, Merolla F, Zito Marino F, Catalano R, Franco R, Chieffi P, Celetti A. The tumour suppressor CCDC6 is involved in ROS tolerance and neoplastic transformation by evading ferroptosis. Heliyon 2021; 7:e08399. [PMID: 34841108 PMCID: PMC8605351 DOI: 10.1016/j.heliyon.2021.e08399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/11/2021] [Accepted: 11/11/2021] [Indexed: 10/26/2022] Open
Abstract
Coiled-coil domain containing 6 (CCDC6) is a tumour suppressor gene involved in apoptosis and DNA damage response. CCDC6 is known to be functionally impaired upon gene fusions, somatic mutations, and altered protein turnover in several tumours. Testicular germ cell tumours are among the most common malignancies in young males. Despite the high cure rate, achieved through chemotherapy and/or surgery, drug resistance can still occur. In a human cellular model of testis Embryonal Carcinoma, the deficiency of CCDC6 was associated with defects in DNA repair via homologous recombination and sensitivity to PARP1/2 inhibitors. Same data were obtained in a panel of murine testicular cell lines, including Sertoli, Spermatogonia and Spermatocytes. In these cells, upon oxidative damage exposure, the absence of CCDC6 conferred tolerance to reactive oxygen species affecting regulated cell death pathways by apoptosis and ferroptosis. At molecular level, the loss of CCDC6 was associated with an enhancement of the xCT/SLC7A11 cystine antiporter expression which, by promoting the accumulation of ROS, interfered with the activation of ferroptosis pathway. In conclusion, our data suggest that the CCDC6 downregulation could aid the testis germ cells to be part of a pro-survival pathway that helps to evade the toxic effects of endogenous oxidants contributing to testicular neoplastic growth. Novel therapeutic options will be discussed.
Collapse
Affiliation(s)
- Francesco Morra
- Institute for the Experimental Endocrinology and Oncology, Research National Council, CNR, Naples, Italy
| | - Francesco Merolla
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | | | - Rosaria Catalano
- Institute for the Experimental Endocrinology and Oncology, Research National Council, CNR, Naples, Italy
| | - Renato Franco
- Pathology Unit, University of Campania "L. Vanvitelli", Naples, Italy
| | - Paolo Chieffi
- Department of Psychology, University of Campania "L. Vanvitelli", Naples, Italy
| | - Angela Celetti
- Institute for the Experimental Endocrinology and Oncology, Research National Council, CNR, Naples, Italy
| |
Collapse
|
7
|
Chieffi P. GPR30: A new potential therapeutic target in human testicular germ cell tumors. Intractable Rare Dis Res 2021; 10:292-293. [PMID: 34877243 PMCID: PMC8630463 DOI: 10.5582/irdr.2021.01103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/07/2021] [Accepted: 09/21/2021] [Indexed: 11/05/2022] Open
Abstract
The G protein-coupled estrogen receptor (GPR30) is suggested to exert a role in non-nuclear estrogen signalling and is over-expressed in a variety of hormone dependent tumors. It is well known that estrogens and xenoestrogens are involved in testicular germ cell tumorigenesis. Different studies show that down regulation of estrogen receptor β (ERβ) associates with GPR30 over-expression both in human testicular carcinoma in situ (CIS) and seminomas and that the mitogenic role exerted by 17β-oestradiol induces the activation of extracellular signal-regulated kinase 1/2 (ERK1/2) through GPR30. In conclusion, the exposure to oestrogens or oestrogen-mimics, in some as of yet undefined manner, diminishes the ERβ-mediated growth restraint in CIS and in human testicular seminoma, indicating that GPR30 could be considered a potential therapeutic target to design specific inhibitors.
Collapse
Affiliation(s)
- Paolo Chieffi
- Address correspondence to:Paolo Chieffi, Dipartimento di Psicologia, Viale Ellittico, 31 81100 Caserta, Italy. E-mail:
| |
Collapse
|
8
|
Cammarota M, de Rosa V, Pannaccione A, Secondo A, Tedeschi V, Piccialli I, Fiorino F, Severino B, Annunziato L, Boscia F. Rebound effects of NCX3 pharmacological inhibition: A novel strategy to accelerate myelin formation in oligodendrocytes. Biomed Pharmacother 2021; 143:112111. [PMID: 34481380 DOI: 10.1016/j.biopha.2021.112111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 11/18/2022] Open
Abstract
The Na+/Ca2+ exchanger NCX3 is an important regulator of sodium and calcium homeostasis in oligodendrocyte lineage. To date, no information is available on the effects resulting from prolonged exposure to NCX3 blockers and subsequent drug washout in oligodendroglia. Here, we investigated, by means of biochemical, morphological and functional analyses, the pharmacological effects of the NCX3 inhibitor, the 5-amino-N-butyl-2-(4-ethoxyphenoxy)-benzamide hydrochloride (BED), on NCXs expression and activity, as well as intracellular [Na+]i and [Ca2+]i levels, during treatment and following drug washout both in human MO3.13 oligodendrocytes and rat primary oligodendrocyte precursor cells (OPCs). BED exposure antagonized NCX activity, induced OPCs proliferation and [Na+]i accumulation. By contrast, 2 days of BED washout after 4 days of treatment significantly upregulated low molecular weight NCX3 proteins, reversed NCX activity, and increased intracellular [Ca2+]i. This BED-free effect was accompanied by an upregulation of NCX3 expression in oligodendrocyte processes and accelerated expression of myelin markers in rat primary oligodendrocytes. Collectively, our findings show that the pharmacological inhibition of the NCX3 exchanger with BED blocker maybe followed by a rebound increase in NCX3 expression and reversal activity that accelerate myelin sheet formation in oligodendrocytes. In addition, they indicate that a particular attention should be paid to the use of NCX inhibitors for possible rebound effects, and suggest that further studies will be necessary to investigate whether selective pharmacological modulation of NCX3 exchanger may be exploited to benefit demyelination and remyelination in demyelinating diseases.
Collapse
Affiliation(s)
- Mariarosaria Cammarota
- Division of Pharmacology, Department of Neuroscience, Reproductive Sciences and Dentistry, School of Medicine, Federico II University of Naples, Naples, Italy
| | - Valeria de Rosa
- Division of Pharmacology, Department of Neuroscience, Reproductive Sciences and Dentistry, School of Medicine, Federico II University of Naples, Naples, Italy
| | - Anna Pannaccione
- Division of Pharmacology, Department of Neuroscience, Reproductive Sciences and Dentistry, School of Medicine, Federico II University of Naples, Naples, Italy
| | - Agnese Secondo
- Division of Pharmacology, Department of Neuroscience, Reproductive Sciences and Dentistry, School of Medicine, Federico II University of Naples, Naples, Italy
| | - Valentina Tedeschi
- Division of Pharmacology, Department of Neuroscience, Reproductive Sciences and Dentistry, School of Medicine, Federico II University of Naples, Naples, Italy
| | - Ilaria Piccialli
- Division of Pharmacology, Department of Neuroscience, Reproductive Sciences and Dentistry, School of Medicine, Federico II University of Naples, Naples, Italy
| | | | - Beatrice Severino
- Department of Pharmacy, Federico II University of Naples, Naples, Italy
| | | | - Francesca Boscia
- Division of Pharmacology, Department of Neuroscience, Reproductive Sciences and Dentistry, School of Medicine, Federico II University of Naples, Naples, Italy.
| |
Collapse
|
9
|
miRNAs and Biomarkers in Testicular Germ Cell Tumors: An Update. Int J Mol Sci 2021; 22:ijms22031380. [PMID: 33573132 PMCID: PMC7866514 DOI: 10.3390/ijms22031380] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/21/2021] [Accepted: 01/27/2021] [Indexed: 12/12/2022] Open
Abstract
Testicular germ cell tumors (TGCTs) are the leading form of solid cancer and death affecting males between the ages of 20 and 40. Today, their surgical resection and chemotherapy are the treatments of first choice, even if sometimes this is not enough to save the lives of patients with TGCT. As seen for several tumors, the deregulation of microRNAs (miRNAs) is also a key feature in TGCTs. miRNAs are small molecules of RNA with biological activity that are released into biological fluids by testicular cancer cells. Their presence, therefore, can be detected and monitored by considering miRNAs as diagnostic and prognostic markers for TGCTs. The purpose of this review is to collect all the studies executed on miRNAs that have a potential role as biomarkers for testicular tumors.
Collapse
|
10
|
Piccialli I, Tedeschi V, Boscia F, Ciccone R, Casamassa A, de Rosa V, Grieco P, Secondo A, Pannaccione A. The Anemonia sulcata Toxin BDS-I Protects Astrocytes Exposed to Aβ 1-42 Oligomers by Restoring [Ca 2+] i Transients and ER Ca 2+ Signaling. Toxins (Basel) 2020; 13:20. [PMID: 33396295 PMCID: PMC7823622 DOI: 10.3390/toxins13010020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 12/28/2022] Open
Abstract
Intracellular calcium concentration ([Ca2+]i) transients in astrocytes represent a highly plastic signaling pathway underlying the communication between neurons and glial cells. However, how this important phenomenon may be compromised in Alzheimer's disease (AD) remains unexplored. Moreover, the involvement of several K+ channels, including KV3.4 underlying the fast-inactivating currents, has been demonstrated in several AD models. Here, the effect of KV3.4 modulation by the marine toxin blood depressing substance-I (BDS-I) extracted from Anemonia sulcata has been studied on [Ca2+]i transients in rat primary cortical astrocytes exposed to Aβ1-42 oligomers. We showed that: (1) primary cortical astrocytes expressing KV3.4 channels displayed [Ca2+]i transients depending on the occurrence of membrane potential spikes, (2) BDS-I restored, in a dose-dependent way, [Ca2+]i transients in astrocytes exposed to Aβ1-42 oligomers (5 µM/48 h) by inhibiting hyperfunctional KV3.4 channels, (3) BDS-I counteracted Ca2+ overload into the endoplasmic reticulum (ER) induced by Aβ1-42 oligomers, (4) BDS-I prevented the expression of the ER stress markers including active caspase 12 and GRP78/BiP in astrocytes treated with Aβ1-42 oligomers, and (5) BDS-I prevented Aβ1-42-induced reactive oxygen species (ROS) production and cell suffering measured as mitochondrial activity and lactate dehydrogenase (LDH) release. Collectively, we proposed that the marine toxin BDS-I, by inhibiting the hyperfunctional KV3.4 channels and restoring [Ca2+]i oscillation frequency, prevented Aβ1-42-induced ER stress and cell suffering in astrocytes.
Collapse
Affiliation(s)
- Ilaria Piccialli
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, 80131 Napoli, Italy; (I.P.); (V.T.); (F.B.); (R.C.); (A.C.); (V.d.R.)
| | - Valentina Tedeschi
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, 80131 Napoli, Italy; (I.P.); (V.T.); (F.B.); (R.C.); (A.C.); (V.d.R.)
| | - Francesca Boscia
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, 80131 Napoli, Italy; (I.P.); (V.T.); (F.B.); (R.C.); (A.C.); (V.d.R.)
| | - Roselia Ciccone
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, 80131 Napoli, Italy; (I.P.); (V.T.); (F.B.); (R.C.); (A.C.); (V.d.R.)
| | - Antonella Casamassa
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, 80131 Napoli, Italy; (I.P.); (V.T.); (F.B.); (R.C.); (A.C.); (V.d.R.)
| | - Valeria de Rosa
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, 80131 Napoli, Italy; (I.P.); (V.T.); (F.B.); (R.C.); (A.C.); (V.d.R.)
| | - Paolo Grieco
- Department of Pharmacy, School of Medicine, Federico II Universityof Naples, 80131 Napoli, Italy;
| | - Agnese Secondo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, 80131 Napoli, Italy; (I.P.); (V.T.); (F.B.); (R.C.); (A.C.); (V.d.R.)
| | - Anna Pannaccione
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, 80131 Napoli, Italy; (I.P.); (V.T.); (F.B.); (R.C.); (A.C.); (V.d.R.)
| |
Collapse
|
11
|
De Martino M, Esposito F, Chieffi P. An update on microRNAs as potential novel therapeutic targets in testicular germ cell tumors. Intractable Rare Dis Res 2020; 9:184-186. [PMID: 32844079 PMCID: PMC7441029 DOI: 10.5582/irdr.2020.03025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Testicular germ cell tumors (TGCTs) are the most frequent solid malignant tumors in men 20- 40 years of age and the most frequent cause of death from solid tumors in this age group. Recent studies have underscored the fact that miRNA deregulation is a feature of carcinogenesis, including TGCT development and progression. MiRNAs are a group of small noncoding RNAs that bind to the 3'-untranslated region (UTR) of the targeted mRNAs, thus causing mRNA degradation or the inhibition of its translation, regulating gene expression in a temporal and tissue-specific manner. However, few miRNAs have been found to play key roles in TGCTs; recently, other miRNAs have been identified, representing novel potential therapeutic targets.
Collapse
Affiliation(s)
- Marco De Martino
- Dipartimento di Psicologia, Università della Campania "Luigi Vanvitelli", Caserta, Italy
- Istituto di Endocrinologia ed Oncologia Sperimentale-CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Napoli, Italy
| | - Francesco Esposito
- Istituto di Endocrinologia ed Oncologia Sperimentale-CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Napoli, Italy
| | - Paolo Chieffi
- Dipartimento di Psicologia, Università della Campania "Luigi Vanvitelli", Caserta, Italy
- Address correspondence to:Paolo Chieffi, Dipartimento di Psicologia, Università della Campania "Luigi Vanvitelli", Caserta, 31 81100 Caserta, Italy. E-mail:
| |
Collapse
|
12
|
Liu B, Chen G, He Q, Liu M, Gao K, Cai B, Qu J, Lin S, Geng A, Li S, Wang K, Mao Z, Wan X, Yan Q. An HMGA2-p62-ERα axis regulates uterine leiomyomas proliferation. FASEB J 2020; 34:10966-10983. [PMID: 32592217 DOI: 10.1096/fj.202000520r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/28/2020] [Accepted: 06/08/2020] [Indexed: 12/17/2022]
Abstract
Uterine leiomyomas (ULM) are a major public health issue contributing to high morbidity and poor pregnancy outcomes. However, its molecular pathogenesis is poorly understood. HMGA2-ULM is the second major subtype of human ULM and associates with large sizes, fast-growth, and high percentages of estrogen receptor α (ERα). As altered ERα expression plays a distinct role in ULM growth, here, we investigate a regulatory mechanism driving ULM growth via HMGA2 and ERα. We reveal a positive correlation of HMGA2 with ERα protein and demonstrate that HMGA2 promotes ULM cells proliferation via ERα. In addition, autophagy pathway and p62/SQSTM1 (a selective autophagy receptor) are found to participate in the regulation of HMGA2 and ERα. Moreover, HMGA2 suppresses the transcription of p62 by binding to its promoter, meanwhile, p62 interacts with ERα, and inhibition of p62 increases ERα expression and enhances cell viability in ULM, suggesting a novel mechanism of the HMGA2-p62-ERα axis in ULM proliferation. Notably, rapamycin, a familiar autophagy agonist, reduces ERα levels and the proliferation ability of ULM cells. This study demonstrates a causal role of the HMGA2-p62-ERα axis in preventing autophagy and increasing ERα expression in HMGA2-ULM. Therefore, blocking HMGA2-p62-ERα axis and targeting autophagy pathway establish a roadmap toward HMGA2-ULM medical treatment.
Collapse
Affiliation(s)
- Binya Liu
- Department of Gynecology of Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Guofang Chen
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qizhi He
- Department of Pathology of Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Minhao Liu
- Department of Gynecology of Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Kun Gao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Bailian Cai
- Department of Gynecology of Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Junjie Qu
- Department of Gynecology of Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shaojian Lin
- Tongji University School of Medicine, Shanghai, China
| | - Anke Geng
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Shuangdi Li
- Department of Gynecology of Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Kai Wang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhiyong Mao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Xiaoping Wan
- Department of Gynecology of Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qin Yan
- Department of Gynecology of Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
13
|
De Martino M, Fusco A, Esposito F. HMGA and Cancer: A Review on Patent Literatures. Recent Pat Anticancer Drug Discov 2020; 14:258-267. [PMID: 31538905 DOI: 10.2174/1574892814666190919152001] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/04/2019] [Accepted: 09/11/2019] [Indexed: 01/02/2023]
Abstract
BACKGROUND The high mobility group A proteins modulate the transcription of numerous genes by interacting with transcription factors and/or altering the structure of chromatin. These proteins are involved in both benign and malignant neoplasias as a result of several pathways. A large amount of benign human mesenchymal tumors has rearrangements of HMGA genes. On the contrary, malignant tumors show unarranged HMGA overexpression that is frequently and causally related to neoplastic cell transformation. Here, we review the function of the HMGA proteins in human neoplastic disorders, the pathways by which they contribute to carcinogenesis and the new patents focused on targeting HMGA proteins. OBJECTIVE Current review was conducted to check the involvement of HMGA as a druggable target in cancer treatment. METHODS We reviewed the most recent patents focused on targeting HMGA in cancer treatment analyzing patent literature published during the last years, including the World Intellectual Property Organization (WIPO®), United States Patent Trademark Office (USPTO®), Espacenet®, and Google Patents. RESULTS HMGA proteins are intriguing targets for cancer therapy and are objects of different patents based on the use of DNA aptamers, inhibitors, oncolytic viruses, antisense molecules able to block their oncogenic functions. CONCLUSION Powerful strategies able to selectively interfere with HMGA expression and function could represent a helpful approach in the development of new anti-cancer therapies.
Collapse
Affiliation(s)
- Marco De Martino
- Istituto di Endocrinologia e Oncologia Sperimentale-CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Universita degli Studi di Napoli "Federico II", via Pansini 5, Naples 80131, Italy.,Department of Psychology, University of Campania, Caserta 81100, Italy
| | - Alfredo Fusco
- Istituto di Endocrinologia e Oncologia Sperimentale-CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Universita degli Studi di Napoli "Federico II", via Pansini 5, Naples 80131, Italy
| | - Francesco Esposito
- Istituto di Endocrinologia e Oncologia Sperimentale-CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Universita degli Studi di Napoli "Federico II", via Pansini 5, Naples 80131, Italy
| |
Collapse
|
14
|
HMGA1-Regulating microRNAs Let-7a and miR-26a are Downregulated in Human Seminomas. Int J Mol Sci 2020; 21:ijms21083014. [PMID: 32344629 PMCID: PMC7215726 DOI: 10.3390/ijms21083014] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 02/08/2023] Open
Abstract
Background: Recent studies have underlined HMGA protein’s key role in the onset of testicular germ cell tumors, where HMGA1 is differently expressed with respect to the state of differentiation, suggesting its fine regulation as master regulator in testicular tumorigenesis. Several studies have highlighted that the HMGA1 transcript is strictly regulated by a set of inhibitory microRNAs. Thus, the aim of this study is to test whether HMGA1 overexpression in human seminomas may be induced by the deregulation of miR-26a and Let-7a—two HMGA1-targeting microRNAs. Methods: HMGA1 mRNA and Let-7a and miR-26a levels were measured in a seminoma dataset available in the Cancer Genome Atlas database and confirmed in a subset of seminomas by qRT-PCR and western blot. A TCam-2 seminoma cell line was then transfected with Let-7a and miR-26a and tested for proliferation and motility abilities. Results: an inverse correlation was found between the expression of miR-26a and Let-7a and HMGA1 expression levels in seminomas samples, suggesting a critical role of these microRNAs in HMGA1 levels regulation. Accordingly, functional studies showed that miR-26a and Let-7a inhibited the proliferation, migration and invasion capabilities of the human seminoma derived cell line TCam-2. Conclusions: these data strongly support that the upregulation of HMGA1 levels occurring in seminoma is—at least in part—due to the downregulation of HMGA1-targeting microRNAs.
Collapse
|
15
|
Chieffi P, De Martino M, Esposito F. Further insights into testicular germ cell tumor oncogenesis: potential therapeutic targets. Expert Rev Anticancer Ther 2020; 20:189-195. [PMID: 32164473 DOI: 10.1080/14737140.2020.1736566] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Testicular germ cell tumors (TGCTs) are the most common neoplasia in the young male population, and the incidence has been constantly increasing in many parts of the world. These tumors are classified into seminomas and non-seminomas, and those divided, in turn, into yolk sac tumors, embryonal cell carcinomas, choriocarcinomas, and teratomas. Although therapeutic approaches have improved, approximately 25% of the patients relapse or, in a small number of cases, show platinum-resistant disease.Areas covered: We review several molecular targets that have recently emerged as powerful tools for both diagnosis and therapy of TGCTs. Moreover, we reviewed the most frequent deregulated pathways involved in TGCT tumorigenesis, reporting drugs that may emerge as novel therapeutic agents.Expert opinion: TGCT treatment is mainly based on platinum-derivative therapy with high cure rates. However, in the refractory patients, there are few alternative treatments. Thus, different pharmacological approaches have to be thoroughly investigated to shed new light on TGCT pathogenesis and treatment.
Collapse
Affiliation(s)
- Paolo Chieffi
- Dipartimento di Psicologia, Università della Campania, Caserta, Italy
| | - Marco De Martino
- Dipartimento di Psicologia, Università della Campania, Caserta, Italy.,Istituto di Endocrinologia ed Oncologia Sperimentale del CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Scuola di Medicina e Chirurgia di Napoli, Università degli Studi di Napoli 'Federico II', Naples, Italy
| | - Francesco Esposito
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Scuola di Medicina e Chirurgia di Napoli, Università degli Studi di Napoli 'Federico II', Naples, Italy
| |
Collapse
|
16
|
Milon A, Kaczmarczyk M, Pawlicki P, Bilinska B, Duliban M, Gorowska-Wojtowicz E, Tworzydlo W, Kotula-Balak M. Do estrogens regulate lipid status in testicular steroidogenic Leydig cell? Acta Histochem 2019; 121:611-618. [PMID: 31126612 DOI: 10.1016/j.acthis.2019.04.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/26/2019] [Accepted: 04/26/2019] [Indexed: 12/24/2022]
Abstract
In this study mouse Leydig cell (MA-10) were treated with G-protein coupled membrane estrogen receptor antagonist (G-15; 10 nM). Cells were analyzed by Western blotting for expression of estrogen-related receptors (ERRα, β and γ), steroidogenic markers (lutropin receptor; LHR and 3β-hydroxysteroid dehydrogenase; 3β-HSD) and lipid droplet markers (perilipin; PLIN and microtubule-associated protein 1 A/1B-light chain 3; LC3). Concomitantly, microscopic analyses by light microscope (immunofluorescent staining for lipid droplets, PLIN and LC3) as well as by electron microscope (for lipid droplet ultrastructure) were utilized. For analysis of cholesterol content, cAMP level and progesterone secretion, G-15, estrogen receptor (ER) antagonist (ICI 182,780; 10 μM), 17β-estradiol (10 mM) and, bisphenol A (BPA; 10 nM) were used alone or in combinations. We revealed no changes in ERRs expression but alterations in ERRβ and γ localization in G-15-treated cells when compared to control. Partial translocation of ERRβ and γ from the cell nucleus to cytoplasm was observed. Decreased expression of LHR, 3β-HSD, PLIN and LC3 was detected. Moreover, in treated cells large lipid droplets and differences in their distribution were found. Very strong signal of co-localization for PLIN and LC3 was found in treated cells when compared to control. In ultrastructure of treated cells, degenerating lipid droplets and double membrane indicating on presence of lipophagosome were observed. We found, that only (i) BPA and G-15 did not effect on cholesterol content, (ii) BPA, G-15 and ICI did not effect on cAMP level and (iii) BPA, ICI alone and in combination, and BPA with G-15 did not modulate progesterone secretion. These findings showed complex and diverse estrogen effects on mouse Leydig cells at various steps of steroid hormone production (cholesterol storage, release and processing). Lipid homeostasis and metabolism in these cells were affected by endogenous and exogenous estrogen, interactions of receptors (GPER, ER and ERR) and GPER and ER antagonists.
Collapse
Affiliation(s)
- A Milon
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Gronostajowa 9, 30-387, Krakow, Poland
| | - M Kaczmarczyk
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Gronostajowa 9, 30-387, Krakow, Poland
| | - P Pawlicki
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Gronostajowa 9, 30-387, Krakow, Poland
| | - B Bilinska
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Gronostajowa 9, 30-387, Krakow, Poland
| | - M Duliban
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Gronostajowa 9, 30-387, Krakow, Poland
| | - E Gorowska-Wojtowicz
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Gronostajowa 9, 30-387, Krakow, Poland
| | - W Tworzydlo
- Department of Developmental Biology and Invertebrate Morphology Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Gronostajowa 9, 30-387, Krakow, Poland
| | - M Kotula-Balak
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Gronostajowa 9, 30-387, Krakow, Poland.
| |
Collapse
|
17
|
Abstract
Testicular germ cell tumors (TGCTs) are the most frequent solid malignant tumors in men 20-34 years of age and the most frequent cause of death from solid tumors in this age group. In addition, the incidence of these tumors has significantly increased over the last few decades. Testicular germ cell tumors are classified into seminoma and nonseminoma germ cell tumors (NSGCTs). NSGCTs can be further divided into embryonal carcinoma, Teratoma, yolk sac tumor, and choriocarcinoma. There are noteworthy differences about therapy and prognosis of seminomas and nonseminoma germ cell tumors, even though both share characteristics of the primordial germ cells (PGCs). Many discovered biomarkers including HMGA1, GPR30, Aurora-B, estrogen receptor β, and others have given further advantage to discriminate between histological subgroups and could represent useful molecular therapeutic targets.
Collapse
Affiliation(s)
- Paolo Chieffi
- Dipartimento di Psicologia, Università della Campania, Caserta, Italy
- Address correspondence to:Dr. Paolo Chieffi, Dipartimento di Psicologia, Università della Campania, Viale Ellittico, 3181100 Caserta, Italy. E-mail:
| |
Collapse
|
18
|
Chieffi P, De Martino M, Esposito F. New Anti-Cancer Strategies in Testicular Germ Cell Tumors. Recent Pat Anticancer Drug Discov 2019; 14:53-59. [DOI: 10.2174/1574892814666190111120023] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/10/2018] [Accepted: 01/02/2019] [Indexed: 11/22/2022]
Abstract
Background: The most common solid malignancy of young men aged 20 to 34 years is testicular germ cell tumor. In addition, the incidence of these tumors has significantly increased throughout the last years. Testicular germ cell tumors are classified into seminoma and nonseminoma germ cell tumors, which take in yolk sac tumor, embryonal cell carcinoma, choriocarcinoma, and teratoma. There are noteworthy differences about therapy and prognosis of seminomas and nonseminoma germ cell tumors, even though both share characteristics of the primordial germ cells. </P><P> Objectives: The study is focused on different molecular mechanisms strongly involved in testicular germ cell line tumors underlying new strategies to treat this human neoplasia.Methods:Bibliographic data from peer-reviewed research, patent and clinical trial literature, and around eighty papers and patents have been included in this review.Results:Our study reveals that several biomarkers are usefully utilized to discriminate among different histotypes. Moreover, we found new patents regarding testicular germ cell tumor treatments such as the expression of claudin 6, monoclonal antibody (Brentuximab Vedotin), immune checkpoint blockade (ICB) with the FDA-approved drugs pembrolizumab and nivolumab or the oncolytic virus Pelareorep, the combination of selective inhibitors of Aurora kinase.Conclusion:Finally, the pathogenesis of testicular germ cell tumor needs to be deeply understood so that it will improve data on stem cells, tumorigenesis and disease tumor management by more selective treatment.
Collapse
Affiliation(s)
- Paolo Chieffi
- Department of Psychology, University of Campania, 81100 Caserta, Italy
| | - Marco De Martino
- Department of Psychology, University of Campania, 81100 Caserta, Italy
| | - Francesco Esposito
- Institute of Endocrinology and Experimental Oncology of the CNR c / o Department of Molecular Medicine and Medical Biotechnology, School of Medicine and Surgery of Naples, University of Naples 'Federico II', Naples, Italy
| |
Collapse
|
19
|
Wang Y, Hu L, Zheng Y, Guo L. HMGA1 in cancer: Cancer classification by location. J Cell Mol Med 2019; 23:2293-2302. [PMID: 30614613 PMCID: PMC6433663 DOI: 10.1111/jcmm.14082] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 07/19/2018] [Accepted: 11/16/2018] [Indexed: 12/23/2022] Open
Abstract
The high mobility group A1 (HMGA1) gene plays an important role in numerous malignant cancers. HMGA1 is an oncofoetal gene, and we have a certain understanding of the biological function of HMGA1 based on its activities in various neoplasms. As an architectural transcription factor, HMGA1 remodels the chromatin structure and promotes the interaction between transcriptional regulatory proteins and DNA in different cancers. Through analysis of the molecular mechanism of HMGA1 and clinical studies, emerging evidence indicates that HMGA1 promotes the occurrence and metastasis of cancer. Within a similar location or the same genetic background, the function and role of HMGA1 may have certain similarities. In this paper, to characterize HMGA1 comprehensively, research on various types of tumours is discussed to further understanding of the function and mechanism of HMGA1. The findings provide a more reliable basis for classifying HMGA1 function according to the tumour location. In this review, we summarize recent studies related to HMGA1, including its structure and oncogenic properties, its major functions in each cancer, its upstream and downstream regulation associated with the tumourigenesis and metastasis of cancer, and its potential as a biomarker for clinical diagnosis of cancer.
Collapse
Affiliation(s)
- Yuhong Wang
- The First Affiliated Hospital of Soochow University Department of Pathology, Suzhou, Jiangsu, China
| | - Lin Hu
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Yushuang Zheng
- The First Affiliated Hospital of Soochow University Department of Pathology, Suzhou, Jiangsu, China
| | - Lingchuan Guo
- The First Affiliated Hospital of Soochow University Department of Pathology, Suzhou, Jiangsu, China
| |
Collapse
|
20
|
Abstract
A critical step for maintenance of genetic stability is chromosome segregation, which requires a high coordination of cellular processes. Loss of mitotic regulation is a possible cause of aneuploidy in human epithelial malignancy and it is thought to create an abnormal nuclear morphology in cancer cells. Serine/threonine protein kinase Aurora B gene plays a regulatory role from G2 to cytokinesis, encompassing key cell cycle events such as centrosome duplication, chromosome bi-orientation, and segregation. The overexpression of Aurora B has been observed in several tumour types, and has been linked with a poor prognosis for cancer patients. Therapeutic inhibition of Aurora kinase showed great promise as a probable anticancer regime because of its important role during cell division.
Collapse
Affiliation(s)
- Paolo Chieffi
- Dipartimento di Psicologia, Università della Campania, Caserta, Italy
- Address correspondence to:Dr. Paolo Chieffi, Dipartimento di Psicologia, Università della Campania, Viale Ellittico, 31 81100 Caserta, Italy. E-mail:
| |
Collapse
|
21
|
De Martino M, Forzati F, Arra C, Fusco A, Esposito F. HMGA1-pseudogenes and cancer. Oncotarget 2017; 7:28724-35. [PMID: 26895108 PMCID: PMC5053758 DOI: 10.18632/oncotarget.7427] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 02/05/2016] [Indexed: 12/25/2022] Open
Abstract
Pseudogenes are DNA sequences with high homology to the corresponding functional gene, but, because of the accumulation of various mutations, they have lost their initial functions to code for proteins. Consequently, pseudogenes have been considered until few years ago dysfunctional relatives of the corresponding ancestral genes, and then useless in the course of genome evolution. However, several studies have recently established that pseudogenes are owners of key biological functions. Indeed, some pseudogenes control the expression of functional genes by competitively binding to the miRNAs, some of them generate small interference RNAs to negatively modulate the expression of functional genes, and some of them even encode functional mutated proteins. Here, we concentrate our attention on the pseudogenes of the HMGA1 gene, that codes for the HMGA1a and HMGA1b proteins having a critical role in development and cancer progression. In this review, we analyze the family of HMGA1 pseudogenes through three aspects: classification, characterization, and their possible function and involvement in cancer.
Collapse
Affiliation(s)
- Marco De Martino
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Scuola di Medicina e Chirurgia di Napoli, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Floriana Forzati
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Scuola di Medicina e Chirurgia di Napoli, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Claudio Arra
- Istituto Nazionale dei Tumori, Fondazione Pascale, Naples, Italy
| | - Alfredo Fusco
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Scuola di Medicina e Chirurgia di Napoli, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Francesco Esposito
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Scuola di Medicina e Chirurgia di Napoli, Università degli Studi di Napoli "Federico II", Naples, Italy
| |
Collapse
|
22
|
Morabito C, Guarnieri S, Catizone A, Schiraldi C, Ricci G, Mariggiò MA. Transient increases in intracellular calcium and reactive oxygen species levels in TCam-2 cells exposed to microgravity. Sci Rep 2017; 7:15648. [PMID: 29142208 PMCID: PMC5688167 DOI: 10.1038/s41598-017-15935-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 11/02/2017] [Indexed: 11/14/2022] Open
Abstract
The effects of microgravity on functions of the human body are well described, including alterations in the male and female reproductive systems. In the present study, TCam-2 cells, which are considered a good model of mitotically active male germ cells, were used to investigate intracellular signalling and cell metabolism during exposure to simulated microgravity, a condition that affects cell shape and cytoskeletal architecture. After a 24 hour exposure to simulated microgravity, TCam-2 cells showed 1) a decreased proliferation rate and a delay in cell cycle progression, 2) increased anaerobic metabolism accompanied by increased levels of intracellular Ca2+, reactive oxygen species and superoxide anion and modifications in mitochondrial morphology. Interestingly, all these events were transient and were no longer evident after 48 hours of exposure. The presence of antioxidants prevented not only the effects described above but also the modifications in cytoskeletal architecture and the activation of the autophagy process induced by simulated microgravity. In conclusion, in the TCam-2 cell model, simulated microgravity activated the oxidative machinery, triggering transient macroscopic cell events, such as a reduction in the proliferation rate, changes in cytoskeleton-driven shape and autophagy activation.
Collapse
Affiliation(s)
- C Morabito
- Department of Neuroscience, Imaging and Clinical Sciences and Centro Scienze dell' Invecchiamento e Medicina Traslazionale (CeSI-MeT), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - S Guarnieri
- Department of Neuroscience, Imaging and Clinical Sciences and Centro Scienze dell' Invecchiamento e Medicina Traslazionale (CeSI-MeT), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - A Catizone
- Section of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic and Orthopaedic Medicine, "Sapienza" University of Rome, Rome, Italy
| | - C Schiraldi
- Department of Experimental Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - G Ricci
- Department of Experimental Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - M A Mariggiò
- Department of Neuroscience, Imaging and Clinical Sciences and Centro Scienze dell' Invecchiamento e Medicina Traslazionale (CeSI-MeT), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.
| |
Collapse
|
23
|
Abstract
Testicular germ cell tumor (TGCT) is the most common solid malignancy occurring in young men between 20 and 34 years of age, and its incidence has increased significantly over the last decades. Clinically several types of immunohistochemical markers are useful and sensitive. These new biomarkers are genes expressed in primordial germ cells/gonocytes and embryonic pluripotency-related cells but not in normal adult germ cells and they include OCT3/4, HMGA1 and 2, NANOG, SOX2, and LIN28. Gene expression in TGCT is regulated, at least in part, by DNA and histone modifications, and the epigenetic profile of these tumours is characterised by genome-wide demethylation. There are different epigenetic modifications in TGCT subtypes that reflect the normal developmental switch in primordial germ cells from an under to normally methylated genome.
Collapse
Affiliation(s)
- Paolo Chieffi
- Dipartimento di Psicologia, Università della Campania, Caserta, Italy
- Address correspondence to: Dr. Paolo Chieffi, Dipartimento di Psicologia, Viale Ellittico, 31 81100 Caserta, Italy. E-mail:
| |
Collapse
|
24
|
Boccellino M, Vanacore D, Zappavigna S, Cavaliere C, Rossetti S, D'Aniello C, Chieffi P, Amler E, Buonerba C, Di Lorenzo G, Di Franco R, Izzo A, Piscitelli R, Iovane G, Muto P, Botti G, Perdonà S, Caraglia M, Facchini G. Testicular cancer from diagnosis to epigenetic factors. Oncotarget 2017; 8:104654-104663. [PMID: 29262668 PMCID: PMC5732834 DOI: 10.18632/oncotarget.20992] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 08/29/2017] [Indexed: 12/16/2022] Open
Abstract
Testicular cancer (TC) is one of the most common neoplasms that occurs in male and includes germ cell tumors (GCT), sex cord-gonadal stromal tumors and secondary testicular tumors. Diagnosis of TC involves the evaluation of serum tumor markers alpha-fetoprotein, human chorionic gonadotropin and lactate dehydrogenase, but clinically several types of immunohistochemical markers are more useful and more sensitive in GCT, but not in teratoma. These new biomarkers are genes expressed in primordial germ cells/gonocytes and embryonic pluripotency-related cells but not in normal adult germ cells and they include PLAP, OCT3/4 (POU5F1), NANOG, SOX2, REX1, AP-2γ (TFAP2C) and LIN28. Gene expression in GCT is regulated, at least in part, by DNA and histone modifications, and the epigenetic profile of these tumours is characterised by genome-wide demethylation. There are different epigenetic modifications in TG-subtypes that reflect the normal developmental switch in primordial germ cells from an under- to normally methylated genome. The main purpose of this review is to illustrate the findings of recent investigations in the classification of male genital organs, the discoveries in the use of prognostic and diagnostic markers and the epigenetic aberrations mainly affecting the patterns of DNA methylation/histone modifications of genes (especially tumor suppressors) and microRNAs (miRNAs).
Collapse
Affiliation(s)
- Mariarosaria Boccellino
- Department of Biochemistry, Biophysics and General Pathology, University of Campania "L. Vanvitelli" Naples, Naples, Italy
| | - Daniela Vanacore
- Department of Biochemistry, Biophysics and General Pathology, University of Campania "L. Vanvitelli" Naples, Naples, Italy.,Progetto ONCONET 2.0, Linea progettuale 14 per l'implementazione della prevenzione e diagnosi precoce del tumore alla prostata e testicolo, Regione Campania, Italy
| | - Silvia Zappavigna
- Department of Biochemistry, Biophysics and General Pathology, University of Campania "L. Vanvitelli" Naples, Naples, Italy
| | - Carla Cavaliere
- Medical Oncology Unit, ASL NA 3 SUD, Ospedali Riuniti Area Nolana, Nola, Italy
| | - Sabrina Rossetti
- Progetto ONCONET 2.0, Linea progettuale 14 per l'implementazione della prevenzione e diagnosi precoce del tumore alla prostata e testicolo, Regione Campania, Italy.,Division of Medical Oncology, Department of Uro-Gynaecological Oncology, Istituto Nazionale Tumori 'Fondazione G. Pascale'-IRCCS, Naples, Italy
| | - Carmine D'Aniello
- Division of Medical Oncology, A.O.R.N. dei COLLI "Ospedali Monaldi-Cotugno-CTO", Napoli, Italy
| | - Paolo Chieffi
- Department of Psychology, University of Campania "L. Vanvitelli" Naples, Naples, Italy
| | - Evzen Amler
- 2nd Faculty of Medicine, Charles University, V Uvalu 84, Prague 5, Czech Republic.,Faculty of Biomedical Engineering, UCEEB, CVUT, Zikova 4, Prague 6, Student Science, H.Podluzi, Prague, Czech Republic
| | - Carlo Buonerba
- Department of Clinical Medicine and Surgery, University Federico II of Naples, Naples, Italy
| | - Giuseppe Di Lorenzo
- Department of Clinical Medicine and Surgery, University Federico II of Naples, Naples, Italy
| | - Rossella Di Franco
- Progetto ONCONET 2.0, Linea progettuale 14 per l'implementazione della prevenzione e diagnosi precoce del tumore alla prostata e testicolo, Regione Campania, Italy.,Radiation Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori 'Fondazione Giovanni Pascale'-IRCCS, Napoli, Italy
| | - Alessandro Izzo
- Division of Urology, Department of Uro-Gynaecological Oncology, Istituto Nazionale Tumori 'Fondazione G. Pascale'-IRCCS, Naples, Italy
| | - Raffaele Piscitelli
- Progetto ONCONET 2.0, Linea progettuale 14 per l'implementazione della prevenzione e diagnosi precoce del tumore alla prostata e testicolo, Regione Campania, Italy
| | - Gelsomina Iovane
- Division of Medical Oncology, Department of Uro-Gynaecological Oncology, Istituto Nazionale Tumori 'Fondazione G. Pascale'-IRCCS, Naples, Italy
| | - Paolo Muto
- Radiation Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori 'Fondazione Giovanni Pascale'-IRCCS, Napoli, Italy
| | - Gerardo Botti
- Pathology Unit, Istituto Nazionale Tumori "Fondazione G. Pascale"- IRCCS, Naples, Italy.,Scientific Management, Istituto Nazionale Tumori 'Fondazione G. Pascale'-IRCCS, Naples, Italy
| | - Sisto Perdonà
- Division of Urology, Department of Uro-Gynaecological Oncology, Istituto Nazionale Tumori 'Fondazione G. Pascale'-IRCCS, Naples, Italy
| | - Michele Caraglia
- Department of Biochemistry, Biophysics and General Pathology, University of Campania "L. Vanvitelli" Naples, Naples, Italy
| | - Gaetano Facchini
- Progetto ONCONET 2.0, Linea progettuale 14 per l'implementazione della prevenzione e diagnosi precoce del tumore alla prostata e testicolo, Regione Campania, Italy.,Division of Medical Oncology, Department of Uro-Gynaecological Oncology, Istituto Nazionale Tumori 'Fondazione G. Pascale'-IRCCS, Naples, Italy
| |
Collapse
|
25
|
Boscia F, Pannaccione A, Ciccone R, Casamassa A, Franco C, Piccialli I, de Rosa V, Vinciguerra A, Di Renzo G, Annunziato L. The expression and activity of K V3.4 channel subunits are precociously upregulated in astrocytes exposed to Aβ oligomers and in astrocytes of Alzheimer's disease Tg2576 mice. Neurobiol Aging 2017; 54:187-198. [PMID: 28390823 DOI: 10.1016/j.neurobiolaging.2017.03.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 03/06/2017] [Accepted: 03/07/2017] [Indexed: 12/12/2022]
Abstract
Astrocyte dysfunction emerges early in Alzheimer's disease (AD) and may contribute to its pathology and progression. Recently, the voltage gated potassium channel KV3.4 subunit, which underlies the fast-inactivating K+ currents, has been recognized to be relevant for AD pathogenesis and is emerging as a new target candidate for AD. In the present study, we investigated both in in vitro and in vivo models of AD the expression and functional activity of KV3.4 potassium channel subunits in astrocytes. In primary astrocytes our biochemical, immunohistochemical, and electrophysiological studies demonstrated a time-dependent upregulation of KV3.4 expression and functional activity after exposure to amyloid-β (Aβ) oligomers. Consistently, astrocytic KV3.4 expression was upregulated in the cerebral cortex, hippocampus, and cerebellum of 6-month-old Tg2576 mice. Further, confocal triple labeling studies revealed that in 6-month-old Tg2576 mice, KV3.4 was intensely coexpressed with Aβ in nonplaque associated astrocytes. Interestingly, in the cortical and hippocampal regions of 12-month-old Tg2576 mice, plaque-associated astrocytes much more intensely expressed KV3.4 subunits, but not Aβ. More important, we evidenced that the selective knockdown of KV3.4 expression significantly downregulated both glial fibrillary acidic protein levels and Aβ trimers in the brain of 6-month-old Tg2576 mice. Collectively, our results demonstrate that the expression and function of KV3.4 channel subunits are precociously upregulated in cultured astrocytes exposed to Aβ oligomers and in reactive astrocytes of AD Tg2576 mice.
Collapse
Affiliation(s)
- Francesca Boscia
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, "Federico II" University of Naples, Naples, Italy
| | - Anna Pannaccione
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, "Federico II" University of Naples, Naples, Italy
| | - Roselia Ciccone
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, "Federico II" University of Naples, Naples, Italy
| | - Antonella Casamassa
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, "Federico II" University of Naples, Naples, Italy
| | - Cristina Franco
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, "Federico II" University of Naples, Naples, Italy
| | - Ilaria Piccialli
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, "Federico II" University of Naples, Naples, Italy
| | - Valeria de Rosa
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, "Federico II" University of Naples, Naples, Italy
| | - Antonio Vinciguerra
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, "Federico II" University of Naples, Naples, Italy
| | - Gianfranco Di Renzo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, "Federico II" University of Naples, Naples, Italy
| | - Lucio Annunziato
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, "Federico II" University of Naples, Naples, Italy; Fondazione IRCCS SDN, Naples, Italy.
| |
Collapse
|
26
|
Potenza N, Mosca N, Zappavigna S, Castiello F, Panella M, Ferri C, Vanacore D, Giordano A, Stiuso P, Caraglia M, Russo A. MicroRNA-125a-5p Is a Downstream Effector of Sorafenib in Its Antiproliferative Activity Toward Human Hepatocellular Carcinoma Cells. J Cell Physiol 2017; 232:1907-1913. [PMID: 27982429 DOI: 10.1002/jcp.25744] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 12/15/2016] [Indexed: 12/11/2022]
Abstract
Sorafenib is an antitumor drug for treatment of advanced hepatocellular carcinoma (HCC). It acts as a multikinase inhibitor suppressing cell proliferation and angiogenesis. Human microRNA-125a-5p (miR-125a) is endowed with similar activities and is frequently downregulated in HCC. Looking for a potential microRNA-based mechanism of action of the drug, we found that sorafenib increases cellular expression of miR-125a in cultured HuH-7 and HepG2 HCC cells. Upregulation of the microRNA inhibited cell proliferation by suppression of sirtuin-7, a NAD(+)-dependent deacetylase, and p21/p27-dependent cell cycle arrest in G1. Later, recruitment of miR-125a in the antiproliferative activity of sorafenib was inquired by modulating its expression in combination with the drug treatment. This analysis showed that intracellular delivery of miR-125a had no additive effect on the antiproliferative activity of sorafenib, whereas a miR-125a inhibitor could counteract it. Finally, evaluation of other oncogenic targets of miR-125a revealed its ability to interfere with the expression of matrix metalloproteinase-11, Zbtb7a proto-oncogene, and c-Raf, possibly contributing to the antiproliferative activity of the drug. J. Cell. Physiol. 232: 1907-1913, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Nicoletta Potenza
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "L. Vanvitelli", Caserta, Italy
| | - Nicola Mosca
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "L. Vanvitelli", Caserta, Italy
| | - Silvia Zappavigna
- Department of Biochemistry, Biophysics and General Pathology, University of Campania "L. Vanvitelli", Naples, Italy
| | - Filomena Castiello
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "L. Vanvitelli", Caserta, Italy
| | - Marta Panella
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "L. Vanvitelli", Caserta, Italy
| | - Carmela Ferri
- Department of Biochemistry, Biophysics and General Pathology, University of Campania "L. Vanvitelli", Naples, Italy
| | - Daniela Vanacore
- Department of Biochemistry, Biophysics and General Pathology, University of Campania "L. Vanvitelli", Naples, Italy
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine & Center for Biotechnology, Temple University, Philadelphia, Pennsylvania
| | - Paola Stiuso
- Department of Biochemistry, Biophysics and General Pathology, University of Campania "L. Vanvitelli", Naples, Italy
| | - Michele Caraglia
- Department of Biochemistry, Biophysics and General Pathology, University of Campania "L. Vanvitelli", Naples, Italy
| | - Aniello Russo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "L. Vanvitelli", Caserta, Italy
| |
Collapse
|
27
|
De Martino M, Forzati F, Marfella M, Pellecchia S, Arra C, Terracciano L, Fusco A, Esposito F. HMGA1P7-pseudogene regulates H19 and Igf2 expression by a competitive endogenous RNA mechanism. Sci Rep 2016; 6:37622. [PMID: 27874091 PMCID: PMC5118720 DOI: 10.1038/srep37622] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 11/01/2016] [Indexed: 12/18/2022] Open
Abstract
Recent studies have revealed that pseudogene transcripts can function as competing endogenous RNAs, and thereby can also contribute to cancer when dysregulated. We have recently identified two pseudogenes, HMGA1P6 and HMGA1P7 for the HMGA1 gene whose overexpression has a critical role in cancer progression. These pseudogenes work as competitive endogenous RNA decoys for HMGA1 and other cancer related genes suggesting their role in carcinogenesis. Looking for new HMGA1 pseudogene ceRNAs, we performed RNA sequencing technology on mouse embryonic fibroblasts deriving from transgenic mice overexpressing HMGA1P7. Here, we report that HMGA1P7 mRNA sustains the H19 and Igf2 overexpression by acting as miRNA decoy. Lastly, the expression of HMGA1P7 was significantly correlated with H19 and IGF2 levels in human breast cancer thereby suggesting a role for HMGA1P7 deregulation in this neoplasia.
Collapse
Affiliation(s)
- Marco De Martino
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Scuola di Medicina e Chirurgia di Napoli, Università degli Studi di Napoli "Federico II", via Pansini 5, 80131 Naples, Italy
| | - Floriana Forzati
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Scuola di Medicina e Chirurgia di Napoli, Università degli Studi di Napoli "Federico II", via Pansini 5, 80131 Naples, Italy
| | - Marianna Marfella
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Scuola di Medicina e Chirurgia di Napoli, Università degli Studi di Napoli "Federico II", via Pansini 5, 80131 Naples, Italy
| | - Simona Pellecchia
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Scuola di Medicina e Chirurgia di Napoli, Università degli Studi di Napoli "Federico II", via Pansini 5, 80131 Naples, Italy
| | - Claudio Arra
- Istituto Nazionale dei Tumori, Fondazione Pascale, via Mariano Semmola, 80131 Naples, Italy
| | - Luigi Terracciano
- Institute of Pathology, Molecular Pathology Division, University of Basel, Schonbeinstrasse 40, 4003 Basel, Switzerland
| | - Alfredo Fusco
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Scuola di Medicina e Chirurgia di Napoli, Università degli Studi di Napoli "Federico II", via Pansini 5, 80131 Naples, Italy
| | - Francesco Esposito
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Scuola di Medicina e Chirurgia di Napoli, Università degli Studi di Napoli "Federico II", via Pansini 5, 80131 Naples, Italy
| |
Collapse
|
28
|
Chieffi P. An Overview on Predictive Biomarkers of Testicular Germ Cell Tumors. J Cell Physiol 2016; 232:276-280. [DOI: 10.1002/jcp.25482] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 07/11/2016] [Indexed: 02/06/2023]
Affiliation(s)
- Paolo Chieffi
- Dipartimento di Psicologia; Seconda Università di Napoli; Caserta Italy
| |
Collapse
|
29
|
Chieffi P. New perspective on molecular markers as promising therapeutic targets in germ cell tumors. Intractable Rare Dis Res 2016; 5:137-9. [PMID: 27195201 PMCID: PMC4869583 DOI: 10.5582/irdr.2016.01007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 02/26/2016] [Indexed: 01/28/2023] Open
Abstract
Testicular germ cell tumors (TGCTs) are the most frequent solid malignant tumors in men 20-40 years of age and the most frequent cause of death from solid tumors in this age group. TGCTs comprise two major histologic groups: seminomas and non-seminomas germ cell tumors (NSGCTs). NSGCTs can be further divided into embryonal carcinoma, Teratoma, yolk sac tumor, and choriocarcinoma. Seminomas and NSGCTs present significant differences in clinical features, therapy, and prognosis, and both show characteristics of the Primordial Germ Cells (PGCs). Many discovered biomarkers including HMGA1, GPR30, Aurora-B, estrogen receptor β, and others have given further advantages to discriminate between histological subgroups and could represent useful therapeutic targets.
Collapse
Affiliation(s)
- Paolo Chieffi
- Dipartimento di Psicologia, Seconda Università di Napoli, Caserta, Italy
| |
Collapse
|
30
|
Casamassa A, La Rocca C, Sokolow S, Herchuelz A, Matarese G, Annunziato L, Boscia F. Ncx3 gene ablation impairs oligodendrocyte precursor response and increases susceptibility to experimental autoimmune encephalomyelitis. Glia 2016; 64:1124-37. [DOI: 10.1002/glia.22985] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 02/29/2016] [Accepted: 03/07/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Antonella Casamassa
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine; Federico II University of Naples; Napoli 80131 Italy
| | - Claudia La Rocca
- Laboratorio di Immunologia, Istituto di Endocrinologia e Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR); Napoli Italy
| | | | - Andre Herchuelz
- Laboratory of Pharmacology and Therapeutics, Université Libre de Bruxelles; Brussels Gosselies 6041 Belgium
| | - Giuseppe Matarese
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche; Università di Napoli “Federico II”; Napoli Italy
| | - Lucio Annunziato
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine; Federico II University of Naples; Napoli 80131 Italy
- Fondazione IRCSS SDN; Naples Italy
| | - Francesca Boscia
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine; Federico II University of Naples; Napoli 80131 Italy
| |
Collapse
|
31
|
Chieffi P, Boscia F. New discovered molecular markers as promising therapeutic targets in germ cell tumors. Expert Opin Orphan Drugs 2015. [DOI: 10.1517/21678707.2015.1074070] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
32
|
Germ cell tumors overexpress the candidate therapeutic target cyclin B1 independently of p53 function. Int J Biol Markers 2015; 30:e275-81. [PMID: 25982682 DOI: 10.5301/jbm.5000149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2015] [Indexed: 01/01/2023]
Abstract
Germ cell tumors (GCTs) generally express wild-type p53 protein. Rare p53 mutations may be associated with cisplatin resistance. There is growing interest in the role of cyclins as targets for GCTs. Cyclin B1 is involved in G2/M transition and its overexpression has been reported in tumors carrying nonfunctional p53. Conversely, cyclin B1-specific small interfering RNAs have been shown to dramatically reduce tumor proliferation. We investigated whether a subset of chemotherapy-resistant GCTs overexpressed cyclin B1 as a result of nonfunctional p53, as this would make cyclin B1 a potential therapeutic target. Our data showed that GCTs consistently overexpressed cyclin B1 independently of their responsiveness to chemotherapy or the presence of p53 mutations. Cyclin B1 was overexpressed by GCT cell lines carrying functional p53. Cyclin B1-specific small interfering RNAs only slightly reduced the proliferation of JAR and JEG-3 placental choriocarcinoma cells. Further research into targeting cyclin B1 could provide a novel intervention for GCTs.
Collapse
|
33
|
Esposito F, De Martino M, Petti MG, Forzati F, Tornincasa M, Federico A, Arra C, Pierantoni GM, Fusco A. HMGA1 pseudogenes as candidate proto-oncogenic competitive endogenous RNAs. Oncotarget 2015; 5:8341-54. [PMID: 25268743 PMCID: PMC4226687 DOI: 10.18632/oncotarget.2202] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The High Mobility Group A (HMGA) are nuclear proteins that participate in the organization of nucleoprotein complexes involved in chromatin structure, replication and gene transcription. HMGA overexpression is a feature of human cancer and plays a causal role in cell transformation. Since non-coding RNAs and pseudogenes are now recognized to be important in physiology and disease, we investigated HMGA1 pseudogenes in cancer settings using bioinformatics analysis. Here we report the identification and characterization of two HMGA1 non-coding pseudogenes, HMGA1P6 and HMGA1P7. We show that their overexpression increases the levels of HMGA1 and other cancer-related proteins by inhibiting the suppression of their synthesis mediated by microRNAs. Consistently, embryonic fibroblasts from HMGA1P7-overexpressing transgenic mice displayed a higher growth rate and reduced susceptibility to senescence. Moreover, HMGA1P6 and HMGA1P7 were overexpressed in human anaplastic thyroid carcinomas, which are highly aggressive, but not in differentiated papillary carcinomas, which are less aggressive. Lastly, the expression of the HMGA1 pseudogenes was significantly correlated with HMGA1 protein levels thereby implicating HMGA1P overexpression in cancer progression. In conclusion, HMGA1P6 and HMGA1P7 are potential proto-oncogenic competitive endogenous RNAs.
Collapse
Affiliation(s)
- Francesco Esposito
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Scuola di Medicina e Chirurgia di Napoli, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Marco De Martino
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Scuola di Medicina e Chirurgia di Napoli, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Maria Grazia Petti
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Scuola di Medicina e Chirurgia di Napoli, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Floriana Forzati
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Scuola di Medicina e Chirurgia di Napoli, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Mara Tornincasa
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Scuola di Medicina e Chirurgia di Napoli, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Antonella Federico
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Scuola di Medicina e Chirurgia di Napoli, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Claudio Arra
- Istituto Nazionale dei Tumori, Fondazione Pascale, Naples, Italy
| | - Giovanna Maria Pierantoni
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Scuola di Medicina e Chirurgia di Napoli, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Alfredo Fusco
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Scuola di Medicina e Chirurgia di Napoli, Università degli Studi di Napoli "Federico II", Naples, Italy
| |
Collapse
|
34
|
Boscia F, Passaro C, Gigantino V, Perdonà S, Franco R, Portella G, Chieffi S, Chieffi P. High levels of GPR30 protein in human testicular carcinoma in situ and seminomas correlate with low levels of estrogen receptor-beta and indicate a switch in estrogen responsiveness. J Cell Physiol 2015; 230:1290-7. [PMID: 25413376 DOI: 10.1002/jcp.24864] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 11/04/2014] [Indexed: 02/03/2023]
Abstract
The G protein-coupled estrogen receptor (GPR30) is suggested to be involved in non-nuclear estrogen signalling and is expressed in a variety of hormone dependent cancer entities. It is well established that oestrogens are involved in pathological germ cell proliferation including testicular germ cell tumours. This study was performed to further elucidate the role of this receptor and the possible correlation with the estrogen receptor β in human testicular carcinoma in situ (CIS), seminomas and in GC1 and TCam-2 germ cell lines; in addition, a Tissue Micro-Array was built using the most representative areas from 25 cases of human testicular seminomas and 20 cases of CIS. The expression of ERβ and GPR30 were observed by using Western blot analysis in combination with immunocytochemistry and immunofluorescence analyses. Here, we show that down regulation of ERβ associates with GPR30 over-expression both in human testicular CIS and seminomas. In addition, we show that 17β-oestradiol induces the ERK1/2 activation and increases c-Fos expression through GPR30 associated with ERβ down-regulation in TCam-2 cell line. The present results suggest that exposure to oestrogens or oestrogen-mimics, in some as of yet undefined manner, diminishes the ERβ-mediated growth restraint in CIS and in human testicular seminoma, probably due to ERβ down-regulation associated to GPR30 increased expression indicating that GPR30 could be a potential therapeutic target to design specific inhibitors.
Collapse
Affiliation(s)
- Francesca Boscia
- Dipartimento di Neuroscienze e Scienze Riproduttive ed Odontostomatologiche, Università di Napoli "Federico II,", Naples, Italy
| | | | | | | | | | | | | | | |
Collapse
|
35
|
NCX1 Exchanger Cooperates with Calretinin to Confer Preconditioning-Induced Tolerance Against Cerebral Ischemia in the Striatum. Mol Neurobiol 2015; 53:1365-1376. [DOI: 10.1007/s12035-015-9095-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 01/12/2015] [Indexed: 10/24/2022]
|
36
|
Cytoskeleton modifications and autophagy induction in TCam-2 seminoma cells exposed to simulated microgravity. BIOMED RESEARCH INTERNATIONAL 2014; 2014:904396. [PMID: 25140323 PMCID: PMC4124846 DOI: 10.1155/2014/904396] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 07/04/2014] [Accepted: 07/04/2014] [Indexed: 12/04/2022]
Abstract
The study of how mechanical forces may influence cell behavior via cytoskeleton remodeling is a relevant challenge of nowadays that may allow us to define the relationship between mechanics and biochemistry and to address the larger problem of biological complexity. An increasing amount of literature data reported that microgravity condition alters cell architecture as a consequence of cytoskeleton structure modifications. Herein, we are reporting the morphological, cytoskeletal, and behavioral modifications due to the exposition of a seminoma cell line (TCam-2) to simulated microgravity. Even if no differences in cell proliferation and apoptosis were observed after 24 hours of exposure to simulated microgravity, scanning electron microscopy (SEM) analysis revealed that the change of gravity vector significantly affects TCam-2 cell surface morphological appearance. Consistent with this observation, we found that microtubule orientation is altered by microgravity. Moreover, the confocal analysis of actin microfilaments revealed an increase in the cell width induced by the low gravitational force. Microtubules and microfilaments have been related to autophagy modulation and, interestingly, we found a significant autophagic induction in TCam-2 cells exposed to simulated microgravity. This observation is of relevant interest because it shows, for the first time, TCam-2 cell autophagy as a biological response induced by a mechanical stimulus instead of a biochemical one.
Collapse
|
37
|
Chieffi P. An overview on new anticancer molecular targets in human testicular germ cell tumors. RENDICONTI LINCEI-SCIENZE FISICHE E NATURALI 2014. [DOI: 10.1007/s12210-013-0280-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
38
|
Recent advances in molecular and cell biology of testicular germ-cell tumors. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 312:79-100. [PMID: 25262239 DOI: 10.1016/b978-0-12-800178-3.00003-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Testicular germ-cell tumors (TGCTs) are the most frequent solid malignant tumors in men 20-40 years of age and the most frequent cause of death from solid tumors in this age group. TGCTs comprise two major histologic groups: seminomas and nonseminomas germ-cell tumors (NSGCTs). NSGCTs can be further divided into embryonal, carcinoma, Teratoma, yolk sac tumor, and choriocarcinoma. Seminomas and NSGCTs present significant differences in clinical features, therapy, and prognosis, and both show characteristics of the primordial germ cells. Many discovered biomarkers including OCT3/4, SOX2, SOX17, HMGA1, Nek2, GPR30, Aurora-B, estrogen receptor β, and others have given further advantages to discriminate between histological subgroups and could represent useful novel molecular targets for antineoplastic strategies. More insight into the pathogenesis of TGCTs is likely to improve disease management not only to better treatment of these tumors but also to a better understanding of stem cells and oncogenesis.
Collapse
|
39
|
Chieffi P, Chieffi S. Molecular biomarkers as potential targets for therapeutic strategies in human testicular germ cell tumors: an overview. J Cell Physiol 2013; 228:1641-6. [PMID: 23359388 DOI: 10.1002/jcp.24328] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 01/09/2013] [Indexed: 12/20/2022]
Abstract
Testicular germ cell tumors (TGCTs), the most common malignancy in males between 15 and 34 years of age and the most frequent cause of death from solid tumors in this age group. TGCTs can be subdivided into seminoma and non-seminoma germ cell tumors (NSGCTs), including embryonal cell carcinoma, choriocarcinoma, yolk sac tumor, and teratoma. Seminomas and NSGCTs do not only present distinctive clinical features, but they also show significant differences as far as therapy and prognosis are concerned. Seminomas are highly sensitive to both radiation and chemotherapy, with a good prognosis, non-seminomas are sensitive to platinum-based combination chemotherapy and are less susceptible to radiation, with the exception of teratomas. The different therapeutic outcome might be explained by inherent properties of the cells from which testicular neoplasia originate. The unique treatment sensitivity of TGCTs is unexplained so far, but it is likely to be related to intrinsic molecular characteristics of the PGCs/gonocytes, from which these tumors originate. Many discovered bio-markers including OCT3/4, SOX2, SOX17, HMGA1, HMGA2, PATZ1, GPR30, Aurora B, estrogen receptor β, and others have given further advantages to discriminate between histological subgroups. In addition, therapeutic approaches for the treatment of TGCTs have been proposed: humanized antibodies against receptors/surface molecules on cancer cells, inhibitors of serine-threonine, and tyrosine kinases, and others. The mini-review will be an overview on the molecular alterations identified in TGCTs and on novel targeted antineoplastic strategies that might help to treat chemotherapy resistant TGCTs.
Collapse
Affiliation(s)
- Paolo Chieffi
- Dipartimento di Psicologia, II Università di Napoli, Caserta, Italy.
| | | |
Collapse
|
40
|
Chieffi P, Chieffi S, Franco R, Sinisi AA. Recent advances in the biology of germ cell tumors: implications for the diagnosis and treatment. J Endocrinol Invest 2012; 35:1015-20. [PMID: 23143673 DOI: 10.3275/8716] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Testicular germ cell tumors (TGCT), are the most frequent solid malignant tumors in men 20-40 yr of age, and the most frequent cause of death from solid tumors in this age group. TGCT can be subdivided into seminoma and nonseminoma germ cell tumors (NSGCT), including embryonal cell carcinoma, choriocarcinoma, yolk sac tumor, and teratoma. Seminomas and NSGCT do not only present distinctive clinical features, but they also show significant differences as far as therapy and prognosis are concerned. Many novel markers have given further advantages to discriminate between histological subgroups. In addition, therapeutic approaches for the treatment of TGCT have been proposed: humanized antibodies against receptors/surface molecules on cancer cells, inhibitors of serine-threonine, and tyrosine kinases, and others. The review will focus on the recent advances in the research of molecular alterations identified in TGCT and on novel targeted anti-neoplastic strategies that might help to treat chemotherapy-resistant TGCT.
Collapse
Affiliation(s)
- P Chieffi
- Department of Psychology, Second University of Naples, Caserta, Italy.
| | | | | | | |
Collapse
|