1
|
Rittavee Y, Artus J, Desterke C, Simanic I, de Souza LEB, Riccaldi S, Coignard S, Ijjeh Y, Hugues P, Bennaceur-Griscelli A, Turhan AG, Foudi A. miR-495-3p sensitizes BCR-ABL1-expressing leukemic cells to tyrosine kinase inhibitors by targeting multidrug resistance 1 gene in T315I mutated cells. Exp Hematol 2023; 118:40-52. [PMID: 36535407 DOI: 10.1016/j.exphem.2022.12.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/08/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
Chronic myeloid leukemia (CML) is a clonal hematopoietic malignancy driven by the BCR-ABL1 fusion oncoprotein. The development of tyrosine kinase inhibitors (TKIs) has deeply increased long-term survival of CML patients. Nonetheless, one patient out of four will switch TKI off owing either to drug intolerance or resistance partly due to amplification or mutations of BCR-ABL1 oncogene and alteration in ATP-binding cassette (ABC) transporters. Increasing evidence suggests the involvement of the microRNA miR-495-3p in cancer-associated chemoresistance through multidrug resistance 1 (MDR1) gene, which encodes an ATP-dependent efflux pump. Our study aimed at investigating the potential role of miR-495-3p in CML TKI chemo-sensitivity and determining the underlying molecular circuitry involved. We first observed that miR-495-3p expression was lower in BCR-ABL1-expressing cellular models in vitro. Notably, loss-of-function experiments showed increased proliferation associated with a decreased number of nondividing cells (G0/G1) and resistance to Imatinib. Conversely, our data showed that miR-495-3p overexpression hindered leukemic cell growth and TKI resistance in Imatinib-resistant T315I-mutant cells, as well as drug efflux activity through MDR1 regulation. Further investigating the role of miR-495-3p in CML patients, we found that predicted miR-495-3p targets were upregulated in patients in blast crisis that were involved in protein phosphorylation and associated with the worst prognosis. Taken together, our results demonstrate that downregulation of miR-495-3p expression is important in the malignant phenotype of CML and TKI resistance mechanisms and could be a useful biomarker and a potential therapeutic target to eradicate CML.
Collapse
MESH Headings
- Humans
- Imatinib Mesylate/pharmacology
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- Tyrosine Protein Kinase Inhibitors
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- Cell Line, Tumor
- Drug Resistance, Neoplasm/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Drug Resistance, Multiple
- Adenosine Triphosphate
Collapse
Affiliation(s)
- Yutthana Rittavee
- INSERM UMRS-1310, Paris Saclay University, Villejuif, France; ATIP/Avenir INSERM UMRS-1310, Paris Saclay University, Villejuif, France; Paris Saclay University, Faculty of Medicine, Kremlin-Bicêtre, France
| | - Jérôme Artus
- INSERM UMRS-1310, Paris Saclay University, Villejuif, France; ATIP/Avenir INSERM UMRS-1310, Paris Saclay University, Villejuif, France; Paris Saclay University, Faculty of Medicine, Kremlin-Bicêtre, France
| | - Christophe Desterke
- INSERM UMRS-1310, Paris Saclay University, Villejuif, France; Paris Saclay University, Faculty of Medicine, Kremlin-Bicêtre, France; INGESTEM National iPSC Infrastructure, Villejuif, France; INGESTEM National iPSC Infrastructure, Villejuif, France
| | - Isidora Simanic
- INSERM UMRS-1310, Paris Saclay University, Villejuif, France; ATIP/Avenir INSERM UMRS-1310, Paris Saclay University, Villejuif, France
| | - Lucas Eduardo Botelho de Souza
- INSERM UMRS-1310, Paris Saclay University, Villejuif, France; ATIP/Avenir INSERM UMRS-1310, Paris Saclay University, Villejuif, France
| | - Sandra Riccaldi
- INSERM UMRS-1310, Paris Saclay University, Villejuif, France; ATIP/Avenir INSERM UMRS-1310, Paris Saclay University, Villejuif, France
| | - Sabrina Coignard
- INSERM UMRS-1310, Paris Saclay University, Villejuif, France; ATIP/Avenir INSERM UMRS-1310, Paris Saclay University, Villejuif, France
| | - Yousef Ijjeh
- INSERM UMRS-1310, Paris Saclay University, Villejuif, France; ATIP/Avenir INSERM UMRS-1310, Paris Saclay University, Villejuif, France
| | - Patricia Hugues
- INSERM UMRS-1310, Paris Saclay University, Villejuif, France; ATIP/Avenir INSERM UMRS-1310, Paris Saclay University, Villejuif, France
| | - Annelise Bennaceur-Griscelli
- INSERM UMRS-1310, Paris Saclay University, Villejuif, France; Paris Saclay University, Faculty of Medicine, Kremlin-Bicêtre, France; APHP Paris Saclay, Department of Hematology, Hôpital Bicêtre and Paul Brousse, Villejuif, France; INGESTEM National iPSC Infrastructure, Villejuif, France; CITHERA, Centre for IPSC Therapies, INSERM UMS-45, Paris Saclay University, Genopole, Evry, France
| | - Ali G Turhan
- INSERM UMRS-1310, Paris Saclay University, Villejuif, France; Paris Saclay University, Faculty of Medicine, Kremlin-Bicêtre, France; APHP Paris Saclay, Department of Hematology, Hôpital Bicêtre and Paul Brousse, Villejuif, France; INGESTEM National iPSC Infrastructure, Villejuif, France; CITHERA, Centre for IPSC Therapies, INSERM UMS-45, Paris Saclay University, Genopole, Evry, France
| | - Adlen Foudi
- INSERM UMRS-1310, Paris Saclay University, Villejuif, France; ATIP/Avenir INSERM UMRS-1310, Paris Saclay University, Villejuif, France; Paris Saclay University, Faculty of Medicine, Kremlin-Bicêtre, France.
| |
Collapse
|
2
|
Liang X, Shi Z, Huang X, Wan C, Zhu S, Wu M, Li Z, Tang Z, Li J, Zhao W, Luo J, Liu Z. MiR-181a-2-3p as a potential diagnostic and prognostic marker for myelodysplastic syndrome. Hematology 2022; 27:1246-1252. [DOI: 10.1080/16078454.2022.2149971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Xiaolin Liang
- Hematology Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
- Key Laboratory of Hematology, Education Department of Guangxi Zhuang Autonomous Region, Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Zeyan Shi
- Hematology Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
- Key Laboratory of Hematology, Education Department of Guangxi Zhuang Autonomous Region, Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Xiaoke Huang
- Hematology Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Chengyao Wan
- Hematology Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Shanhu Zhu
- Hematology Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Meiqing Wu
- Hematology Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Zhongqing Li
- Hematology Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Zhongyuan Tang
- Hematology Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Jing Li
- Hematology Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
- Key Laboratory of Hematology, Education Department of Guangxi Zhuang Autonomous Region, Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Weihua Zhao
- Hematology Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
- Key Laboratory of Hematology, Education Department of Guangxi Zhuang Autonomous Region, Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Jun Luo
- Hematology Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
- Key Laboratory of Hematology, Education Department of Guangxi Zhuang Autonomous Region, Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Zhenfang Liu
- Hematology Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
- Key Laboratory of Hematology, Education Department of Guangxi Zhuang Autonomous Region, Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| |
Collapse
|
3
|
Villegas-Mirón P, Gallego A, Bertranpetit J, Laayouni H, Espinosa-Parrilla Y. Signatures of genetic variation in human microRNAs point to processes of positive selection and population-specific disease risks. Hum Genet 2022; 141:1673-1693. [PMID: 35249174 PMCID: PMC9522702 DOI: 10.1007/s00439-021-02423-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 12/19/2021] [Indexed: 12/11/2022]
Abstract
The occurrence of natural variation in human microRNAs has been the focus of numerous studies during the last 20 years. Most of them have been focused on the role of specific mutations in disease, while a minor proportion seek to analyse microRNA diversity in the genomes of human populations. We analyse the latest human microRNA annotations in the light of the most updated catalogue of genetic variation provided by the 1000 Genomes Project. By means of the in silico analysis of microRNA genetic variation we show that the level of evolutionary constraint of these sequences is governed by the interplay of different factors, like their evolutionary age or genomic location. The role of mutations in the shaping of microRNA-driven regulatory interactions is emphasized with the acknowledgement that, while the whole microRNA sequence is highly conserved, the seed region shows a pattern of higher genetic diversity that appears to be caused by the dramatic frequency shifts of a fraction of human microRNAs. We highlight the participation of these microRNAs in population-specific processes by identifying that not only the seed, but also the loop, are particularly differentiated regions among human populations. The quantitative computational comparison of signatures of population differentiation showed that candidate microRNAs with the largest differences are enriched in variants implicated in gene expression levels (eQTLs), selective sweeps and pathological processes. We explore the implication of these evolutionary-driven microRNAs and their SNPs in human diseases, such as different types of cancer, and discuss their role in population-specific disease risk.
Collapse
Affiliation(s)
- Pablo Villegas-Mirón
- Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| | - Alicia Gallego
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| | - Jaume Bertranpetit
- Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| | - Hafid Laayouni
- Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, Barcelona, Catalonia, Spain.
- Bioinformatics Studies, ESCI-UPF, Pg. Pujades 1, 08003, Barcelona, Spain.
| | - Yolanda Espinosa-Parrilla
- Escuela de Medicina, Universidad de Magallanes, Punta Arenas, Chile.
- Laboratorio de Medicina Molecular-LMM, Centro Asistencial, Docente Y de Investigación-CADI, Universidad de Magallanes, Punta Arenas, Chile.
- Interuniversity Center on Healthy Aging, Punta Arenas, Chile.
| |
Collapse
|
4
|
Esa E, Hashim AK, Mohamed EHM, Zakaria Z, Abu Hassan AN, Mat Yusoff Y, Kamaluddin NR, Abdul Rahman AZ, Chang KM, Mohamed R, Subbiah I, Jamian E, Ho CSL, Lim SM, Lau PC, Pung YF, Zain SM. Construction of a microRNA-mRNA Regulatory Network in De Novo Cytogenetically Normal Acute Myeloid Leukemia Patients. Genet Test Mol Biomarkers 2021; 25:199-210. [PMID: 33734890 DOI: 10.1089/gtmb.2020.0182] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background: The association between dysregulated microRNAs (miRNAs) and acute myeloid leukemia (AML) is well known. However, our understanding of the regulatory role of miRNAs in the cytogenetically normal AML (CN-AML) subtype pathway is still poor. The current study integrated miRNA and mRNA profiles to explore novel miRNA-mRNA interactions that affect the regulatory patterns of de novo CN-AML. Methods: We utilized a multiplexed nanoString nCounter platform to profile both miRNAs and mRNAs using similar sets of patient samples (n = 24). Correlations were assessed, and an miRNA-mRNA network was constructed. The underlying biological functions of the mRNAs were predicted by gene enrichment. Finally, the interacting pairs were assessed using TargetScan and microT-CDS. We identified 637 significant negative correlations (false discovery rate <0.05). Results: Network analysis revealed a cluster of 12 miRNAs representing the majority of mRNA targets. Within the cluster, five miRNAs (miR-495-3p, miR-185-5p, let-7i-5p, miR-409-3p, and miR-127-3p) were posited to play a pivotal role in the regulation of CN-AML, as they are associated with the negative regulation of myeloid leukocyte differentiation, negative regulation of myeloid cell differentiation, and positive regulation of hematopoiesis. Conclusion: Three novel interactions in CN-AML were predicted as let-7i-5p:HOXA9, miR-495-3p:PIK3R1, and miR-495-3p:CDK6 may be responsible for regulating myeloid cell differentiation in CN-AML.
Collapse
Affiliation(s)
- Ezalia Esa
- Haematology Unit, Cancer Research Centre, Institute for Medical Research, Jalan Pahang, Kuala Lumpur, Malaysia
| | | | | | - Zubaidah Zakaria
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Alifah Nadia Abu Hassan
- Haematology Unit, Cancer Research Centre, Institute for Medical Research, Jalan Pahang, Kuala Lumpur, Malaysia
| | - Yuslina Mat Yusoff
- Haematology Unit, Cancer Research Centre, Institute for Medical Research, Jalan Pahang, Kuala Lumpur, Malaysia
| | - Nor Rizan Kamaluddin
- Haematology Unit, Cancer Research Centre, Institute for Medical Research, Jalan Pahang, Kuala Lumpur, Malaysia
| | - Ahmad Zuhairi Abdul Rahman
- Haematology Unit, Cancer Research Centre, Institute for Medical Research, Jalan Pahang, Kuala Lumpur, Malaysia
| | - Kian-Meng Chang
- Hospital Ampang, Jalan Mewah Utara, Pandan Mewah, Ampang, Malaysia
| | - Rashidah Mohamed
- Hospital Ampang, Jalan Mewah Utara, Pandan Mewah, Ampang, Malaysia
| | - Indhira Subbiah
- Hospital Sultanah Aminah, Bangunan Induk, Jalan Persiaran Abu Bakar Sultan, Johor Bahru, Malaysia
| | - Ehram Jamian
- Hospital Sultanah Aminah, Bangunan Induk, Jalan Persiaran Abu Bakar Sultan, Johor Bahru, Malaysia
| | - Caroline Siew-Ling Ho
- Hospital Sultanah Aminah, Bangunan Induk, Jalan Persiaran Abu Bakar Sultan, Johor Bahru, Malaysia
| | - Soo-Min Lim
- Hospital Sultanah Aminah, Bangunan Induk, Jalan Persiaran Abu Bakar Sultan, Johor Bahru, Malaysia
| | - Peng-Choon Lau
- Department of Surgery, Faculty of Medicine, University of Malaya, Lembah Pantai, Kuala Lumpur, Malaysia
| | - Yuh-Fen Pung
- Department of Biomedical Science, University of Nottingham, Semenyih, Malaysia
| | - Shamsul Mohd Zain
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
5
|
Masoud Eslami M, Soufizomorrod M, Ahmadvand M. High expression of long noncoding RNA NORAD is associated with poor clinical outcomes in non-M3 acute myeloid leukemia patients. Hematol Oncol Stem Cell Ther 2021:S1658-3876(21)00065-0. [PMID: 34419481 DOI: 10.1016/j.hemonc.2021.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/18/2021] [Accepted: 08/02/2021] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE/BACKGROUND Dysregulation of long noncoding RNA NORAD has been identified in human solid tumors. However, the expression profile of NORAD and its clinical implications in acute myeloid leukemia (AML) is unclear. The current study aimed to explore the NORAD expression status and its clinical significance in non-M3 AML patients. METHODS NORAD expression was evaluated in 60 de novo non-M3 AML patients and 49 healthy individuals using quantitative reverse transcription-polymerase chain reaction method. The correlation between NORAD transcription levels and clinicopathologic characteristics was statistically studied. RESULTS Compared with the healthy controls, NORAD was consistently higher in non-M3 AML patients (p = .01). Furthermore, initial NORAD upregulation occurred more frequently in patients with unfavorable cytogenetic risk (p = .02). The non-M3 AML patients were divided into NORAD high-expressing (NORADhigh) and NORAD low-expressing (NORADlow) groups based on the median NORAD expression level. Univariate analyses revealed that patients with high expression levels of NORAD had relatively poor overall survival (p = .03) and relapse-free survival (RFS) (p = .01). Additionally, multivariate analysis highlighted that NORAD upregulation was an independent risk factor for RFS. CONCLUSION Our observations indicate the fact that high expression of NORAD could be an unfavorable risk factor in non-M3 AML patients, and NORAD might be a novel therapeutic candidate for future treatments targeting AML.
Collapse
Affiliation(s)
- Mohammad Masoud Eslami
- Department of Hematology, School of Medicine, Tarbiat Modares University (TMU), Tehran, Iran
| | - Mina Soufizomorrod
- Department of Hematology Applied Cell Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Mohammad Ahmadvand
- Hematology-Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Galiègue‐Zouitina S, Fu Q, Carton‐Latreche C, Poret N, Cheok M, Leprêtre F, Figeac M, Quesnel B, El Bouazzati H, Shelley CS. Bimodal expression of RHOH during myelomonocytic differentiation: Implications for the expansion of AML differentiation therapy. EJHAEM 2021; 2:196-210. [PMID: 35845268 PMCID: PMC9175762 DOI: 10.1002/jha2.128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 10/09/2020] [Accepted: 10/26/2020] [Indexed: 11/06/2022]
Abstract
RhoH is an unusual member of the Rho family of small GTP-binding proteins in that it lacks GTPase activity. Since the RhoH protein is constantly bound by GTP, it is constitutively active and controlled predominantly by changes in quantitative expression. Abnormal levels of RHOH gene transcripts have been linked to a range of malignancies including acute myeloid leukemia (AML). One of the hallmarks of AML is a block in the normal program of myeloid differentiation. Here we investigate how myeloid differentiation is controlled by the quantitative expression of RHOH. Our analysis demonstrates that increasingly mature myeloid cells express progressively lower levels of RHOH. However, as monocytic myeloid cells terminally differentiate into macrophages, RHOH expression is up-regulated. This up-regulation is not apparent in AML where myeloid differentiation is blocked at stages of low RHOH expression. Nevertheless, when the up-regulation of RHOH is forced, then terminal macrophage differentiation is induced and the Cdc42 and Wnt intracellular signalling pathways are repressed. These results indicate that RHOH induction is a driver of terminal differentiation and might represent a means of effecting AML differentiation therapy. The potential of this therapeutic strategy is supported by forced up-regulation of RHOH reducing the ability of AML cells to produce tumours in vivo.
Collapse
Affiliation(s)
- Sylvie Galiègue‐Zouitina
- JPARCUMRS 1172 InsermLille UniversityLilleFrance
- Place de VerdunInstitut pour la Recherche sur le Cancer de LilleLilleCedexFrance
| | - Qiangwei Fu
- California Institute for Biomedical ResearchLa JollaCaliforniaUSA
| | - Céline Carton‐Latreche
- JPARCUMRS 1172 InsermLille UniversityLilleFrance
- Place de VerdunInstitut pour la Recherche sur le Cancer de LilleLilleCedexFrance
| | - Nicolas Poret
- JPARCUMRS 1172 InsermLille UniversityLilleFrance
- Place de VerdunInstitut pour la Recherche sur le Cancer de LilleLilleCedexFrance
| | - Meyling Cheok
- JPARCUMRS 1172 InsermLille UniversityLilleFrance
- Place de VerdunInstitut pour la Recherche sur le Cancer de LilleLilleCedexFrance
- CantherUMR 1277 Inserm‐9020 CNRSLille UniversityLilleFrance
| | - Frédéric Leprêtre
- UMS 2014 ‐ US 41Plateau de Génomique Fonctionnelle et StructuraleLille UniversityLilleFrance
| | - Martin Figeac
- UMS 2014 ‐ US 41Plateau de Génomique Fonctionnelle et StructuraleLille UniversityLilleFrance
| | - Bruno Quesnel
- JPARCUMRS 1172 InsermLille UniversityLilleFrance
- Place de VerdunInstitut pour la Recherche sur le Cancer de LilleLilleCedexFrance
- CantherUMR 1277 Inserm‐9020 CNRSLille UniversityLilleFrance
- CHU LilleService des Maladies du SangLilleFrance
| | - Hassiba El Bouazzati
- JPARCUMRS 1172 InsermLille UniversityLilleFrance
- Place de VerdunInstitut pour la Recherche sur le Cancer de LilleLilleCedexFrance
- CantherUMR 1277 Inserm‐9020 CNRSLille UniversityLilleFrance
| | | |
Collapse
|
7
|
Kovynev IB, Titov SE, Ruzankin PS, Agakishiev MM, Veryaskina YA, Nedel’ko VM, Pospelova TI, Zhimulev IF. Profiling 25 Bone Marrow microRNAs in Acute Leukemias and Secondary Nonleukemic Hematopoietic Conditions. Biomedicines 2020; 8:biomedicines8120607. [PMID: 33327422 PMCID: PMC7764834 DOI: 10.3390/biomedicines8120607] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/08/2020] [Accepted: 12/12/2020] [Indexed: 11/21/2022] Open
Abstract
Introduction: The standard treatment of acute leukemias (AL) is becoming more efficacious and more selective toward the mechanisms via which to suppress hematologic cancers. This tendency in hematology imposes additional requirements on the identification of molecular-genetic features of tumor clones. MicroRNA (miRNA, miR) expression levels correlate with cytogenetic and molecular subtypes of acute leukemias recognized by classification systems. The aim of this work is analyzing the miRNA expression profiles in acute myeloblastic leukemia (AML) and acute lymphoblastic leukemia (ALL) and hematopoietic conditions induced by non-tumor pathologies (NTP). Methods: A total of 114 cytological samples obtained by sternal puncture and aspiration biopsy of bone marrow (22 ALLs, 44 AMLs, and 48 NTPs) were analyzed by real-time PCR regarding preselected 25 miRNAs. For the classification of the samples, logistic regression was used with balancing of comparison group weights. Results: Our results indicated potential feasibility of (i) differentiating ALL+AML from a nontumor hematopoietic pathology with 93% sensitivity and 92% specificity using miR-150:miR-21, miR-20a:miR-221, and miR-24:nf3 (where nf3 is a normalization factor calculated from threshold cycle values of miR-103a, miR-191, and miR-378); (ii) diagnosing ALL with 81% sensitivity and 81% specificity using miR-181b:miR-100, miR-223:miR-124, and miR-24:nf3; and (iii) diagnosing AML with 81% sensitivity and 84% specificity using miR-150:miR-221, miR-100:miR-24, and miR-181a:miR-191. Conclusion: The results presented herein allow the miRNA expression profile to de used for differentiation between AL and NTP, no matter what AL subtype.
Collapse
Affiliation(s)
- Igor B. Kovynev
- Department of Therapy, Hematology and Transfusiology, Novosibirsk State Medical University, 630091 Novosibirsk, Russia; (I.B.K.); (M.M.A.); (T.I.P.)
| | - Sergei E. Titov
- Laboratory of Molecular Genetics, Department of the Structure and Function of Chromosomes, Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (S.E.T.); (I.F.Z.)
- AO Vector-Best, 630117 Novosibirsk, Russia
| | - Pavel S. Ruzankin
- Sobolev Institute of Mathematics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (P.S.R.); (V.M.N.)
- Department of Mathematics and Mechanics, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Mechti M. Agakishiev
- Department of Therapy, Hematology and Transfusiology, Novosibirsk State Medical University, 630091 Novosibirsk, Russia; (I.B.K.); (M.M.A.); (T.I.P.)
- Department of Hematology, City Clinical Hospital #2, 630051 Novosibirsk, Russia
| | - Yuliya A. Veryaskina
- Laboratory of Molecular Genetics, Department of the Structure and Function of Chromosomes, Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (S.E.T.); (I.F.Z.)
- Laboratory of Gene Engineering, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Correspondence:
| | - Viktor M. Nedel’ko
- Sobolev Institute of Mathematics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (P.S.R.); (V.M.N.)
- Department of Mathematics and Mechanics, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Tatiana I. Pospelova
- Department of Therapy, Hematology and Transfusiology, Novosibirsk State Medical University, 630091 Novosibirsk, Russia; (I.B.K.); (M.M.A.); (T.I.P.)
| | - Igor F. Zhimulev
- Laboratory of Molecular Genetics, Department of the Structure and Function of Chromosomes, Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (S.E.T.); (I.F.Z.)
| |
Collapse
|
8
|
Mariani M, Mattiucci D, Rossi E, Mari V, Masala E, Giuliani A, Santini V, Olivieri F, Marinelli Busilacchi E, Mancini S, Olivieri A, Poloni A. Serum Inflamma-miR Signature: A Biomarker of Myelodysplastic Syndrome? Front Oncol 2020; 10:595838. [PMID: 33330086 PMCID: PMC7713643 DOI: 10.3389/fonc.2020.595838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/19/2020] [Indexed: 12/22/2022] Open
Affiliation(s)
- Marianna Mariani
- Hematology Clinic, Department of Clinical and Molecular Sciences, DISCLIMO, AOU Ospedali Riuniti-Università Politecnica delle Marche, Ancona, Italy
| | - Domenico Mattiucci
- Hematology Clinic, Department of Clinical and Molecular Sciences, DISCLIMO, AOU Ospedali Riuniti-Università Politecnica delle Marche, Ancona, Italy
| | - Elisa Rossi
- Hematology Clinic, Department of Clinical and Molecular Sciences, DISCLIMO, AOU Ospedali Riuniti-Università Politecnica delle Marche, Ancona, Italy
| | - Valeria Mari
- Hematology Clinic, Department of Clinical and Molecular Sciences, DISCLIMO, AOU Ospedali Riuniti-Università Politecnica delle Marche, Ancona, Italy
| | - Erico Masala
- MDS Unit, Azienda Ospedaliero Universitaria Careggi, University of Florence, Florence, Italy
| | - Angelica Giuliani
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
| | - Valeria Santini
- MDS Unit, Azienda Ospedaliero Universitaria Careggi, University of Florence, Florence, Italy
| | - Fabiola Olivieri
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy.,Center of Clinical Pathology and Innovative Therapy, IRCCS INRCA National Institute, Ancona, Italy
| | - Elena Marinelli Busilacchi
- Hematology Clinic, Department of Clinical and Molecular Sciences, DISCLIMO, AOU Ospedali Riuniti-Università Politecnica delle Marche, Ancona, Italy
| | - Stefania Mancini
- Hematology Clinic, Department of Clinical and Molecular Sciences, DISCLIMO, AOU Ospedali Riuniti-Università Politecnica delle Marche, Ancona, Italy
| | - Attilio Olivieri
- Hematology Clinic, Department of Clinical and Molecular Sciences, DISCLIMO, AOU Ospedali Riuniti-Università Politecnica delle Marche, Ancona, Italy
| | - Antonella Poloni
- Hematology Clinic, Department of Clinical and Molecular Sciences, DISCLIMO, AOU Ospedali Riuniti-Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
9
|
Hao B, Shi A, Li X, Li J, Liu Z, Yuan H. miR-4516 inhibits the apoptosis of RB tumor cells by targeting the PTEN/AKT signaling pathway. Exp Eye Res 2020; 200:108224. [PMID: 32919989 DOI: 10.1016/j.exer.2020.108224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/15/2020] [Accepted: 09/04/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Bing Hao
- Department of Ophthalmology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Anjie Shi
- Department of Ophthalmology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Xiuhong Li
- Department of Ophthalmology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Jia Li
- Department of Ophthalmology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Zhibin Liu
- Department of Ophthalmology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Hongfeng Yuan
- Department of Ophthalmology, Daping Hospital, Army Medical University, Chongqing, 400042, China.
| |
Collapse
|
10
|
Wu DH, Zhu XW, Wen XM, Zhang YY, Ma JC, Yao DM, Zhou JD, Guo H, Wu PF, Zhang XL, Qiu HC, Lin J, Qian J. Hypomethylation of MIR-378 5'-flanking region predicts poor survival in young patients with myelodysplastic syndrome. Mol Genet Genomic Med 2019; 8:e1067. [PMID: 31833222 PMCID: PMC6978398 DOI: 10.1002/mgg3.1067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 11/03/2019] [Accepted: 11/05/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Previous studies have disclosed up-regulation of MIR-378 in acute myeloid leukemia (AML), and might consequently affect the outcome of the patients. Correspondingly, hypomethylation of MIR-378 was also identified in AML, particularly for FAB-M2 subtype with t(8;21) chromosomal translocation. Nevertheless, the methylation status of MIR-378 has not been illustrated in myelodysplastic syndrome (MDS). Herein we designed to understand the methylation pattern of MIR-378 involved in MDS and clinical interrelation thereof. METHODS Real-time quantitative methylation-specific PCR (RQ-MSP) was performed to evaluate the methylation degree of MIR-378 5'-flanking region on bone marrow mononuclear cells collected from 95 de novo MDS patients. Five gene mutations (IDH1, IDH2, DNMT3A, U2AF1, and SF3B1) were detected by high-resolution melting analysis to further evaluate the clinical relevance of hypomethylation of MIR-378. RESULTS Unmethylated level of MIR-378 5'-flanking region was significantly higher in MDS patients than that in controls (p = .034). Hypomethylated MIR-378 was identified in 20 of 95 (21%) cases with MDS. Male patients appeared to be more frequent to harbor MIR-378 hypomethylation compared to female patients (15/55, 27.3% vs. 4/40, 10.0%, p = .04). There was no significant difference in age, white blood cell counts, platelet counts, hemoglobin concentration, and karyotypes between the patients with and without MIR-378-hypomethylation. Distinct distribution of five gene mutations was not observed in the two groups as well. However, MIR-378-hypomethylated patients had significantly shorter overall survival than those without MIR-378 hypomethylation (p = .036). Moreover, among patients <60 years, hypomethylation of MIR-378 was confirmed to be an independent adverse prognostic factor by both Kaplan-Meier and Multivariate Cox analyses. CONCLUSION Hypomethylation of MIR-378 5'-flanking region is an adverse prognosticator in MDS, particularly in patients <60 years.
Collapse
Affiliation(s)
- De-Hong Wu
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,Department of Hematology, Kunshan Third People's Hospital, KunShan, Jiangsu, People's Republic of China
| | - Xiao-Wen Zhu
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Xiang-Mei Wen
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China
| | - Ying-Ying Zhang
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Ji-Chun Ma
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China
| | - Dong-Ming Yao
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China
| | - Jing-Dong Zhou
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Hong Guo
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China
| | - Peng-Fei Wu
- Department of Hematology, Kunshan Third People's Hospital, KunShan, Jiangsu, People's Republic of China
| | - Xing-Li Zhang
- Department of Hematology, Kunshan Third People's Hospital, KunShan, Jiangsu, People's Republic of China
| | - Hong-Chun Qiu
- Department of Hematology, Kunshan Third People's Hospital, KunShan, Jiangsu, People's Republic of China
| | - Jiang Lin
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China
| | - Jun Qian
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| |
Collapse
|
11
|
Arabkari V, Amirizadeh N, Nikougoftar M, Soleimani M. microRNA expression profiles in two- and three-dimensional culture conditions of human-umbilical-cord blood-derived CD34 + cells. J Cell Physiol 2019; 234:20072-20084. [PMID: 30953369 DOI: 10.1002/jcp.28606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 03/19/2019] [Indexed: 12/16/2022]
Abstract
Human umbilical cord blood (HUCB) is a suitable source of hematopoietic stem cells (HSCs) for therapeutic transplantation. Different approaches have been used to expand the number of HSCs to increase the rate of HSC transplantation success in patients, such as using different cocktails of cytokines, feeder cell layers, and biocompatible scaffolds. microRNAs (miRNAs) are small noncoding RNAs that regulate gene expression posttranscriptionally. They play crucial roles in hematopoiesis including stem cell proliferation, differentiation, stemness, and self-renewal properties. Here, we studied the UCB-derived CD34+ cell expansion and the miRNA signatures of CD34+ cells on two- and three-dimensional (2D and 3D) culture conditions. We successfully expanded the UCB-derived CD34+ cells in both liquid culture (2D) and on aminated polyethersulfone nanofiber scaffolds (3D). Next, we identified the miRNA signature of CD34+ cells and their target genes. We found 58 dysregulated miRNAs in 3D culture condition and 34 dysregulated miRNAs in 2D culture condition when compared to the freshly isolated CD34+ cells. Various types of target genes were also predicted in both conditions using two online databases.
Collapse
Affiliation(s)
- Vahid Arabkari
- Blood Transfusion Research Center, High Institute for Education and Research in Transfusion Medicine, Iran Blood Transfusion Organization, Tehran, Iran
| | - Naser Amirizadeh
- Blood Transfusion Research Center, High Institute for Education and Research in Transfusion Medicine, Iran Blood Transfusion Organization, Tehran, Iran
| | - Mahin Nikougoftar
- Blood Transfusion Research Center, High Institute for Education and Research in Transfusion Medicine, Iran Blood Transfusion Organization, Tehran, Iran
| | - Masoud Soleimani
- Department of Hematology, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
12
|
Circulating MicroRNA-4739 May Be a Potential Biomarker of Critical Limb Ischemia in Patients with Diabetes. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4232794. [PMID: 30539011 PMCID: PMC6261237 DOI: 10.1155/2018/4232794] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 10/19/2018] [Accepted: 10/31/2018] [Indexed: 12/16/2022]
Abstract
Critical limb ischemia (CLI) is the most severe manifestation of peripheral artery disease, which is common but rarely diagnosed. Noninvasive biomarkers are urgently required to assist in the diagnosis of CLI. Accumulating evidence indicates that miRNAs play an important role in the development of various diseases. In this study, microarray profiling revealed 11 miRNAs with significantly altered expression in four T2DM patients with CLI compared with that in four sex- and age-matched T2DM patients without CLI. In independent cohorts, qRT-PCR validation confirmed the increased miRNA-4739 level in patients with CLI versus patients without CLI. miRNA-4739 levels increased with FPG and HbA1c (all P < 0.05). After adjusting for the risk factors, miRNA-4739 levels were found to be associated with an increased odds ratio (OR) of T2DM with CLI (OR =12.818, 95% confidence intervals (CI) 1.148 to 143.143, P = 0.038). ROC curve analysis revealed that the area under the curve (AUC) of miR-4739+confounding risk factors was 0.94 (95% CI 0.891 to 0.998, P < 0.001), which was higher than that of confounding risk factors (AUC 0.94 vs. 0.91, 95% CI -0.122 to 0.060, P > 0.05) and of miR-4739 (AUC 0.94 vs. 0.69, 95% CI -0.399 to -0.101, P < 0.001), respectively. We conclude that elevated plasma miRNA-4739 levels are independently associated with CLI in T2DM patients. miRNA-4739 is implicated as a novel diagnostic marker and a potential therapeutic target for CLI in diabetes.
Collapse
|
13
|
Memari F, Joneidi Z, Taheri B, Aval SF, Roointan A, Zarghami N. Epigenetics and Epi-miRNAs: Potential markers/therapeutics in leukemia. Biomed Pharmacother 2018; 106:1668-1677. [PMID: 30170355 DOI: 10.1016/j.biopha.2018.07.133] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 07/04/2018] [Accepted: 07/24/2018] [Indexed: 12/12/2022] Open
Abstract
Epigenetic variations can play remarkable roles in different normal and abnormal situations. Such variations have been shown to have a direct role in the pathogenesis of various diseases either through inhibition of tumor suppressor genes or increasing the expression of oncogenes. Enzymes involving in epigenetic machinery are the main actors in tuning the epigenetic-based controls on gene expressions. Aberrant expression of these enzymes can trigger a big chaos in the cellular gene expression networks and finally lead to cancer progression. This situation has been shown in different types of leukemia, where high or low levels of an epigenetic enzyme are partly or highly responsible for involvement or progression of a disease. DNA hypermethylation, different histone modifications, and aberrant miRNA expressions are three main epigenetic variations, which have been shown to play a role in leukemia progression. Epigenetic based treatments now are considered as novel and effective therapies in order to decrease the abnormal epigenetic modifications in patient cells. Different epigenetic-based approaches have been developed and tested to inhibit or reverse the unusual expression of epigenetic agents in leukemia. The reciprocal behavior of miRNAs in the regulation of epigenetic modifiers, while being regulated by them, unlocks a new opportunity in order to design some epigenetic-based miRNAs able to silence or sensitize these effectors in leukemia.
Collapse
Affiliation(s)
- Fatemeh Memari
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zeinab Joneidi
- Department of Genetics and Molecular Medicine, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Behnaz Taheri
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sedigheh Fekri Aval
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Roointan
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nosratollah Zarghami
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
14
|
Rajasekhar M, Schmitz U, Flamant S, Wong JJL, Bailey CG, Ritchie W, Holst J, Rasko JEJ. Identifying microRNA determinants of human myelopoiesis. Sci Rep 2018; 8:7264. [PMID: 29739970 PMCID: PMC5940821 DOI: 10.1038/s41598-018-24203-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 03/23/2018] [Indexed: 01/05/2023] Open
Abstract
Myelopoiesis involves differentiation of hematopoietic stem cells to cellular populations that are restricted in their self-renewal capacity, beginning with the common myeloid progenitor (CMP) and leading to mature cells including monocytes and granulocytes. This complex process is regulated by various extracellular and intracellular signals including microRNAs (miRNAs). We characterised the miRNA profile of human CD34+CD38+ myeloid progenitor cells, and mature monocytes and granulocytes isolated from cord blood using TaqMan Low Density Arrays. We identified 19 miRNAs that increased in both cell types relative to the CMP and 27 that decreased. miR-125b and miR-10a were decreased by 10-fold and 100-fold respectively in the mature cells. Using in vitro granulopoietic differentiation of human CD34+ cells we show that decreases in both miR-125b and miR-10a correlate with a loss of CD34 expression and gain of CD11b and CD15 expression. Candidate target mRNAs were identified by co-incident predictions between the miRanda algorithm and genes with increased expression during differentiation. Using luciferase assays we confirmed MCL1 and FUT4 as targets of miR-125b and the transcription factor KLF4 as a target of miR-10a. Together, our data identify miRNAs with differential expression during myeloid development and reveal some relevant miRNA-target pairs that may contribute to physiological differentiation.
Collapse
Affiliation(s)
- Megha Rajasekhar
- Gene & Stem Cell Therapy Program, Centenary Institute, University of Sydney, Camperdown, 2050, Australia.,Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia
| | - Ulf Schmitz
- Gene & Stem Cell Therapy Program, Centenary Institute, University of Sydney, Camperdown, 2050, Australia.,Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia
| | - Stephane Flamant
- Gene & Stem Cell Therapy Program, Centenary Institute, University of Sydney, Camperdown, 2050, Australia.,Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia
| | - Justin J-L Wong
- Gene & Stem Cell Therapy Program, Centenary Institute, University of Sydney, Camperdown, 2050, Australia.,Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia.,Gene Regulation in Cancer Laboratory, Centenary Institute, University of Sydney, Camperdown, 2050, Australia
| | - Charles G Bailey
- Gene & Stem Cell Therapy Program, Centenary Institute, University of Sydney, Camperdown, 2050, Australia.,Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia
| | - William Ritchie
- Gene & Stem Cell Therapy Program, Centenary Institute, University of Sydney, Camperdown, 2050, Australia.,Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia
| | - Jeff Holst
- Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia.,Origins of Cancer Program, Centenary Institute, University of Sydney, Camperdown, 2050, Australia
| | - John E J Rasko
- Gene & Stem Cell Therapy Program, Centenary Institute, University of Sydney, Camperdown, 2050, Australia. .,Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia. .,Cell and Molecular Therapies, Royal Prince Alfred Hospital, Camperdown, 2050, Australia.
| |
Collapse
|
15
|
Yuan F, Liu L, Lei Y, Hu Y. MiRNA-142-3p increases radiosensitivity in human umbilical cord blood mononuclear cells by inhibiting the expression of CD133. Sci Rep 2018; 8:5674. [PMID: 29618746 PMCID: PMC5884857 DOI: 10.1038/s41598-018-23968-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 03/22/2018] [Indexed: 01/02/2023] Open
Abstract
This study is to explore the molecular regulation mechanism of CD133 which is associated with malignancy and poor prognosis of blood system diseases. CD133+HUCB-MNC (human umbilical cord blood mononuclear cells) and CD133-HUCB-MNC were isolated and amplificated from umbilical cord blood, and then were exposed to different doses of radiation and subjected to a clonogenic assay. CCK-8 kit was used to detect cell viability, Annexin V-FITC/PI cell apoptosis detection kit was used for the detection of apoptotic cells and the BrdU assay was performed by flow cytometry. The expression of protein was analyzed by western blots. The profile of miRNA expression in response to radiation was examined and validated by RT-PCR. miR-142-3p inhibited the expression of CD133 in umbilical cord blood mononuclear cells to increase radiosensitivity. CD133+HUCB-MNC cells were more radioresistant compared with CD133-HUCB-MNC cells. CD133+HUCB-MNC cells showed higher p-AKT and p-ERK levels after radiation. And miR-142-3p acted on 3'UTR of CD133 mRNA to inhibit CD133 expression. Moreover, miRNA-142-3p mimic increased radiosensitivity in CD133+HUCB-MNC cells. Our results elucidated a novel regulation pathway in hematopoietic stem cells and suggested a potential therapeutic approach for blood system diseases therapy.
Collapse
Affiliation(s)
- Fang Yuan
- 1Department of Oncology, Chinese PLA General Hospital, Beijing, 100853, China
| | - Lu Liu
- Department of Clinical Nutrition, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yonghong Lei
- Department of Plastic Surgery, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Yi Hu
- 1Department of Oncology, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
16
|
Liao Q, Wang B, Li X, Jiang G. miRNAs in acute myeloid leukemia. Oncotarget 2018; 8:3666-3682. [PMID: 27705921 PMCID: PMC5356910 DOI: 10.18632/oncotarget.12343] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 09/24/2016] [Indexed: 12/30/2022] Open
Abstract
MicroRNAs (miRNAs) are small, non-coding RNAs found throughout the eukaryotes that control the expression of a number of genes involved in commitment and differentiation of hematopoietic stem cells and tumorigenesis. Widespread dysregulation of miRNAs have been found in hematological malignancies, including human acute myeloid leukemia (AML). A comprehensive understanding of the role of miRNAs within the complex regulatory networks that are disrupted in malignant AML cells is a prerequisite for the development of therapeutic strategies employing miRNA modulators. Herein, we review the roles of emerging miRNAs and the miRNAs regulatory networks in AML pathogenesis, prognosis, and miRNA-directed therapies.
Collapse
Affiliation(s)
- Qiong Liao
- Key Laboratory for Rare & Uncommon Dseases of Shandong Province, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong, P.R. China.,School of Medicine and Life Sciences, Jinan University, Jinan, Shandong, P.R. China
| | - Bingping Wang
- Department of Hematology, Shengli Oilfield Central Hospital, Dongying, Shandong, P.R. China
| | - Xia Li
- Key Laboratory for Rare & Uncommon Dseases of Shandong Province, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong, P.R. China.,Shandong University School of Medicine, Jinan, Shandong, P.R. China
| | - Guosheng Jiang
- Key Laboratory for Rare & Uncommon Dseases of Shandong Province, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong, P.R. China
| |
Collapse
|
17
|
Zhang TJ, Wu DH, Zhou JD, Li XX, Zhang W, Guo H, Ma JC, Deng ZQ, Lin J, Qian J. Overexpression ofmiR-216b: Prognostic and predictive value in acute myeloid leukemia. J Cell Physiol 2017; 233:3274-3281. [PMID: 28884855 DOI: 10.1002/jcp.26171] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 08/30/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Ting-juan Zhang
- Department of Hematology; Affiliated People's Hospital of Jiangsu University; Zhenjiang Jiangsu People's Republic of China
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City; Zhenjiang Jiangsu People's Republic of China
| | - De-hong Wu
- Department of Hematology; The Third People's Hospital of KunShan City; Suzhou Jiangsu People's Republic of China
| | - Jing-dong Zhou
- Department of Hematology; Affiliated People's Hospital of Jiangsu University; Zhenjiang Jiangsu People's Republic of China
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City; Zhenjiang Jiangsu People's Republic of China
| | - Xi-xi Li
- Department of Hematology; Affiliated People's Hospital of Jiangsu University; Zhenjiang Jiangsu People's Republic of China
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City; Zhenjiang Jiangsu People's Republic of China
| | - Wei Zhang
- Department of Hematology; Affiliated People's Hospital of Jiangsu University; Zhenjiang Jiangsu People's Republic of China
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City; Zhenjiang Jiangsu People's Republic of China
| | - Hong Guo
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City; Zhenjiang Jiangsu People's Republic of China
- Laboratory Center; Affiliated People's Hospital of Jiangsu University; Zhenjiang Jiangsu People's Republic of China
| | - Ji-chun Ma
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City; Zhenjiang Jiangsu People's Republic of China
- Laboratory Center; Affiliated People's Hospital of Jiangsu University; Zhenjiang Jiangsu People's Republic of China
| | - Zhao-qun Deng
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City; Zhenjiang Jiangsu People's Republic of China
- Laboratory Center; Affiliated People's Hospital of Jiangsu University; Zhenjiang Jiangsu People's Republic of China
| | - Jiang Lin
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City; Zhenjiang Jiangsu People's Republic of China
- Laboratory Center; Affiliated People's Hospital of Jiangsu University; Zhenjiang Jiangsu People's Republic of China
| | - Jun Qian
- Department of Hematology; Affiliated People's Hospital of Jiangsu University; Zhenjiang Jiangsu People's Republic of China
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City; Zhenjiang Jiangsu People's Republic of China
| |
Collapse
|
18
|
Wang X, Chen H, Bai J, He A. MicroRNA: an important regulator in acute myeloid leukemia. Cell Biol Int 2017; 41:936-945. [PMID: 28370893 DOI: 10.1002/cbin.10770] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 03/26/2017] [Indexed: 12/13/2022]
Abstract
MicroRNAs (miRNAs) are a general class of endogenous non-coding RNAs with a length of 22 nucleotides, widely existing in diverse species and playing important roles in malignancies initiation and progression. MiRNAs are essential to many in vivo biological processes such as cell proliferation, apoptosis, immune response, and tumorigenesis. Significant progress till date has been made in understanding the roles of microRNAs in normal hematopoiesis and hematopoietic malignant diseases. In this review, we summarize the particular signatures of microRNAs in acute myeloid leukemia (AML) patients with specific karyotype and the clinical significance of microRNAs in early diagnosis and treatment. MicroRNAs hypermethylation was also proved to correlate with the pathogenesis of AML. However, the target genes and exact pathways of microRNAs participating in these processes are still unknown and more efforts need to be made in the near future.
Collapse
Affiliation(s)
- Xiaman Wang
- Department of Clinical Hematology, Second Affiliated Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi Province 710004, P.R. China
| | - Hongli Chen
- Department of Clinical Hematology, Second Affiliated Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi Province 710004, P.R. China
| | - Ju Bai
- Department of Clinical Hematology, Second Affiliated Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi Province 710004, P.R. China
| | - Aili He
- Department of Clinical Hematology, Second Affiliated Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi Province 710004, P.R. China.,National-Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, Xi'an, P.R. China
| |
Collapse
|
19
|
Labaj W, Papiez A, Polanski A, Polanska J. Comprehensive Analysis of MILE Gene Expression Data Set Advances Discovery of Leukaemia Type and Subtype Biomarkers. Interdiscip Sci 2017; 9:24-35. [PMID: 28303531 PMCID: PMC5366179 DOI: 10.1007/s12539-017-0216-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 01/13/2017] [Accepted: 01/25/2017] [Indexed: 11/15/2022]
Abstract
Large collections of data in studies on cancer such as leukaemia provoke the necessity of applying tailored analysis algorithms to ensure supreme information extraction. In this work, a custom-fit pipeline is demonstrated for thorough investigation of the voluminous MILE gene expression data set. Three analyses are accomplished, each for gaining a deeper understanding of the processes underlying leukaemia types and subtypes. First, the main disease groups are tested for differential expression against the healthy control as in a standard case-control study. Here, the basic knowledge on molecular mechanisms is confirmed quantitatively and by literature references. Second, pairwise comparison testing is performed for juxtaposing the main leukaemia types among each other. In this case by means of the Dice coefficient similarity measure the general relations are pointed out. Moreover, lists of candidate main leukaemia group biomarkers are proposed. Finally, with this approach being successful, the third analysis provides insight into all of the studied subtypes, followed by the emergence of four leukaemia subtype biomarkers. In addition, the class enhanced DEG signature obtained on the basis of novel pipeline processing leads to significantly better classification power of multi-class data classifiers. The developed methodology consisting of batch effect adjustment, adaptive noise and feature filtration coupled with adequate statistical testing and biomarker definition proves to be an effective approach towards knowledge discovery in high-throughput molecular biology experiments.
Collapse
Affiliation(s)
- Wojciech Labaj
- Silesian University of Technology, Institute of Informatics, Akademicka 16, 44-100, Gliwice, Poland
| | - Anna Papiez
- Silesian University of Technology, Institute of Automatic Control, Akademicka 16, 44-100, Gliwice, Poland.
| | - Andrzej Polanski
- Silesian University of Technology, Institute of Informatics, Akademicka 16, 44-100, Gliwice, Poland
| | - Joanna Polanska
- Silesian University of Technology, Institute of Automatic Control, Akademicka 16, 44-100, Gliwice, Poland
| |
Collapse
|
20
|
Elsafadi M, Manikandan M, Alajez NM, Hamam R, Dawud RA, Aldahmash A, Iqbal Z, Alfayez M, Kassem M, Mahmood A. MicroRNA-4739 regulates osteogenic and adipocytic differentiation of immortalized human bone marrow stromal cells via targeting LRP3. Stem Cell Res 2017; 20:94-104. [PMID: 28340487 DOI: 10.1016/j.scr.2017.03.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 02/25/2017] [Accepted: 03/01/2017] [Indexed: 12/16/2022] Open
Abstract
Understanding the regulatory networks underlying lineage differentiation and fate determination of human bone marrow stromal cells (hBMSC) is a prerequisite for their therapeutic use. The goal of the current study was to unravel the novel role of the low-density lipoprotein receptor-related protein 3 (LRP3) in regulating the osteogenic and adipogenic differentiation of immortalized hBMSCs. Gene expression profiling revealed significantly higher LRP3 levels in the highly osteogenic hBMSC clone imCL1 than in the less osteogenic clone imCL2, as well as a significant upregulation of LRP3 during the osteogenic induction of the imCL1 clone. Data from functional and gene expression assays demonstrated the role of LRP3 as a molecular switch promoting hBMSC lineage differentiation into osteoblasts and inhibiting differentiation into adipocytes. Interestingly, microRNA (miRNA) expression profiling identified miR-4739 as the most under-represented miRNA (-36.11 fold) in imCL1 compared to imCL2. The TargetScan prediction algorithm, combined with functional and biochemical assays, identified LRP3 mRNA as a novel target of miR-4739, with a single potential binding site for miR-4739 located in the LRP3 3' UTR. Regulation of LRP3 expression by miR-4739 was subsequently confirmed by qRT-PCR, western blotting, and luciferase assays. Over-expression of miR-4739 mimicked the effects of LRP3 knockdown on promoting adipogenic and suppressing osteogenic differentiation of hBMSCs. Hence, we report for the first time a novel biological role for the LRP3/hsa-miR-4739 axis in balancing osteogenic and adipocytic differentiation of hBMSCs. Our data support the potential utilization of miRNA-based therapies in regenerative medicine.
Collapse
Affiliation(s)
- Mona Elsafadi
- Stem Cell Unit, Department of Anatomy, College of Medicine,King Saud University, Riyadh 11461, Saudi Arabia; KMEB, Department of Endocrinology, University Hospital of Odense, University of Southern Denmark, Winslowsparken 25.1, DK-5000 Odense C, Denmark.
| | - Muthurangan Manikandan
- Stem Cell Unit, Department of Anatomy, College of Medicine,King Saud University, Riyadh 11461, Saudi Arabia
| | - Nehad M Alajez
- Stem Cell Unit, Department of Anatomy, College of Medicine,King Saud University, Riyadh 11461, Saudi Arabia.
| | - Rimi Hamam
- Stem Cell Unit, Department of Anatomy, College of Medicine,King Saud University, Riyadh 11461, Saudi Arabia
| | - Raed Abu Dawud
- Department of Comparative Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh 12713, Saudi Arabia
| | - Abdullah Aldahmash
- Stem Cell Unit, Department of Anatomy, College of Medicine,King Saud University, Riyadh 11461, Saudi Arabia; Prince Naif Health Research Center, King Saud University, Riyadh 11461, Saudi Arabia.
| | - Zafar Iqbal
- Department of Basic Sciences, College of applied medical sciences, King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), National Guard Health Affairs, Al Ahsa, Saudi Arabia
| | - Musaad Alfayez
- Stem Cell Unit, Department of Anatomy, College of Medicine,King Saud University, Riyadh 11461, Saudi Arabia.
| | - Moustapha Kassem
- Stem Cell Unit, Department of Anatomy, College of Medicine,King Saud University, Riyadh 11461, Saudi Arabia; KMEB, Department of Endocrinology, University Hospital of Odense, University of Southern Denmark, Winslowsparken 25.1, DK-5000 Odense C, Denmark.
| | - Amer Mahmood
- Stem Cell Unit, Department of Anatomy, College of Medicine,King Saud University, Riyadh 11461, Saudi Arabia.
| |
Collapse
|
21
|
Chen H, Wang X, Bai J, He A. Expression, regulation and function of miR-495 in healthy and tumor tissues. Oncol Lett 2017; 13:2021-2026. [PMID: 28454357 DOI: 10.3892/ol.2017.5727] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 11/04/2016] [Indexed: 01/14/2023] Open
Abstract
MicroRNA-495 (miR-495) is a small non-coding RNA encoded by a gene located on chromosome 14 (14q32.31). Its expression is regulated by the transcription factors EF12 and EF47, in addition to promoter methylation status and the fusion oncoprotein mixed-lineage leukemia-AF9. Previous studies suggest that miR-495 is involved in various developmental, immunological and inflammatory processes in healthy tissue, and in the proliferation, invasion, metastasis and drug resistance of cancer cells. The role miR-495 serves in tumors is controversial. miR-495 primarily functions as a tumor suppressor; however, in a number of cases it acts as an oncogene. miR-495 has potential applications as a diagnostic and prognostic marker, and as a therapeutic target for genetic and pharmacological manipulation in the treatment of various diseases.
Collapse
Affiliation(s)
- Hongli Chen
- Department of Hematology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Xiaman Wang
- Department of Hematology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Ju Bai
- Department of Hematology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Aili He
- Department of Hematology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China.,National-Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| |
Collapse
|
22
|
Guo Y, Strickland SA, Mohan S, Li S, Bosompem A, Vickers KC, Zhao S, Sheng Q, Kim AS. MicroRNAs and tRNA-derived fragments predict the transformation of myelodysplastic syndromes to acute myeloid leukemia. Leuk Lymphoma 2017; 58:1-15. [PMID: 28084850 DOI: 10.1080/10428194.2016.1272680] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Myelodysplastic syndromes (MDS) are clonal hematopoietic disorders of the elderly that carry an increased risk of progression to acute myeloid leukemia (AML). Since small non-coding RNAs (sRNAs), including microRNA (miRNAs), act as regulators of cellular differentiation, we hypothesized that changes to sRNAs might be implicated in the progression of MDS to AML. We conducted sRNA sequencing on three sets of patients: Group A (MDS patients who never progressed to AML); Group B (MDS patients who later progressed to an AML); and Group C (AML patients with myelodysplasia-related changes, including patients with a known preceding diagnosis of MDS). We identified five miRNAs that differentiated Groups A and B, independent of bone marrow blast percentage, including three members of the miR-181 family, as well as differential patterns of miRNA isoforms (isomiRs) and tDRs. Thus, we have identified sRNA biomarkers that predict MDS cases that are likely to progress to AML.
Collapse
Affiliation(s)
- Yan Guo
- a Center for Quantitative Sciences , Vanderbilt University , Nashville , TN , USA
| | - Stephen A Strickland
- b Department of Medicine, Division of Hematology/Oncology , Vanderbilt University Medical Center , Nashville , TN , USA
| | - Sanjay Mohan
- b Department of Medicine, Division of Hematology/Oncology , Vanderbilt University Medical Center , Nashville , TN , USA
| | - Shaoying Li
- c Hematopathology Department , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Amma Bosompem
- d Department of Pathology , Vanderbilt University Medical Center , Nashville , TN , USA
| | - Kasey C Vickers
- e Department of Medicine , Vanderbilt University Medical Center , Nashville , TN , USA
| | - Shilin Zhao
- f Department of Cancer Biology , Vanderbilt University , Nashville , TN , USA
| | - Quanhu Sheng
- f Department of Cancer Biology , Vanderbilt University , Nashville , TN , USA
| | - Annette S Kim
- g Department of Pathology, Brigham and Women's Hospital , Boston , MA , USA
| |
Collapse
|
23
|
Castillo-Aguilera O, Depreux P, Halby L, Arimondo PB, Goossens L. DNA Methylation Targeting: The DNMT/HMT Crosstalk Challenge. Biomolecules 2017; 7:biom7010003. [PMID: 28067760 PMCID: PMC5372715 DOI: 10.3390/biom7010003] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 12/08/2016] [Accepted: 12/12/2016] [Indexed: 12/22/2022] Open
Abstract
Chromatin can adopt a decondensed state linked to gene transcription (euchromatin) and a condensed state linked to transcriptional repression (heterochromatin). These states are controlled by epigenetic modulators that are active on either the DNA or the histones and are tightly associated to each other. Methylation of both DNA and histones is involved in either the activation or silencing of genes and their crosstalk. Since DNA/histone methylation patterns are altered in cancers, molecules that target these modifications are interesting therapeutic tools. We present herein a vast panel of DNA methyltransferase inhibitors classified according to their mechanism, as well as selected histone methyltransferase inhibitors sharing a common mode of action.
Collapse
Affiliation(s)
- Omar Castillo-Aguilera
- Univ. Lille, ICPAL, EA 7365-GRITA-Groupe de Recherche sur les formes Injectables et les Technologies Associées, 3 rue du Pr. Laguesse, F-59000 Lille, France.
| | - Patrick Depreux
- Univ. Lille, ICPAL, EA 7365-GRITA-Groupe de Recherche sur les formes Injectables et les Technologies Associées, 3 rue du Pr. Laguesse, F-59000 Lille, France.
| | - Ludovic Halby
- FRE3600 Epigenetic Targeting of Cancer, CNRS, 31035 Toulouse, France.
| | - Paola B Arimondo
- FRE3600 Epigenetic Targeting of Cancer, CNRS, 31035 Toulouse, France.
- Churchill College, Cambridge CB3 0DS, UK.
| | - Laurence Goossens
- Univ. Lille, ICPAL, EA 7365-GRITA-Groupe de Recherche sur les formes Injectables et les Technologies Associées, 3 rue du Pr. Laguesse, F-59000 Lille, France.
| |
Collapse
|
24
|
Prada-Arismendy J, Arroyave JC, Röthlisberger S. Molecular biomarkers in acute myeloid leukemia. Blood Rev 2016; 31:63-76. [PMID: 27639498 DOI: 10.1016/j.blre.2016.08.005] [Citation(s) in RCA: 181] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 08/24/2016] [Accepted: 08/26/2016] [Indexed: 12/11/2022]
Abstract
Acute myeloid leukemia (AML) is the most common acute leukemia in adults. The pathophysiology of this disease is just beginning to be understood at the cellular and molecular level, and currently cytogenetic markers are the most important for risk stratification and treatment of AML patients. However, with the advent of new technologies, the detection of other molecular markers such as point mutations and characterization of epigenetic and proteomic profiles, have begun to play an important role in how the disease is approached. Recent evidence shows that the identification of new AML biomarkers contributes to a better understanding of the molecular basis of the disease, is significantly useful in screening, diagnosis, prognosis and monitoring of AML, as well as the possibility of predicting each individual's response to treatment. This review summarizes the most relevant molecular (genetic, epigenetic, and protein) biomarkers associated with acute myeloid leukemia and discusses their clinical importance in terms of risk prediction, diagnosis and prognosis.
Collapse
MESH Headings
- Biomarkers, Tumor
- DNA Methylation
- Disease Susceptibility
- Epigenesis, Genetic
- Genetic Variation
- Humans
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/mortality
- Mutation
- Prognosis
Collapse
Affiliation(s)
- Jeanette Prada-Arismendy
- Grupo de Investigación e Innovación Biomédica, Instituto Tecnológico Metropolitano, Medellín, Colombia.
| | - Johanna C Arroyave
- Grupo de Investigación e Innovación Biomédica, Instituto Tecnológico Metropolitano, Medellín, Colombia
| | - Sarah Röthlisberger
- Grupo de Investigación e Innovación Biomédica, Instituto Tecnológico Metropolitano, Medellín, Colombia
| |
Collapse
|
25
|
Tian C, You MJ, Yu Y, Zhu L, Zheng G, Zhang Y. MicroRNA-9 promotes proliferation of leukemia cells in adult CD34-positive acute myeloid leukemia with normal karyotype by downregulation of Hes1. Tumour Biol 2015; 37:7461-71. [PMID: 26678889 DOI: 10.1007/s13277-015-4581-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 12/02/2015] [Indexed: 11/28/2022] Open
Abstract
Acute myeloid leukemia (AML) is a group of heterogeneous hematopoietic malignancies sustained by leukemic stem cells (LSCs) that can resist treatment. Previously, we found that low expression of Hes1 was a poor prognostic factor for AML. However, the activation status of Hes1 and its regulation in LSCs and leukemic progenitors (LPs) as well as normal hematopoietic stem cells (HSCs) in Hes1-low AML patients have not been elucidated. In this study, the expression of Hes1 in LSCs and LPs was analyzed in adult CD34(+) Hes1-low AML with normal karyotype and the upstream microRNA (miRNA) regulators were screened. Our results showed that the level of either Hes1 or p21 was lower in LSCs or LPs than in HSCs whereas the level of miR-9 was highest in LPs and lowest in HSCs. An inverse correlation was observed in the expression of Hes1 and miR-9. Furthermore, we validated miR-9 as one of the regulators of Hes1 by reporter gene analysis. Knockdown of miR-9 by lentivirus infection suppressed the proliferation of AML cells by the induction of G0 arrest and apoptosis in vitro. Moreover, knockdown of miR-9 resulted in decreased circulating leukemic cell counts in peripheral blood and bone marrow, attenuated splenomegaly, and prolonged survival in a xenotransplant mouse model. Our results indicate that the miR-9 plays an important role in supporting AML cell growth and survival by downregulation of Hes1 and that miR-9 has potential as a therapeutic target for treating AML.
Collapse
MESH Headings
- Adult
- Aged
- Animals
- Antigens, CD34/metabolism
- Apoptosis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Blotting, Western
- Cell Cycle
- Cell Proliferation
- Down-Regulation
- Female
- Follow-Up Studies
- Hematopoietic Stem Cells/metabolism
- Hematopoietic Stem Cells/pathology
- Humans
- Karyotype
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Male
- Mice
- Mice, Inbred NOD
- Mice, SCID
- MicroRNAs/genetics
- Middle Aged
- Neoplasm Staging
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Prognosis
- RNA, Messenger/genetics
- Real-Time Polymerase Chain Reaction
- Reverse Transcriptase Polymerase Chain Reaction
- Transcription Factor HES-1/genetics
- Transcription Factor HES-1/metabolism
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
- Young Adult
Collapse
Affiliation(s)
- Chen Tian
- Department of Hematology, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, People's Republic of China
| | - M James You
- Department of Hematopathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yong Yu
- Department of Hematology, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, People's Republic of China
| | - Lei Zhu
- Department of Hematology, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, People's Republic of China
| | - Guoguang Zheng
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300020, People's Republic of China.
| | - Yizhuo Zhang
- Department of Hematology, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, People's Republic of China.
| |
Collapse
|
26
|
Genome-wide analysis of microRNA and mRNA expression signatures in cancer. Acta Pharmacol Sin 2015; 36:1200-11. [PMID: 26299954 DOI: 10.1038/aps.2015.67] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 06/22/2015] [Indexed: 12/29/2022] Open
Abstract
Cancer is an extremely diverse and complex disease that results from various genetic and epigenetic changes such as DNA copy-number variations, mutations, and aberrant mRNA and/or protein expression caused by abnormal transcriptional regulation. The expression profiles of certain microRNAs (miRNAs) and messenger RNAs (mRNAs) are closely related to cancer progression stages. In the past few decades, DNA microarray and next-generation sequencing techniques have been widely applied to identify miRNA and mRNA signatures for cancers on a genome-wide scale and have provided meaningful insights into cancer diagnosis, prognosis and personalized medicine. In this review, we summarize the progress in genome-wide analysis of miRNAs and mRNAs as cancer biomarkers, highlighting their diagnostic and prognostic roles.
Collapse
|